reiserfs.h revision 04f9b74e4d96d349de12fdd4e6626af4a9f75e09
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5#include <linux/reiserfs_fs.h>
6
7#include <linux/slab.h>
8#include <linux/interrupt.h>
9#include <linux/sched.h>
10#include <linux/bug.h>
11#include <linux/workqueue.h>
12#include <asm/unaligned.h>
13#include <linux/bitops.h>
14#include <linux/proc_fs.h>
15#include <linux/buffer_head.h>
16
17/* the 32 bit compat definitions with int argument */
18#define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
19#define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
20#define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
21#define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22#define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23
24struct reiserfs_journal_list;
25
26/** bitmasks for i_flags field in reiserfs-specific part of inode */
27typedef enum {
28    /** this says what format of key do all items (but stat data) of
29      an object have.  If this is set, that format is 3.6 otherwise
30      - 3.5 */
31	i_item_key_version_mask = 0x0001,
32    /** If this is unset, object has 3.5 stat data, otherwise, it has
33      3.6 stat data with 64bit size, 32bit nlink etc. */
34	i_stat_data_version_mask = 0x0002,
35    /** file might need tail packing on close */
36	i_pack_on_close_mask = 0x0004,
37    /** don't pack tail of file */
38	i_nopack_mask = 0x0008,
39    /** If those is set, "safe link" was created for this file during
40      truncate or unlink. Safe link is used to avoid leakage of disk
41      space on crash with some files open, but unlinked. */
42	i_link_saved_unlink_mask = 0x0010,
43	i_link_saved_truncate_mask = 0x0020,
44	i_has_xattr_dir = 0x0040,
45	i_data_log = 0x0080,
46} reiserfs_inode_flags;
47
48struct reiserfs_inode_info {
49	__u32 i_key[4];		/* key is still 4 32 bit integers */
50    /** transient inode flags that are never stored on disk. Bitmasks
51      for this field are defined above. */
52	__u32 i_flags;
53
54	__u32 i_first_direct_byte;	// offset of first byte stored in direct item.
55
56	/* copy of persistent inode flags read from sd_attrs. */
57	__u32 i_attrs;
58
59	int i_prealloc_block;	/* first unused block of a sequence of unused blocks */
60	int i_prealloc_count;	/* length of that sequence */
61	struct list_head i_prealloc_list;	/* per-transaction list of inodes which
62						 * have preallocated blocks */
63
64	unsigned new_packing_locality:1;	/* new_packig_locality is created; new blocks
65						 * for the contents of this directory should be
66						 * displaced */
67
68	/* we use these for fsync or O_SYNC to decide which transaction
69	 ** needs to be committed in order for this inode to be properly
70	 ** flushed */
71	unsigned int i_trans_id;
72	struct reiserfs_journal_list *i_jl;
73	atomic_t openers;
74	struct mutex tailpack;
75#ifdef CONFIG_REISERFS_FS_XATTR
76	struct rw_semaphore i_xattr_sem;
77#endif
78	struct inode vfs_inode;
79};
80
81typedef enum {
82	reiserfs_attrs_cleared = 0x00000001,
83} reiserfs_super_block_flags;
84
85/* struct reiserfs_super_block accessors/mutators
86 * since this is a disk structure, it will always be in
87 * little endian format. */
88#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
89#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
90#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
91#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
92#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
93#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
94
95#define sb_jp_journal_1st_block(sbp)  \
96              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
97#define set_sb_jp_journal_1st_block(sbp,v) \
98              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
99#define sb_jp_journal_dev(sbp) \
100              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
101#define set_sb_jp_journal_dev(sbp,v) \
102              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
103#define sb_jp_journal_size(sbp) \
104              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
105#define set_sb_jp_journal_size(sbp,v) \
106              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
107#define sb_jp_journal_trans_max(sbp) \
108              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
109#define set_sb_jp_journal_trans_max(sbp,v) \
110              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
111#define sb_jp_journal_magic(sbp) \
112              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
113#define set_sb_jp_journal_magic(sbp,v) \
114              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
115#define sb_jp_journal_max_batch(sbp) \
116              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
117#define set_sb_jp_journal_max_batch(sbp,v) \
118              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
119#define sb_jp_jourmal_max_commit_age(sbp) \
120              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
121#define set_sb_jp_journal_max_commit_age(sbp,v) \
122              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
123
124#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
125#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
126#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
127#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
128#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
129#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
130#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
131#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
132#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
133#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
134#define sb_hash_function_code(sbp) \
135              (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
136#define set_sb_hash_function_code(sbp,v) \
137              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
138#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
139#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
140#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
141#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
142#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
143#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
144
145#define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
146#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
147
148#define sb_reserved_for_journal(sbp) \
149              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
150#define set_sb_reserved_for_journal(sbp,v) \
151              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
152
153/* LOGGING -- */
154
155/* These all interelate for performance.
156**
157** If the journal block count is smaller than n transactions, you lose speed.
158** I don't know what n is yet, I'm guessing 8-16.
159**
160** typical transaction size depends on the application, how often fsync is
161** called, and how many metadata blocks you dirty in a 30 second period.
162** The more small files (<16k) you use, the larger your transactions will
163** be.
164**
165** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
166** to wrap, which slows things down.  If you need high speed meta data updates, the journal should be big enough
167** to prevent wrapping before dirty meta blocks get to disk.
168**
169** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
170** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
171**
172** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
173**
174*/
175
176/* don't mess with these for a while */
177				/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
178#define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
179#define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
180#define JOURNAL_HASH_SIZE 8192
181#define JOURNAL_NUM_BITMAPS 5	/* number of copies of the bitmaps to have floating.  Must be >= 2 */
182
183/* One of these for every block in every transaction
184** Each one is in two hash tables.  First, a hash of the current transaction, and after journal_end, a
185** hash of all the in memory transactions.
186** next and prev are used by the current transaction (journal_hash).
187** hnext and hprev are used by journal_list_hash.  If a block is in more than one transaction, the journal_list_hash
188** links it in multiple times.  This allows flush_journal_list to remove just the cnode belonging
189** to a given transaction.
190*/
191struct reiserfs_journal_cnode {
192	struct buffer_head *bh;	/* real buffer head */
193	struct super_block *sb;	/* dev of real buffer head */
194	__u32 blocknr;		/* block number of real buffer head, == 0 when buffer on disk */
195	unsigned long state;
196	struct reiserfs_journal_list *jlist;	/* journal list this cnode lives in */
197	struct reiserfs_journal_cnode *next;	/* next in transaction list */
198	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
199	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
200	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
201};
202
203struct reiserfs_bitmap_node {
204	int id;
205	char *data;
206	struct list_head list;
207};
208
209struct reiserfs_list_bitmap {
210	struct reiserfs_journal_list *journal_list;
211	struct reiserfs_bitmap_node **bitmaps;
212};
213
214/*
215** one of these for each transaction.  The most important part here is the j_realblock.
216** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
217** real buffer heads dirty once all the commits hit the disk,
218** and to make sure every real block in a transaction is on disk before allowing the log area
219** to be overwritten */
220struct reiserfs_journal_list {
221	unsigned long j_start;
222	unsigned long j_state;
223	unsigned long j_len;
224	atomic_t j_nonzerolen;
225	atomic_t j_commit_left;
226	atomic_t j_older_commits_done;	/* all commits older than this on disk */
227	struct mutex j_commit_mutex;
228	unsigned int j_trans_id;
229	time_t j_timestamp;
230	struct reiserfs_list_bitmap *j_list_bitmap;
231	struct buffer_head *j_commit_bh;	/* commit buffer head */
232	struct reiserfs_journal_cnode *j_realblock;
233	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
234	/* time ordered list of all active transactions */
235	struct list_head j_list;
236
237	/* time ordered list of all transactions we haven't tried to flush yet */
238	struct list_head j_working_list;
239
240	/* list of tail conversion targets in need of flush before commit */
241	struct list_head j_tail_bh_list;
242	/* list of data=ordered buffers in need of flush before commit */
243	struct list_head j_bh_list;
244	int j_refcount;
245};
246
247struct reiserfs_journal {
248	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
249	struct reiserfs_journal_cnode *j_last;	/* newest journal block */
250	struct reiserfs_journal_cnode *j_first;	/*  oldest journal block.  start here for traverse */
251
252	struct block_device *j_dev_bd;
253	fmode_t j_dev_mode;
254	int j_1st_reserved_block;	/* first block on s_dev of reserved area journal */
255
256	unsigned long j_state;
257	unsigned int j_trans_id;
258	unsigned long j_mount_id;
259	unsigned long j_start;	/* start of current waiting commit (index into j_ap_blocks) */
260	unsigned long j_len;	/* length of current waiting commit */
261	unsigned long j_len_alloc;	/* number of buffers requested by journal_begin() */
262	atomic_t j_wcount;	/* count of writers for current commit */
263	unsigned long j_bcount;	/* batch count. allows turning X transactions into 1 */
264	unsigned long j_first_unflushed_offset;	/* first unflushed transactions offset */
265	unsigned j_last_flush_trans_id;	/* last fully flushed journal timestamp */
266	struct buffer_head *j_header_bh;
267
268	time_t j_trans_start_time;	/* time this transaction started */
269	struct mutex j_mutex;
270	struct mutex j_flush_mutex;
271	wait_queue_head_t j_join_wait;	/* wait for current transaction to finish before starting new one */
272	atomic_t j_jlock;	/* lock for j_join_wait */
273	int j_list_bitmap_index;	/* number of next list bitmap to use */
274	int j_must_wait;	/* no more journal begins allowed. MUST sleep on j_join_wait */
275	int j_next_full_flush;	/* next journal_end will flush all journal list */
276	int j_next_async_flush;	/* next journal_end will flush all async commits */
277
278	int j_cnode_used;	/* number of cnodes on the used list */
279	int j_cnode_free;	/* number of cnodes on the free list */
280
281	unsigned int j_trans_max;	/* max number of blocks in a transaction.  */
282	unsigned int j_max_batch;	/* max number of blocks to batch into a trans */
283	unsigned int j_max_commit_age;	/* in seconds, how old can an async commit be */
284	unsigned int j_max_trans_age;	/* in seconds, how old can a transaction be */
285	unsigned int j_default_max_commit_age;	/* the default for the max commit age */
286
287	struct reiserfs_journal_cnode *j_cnode_free_list;
288	struct reiserfs_journal_cnode *j_cnode_free_orig;	/* orig pointer returned from vmalloc */
289
290	struct reiserfs_journal_list *j_current_jl;
291	int j_free_bitmap_nodes;
292	int j_used_bitmap_nodes;
293
294	int j_num_lists;	/* total number of active transactions */
295	int j_num_work_lists;	/* number that need attention from kreiserfsd */
296
297	/* debugging to make sure things are flushed in order */
298	unsigned int j_last_flush_id;
299
300	/* debugging to make sure things are committed in order */
301	unsigned int j_last_commit_id;
302
303	struct list_head j_bitmap_nodes;
304	struct list_head j_dirty_buffers;
305	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
306
307	/* list of all active transactions */
308	struct list_head j_journal_list;
309	/* lists that haven't been touched by writeback attempts */
310	struct list_head j_working_list;
311
312	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];	/* array of bitmaps to record the deleted blocks */
313	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];	/* hash table for real buffer heads in current trans */
314	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];	/* hash table for all the real buffer heads in all
315										   the transactions */
316	struct list_head j_prealloc_list;	/* list of inodes which have preallocated blocks */
317	int j_persistent_trans;
318	unsigned long j_max_trans_size;
319	unsigned long j_max_batch_size;
320
321	int j_errno;
322
323	/* when flushing ordered buffers, throttle new ordered writers */
324	struct delayed_work j_work;
325	struct super_block *j_work_sb;
326	atomic_t j_async_throttle;
327};
328
329enum journal_state_bits {
330	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
331	J_WRITERS_QUEUED,	/* set when log is full due to too many writers */
332	J_ABORTED,		/* set when log is aborted */
333};
334
335#define JOURNAL_DESC_MAGIC "ReIsErLB"	/* ick.  magic string to find desc blocks in the journal */
336
337typedef __u32(*hashf_t) (const signed char *, int);
338
339struct reiserfs_bitmap_info {
340	__u32 free_count;
341};
342
343struct proc_dir_entry;
344
345#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
346typedef unsigned long int stat_cnt_t;
347typedef struct reiserfs_proc_info_data {
348	spinlock_t lock;
349	int exiting;
350	int max_hash_collisions;
351
352	stat_cnt_t breads;
353	stat_cnt_t bread_miss;
354	stat_cnt_t search_by_key;
355	stat_cnt_t search_by_key_fs_changed;
356	stat_cnt_t search_by_key_restarted;
357
358	stat_cnt_t insert_item_restarted;
359	stat_cnt_t paste_into_item_restarted;
360	stat_cnt_t cut_from_item_restarted;
361	stat_cnt_t delete_solid_item_restarted;
362	stat_cnt_t delete_item_restarted;
363
364	stat_cnt_t leaked_oid;
365	stat_cnt_t leaves_removable;
366
367	/* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
368	stat_cnt_t balance_at[5];	/* XXX */
369	/* sbk == search_by_key */
370	stat_cnt_t sbk_read_at[5];	/* XXX */
371	stat_cnt_t sbk_fs_changed[5];
372	stat_cnt_t sbk_restarted[5];
373	stat_cnt_t items_at[5];	/* XXX */
374	stat_cnt_t free_at[5];	/* XXX */
375	stat_cnt_t can_node_be_removed[5];	/* XXX */
376	long int lnum[5];	/* XXX */
377	long int rnum[5];	/* XXX */
378	long int lbytes[5];	/* XXX */
379	long int rbytes[5];	/* XXX */
380	stat_cnt_t get_neighbors[5];
381	stat_cnt_t get_neighbors_restart[5];
382	stat_cnt_t need_l_neighbor[5];
383	stat_cnt_t need_r_neighbor[5];
384
385	stat_cnt_t free_block;
386	struct __scan_bitmap_stats {
387		stat_cnt_t call;
388		stat_cnt_t wait;
389		stat_cnt_t bmap;
390		stat_cnt_t retry;
391		stat_cnt_t in_journal_hint;
392		stat_cnt_t in_journal_nohint;
393		stat_cnt_t stolen;
394	} scan_bitmap;
395	struct __journal_stats {
396		stat_cnt_t in_journal;
397		stat_cnt_t in_journal_bitmap;
398		stat_cnt_t in_journal_reusable;
399		stat_cnt_t lock_journal;
400		stat_cnt_t lock_journal_wait;
401		stat_cnt_t journal_being;
402		stat_cnt_t journal_relock_writers;
403		stat_cnt_t journal_relock_wcount;
404		stat_cnt_t mark_dirty;
405		stat_cnt_t mark_dirty_already;
406		stat_cnt_t mark_dirty_notjournal;
407		stat_cnt_t restore_prepared;
408		stat_cnt_t prepare;
409		stat_cnt_t prepare_retry;
410	} journal;
411} reiserfs_proc_info_data_t;
412#else
413typedef struct reiserfs_proc_info_data {
414} reiserfs_proc_info_data_t;
415#endif
416
417/* reiserfs union of in-core super block data */
418struct reiserfs_sb_info {
419	struct buffer_head *s_sbh;	/* Buffer containing the super block */
420	/* both the comment and the choice of
421	   name are unclear for s_rs -Hans */
422	struct reiserfs_super_block *s_rs;	/* Pointer to the super block in the buffer */
423	struct reiserfs_bitmap_info *s_ap_bitmap;
424	struct reiserfs_journal *s_journal;	/* pointer to journal information */
425	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
426
427	/* Serialize writers access, replace the old bkl */
428	struct mutex lock;
429	/* Owner of the lock (can be recursive) */
430	struct task_struct *lock_owner;
431	/* Depth of the lock, start from -1 like the bkl */
432	int lock_depth;
433
434	/* Comment? -Hans */
435	void (*end_io_handler) (struct buffer_head *, int);
436	hashf_t s_hash_function;	/* pointer to function which is used
437					   to sort names in directory. Set on
438					   mount */
439	unsigned long s_mount_opt;	/* reiserfs's mount options are set
440					   here (currently - NOTAIL, NOLOG,
441					   REPLAYONLY) */
442
443	struct {		/* This is a structure that describes block allocator options */
444		unsigned long bits;	/* Bitfield for enable/disable kind of options */
445		unsigned long large_file_size;	/* size started from which we consider file to be a large one(in blocks) */
446		int border;	/* percentage of disk, border takes */
447		int preallocmin;	/* Minimal file size (in blocks) starting from which we do preallocations */
448		int preallocsize;	/* Number of blocks we try to prealloc when file
449					   reaches preallocmin size (in blocks) or
450					   prealloc_list is empty. */
451	} s_alloc_options;
452
453	/* Comment? -Hans */
454	wait_queue_head_t s_wait;
455	/* To be obsoleted soon by per buffer seals.. -Hans */
456	atomic_t s_generation_counter;	// increased by one every time the
457	// tree gets re-balanced
458	unsigned long s_properties;	/* File system properties. Currently holds
459					   on-disk FS format */
460
461	/* session statistics */
462	int s_disk_reads;
463	int s_disk_writes;
464	int s_fix_nodes;
465	int s_do_balance;
466	int s_unneeded_left_neighbor;
467	int s_good_search_by_key_reada;
468	int s_bmaps;
469	int s_bmaps_without_search;
470	int s_direct2indirect;
471	int s_indirect2direct;
472	/* set up when it's ok for reiserfs_read_inode2() to read from
473	   disk inode with nlink==0. Currently this is only used during
474	   finish_unfinished() processing at mount time */
475	int s_is_unlinked_ok;
476	reiserfs_proc_info_data_t s_proc_info_data;
477	struct proc_dir_entry *procdir;
478	int reserved_blocks;	/* amount of blocks reserved for further allocations */
479	spinlock_t bitmap_lock;	/* this lock on now only used to protect reserved_blocks variable */
480	struct dentry *priv_root;	/* root of /.reiserfs_priv */
481	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
482	int j_errno;
483
484	int work_queued;              /* non-zero delayed work is queued */
485	struct delayed_work old_work; /* old transactions flush delayed work */
486	spinlock_t old_work_lock;     /* protects old_work and work_queued */
487
488#ifdef CONFIG_QUOTA
489	char *s_qf_names[MAXQUOTAS];
490	int s_jquota_fmt;
491#endif
492	char *s_jdev;		/* Stored jdev for mount option showing */
493#ifdef CONFIG_REISERFS_CHECK
494
495	struct tree_balance *cur_tb;	/*
496					 * Detects whether more than one
497					 * copy of tb exists per superblock
498					 * as a means of checking whether
499					 * do_balance is executing concurrently
500					 * against another tree reader/writer
501					 * on a same mount point.
502					 */
503#endif
504};
505
506/* Definitions of reiserfs on-disk properties: */
507#define REISERFS_3_5 0
508#define REISERFS_3_6 1
509#define REISERFS_OLD_FORMAT 2
510
511enum reiserfs_mount_options {
512/* Mount options */
513	REISERFS_LARGETAIL,	/* large tails will be created in a session */
514	REISERFS_SMALLTAIL,	/* small (for files less than block size) tails will be created in a session */
515	REPLAYONLY,		/* replay journal and return 0. Use by fsck */
516	REISERFS_CONVERT,	/* -o conv: causes conversion of old
517				   format super block to the new
518				   format. If not specified - old
519				   partition will be dealt with in a
520				   manner of 3.5.x */
521
522/* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
523** reiserfs disks from 3.5.19 or earlier.  99% of the time, this option
524** is not required.  If the normal autodection code can't determine which
525** hash to use (because both hashes had the same value for a file)
526** use this option to force a specific hash.  It won't allow you to override
527** the existing hash on the FS, so if you have a tea hash disk, and mount
528** with -o hash=rupasov, the mount will fail.
529*/
530	FORCE_TEA_HASH,		/* try to force tea hash on mount */
531	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
532	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
533	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
534
535	REISERFS_DATA_LOG,
536	REISERFS_DATA_ORDERED,
537	REISERFS_DATA_WRITEBACK,
538
539/* used for testing experimental features, makes benchmarking new
540   features with and without more convenient, should never be used by
541   users in any code shipped to users (ideally) */
542
543	REISERFS_NO_BORDER,
544	REISERFS_NO_UNHASHED_RELOCATION,
545	REISERFS_HASHED_RELOCATION,
546	REISERFS_ATTRS,
547	REISERFS_XATTRS_USER,
548	REISERFS_POSIXACL,
549	REISERFS_EXPOSE_PRIVROOT,
550	REISERFS_BARRIER_NONE,
551	REISERFS_BARRIER_FLUSH,
552
553	/* Actions on error */
554	REISERFS_ERROR_PANIC,
555	REISERFS_ERROR_RO,
556	REISERFS_ERROR_CONTINUE,
557
558	REISERFS_USRQUOTA,	/* User quota option specified */
559	REISERFS_GRPQUOTA,	/* Group quota option specified */
560
561	REISERFS_TEST1,
562	REISERFS_TEST2,
563	REISERFS_TEST3,
564	REISERFS_TEST4,
565	REISERFS_UNSUPPORTED_OPT,
566};
567
568#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
569#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
570#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
571#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
572#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
573#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
574#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
575#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
576
577#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
578#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
579#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
580#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
581#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
582#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
583#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
584#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
585#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
586#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
587#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
588#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
589#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
590#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
591#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
592
593#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
594#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
595
596void reiserfs_file_buffer(struct buffer_head *bh, int list);
597extern struct file_system_type reiserfs_fs_type;
598int reiserfs_resize(struct super_block *, unsigned long);
599
600#define CARRY_ON                0
601#define SCHEDULE_OCCURRED       1
602
603#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
604#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
605#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
606#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
607#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
608
609#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
610
611/* A safe version of the "bdevname", which returns the "s_id" field of
612 * a superblock or else "Null superblock" if the super block is NULL.
613 */
614static inline char *reiserfs_bdevname(struct super_block *s)
615{
616	return (s == NULL) ? "Null superblock" : s->s_id;
617}
618
619#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
620static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
621						*journal)
622{
623	return test_bit(J_ABORTED, &journal->j_state);
624}
625
626/*
627 * Locking primitives. The write lock is a per superblock
628 * special mutex that has properties close to the Big Kernel Lock
629 * which was used in the previous locking scheme.
630 */
631void reiserfs_write_lock(struct super_block *s);
632void reiserfs_write_unlock(struct super_block *s);
633int __must_check reiserfs_write_unlock_nested(struct super_block *s);
634void reiserfs_write_lock_nested(struct super_block *s, int depth);
635
636#ifdef CONFIG_REISERFS_CHECK
637void reiserfs_lock_check_recursive(struct super_block *s);
638#else
639static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
640#endif
641
642/*
643 * Several mutexes depend on the write lock.
644 * However sometimes we want to relax the write lock while we hold
645 * these mutexes, according to the release/reacquire on schedule()
646 * properties of the Bkl that were used.
647 * Reiserfs performances and locking were based on this scheme.
648 * Now that the write lock is a mutex and not the bkl anymore, doing so
649 * may result in a deadlock:
650 *
651 * A acquire write_lock
652 * A acquire j_commit_mutex
653 * A release write_lock and wait for something
654 * B acquire write_lock
655 * B can't acquire j_commit_mutex and sleep
656 * A can't acquire write lock anymore
657 * deadlock
658 *
659 * What we do here is avoiding such deadlock by playing the same game
660 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
661 * we release the write lock, wait a bit and then retry.
662 *
663 * The mutexes concerned by this hack are:
664 * - The commit mutex of a journal list
665 * - The flush mutex
666 * - The journal lock
667 * - The inode mutex
668 */
669static inline void reiserfs_mutex_lock_safe(struct mutex *m,
670					    struct super_block *s)
671{
672	int depth;
673
674	depth = reiserfs_write_unlock_nested(s);
675	mutex_lock(m);
676	reiserfs_write_lock_nested(s, depth);
677}
678
679static inline void
680reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
681				struct super_block *s)
682{
683	int depth;
684
685	depth = reiserfs_write_unlock_nested(s);
686	mutex_lock_nested(m, subclass);
687	reiserfs_write_lock_nested(s, depth);
688}
689
690static inline void
691reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
692{
693       int depth;
694       depth = reiserfs_write_unlock_nested(s);
695       down_read(sem);
696       reiserfs_write_lock_nested(s, depth);
697}
698
699/*
700 * When we schedule, we usually want to also release the write lock,
701 * according to the previous bkl based locking scheme of reiserfs.
702 */
703static inline void reiserfs_cond_resched(struct super_block *s)
704{
705	if (need_resched()) {
706		int depth;
707
708		depth = reiserfs_write_unlock_nested(s);
709		schedule();
710		reiserfs_write_lock_nested(s, depth);
711	}
712}
713
714struct fid;
715
716/* in reading the #defines, it may help to understand that they employ
717   the following abbreviations:
718
719   B = Buffer
720   I = Item header
721   H = Height within the tree (should be changed to LEV)
722   N = Number of the item in the node
723   STAT = stat data
724   DEH = Directory Entry Header
725   EC = Entry Count
726   E = Entry number
727   UL = Unsigned Long
728   BLKH = BLocK Header
729   UNFM = UNForMatted node
730   DC = Disk Child
731   P = Path
732
733   These #defines are named by concatenating these abbreviations,
734   where first comes the arguments, and last comes the return value,
735   of the macro.
736
737*/
738
739#define USE_INODE_GENERATION_COUNTER
740
741#define REISERFS_PREALLOCATE
742#define DISPLACE_NEW_PACKING_LOCALITIES
743#define PREALLOCATION_SIZE 9
744
745/* n must be power of 2 */
746#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
747
748// to be ok for alpha and others we have to align structures to 8 byte
749// boundary.
750// FIXME: do not change 4 by anything else: there is code which relies on that
751#define ROUND_UP(x) _ROUND_UP(x,8LL)
752
753/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
754** messages.
755*/
756#define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
757
758void __reiserfs_warning(struct super_block *s, const char *id,
759			 const char *func, const char *fmt, ...);
760#define reiserfs_warning(s, id, fmt, args...) \
761	 __reiserfs_warning(s, id, __func__, fmt, ##args)
762/* assertions handling */
763
764/** always check a condition and panic if it's false. */
765#define __RASSERT(cond, scond, format, args...)			\
766do {									\
767	if (!(cond))							\
768		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
769			       __FILE__ ":%i:%s: " format "\n",		\
770			       in_interrupt() ? -1 : task_pid_nr(current), \
771			       __LINE__, __func__ , ##args);		\
772} while (0)
773
774#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
775
776#if defined( CONFIG_REISERFS_CHECK )
777#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
778#else
779#define RFALSE( cond, format, args... ) do {;} while( 0 )
780#endif
781
782#define CONSTF __attribute_const__
783/*
784 * Disk Data Structures
785 */
786
787/***************************************************************************/
788/*                             SUPER BLOCK                                 */
789/***************************************************************************/
790
791/*
792 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
793 * the version in RAM is part of a larger structure containing fields never written to disk.
794 */
795#define UNSET_HASH 0		// read_super will guess about, what hash names
796		     // in directories were sorted with
797#define TEA_HASH  1
798#define YURA_HASH 2
799#define R5_HASH   3
800#define DEFAULT_HASH R5_HASH
801
802struct journal_params {
803	__le32 jp_journal_1st_block;	/* where does journal start from on its
804					 * device */
805	__le32 jp_journal_dev;	/* journal device st_rdev */
806	__le32 jp_journal_size;	/* size of the journal */
807	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
808	__le32 jp_journal_magic;	/* random value made on fs creation (this
809					 * was sb_journal_block_count) */
810	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
811					 * trans */
812	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
813						 * commit be */
814	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
815						 * be */
816};
817
818/* this is the super from 3.5.X, where X >= 10 */
819struct reiserfs_super_block_v1 {
820	__le32 s_block_count;	/* blocks count         */
821	__le32 s_free_blocks;	/* free blocks count    */
822	__le32 s_root_block;	/* root block number    */
823	struct journal_params s_journal;
824	__le16 s_blocksize;	/* block size */
825	__le16 s_oid_maxsize;	/* max size of object id array, see
826				 * get_objectid() commentary  */
827	__le16 s_oid_cursize;	/* current size of object id array */
828	__le16 s_umount_state;	/* this is set to 1 when filesystem was
829				 * umounted, to 2 - when not */
830	char s_magic[10];	/* reiserfs magic string indicates that
831				 * file system is reiserfs:
832				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
833	__le16 s_fs_state;	/* it is set to used by fsck to mark which
834				 * phase of rebuilding is done */
835	__le32 s_hash_function_code;	/* indicate, what hash function is being use
836					 * to sort names in a directory*/
837	__le16 s_tree_height;	/* height of disk tree */
838	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
839				 * each block of file system */
840	__le16 s_version;	/* this field is only reliable on filesystem
841				 * with non-standard journal */
842	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
843					 * device, we need to keep after
844					 * making fs with non-standard journal */
845} __attribute__ ((__packed__));
846
847#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
848
849/* this is the on disk super block */
850struct reiserfs_super_block {
851	struct reiserfs_super_block_v1 s_v1;
852	__le32 s_inode_generation;
853	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
854	unsigned char s_uuid[16];	/* filesystem unique identifier */
855	unsigned char s_label[16];	/* filesystem volume label */
856	__le16 s_mnt_count;		/* Count of mounts since last fsck */
857	__le16 s_max_mnt_count;		/* Maximum mounts before check */
858	__le32 s_lastcheck;		/* Timestamp of last fsck */
859	__le32 s_check_interval;	/* Interval between checks */
860	char s_unused[76];	/* zero filled by mkreiserfs and
861				 * reiserfs_convert_objectid_map_v1()
862				 * so any additions must be updated
863				 * there as well. */
864} __attribute__ ((__packed__));
865
866#define SB_SIZE (sizeof(struct reiserfs_super_block))
867
868#define REISERFS_VERSION_1 0
869#define REISERFS_VERSION_2 2
870
871// on-disk super block fields converted to cpu form
872#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
873#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
874#define SB_BLOCKSIZE(s) \
875        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
876#define SB_BLOCK_COUNT(s) \
877        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
878#define SB_FREE_BLOCKS(s) \
879        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
880#define SB_REISERFS_MAGIC(s) \
881        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
882#define SB_ROOT_BLOCK(s) \
883        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
884#define SB_TREE_HEIGHT(s) \
885        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
886#define SB_REISERFS_STATE(s) \
887        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
888#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
889#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
890
891#define PUT_SB_BLOCK_COUNT(s, val) \
892   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
893#define PUT_SB_FREE_BLOCKS(s, val) \
894   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
895#define PUT_SB_ROOT_BLOCK(s, val) \
896   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
897#define PUT_SB_TREE_HEIGHT(s, val) \
898   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
899#define PUT_SB_REISERFS_STATE(s, val) \
900   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
901#define PUT_SB_VERSION(s, val) \
902   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
903#define PUT_SB_BMAP_NR(s, val) \
904   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
905
906#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
907#define SB_ONDISK_JOURNAL_SIZE(s) \
908         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
909#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
910         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
911#define SB_ONDISK_JOURNAL_DEVICE(s) \
912         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
913#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
914         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
915
916#define is_block_in_log_or_reserved_area(s, block) \
917         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
918         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
919         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
920         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
921
922int is_reiserfs_3_5(struct reiserfs_super_block *rs);
923int is_reiserfs_3_6(struct reiserfs_super_block *rs);
924int is_reiserfs_jr(struct reiserfs_super_block *rs);
925
926/* ReiserFS leaves the first 64k unused, so that partition labels have
927   enough space.  If someone wants to write a fancy bootloader that
928   needs more than 64k, let us know, and this will be increased in size.
929   This number must be larger than than the largest block size on any
930   platform, or code will break.  -Hans */
931#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
932#define REISERFS_FIRST_BLOCK unused_define
933#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
934
935/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
936#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
937
938/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
939#define CARRY_ON      0
940#define REPEAT_SEARCH -1
941#define IO_ERROR      -2
942#define NO_DISK_SPACE -3
943#define NO_BALANCING_NEEDED  (-4)
944#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
945#define QUOTA_EXCEEDED -6
946
947typedef __u32 b_blocknr_t;
948typedef __le32 unp_t;
949
950struct unfm_nodeinfo {
951	unp_t unfm_nodenum;
952	unsigned short unfm_freespace;
953};
954
955/* there are two formats of keys: 3.5 and 3.6
956 */
957#define KEY_FORMAT_3_5 0
958#define KEY_FORMAT_3_6 1
959
960/* there are two stat datas */
961#define STAT_DATA_V1 0
962#define STAT_DATA_V2 1
963
964static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
965{
966	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
967}
968
969static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
970{
971	return sb->s_fs_info;
972}
973
974/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
975 * which overflows on large file systems. */
976static inline __u32 reiserfs_bmap_count(struct super_block *sb)
977{
978	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
979}
980
981static inline int bmap_would_wrap(unsigned bmap_nr)
982{
983	return bmap_nr > ((1LL << 16) - 1);
984}
985
986/** this says about version of key of all items (but stat data) the
987    object consists of */
988#define get_inode_item_key_version( inode )                                    \
989    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
990
991#define set_inode_item_key_version( inode, version )                           \
992         ({ if((version)==KEY_FORMAT_3_6)                                      \
993                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
994            else                                                               \
995                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
996
997#define get_inode_sd_version(inode)                                            \
998    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
999
1000#define set_inode_sd_version(inode, version)                                   \
1001         ({ if((version)==STAT_DATA_V2)                                        \
1002                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1003            else                                                               \
1004                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1005
1006/* This is an aggressive tail suppression policy, I am hoping it
1007   improves our benchmarks. The principle behind it is that percentage
1008   space saving is what matters, not absolute space saving.  This is
1009   non-intuitive, but it helps to understand it if you consider that the
1010   cost to access 4 blocks is not much more than the cost to access 1
1011   block, if you have to do a seek and rotate.  A tail risks a
1012   non-linear disk access that is significant as a percentage of total
1013   time cost for a 4 block file and saves an amount of space that is
1014   less significant as a percentage of space, or so goes the hypothesis.
1015   -Hans */
1016#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1017(\
1018  (!(n_tail_size)) || \
1019  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1020   ( (n_file_size) >= (n_block_size) * 4 ) || \
1021   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1022     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1023   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1024     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1025   ( ( (n_file_size) >= (n_block_size) ) && \
1026     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1027)
1028
1029/* Another strategy for tails, this one means only create a tail if all the
1030   file would fit into one DIRECT item.
1031   Primary intention for this one is to increase performance by decreasing
1032   seeking.
1033*/
1034#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1035(\
1036  (!(n_tail_size)) || \
1037  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1038)
1039
1040/*
1041 * values for s_umount_state field
1042 */
1043#define REISERFS_VALID_FS    1
1044#define REISERFS_ERROR_FS    2
1045
1046//
1047// there are 5 item types currently
1048//
1049#define TYPE_STAT_DATA 0
1050#define TYPE_INDIRECT 1
1051#define TYPE_DIRECT 2
1052#define TYPE_DIRENTRY 3
1053#define TYPE_MAXTYPE 3
1054#define TYPE_ANY 15		// FIXME: comment is required
1055
1056/***************************************************************************/
1057/*                       KEY & ITEM HEAD                                   */
1058/***************************************************************************/
1059
1060//
1061// directories use this key as well as old files
1062//
1063struct offset_v1 {
1064	__le32 k_offset;
1065	__le32 k_uniqueness;
1066} __attribute__ ((__packed__));
1067
1068struct offset_v2 {
1069	__le64 v;
1070} __attribute__ ((__packed__));
1071
1072static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1073{
1074	__u8 type = le64_to_cpu(v2->v) >> 60;
1075	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1076}
1077
1078static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1079{
1080	v2->v =
1081	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1082}
1083
1084static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1085{
1086	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1087}
1088
1089static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1090{
1091	offset &= (~0ULL >> 4);
1092	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1093}
1094
1095/* Key of an item determines its location in the S+tree, and
1096   is composed of 4 components */
1097struct reiserfs_key {
1098	__le32 k_dir_id;	/* packing locality: by default parent
1099				   directory object id */
1100	__le32 k_objectid;	/* object identifier */
1101	union {
1102		struct offset_v1 k_offset_v1;
1103		struct offset_v2 k_offset_v2;
1104	} __attribute__ ((__packed__)) u;
1105} __attribute__ ((__packed__));
1106
1107struct in_core_key {
1108	__u32 k_dir_id;		/* packing locality: by default parent
1109				   directory object id */
1110	__u32 k_objectid;	/* object identifier */
1111	__u64 k_offset;
1112	__u8 k_type;
1113};
1114
1115struct cpu_key {
1116	struct in_core_key on_disk_key;
1117	int version;
1118	int key_length;		/* 3 in all cases but direct2indirect and
1119				   indirect2direct conversion */
1120};
1121
1122/* Our function for comparing keys can compare keys of different
1123   lengths.  It takes as a parameter the length of the keys it is to
1124   compare.  These defines are used in determining what is to be passed
1125   to it as that parameter. */
1126#define REISERFS_FULL_KEY_LEN     4
1127#define REISERFS_SHORT_KEY_LEN    2
1128
1129/* The result of the key compare */
1130#define FIRST_GREATER 1
1131#define SECOND_GREATER -1
1132#define KEYS_IDENTICAL 0
1133#define KEY_FOUND 1
1134#define KEY_NOT_FOUND 0
1135
1136#define KEY_SIZE (sizeof(struct reiserfs_key))
1137#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1138
1139/* return values for search_by_key and clones */
1140#define ITEM_FOUND 1
1141#define ITEM_NOT_FOUND 0
1142#define ENTRY_FOUND 1
1143#define ENTRY_NOT_FOUND 0
1144#define DIRECTORY_NOT_FOUND -1
1145#define REGULAR_FILE_FOUND -2
1146#define DIRECTORY_FOUND -3
1147#define BYTE_FOUND 1
1148#define BYTE_NOT_FOUND 0
1149#define FILE_NOT_FOUND -1
1150
1151#define POSITION_FOUND 1
1152#define POSITION_NOT_FOUND 0
1153
1154// return values for reiserfs_find_entry and search_by_entry_key
1155#define NAME_FOUND 1
1156#define NAME_NOT_FOUND 0
1157#define GOTO_PREVIOUS_ITEM 2
1158#define NAME_FOUND_INVISIBLE 3
1159
1160/*  Everything in the filesystem is stored as a set of items.  The
1161    item head contains the key of the item, its free space (for
1162    indirect items) and specifies the location of the item itself
1163    within the block.  */
1164
1165struct item_head {
1166	/* Everything in the tree is found by searching for it based on
1167	 * its key.*/
1168	struct reiserfs_key ih_key;
1169	union {
1170		/* The free space in the last unformatted node of an
1171		   indirect item if this is an indirect item.  This
1172		   equals 0xFFFF iff this is a direct item or stat data
1173		   item. Note that the key, not this field, is used to
1174		   determine the item type, and thus which field this
1175		   union contains. */
1176		__le16 ih_free_space_reserved;
1177		/* Iff this is a directory item, this field equals the
1178		   number of directory entries in the directory item. */
1179		__le16 ih_entry_count;
1180	} __attribute__ ((__packed__)) u;
1181	__le16 ih_item_len;	/* total size of the item body */
1182	__le16 ih_item_location;	/* an offset to the item body
1183					 * within the block */
1184	__le16 ih_version;	/* 0 for all old items, 2 for new
1185				   ones. Highest bit is set by fsck
1186				   temporary, cleaned after all
1187				   done */
1188} __attribute__ ((__packed__));
1189/* size of item header     */
1190#define IH_SIZE (sizeof(struct item_head))
1191
1192#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1193#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1194#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1195#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1196#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1197
1198#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1199#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1200#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1201#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1202#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1203
1204#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1205
1206#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1207#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1208
1209/* these operate on indirect items, where you've got an array of ints
1210** at a possibly unaligned location.  These are a noop on ia32
1211**
1212** p is the array of __u32, i is the index into the array, v is the value
1213** to store there.
1214*/
1215#define get_block_num(p, i) get_unaligned_le32((p) + (i))
1216#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1217
1218//
1219// in old version uniqueness field shows key type
1220//
1221#define V1_SD_UNIQUENESS 0
1222#define V1_INDIRECT_UNIQUENESS 0xfffffffe
1223#define V1_DIRECT_UNIQUENESS 0xffffffff
1224#define V1_DIRENTRY_UNIQUENESS 500
1225#define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
1226
1227//
1228// here are conversion routines
1229//
1230static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1231static inline int uniqueness2type(__u32 uniqueness)
1232{
1233	switch ((int)uniqueness) {
1234	case V1_SD_UNIQUENESS:
1235		return TYPE_STAT_DATA;
1236	case V1_INDIRECT_UNIQUENESS:
1237		return TYPE_INDIRECT;
1238	case V1_DIRECT_UNIQUENESS:
1239		return TYPE_DIRECT;
1240	case V1_DIRENTRY_UNIQUENESS:
1241		return TYPE_DIRENTRY;
1242	case V1_ANY_UNIQUENESS:
1243	default:
1244		return TYPE_ANY;
1245	}
1246}
1247
1248static inline __u32 type2uniqueness(int type) CONSTF;
1249static inline __u32 type2uniqueness(int type)
1250{
1251	switch (type) {
1252	case TYPE_STAT_DATA:
1253		return V1_SD_UNIQUENESS;
1254	case TYPE_INDIRECT:
1255		return V1_INDIRECT_UNIQUENESS;
1256	case TYPE_DIRECT:
1257		return V1_DIRECT_UNIQUENESS;
1258	case TYPE_DIRENTRY:
1259		return V1_DIRENTRY_UNIQUENESS;
1260	case TYPE_ANY:
1261	default:
1262		return V1_ANY_UNIQUENESS;
1263	}
1264}
1265
1266//
1267// key is pointer to on disk key which is stored in le, result is cpu,
1268// there is no way to get version of object from key, so, provide
1269// version to these defines
1270//
1271static inline loff_t le_key_k_offset(int version,
1272				     const struct reiserfs_key *key)
1273{
1274	return (version == KEY_FORMAT_3_5) ?
1275	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1276	    offset_v2_k_offset(&(key->u.k_offset_v2));
1277}
1278
1279static inline loff_t le_ih_k_offset(const struct item_head *ih)
1280{
1281	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1282}
1283
1284static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1285{
1286	return (version == KEY_FORMAT_3_5) ?
1287	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
1288	    offset_v2_k_type(&(key->u.k_offset_v2));
1289}
1290
1291static inline loff_t le_ih_k_type(const struct item_head *ih)
1292{
1293	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1294}
1295
1296static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1297				       loff_t offset)
1298{
1299	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
1300	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1301}
1302
1303static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1304{
1305	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1306}
1307
1308static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1309				     int type)
1310{
1311	(version == KEY_FORMAT_3_5) ?
1312	    (void)(key->u.k_offset_v1.k_uniqueness =
1313		   cpu_to_le32(type2uniqueness(type)))
1314	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1315}
1316
1317static inline void set_le_ih_k_type(struct item_head *ih, int type)
1318{
1319	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1320}
1321
1322static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1323{
1324	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1325}
1326
1327static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1328{
1329	return le_key_k_type(version, key) == TYPE_DIRECT;
1330}
1331
1332static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1333{
1334	return le_key_k_type(version, key) == TYPE_INDIRECT;
1335}
1336
1337static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1338{
1339	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1340}
1341
1342//
1343// item header has version.
1344//
1345static inline int is_direntry_le_ih(struct item_head *ih)
1346{
1347	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1348}
1349
1350static inline int is_direct_le_ih(struct item_head *ih)
1351{
1352	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1353}
1354
1355static inline int is_indirect_le_ih(struct item_head *ih)
1356{
1357	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1358}
1359
1360static inline int is_statdata_le_ih(struct item_head *ih)
1361{
1362	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1363}
1364
1365//
1366// key is pointer to cpu key, result is cpu
1367//
1368static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1369{
1370	return key->on_disk_key.k_offset;
1371}
1372
1373static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1374{
1375	return key->on_disk_key.k_type;
1376}
1377
1378static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1379{
1380	key->on_disk_key.k_offset = offset;
1381}
1382
1383static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1384{
1385	key->on_disk_key.k_type = type;
1386}
1387
1388static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1389{
1390	key->on_disk_key.k_offset--;
1391}
1392
1393#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1394#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1395#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1396#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1397
1398/* are these used ? */
1399#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1400#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1401#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1402#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1403
1404#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1405    (!COMP_SHORT_KEYS(ih, key) && \
1406	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1407
1408/* maximal length of item */
1409#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1410#define MIN_ITEM_LEN 1
1411
1412/* object identifier for root dir */
1413#define REISERFS_ROOT_OBJECTID 2
1414#define REISERFS_ROOT_PARENT_OBJECTID 1
1415
1416extern struct reiserfs_key root_key;
1417
1418/*
1419 * Picture represents a leaf of the S+tree
1420 *  ______________________________________________________
1421 * |      |  Array of     |                   |           |
1422 * |Block |  Object-Item  |      F r e e      |  Objects- |
1423 * | head |  Headers      |     S p a c e     |   Items   |
1424 * |______|_______________|___________________|___________|
1425 */
1426
1427/* Header of a disk block.  More precisely, header of a formatted leaf
1428   or internal node, and not the header of an unformatted node. */
1429struct block_head {
1430	__le16 blk_level;	/* Level of a block in the tree. */
1431	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1432	__le16 blk_free_space;	/* Block free space in bytes. */
1433	__le16 blk_reserved;
1434	/* dump this in v4/planA */
1435	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
1436};
1437
1438#define BLKH_SIZE                     (sizeof(struct block_head))
1439#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1440#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1441#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1442#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1443#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1444#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1445#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1446#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1447#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1448#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1449
1450/*
1451 * values for blk_level field of the struct block_head
1452 */
1453
1454#define FREE_LEVEL 0		/* when node gets removed from the tree its
1455				   blk_level is set to FREE_LEVEL. It is then
1456				   used to see whether the node is still in the
1457				   tree */
1458
1459#define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1460
1461/* Given the buffer head of a formatted node, resolve to the block head of that node. */
1462#define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1463/* Number of items that are in buffer. */
1464#define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1465#define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1466#define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1467
1468#define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1469#define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1470#define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1471
1472/* Get right delimiting key. -- little endian */
1473#define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1474
1475/* Does the buffer contain a disk leaf. */
1476#define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1477
1478/* Does the buffer contain a disk internal node */
1479#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1480					    && B_LEVEL(bh) <= MAX_HEIGHT)
1481
1482/***************************************************************************/
1483/*                             STAT DATA                                   */
1484/***************************************************************************/
1485
1486//
1487// old stat data is 32 bytes long. We are going to distinguish new one by
1488// different size
1489//
1490struct stat_data_v1 {
1491	__le16 sd_mode;		/* file type, permissions */
1492	__le16 sd_nlink;	/* number of hard links */
1493	__le16 sd_uid;		/* owner */
1494	__le16 sd_gid;		/* group */
1495	__le32 sd_size;		/* file size */
1496	__le32 sd_atime;	/* time of last access */
1497	__le32 sd_mtime;	/* time file was last modified  */
1498	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1499	union {
1500		__le32 sd_rdev;
1501		__le32 sd_blocks;	/* number of blocks file uses */
1502	} __attribute__ ((__packed__)) u;
1503	__le32 sd_first_direct_byte;	/* first byte of file which is stored
1504					   in a direct item: except that if it
1505					   equals 1 it is a symlink and if it
1506					   equals ~(__u32)0 there is no
1507					   direct item.  The existence of this
1508					   field really grates on me. Let's
1509					   replace it with a macro based on
1510					   sd_size and our tail suppression
1511					   policy.  Someday.  -Hans */
1512} __attribute__ ((__packed__));
1513
1514#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1515#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1516#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1517#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1518#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1519#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1520#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1521#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1522#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1523#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1524#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1525#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1526#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1527#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1528#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1529#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1530#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1531#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1532#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1533#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1534#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1535#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1536#define sd_v1_first_direct_byte(sdp) \
1537                                (le32_to_cpu((sdp)->sd_first_direct_byte))
1538#define set_sd_v1_first_direct_byte(sdp,v) \
1539                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1540
1541/* inode flags stored in sd_attrs (nee sd_reserved) */
1542
1543/* we want common flags to have the same values as in ext2,
1544   so chattr(1) will work without problems */
1545#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1546#define REISERFS_APPEND_FL    FS_APPEND_FL
1547#define REISERFS_SYNC_FL      FS_SYNC_FL
1548#define REISERFS_NOATIME_FL   FS_NOATIME_FL
1549#define REISERFS_NODUMP_FL    FS_NODUMP_FL
1550#define REISERFS_SECRM_FL     FS_SECRM_FL
1551#define REISERFS_UNRM_FL      FS_UNRM_FL
1552#define REISERFS_COMPR_FL     FS_COMPR_FL
1553#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1554
1555/* persistent flags that file inherits from the parent directory */
1556#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1557				REISERFS_SYNC_FL |	\
1558				REISERFS_NOATIME_FL |	\
1559				REISERFS_NODUMP_FL |	\
1560				REISERFS_SECRM_FL |	\
1561				REISERFS_COMPR_FL |	\
1562				REISERFS_NOTAIL_FL )
1563
1564/* Stat Data on disk (reiserfs version of UFS disk inode minus the
1565   address blocks) */
1566struct stat_data {
1567	__le16 sd_mode;		/* file type, permissions */
1568	__le16 sd_attrs;	/* persistent inode flags */
1569	__le32 sd_nlink;	/* number of hard links */
1570	__le64 sd_size;		/* file size */
1571	__le32 sd_uid;		/* owner */
1572	__le32 sd_gid;		/* group */
1573	__le32 sd_atime;	/* time of last access */
1574	__le32 sd_mtime;	/* time file was last modified  */
1575	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1576	__le32 sd_blocks;
1577	union {
1578		__le32 sd_rdev;
1579		__le32 sd_generation;
1580		//__le32 sd_first_direct_byte;
1581		/* first byte of file which is stored in a
1582		   direct item: except that if it equals 1
1583		   it is a symlink and if it equals
1584		   ~(__u32)0 there is no direct item.  The
1585		   existence of this field really grates
1586		   on me. Let's replace it with a macro
1587		   based on sd_size and our tail
1588		   suppression policy? */
1589	} __attribute__ ((__packed__)) u;
1590} __attribute__ ((__packed__));
1591//
1592// this is 44 bytes long
1593//
1594#define SD_SIZE (sizeof(struct stat_data))
1595#define SD_V2_SIZE              SD_SIZE
1596#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1597#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1598#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1599/* sd_reserved */
1600/* set_sd_reserved */
1601#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1602#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1603#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1604#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1605#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1606#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1607#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1608#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1609#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1610#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1611#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1612#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1613#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1614#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1615#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1616#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1617#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1618#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1619#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1620#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1621#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1622#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1623
1624/***************************************************************************/
1625/*                      DIRECTORY STRUCTURE                                */
1626/***************************************************************************/
1627/*
1628   Picture represents the structure of directory items
1629   ________________________________________________
1630   |  Array of     |   |     |        |       |   |
1631   | directory     |N-1| N-2 | ....   |   1st |0th|
1632   | entry headers |   |     |        |       |   |
1633   |_______________|___|_____|________|_______|___|
1634                    <----   directory entries         ------>
1635
1636 First directory item has k_offset component 1. We store "." and ".."
1637 in one item, always, we never split "." and ".." into differing
1638 items.  This makes, among other things, the code for removing
1639 directories simpler. */
1640#define SD_OFFSET  0
1641#define SD_UNIQUENESS 0
1642#define DOT_OFFSET 1
1643#define DOT_DOT_OFFSET 2
1644#define DIRENTRY_UNIQUENESS 500
1645
1646/* */
1647#define FIRST_ITEM_OFFSET 1
1648
1649/*
1650   Q: How to get key of object pointed to by entry from entry?
1651
1652   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1653      of object, entry points to */
1654
1655/* NOT IMPLEMENTED:
1656   Directory will someday contain stat data of object */
1657
1658struct reiserfs_de_head {
1659	__le32 deh_offset;	/* third component of the directory entry key */
1660	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
1661				   by directory entry */
1662	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
1663	__le16 deh_location;	/* offset of name in the whole item */
1664	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
1665				   entry is hidden (unlinked) */
1666} __attribute__ ((__packed__));
1667#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1668#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1669#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1670#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1671#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1672#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1673
1674#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1675#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1676#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1677#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1678#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1679
1680/* empty directory contains two entries "." and ".." and their headers */
1681#define EMPTY_DIR_SIZE \
1682(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1683
1684/* old format directories have this size when empty */
1685#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1686
1687#define DEH_Statdata 0		/* not used now */
1688#define DEH_Visible 2
1689
1690/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1691#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1692#   define ADDR_UNALIGNED_BITS  (3)
1693#endif
1694
1695/* These are only used to manipulate deh_state.
1696 * Because of this, we'll use the ext2_ bit routines,
1697 * since they are little endian */
1698#ifdef ADDR_UNALIGNED_BITS
1699
1700#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1701#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1702
1703#   define set_bit_unaligned(nr, addr)	\
1704	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1705#   define clear_bit_unaligned(nr, addr)	\
1706	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1707#   define test_bit_unaligned(nr, addr)	\
1708	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1709
1710#else
1711
1712#   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1713#   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1714#   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1715
1716#endif
1717
1718#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1719#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1720#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1721#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1722
1723#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1724#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1725#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1726
1727extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1728				   __le32 par_dirid, __le32 par_objid);
1729extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1730				__le32 par_dirid, __le32 par_objid);
1731
1732/* array of the entry headers */
1733 /* get item body */
1734#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1735#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1736
1737/* length of the directory entry in directory item. This define
1738   calculates length of i-th directory entry using directory entry
1739   locations from dir entry head. When it calculates length of 0-th
1740   directory entry, it uses length of whole item in place of entry
1741   location of the non-existent following entry in the calculation.
1742   See picture above.*/
1743/*
1744#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1745((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1746*/
1747static inline int entry_length(const struct buffer_head *bh,
1748			       const struct item_head *ih, int pos_in_item)
1749{
1750	struct reiserfs_de_head *deh;
1751
1752	deh = B_I_DEH(bh, ih) + pos_in_item;
1753	if (pos_in_item)
1754		return deh_location(deh - 1) - deh_location(deh);
1755
1756	return ih_item_len(ih) - deh_location(deh);
1757}
1758
1759/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1760#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1761
1762/* name by bh, ih and entry_num */
1763#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1764
1765// two entries per block (at least)
1766#define REISERFS_MAX_NAME(block_size) 255
1767
1768/* this structure is used for operations on directory entries. It is
1769   not a disk structure. */
1770/* When reiserfs_find_entry or search_by_entry_key find directory
1771   entry, they return filled reiserfs_dir_entry structure */
1772struct reiserfs_dir_entry {
1773	struct buffer_head *de_bh;
1774	int de_item_num;
1775	struct item_head *de_ih;
1776	int de_entry_num;
1777	struct reiserfs_de_head *de_deh;
1778	int de_entrylen;
1779	int de_namelen;
1780	char *de_name;
1781	unsigned long *de_gen_number_bit_string;
1782
1783	__u32 de_dir_id;
1784	__u32 de_objectid;
1785
1786	struct cpu_key de_entry_key;
1787};
1788
1789/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1790
1791/* pointer to file name, stored in entry */
1792#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1793
1794/* length of name */
1795#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1796(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1797
1798/* hash value occupies bits from 7 up to 30 */
1799#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1800/* generation number occupies 7 bits starting from 0 up to 6 */
1801#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1802#define MAX_GENERATION_NUMBER  127
1803
1804#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1805
1806/*
1807 * Picture represents an internal node of the reiserfs tree
1808 *  ______________________________________________________
1809 * |      |  Array of     |  Array of         |  Free     |
1810 * |block |    keys       |  pointers         | space     |
1811 * | head |      N        |      N+1          |           |
1812 * |______|_______________|___________________|___________|
1813 */
1814
1815/***************************************************************************/
1816/*                      DISK CHILD                                         */
1817/***************************************************************************/
1818/* Disk child pointer: The pointer from an internal node of the tree
1819   to a node that is on disk. */
1820struct disk_child {
1821	__le32 dc_block_number;	/* Disk child's block number. */
1822	__le16 dc_size;		/* Disk child's used space.   */
1823	__le16 dc_reserved;
1824};
1825
1826#define DC_SIZE (sizeof(struct disk_child))
1827#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1828#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1829#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1830#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1831
1832/* Get disk child by buffer header and position in the tree node. */
1833#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
1834((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1835
1836/* Get disk child number by buffer header and position in the tree node. */
1837#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1838#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1839				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1840
1841 /* maximal value of field child_size in structure disk_child */
1842 /* child size is the combined size of all items and their headers */
1843#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1844
1845/* amount of used space in buffer (not including block head) */
1846#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1847
1848/* max and min number of keys in internal node */
1849#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1850#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1851
1852/***************************************************************************/
1853/*                      PATH STRUCTURES AND DEFINES                        */
1854/***************************************************************************/
1855
1856/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1857   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1858   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1859   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1860   position of the block_number of the next node if it is looking through an internal node.  If it
1861   is looking through a leaf node bin_search will find the position of the item which has key either
1862   equal to given key, or which is the maximal key less than the given key. */
1863
1864struct path_element {
1865	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
1866	int pe_position;	/* Position in the tree node which is placed in the */
1867	/* buffer above.                                  */
1868};
1869
1870#define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1871#define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1872#define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
1873
1874#define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1875#define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
1876
1877/* We need to keep track of who the ancestors of nodes are.  When we
1878   perform a search we record which nodes were visited while
1879   descending the tree looking for the node we searched for. This list
1880   of nodes is called the path.  This information is used while
1881   performing balancing.  Note that this path information may become
1882   invalid, and this means we must check it when using it to see if it
1883   is still valid. You'll need to read search_by_key and the comments
1884   in it, especially about decrement_counters_in_path(), to understand
1885   this structure.
1886
1887Paths make the code so much harder to work with and debug.... An
1888enormous number of bugs are due to them, and trying to write or modify
1889code that uses them just makes my head hurt.  They are based on an
1890excessive effort to avoid disturbing the precious VFS code.:-( The
1891gods only know how we are going to SMP the code that uses them.
1892znodes are the way! */
1893
1894#define PATH_READA	0x1	/* do read ahead */
1895#define PATH_READA_BACK 0x2	/* read backwards */
1896
1897struct treepath {
1898	int path_length;	/* Length of the array above.   */
1899	int reada;
1900	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1901	int pos_in_item;
1902};
1903
1904#define pos_in_item(path) ((path)->pos_in_item)
1905
1906#define INITIALIZE_PATH(var) \
1907struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1908
1909/* Get path element by path and path position. */
1910#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
1911
1912/* Get buffer header at the path by path and path position. */
1913#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1914
1915/* Get position in the element at the path by path and path position. */
1916#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1917
1918#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1919				/* you know, to the person who didn't
1920				   write this the macro name does not
1921				   at first suggest what it does.
1922				   Maybe POSITION_FROM_PATH_END? Or
1923				   maybe we should just focus on
1924				   dumping paths... -Hans */
1925#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1926
1927#define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1928
1929/* in do_balance leaf has h == 0 in contrast with path structure,
1930   where root has level == 0. That is why we need these defines */
1931#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */
1932#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
1933#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1934#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
1935
1936#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1937
1938#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1939#define get_ih(path) PATH_PITEM_HEAD(path)
1940#define get_item_pos(path) PATH_LAST_POSITION(path)
1941#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1942#define item_moved(ih,path) comp_items(ih, path)
1943#define path_changed(ih,path) comp_items (ih, path)
1944
1945/***************************************************************************/
1946/*                       MISC                                              */
1947/***************************************************************************/
1948
1949/* Size of pointer to the unformatted node. */
1950#define UNFM_P_SIZE (sizeof(unp_t))
1951#define UNFM_P_SHIFT 2
1952
1953// in in-core inode key is stored on le form
1954#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1955
1956#define MAX_UL_INT 0xffffffff
1957#define MAX_INT    0x7ffffff
1958#define MAX_US_INT 0xffff
1959
1960// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1961static inline loff_t max_reiserfs_offset(struct inode *inode)
1962{
1963	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1964		return (loff_t) U32_MAX;
1965
1966	return (loff_t) ((~(__u64) 0) >> 4);
1967}
1968
1969/*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1970#define MAX_KEY_OBJECTID	MAX_UL_INT
1971
1972#define MAX_B_NUM  MAX_UL_INT
1973#define MAX_FC_NUM MAX_US_INT
1974
1975/* the purpose is to detect overflow of an unsigned short */
1976#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1977
1978/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1979#define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
1980#define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
1981
1982#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1983#define get_generation(s) atomic_read (&fs_generation(s))
1984#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1985#define __fs_changed(gen,s) (gen != get_generation (s))
1986#define fs_changed(gen,s)		\
1987({					\
1988	reiserfs_cond_resched(s);	\
1989	__fs_changed(gen, s);		\
1990})
1991
1992/***************************************************************************/
1993/*                  FIXATE NODES                                           */
1994/***************************************************************************/
1995
1996#define VI_TYPE_LEFT_MERGEABLE 1
1997#define VI_TYPE_RIGHT_MERGEABLE 2
1998
1999/* To make any changes in the tree we always first find node, that
2000   contains item to be changed/deleted or place to insert a new
2001   item. We call this node S. To do balancing we need to decide what
2002   we will shift to left/right neighbor, or to a new node, where new
2003   item will be etc. To make this analysis simpler we build virtual
2004   node. Virtual node is an array of items, that will replace items of
2005   node S. (For instance if we are going to delete an item, virtual
2006   node does not contain it). Virtual node keeps information about
2007   item sizes and types, mergeability of first and last items, sizes
2008   of all entries in directory item. We use this array of items when
2009   calculating what we can shift to neighbors and how many nodes we
2010   have to have if we do not any shiftings, if we shift to left/right
2011   neighbor or to both. */
2012struct virtual_item {
2013	int vi_index;		// index in the array of item operations
2014	unsigned short vi_type;	// left/right mergeability
2015	unsigned short vi_item_len;	/* length of item that it will have after balancing */
2016	struct item_head *vi_ih;
2017	const char *vi_item;	// body of item (old or new)
2018	const void *vi_new_data;	// 0 always but paste mode
2019	void *vi_uarea;		// item specific area
2020};
2021
2022struct virtual_node {
2023	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
2024	unsigned short vn_nr_item;	/* number of items in virtual node */
2025	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
2026	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
2027	short vn_affected_item_num;
2028	short vn_pos_in_item;
2029	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
2030	const void *vn_data;
2031	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
2032};
2033
2034/* used by directory items when creating virtual nodes */
2035struct direntry_uarea {
2036	int flags;
2037	__u16 entry_count;
2038	__u16 entry_sizes[1];
2039} __attribute__ ((__packed__));
2040
2041/***************************************************************************/
2042/*                  TREE BALANCE                                           */
2043/***************************************************************************/
2044
2045/* This temporary structure is used in tree balance algorithms, and
2046   constructed as we go to the extent that its various parts are
2047   needed.  It contains arrays of nodes that can potentially be
2048   involved in the balancing of node S, and parameters that define how
2049   each of the nodes must be balanced.  Note that in these algorithms
2050   for balancing the worst case is to need to balance the current node
2051   S and the left and right neighbors and all of their parents plus
2052   create a new node.  We implement S1 balancing for the leaf nodes
2053   and S0 balancing for the internal nodes (S1 and S0 are defined in
2054   our papers.)*/
2055
2056#define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
2057
2058/* maximum number of FEB blocknrs on a single level */
2059#define MAX_AMOUNT_NEEDED 2
2060
2061/* someday somebody will prefix every field in this struct with tb_ */
2062struct tree_balance {
2063	int tb_mode;
2064	int need_balance_dirty;
2065	struct super_block *tb_sb;
2066	struct reiserfs_transaction_handle *transaction_handle;
2067	struct treepath *tb_path;
2068	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
2069	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
2070	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
2071	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
2072	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
2073	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
2074
2075	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
2076						   cur_blknum. */
2077	struct buffer_head *used[MAX_FEB_SIZE];
2078	struct buffer_head *thrown[MAX_FEB_SIZE];
2079	int lnum[MAX_HEIGHT];	/* array of number of items which must be
2080				   shifted to the left in order to balance the
2081				   current node; for leaves includes item that
2082				   will be partially shifted; for internal
2083				   nodes, it is the number of child pointers
2084				   rather than items. It includes the new item
2085				   being created. The code sometimes subtracts
2086				   one to get the number of wholly shifted
2087				   items for other purposes. */
2088	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
2089	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
2090				   S[h] to its item number within the node CFL[h] */
2091	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
2092	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
2093					   S[h]. A negative value means removing.  */
2094	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
2095				   balancing on the level h of the tree.  If 0 then S is
2096				   being deleted, if 1 then S is remaining and no new nodes
2097				   are being created, if 2 or 3 then 1 or 2 new nodes is
2098				   being created */
2099
2100	/* fields that are used only for balancing leaves of the tree */
2101	int cur_blknum;		/* number of empty blocks having been already allocated                 */
2102	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
2103	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
2104	int s2num;		/* number of items that fall into second new node when S[0] splits     */
2105	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
2106	/* most liquid item that cannot be shifted from S[0] entirely         */
2107	/* if -1 then nothing will be partially shifted */
2108	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
2109	/* most liquid item that cannot be shifted from S[0] entirely         */
2110	/* if -1 then nothing will be partially shifted                           */
2111	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
2112	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
2113	int s2bytes;
2114	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
2115	char *vn_buf;		/* kmalloced memory. Used to create
2116				   virtual node and keep map of
2117				   dirtied bitmap blocks */
2118	int vn_buf_size;	/* size of the vn_buf */
2119	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
2120
2121	int fs_gen;		/* saved value of `reiserfs_generation' counter
2122				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
2123#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2124	struct in_core_key key;	/* key pointer, to pass to block allocator or
2125				   another low-level subsystem */
2126#endif
2127};
2128
2129/* These are modes of balancing */
2130
2131/* When inserting an item. */
2132#define M_INSERT	'i'
2133/* When inserting into (directories only) or appending onto an already
2134   existent item. */
2135#define M_PASTE		'p'
2136/* When deleting an item. */
2137#define M_DELETE	'd'
2138/* When truncating an item or removing an entry from a (directory) item. */
2139#define M_CUT 		'c'
2140
2141/* used when balancing on leaf level skipped (in reiserfsck) */
2142#define M_INTERNAL	'n'
2143
2144/* When further balancing is not needed, then do_balance does not need
2145   to be called. */
2146#define M_SKIP_BALANCING 		's'
2147#define M_CONVERT	'v'
2148
2149/* modes of leaf_move_items */
2150#define LEAF_FROM_S_TO_L 0
2151#define LEAF_FROM_S_TO_R 1
2152#define LEAF_FROM_R_TO_L 2
2153#define LEAF_FROM_L_TO_R 3
2154#define LEAF_FROM_S_TO_SNEW 4
2155
2156#define FIRST_TO_LAST 0
2157#define LAST_TO_FIRST 1
2158
2159/* used in do_balance for passing parent of node information that has
2160   been gotten from tb struct */
2161struct buffer_info {
2162	struct tree_balance *tb;
2163	struct buffer_head *bi_bh;
2164	struct buffer_head *bi_parent;
2165	int bi_position;
2166};
2167
2168static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2169{
2170	return tb ? tb->tb_sb : NULL;
2171}
2172
2173static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2174{
2175	return bi ? sb_from_tb(bi->tb) : NULL;
2176}
2177
2178/* there are 4 types of items: stat data, directory item, indirect, direct.
2179+-------------------+------------+--------------+------------+
2180|	            |  k_offset  | k_uniqueness | mergeable? |
2181+-------------------+------------+--------------+------------+
2182|     stat data     |	0        |      0       |   no       |
2183+-------------------+------------+--------------+------------+
2184| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
2185| non 1st directory | hash value |              |   yes      |
2186|     item          |            |              |            |
2187+-------------------+------------+--------------+------------+
2188| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
2189+-------------------+------------+--------------+------------+
2190| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
2191+-------------------+------------+--------------+------------+
2192*/
2193
2194struct item_operations {
2195	int (*bytes_number) (struct item_head * ih, int block_size);
2196	void (*decrement_key) (struct cpu_key *);
2197	int (*is_left_mergeable) (struct reiserfs_key * ih,
2198				  unsigned long bsize);
2199	void (*print_item) (struct item_head *, char *item);
2200	void (*check_item) (struct item_head *, char *item);
2201
2202	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2203			  int is_affected, int insert_size);
2204	int (*check_left) (struct virtual_item * vi, int free,
2205			   int start_skip, int end_skip);
2206	int (*check_right) (struct virtual_item * vi, int free);
2207	int (*part_size) (struct virtual_item * vi, int from, int to);
2208	int (*unit_num) (struct virtual_item * vi);
2209	void (*print_vi) (struct virtual_item * vi);
2210};
2211
2212extern struct item_operations *item_ops[TYPE_ANY + 1];
2213
2214#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2215#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2216#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2217#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2218#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2219#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2220#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2221#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2222#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2223#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2224
2225#define COMP_SHORT_KEYS comp_short_keys
2226
2227/* number of blocks pointed to by the indirect item */
2228#define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2229
2230/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
2231#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2232
2233/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
2234
2235/* get the item header */
2236#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2237
2238/* get key */
2239#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2240
2241/* get the key */
2242#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
2243
2244/* get item body */
2245#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
2246
2247/* get the stat data by the buffer header and the item order */
2248#define B_N_STAT_DATA(bh,nr) \
2249( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
2250
2251    /* following defines use reiserfs buffer header and item header */
2252
2253/* get stat-data */
2254#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2255
2256// this is 3976 for size==4096
2257#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2258
2259/* indirect items consist of entries which contain blocknrs, pos
2260   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2261   blocknr contained by the entry pos points to */
2262#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
2263#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
2264
2265struct reiserfs_iget_args {
2266	__u32 objectid;
2267	__u32 dirid;
2268};
2269
2270/***************************************************************************/
2271/*                    FUNCTION DECLARATIONS                                */
2272/***************************************************************************/
2273
2274#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2275
2276#define journal_trans_half(blocksize) \
2277	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2278
2279/* journal.c see journal.c for all the comments here */
2280
2281/* first block written in a commit.  */
2282struct reiserfs_journal_desc {
2283	__le32 j_trans_id;	/* id of commit */
2284	__le32 j_len;		/* length of commit. len +1 is the commit block */
2285	__le32 j_mount_id;	/* mount id of this trans */
2286	__le32 j_realblock[1];	/* real locations for each block */
2287};
2288
2289#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2290#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2291#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2292
2293#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2294#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2295#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2296
2297/* last block written in a commit */
2298struct reiserfs_journal_commit {
2299	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2300	__le32 j_len;		/* ditto */
2301	__le32 j_realblock[1];	/* real locations for each block */
2302};
2303
2304#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2305#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2306#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2307
2308#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2309#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2310
2311/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
2312** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
2313** and this transaction does not need to be replayed.
2314*/
2315struct reiserfs_journal_header {
2316	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
2317	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
2318	__le32 j_mount_id;
2319	/* 12 */ struct journal_params jh_journal;
2320};
2321
2322/* biggest tunable defines are right here */
2323#define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2324#define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
2325#define JOURNAL_TRANS_MIN_DEFAULT 256
2326#define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
2327#define JOURNAL_MIN_RATIO 2
2328#define JOURNAL_MAX_COMMIT_AGE 30
2329#define JOURNAL_MAX_TRANS_AGE 30
2330#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2331#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2332					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2333					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2334
2335#ifdef CONFIG_QUOTA
2336#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2337/* We need to update data and inode (atime) */
2338#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2339/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2340#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2341(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2342/* same as with INIT */
2343#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2344(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2345#else
2346#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2347#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2348#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2349#endif
2350
2351/* both of these can be as low as 1, or as high as you want.  The min is the
2352** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2353** as needed, and released when transactions are committed.  On release, if
2354** the current number of nodes is > max, the node is freed, otherwise,
2355** it is put on a free list for faster use later.
2356*/
2357#define REISERFS_MIN_BITMAP_NODES 10
2358#define REISERFS_MAX_BITMAP_NODES 100
2359
2360#define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
2361#define JBH_HASH_MASK 8191
2362
2363#define _jhashfn(sb,block)	\
2364	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2365	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2366#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2367
2368// We need these to make journal.c code more readable
2369#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2370#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2371#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2372
2373enum reiserfs_bh_state_bits {
2374	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2375	BH_JDirty_wait,
2376	BH_JNew,		/* disk block was taken off free list before
2377				 * being in a finished transaction, or
2378				 * written to disk. Can be reused immed. */
2379	BH_JPrepared,
2380	BH_JRestore_dirty,
2381	BH_JTest,		// debugging only will go away
2382};
2383
2384BUFFER_FNS(JDirty, journaled);
2385TAS_BUFFER_FNS(JDirty, journaled);
2386BUFFER_FNS(JDirty_wait, journal_dirty);
2387TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2388BUFFER_FNS(JNew, journal_new);
2389TAS_BUFFER_FNS(JNew, journal_new);
2390BUFFER_FNS(JPrepared, journal_prepared);
2391TAS_BUFFER_FNS(JPrepared, journal_prepared);
2392BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2393TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2394BUFFER_FNS(JTest, journal_test);
2395TAS_BUFFER_FNS(JTest, journal_test);
2396
2397/*
2398** transaction handle which is passed around for all journal calls
2399*/
2400struct reiserfs_transaction_handle {
2401	struct super_block *t_super;	/* super for this FS when journal_begin was
2402					   called. saves calls to reiserfs_get_super
2403					   also used by nested transactions to make
2404					   sure they are nesting on the right FS
2405					   _must_ be first in the handle
2406					 */
2407	int t_refcount;
2408	int t_blocks_logged;	/* number of blocks this writer has logged */
2409	int t_blocks_allocated;	/* number of blocks this writer allocated */
2410	unsigned int t_trans_id;	/* sanity check, equals the current trans id */
2411	void *t_handle_save;	/* save existing current->journal_info */
2412	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
2413					   should be displaced from others */
2414	struct list_head t_list;
2415};
2416
2417/* used to keep track of ordered and tail writes, attached to the buffer
2418 * head through b_journal_head.
2419 */
2420struct reiserfs_jh {
2421	struct reiserfs_journal_list *jl;
2422	struct buffer_head *bh;
2423	struct list_head list;
2424};
2425
2426void reiserfs_free_jh(struct buffer_head *bh);
2427int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2428int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2429int journal_mark_dirty(struct reiserfs_transaction_handle *,
2430		       struct super_block *, struct buffer_head *bh);
2431
2432static inline int reiserfs_file_data_log(struct inode *inode)
2433{
2434	if (reiserfs_data_log(inode->i_sb) ||
2435	    (REISERFS_I(inode)->i_flags & i_data_log))
2436		return 1;
2437	return 0;
2438}
2439
2440static inline int reiserfs_transaction_running(struct super_block *s)
2441{
2442	struct reiserfs_transaction_handle *th = current->journal_info;
2443	if (th && th->t_super == s)
2444		return 1;
2445	if (th && th->t_super == NULL)
2446		BUG();
2447	return 0;
2448}
2449
2450static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2451{
2452	return th->t_blocks_allocated - th->t_blocks_logged;
2453}
2454
2455struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2456								    super_block
2457								    *,
2458								    int count);
2459int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2460void reiserfs_vfs_truncate_file(struct inode *inode);
2461int reiserfs_commit_page(struct inode *inode, struct page *page,
2462			 unsigned from, unsigned to);
2463void reiserfs_flush_old_commits(struct super_block *);
2464int reiserfs_commit_for_inode(struct inode *);
2465int reiserfs_inode_needs_commit(struct inode *);
2466void reiserfs_update_inode_transaction(struct inode *);
2467void reiserfs_wait_on_write_block(struct super_block *s);
2468void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2469void reiserfs_allow_writes(struct super_block *s);
2470void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2471int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2472				 int wait);
2473void reiserfs_restore_prepared_buffer(struct super_block *,
2474				      struct buffer_head *bh);
2475int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2476		 unsigned int);
2477int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2478int journal_release_error(struct reiserfs_transaction_handle *,
2479			  struct super_block *);
2480int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
2481		unsigned long);
2482int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
2483		     unsigned long);
2484int journal_mark_freed(struct reiserfs_transaction_handle *,
2485		       struct super_block *, b_blocknr_t blocknr);
2486int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2487int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2488			 int bit_nr, int searchall, b_blocknr_t *next);
2489int journal_begin(struct reiserfs_transaction_handle *,
2490		  struct super_block *sb, unsigned long);
2491int journal_join_abort(struct reiserfs_transaction_handle *,
2492		       struct super_block *sb, unsigned long);
2493void reiserfs_abort_journal(struct super_block *sb, int errno);
2494void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2495int reiserfs_allocate_list_bitmaps(struct super_block *s,
2496				   struct reiserfs_list_bitmap *, unsigned int);
2497
2498void reiserfs_schedule_old_flush(struct super_block *s);
2499void add_save_link(struct reiserfs_transaction_handle *th,
2500		   struct inode *inode, int truncate);
2501int remove_save_link(struct inode *inode, int truncate);
2502
2503/* objectid.c */
2504__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2505void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2506			       __u32 objectid_to_release);
2507int reiserfs_convert_objectid_map_v1(struct super_block *);
2508
2509/* stree.c */
2510int B_IS_IN_TREE(const struct buffer_head *);
2511extern void copy_item_head(struct item_head *to,
2512			   const struct item_head *from);
2513
2514// first key is in cpu form, second - le
2515extern int comp_short_keys(const struct reiserfs_key *le_key,
2516			   const struct cpu_key *cpu_key);
2517extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2518
2519// both are in le form
2520extern int comp_le_keys(const struct reiserfs_key *,
2521			const struct reiserfs_key *);
2522extern int comp_short_le_keys(const struct reiserfs_key *,
2523			      const struct reiserfs_key *);
2524
2525//
2526// get key version from on disk key - kludge
2527//
2528static inline int le_key_version(const struct reiserfs_key *key)
2529{
2530	int type;
2531
2532	type = offset_v2_k_type(&(key->u.k_offset_v2));
2533	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2534	    && type != TYPE_DIRENTRY)
2535		return KEY_FORMAT_3_5;
2536
2537	return KEY_FORMAT_3_6;
2538
2539}
2540
2541static inline void copy_key(struct reiserfs_key *to,
2542			    const struct reiserfs_key *from)
2543{
2544	memcpy(to, from, KEY_SIZE);
2545}
2546
2547int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2548const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2549				    const struct super_block *sb);
2550int search_by_key(struct super_block *, const struct cpu_key *,
2551		  struct treepath *, int);
2552#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2553int search_for_position_by_key(struct super_block *sb,
2554			       const struct cpu_key *cpu_key,
2555			       struct treepath *search_path);
2556extern void decrement_bcount(struct buffer_head *bh);
2557void decrement_counters_in_path(struct treepath *search_path);
2558void pathrelse(struct treepath *search_path);
2559int reiserfs_check_path(struct treepath *p);
2560void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
2561
2562int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2563			 struct treepath *path,
2564			 const struct cpu_key *key,
2565			 struct item_head *ih,
2566			 struct inode *inode, const char *body);
2567
2568int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2569			     struct treepath *path,
2570			     const struct cpu_key *key,
2571			     struct inode *inode,
2572			     const char *body, int paste_size);
2573
2574int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
2575			   struct treepath *path,
2576			   struct cpu_key *key,
2577			   struct inode *inode,
2578			   struct page *page, loff_t new_file_size);
2579
2580int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2581			 struct treepath *path,
2582			 const struct cpu_key *key,
2583			 struct inode *inode, struct buffer_head *un_bh);
2584
2585void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2586				struct inode *inode, struct reiserfs_key *key);
2587int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2588			   struct inode *inode);
2589int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2590			 struct inode *inode, struct page *,
2591			 int update_timestamps);
2592
2593#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2594#define file_size(inode) ((inode)->i_size)
2595#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2596
2597#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2598!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2599
2600void padd_item(char *item, int total_length, int length);
2601
2602/* inode.c */
2603/* args for the create parameter of reiserfs_get_block */
2604#define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
2605#define GET_BLOCK_CREATE 1	/* add anything you need to find block */
2606#define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
2607#define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
2608#define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
2609#define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
2610
2611void reiserfs_read_locked_inode(struct inode *inode,
2612				struct reiserfs_iget_args *args);
2613int reiserfs_find_actor(struct inode *inode, void *p);
2614int reiserfs_init_locked_inode(struct inode *inode, void *p);
2615void reiserfs_evict_inode(struct inode *inode);
2616int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2617int reiserfs_get_block(struct inode *inode, sector_t block,
2618		       struct buffer_head *bh_result, int create);
2619struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2620				     int fh_len, int fh_type);
2621struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2622				     int fh_len, int fh_type);
2623int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
2624		       struct inode *parent);
2625
2626int reiserfs_truncate_file(struct inode *, int update_timestamps);
2627void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2628		  int type, int key_length);
2629void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2630		       int version,
2631		       loff_t offset, int type, int length, int entry_count);
2632struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2633
2634struct reiserfs_security_handle;
2635int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2636		       struct inode *dir, umode_t mode,
2637		       const char *symname, loff_t i_size,
2638		       struct dentry *dentry, struct inode *inode,
2639		       struct reiserfs_security_handle *security);
2640
2641void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2642			     struct inode *inode, loff_t size);
2643
2644static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2645				      struct inode *inode)
2646{
2647	reiserfs_update_sd_size(th, inode, inode->i_size);
2648}
2649
2650void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2651void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2652int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2653
2654int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2655
2656/* namei.c */
2657void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2658int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2659			struct treepath *path, struct reiserfs_dir_entry *de);
2660struct dentry *reiserfs_get_parent(struct dentry *);
2661
2662#ifdef CONFIG_REISERFS_PROC_INFO
2663int reiserfs_proc_info_init(struct super_block *sb);
2664int reiserfs_proc_info_done(struct super_block *sb);
2665int reiserfs_proc_info_global_init(void);
2666int reiserfs_proc_info_global_done(void);
2667
2668#define PROC_EXP( e )   e
2669
2670#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2671#define PROC_INFO_MAX( sb, field, value )								\
2672    __PINFO( sb ).field =												\
2673        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2674#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2675#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2676#define PROC_INFO_BH_STAT( sb, bh, level )							\
2677    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
2678    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
2679    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2680#else
2681static inline int reiserfs_proc_info_init(struct super_block *sb)
2682{
2683	return 0;
2684}
2685
2686static inline int reiserfs_proc_info_done(struct super_block *sb)
2687{
2688	return 0;
2689}
2690
2691static inline int reiserfs_proc_info_global_init(void)
2692{
2693	return 0;
2694}
2695
2696static inline int reiserfs_proc_info_global_done(void)
2697{
2698	return 0;
2699}
2700
2701#define PROC_EXP( e )
2702#define VOID_V ( ( void ) 0 )
2703#define PROC_INFO_MAX( sb, field, value ) VOID_V
2704#define PROC_INFO_INC( sb, field ) VOID_V
2705#define PROC_INFO_ADD( sb, field, val ) VOID_V
2706#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2707#endif
2708
2709/* dir.c */
2710extern const struct inode_operations reiserfs_dir_inode_operations;
2711extern const struct inode_operations reiserfs_symlink_inode_operations;
2712extern const struct inode_operations reiserfs_special_inode_operations;
2713extern const struct file_operations reiserfs_dir_operations;
2714int reiserfs_readdir_inode(struct inode *, struct dir_context *);
2715
2716/* tail_conversion.c */
2717int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2718		    struct treepath *, struct buffer_head *, loff_t);
2719int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2720		    struct page *, struct treepath *, const struct cpu_key *,
2721		    loff_t, char *);
2722void reiserfs_unmap_buffer(struct buffer_head *);
2723
2724/* file.c */
2725extern const struct inode_operations reiserfs_file_inode_operations;
2726extern const struct file_operations reiserfs_file_operations;
2727extern const struct address_space_operations reiserfs_address_space_operations;
2728
2729/* fix_nodes.c */
2730
2731int fix_nodes(int n_op_mode, struct tree_balance *tb,
2732	      struct item_head *ins_ih, const void *);
2733void unfix_nodes(struct tree_balance *);
2734
2735/* prints.c */
2736void __reiserfs_panic(struct super_block *s, const char *id,
2737		      const char *function, const char *fmt, ...)
2738    __attribute__ ((noreturn));
2739#define reiserfs_panic(s, id, fmt, args...) \
2740	__reiserfs_panic(s, id, __func__, fmt, ##args)
2741void __reiserfs_error(struct super_block *s, const char *id,
2742		      const char *function, const char *fmt, ...);
2743#define reiserfs_error(s, id, fmt, args...) \
2744	 __reiserfs_error(s, id, __func__, fmt, ##args)
2745void reiserfs_info(struct super_block *s, const char *fmt, ...);
2746void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2747void print_indirect_item(struct buffer_head *bh, int item_num);
2748void store_print_tb(struct tree_balance *tb);
2749void print_cur_tb(char *mes);
2750void print_de(struct reiserfs_dir_entry *de);
2751void print_bi(struct buffer_info *bi, char *mes);
2752#define PRINT_LEAF_ITEMS 1	/* print all items */
2753#define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
2754#define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
2755void print_block(struct buffer_head *bh, ...);
2756void print_bmap(struct super_block *s, int silent);
2757void print_bmap_block(int i, char *data, int size, int silent);
2758/*void print_super_block (struct super_block * s, char * mes);*/
2759void print_objectid_map(struct super_block *s);
2760void print_block_head(struct buffer_head *bh, char *mes);
2761void check_leaf(struct buffer_head *bh);
2762void check_internal(struct buffer_head *bh);
2763void print_statistics(struct super_block *s);
2764char *reiserfs_hashname(int code);
2765
2766/* lbalance.c */
2767int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2768		    int mov_bytes, struct buffer_head *Snew);
2769int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2770int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2771void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2772		       int del_num, int del_bytes);
2773void leaf_insert_into_buf(struct buffer_info *bi, int before,
2774			  struct item_head *inserted_item_ih,
2775			  const char *inserted_item_body, int zeros_number);
2776void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2777			  int pos_in_item, int paste_size, const char *body,
2778			  int zeros_number);
2779void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2780			  int pos_in_item, int cut_size);
2781void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2782			int new_entry_count, struct reiserfs_de_head *new_dehs,
2783			const char *records, int paste_size);
2784/* ibalance.c */
2785int balance_internal(struct tree_balance *, int, int, struct item_head *,
2786		     struct buffer_head **);
2787
2788/* do_balance.c */
2789void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2790				struct buffer_head *bh, int flag);
2791#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2792#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2793
2794void do_balance(struct tree_balance *tb, struct item_head *ih,
2795		const char *body, int flag);
2796void reiserfs_invalidate_buffer(struct tree_balance *tb,
2797				struct buffer_head *bh);
2798
2799int get_left_neighbor_position(struct tree_balance *tb, int h);
2800int get_right_neighbor_position(struct tree_balance *tb, int h);
2801void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2802		 struct buffer_head *, int);
2803void make_empty_node(struct buffer_info *);
2804struct buffer_head *get_FEB(struct tree_balance *);
2805
2806/* bitmap.c */
2807
2808/* structure contains hints for block allocator, and it is a container for
2809 * arguments, such as node, search path, transaction_handle, etc. */
2810struct __reiserfs_blocknr_hint {
2811	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
2812	sector_t block;		/* file offset, in blocks */
2813	struct in_core_key key;
2814	struct treepath *path;	/* search path, used by allocator to deternine search_start by
2815				 * various ways */
2816	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
2817						 * bitmap blocks changes  */
2818	b_blocknr_t beg, end;
2819	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
2820					 * between different block allocator procedures
2821					 * (determine_search_start() and others) */
2822	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
2823				 * function that do actual allocation */
2824
2825	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
2826					 * formatted/unformatted blocks with/without preallocation */
2827	unsigned preallocate:1;
2828};
2829
2830typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2831
2832int reiserfs_parse_alloc_options(struct super_block *, char *);
2833void reiserfs_init_alloc_options(struct super_block *s);
2834
2835/*
2836 * given a directory, this will tell you what packing locality
2837 * to use for a new object underneat it.  The locality is returned
2838 * in disk byte order (le).
2839 */
2840__le32 reiserfs_choose_packing(struct inode *dir);
2841
2842int reiserfs_init_bitmap_cache(struct super_block *sb);
2843void reiserfs_free_bitmap_cache(struct super_block *sb);
2844void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2845struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2846int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2847void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2848			 b_blocknr_t, int for_unformatted);
2849int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2850			       int);
2851static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2852					     b_blocknr_t * new_blocknrs,
2853					     int amount_needed)
2854{
2855	reiserfs_blocknr_hint_t hint = {
2856		.th = tb->transaction_handle,
2857		.path = tb->tb_path,
2858		.inode = NULL,
2859		.key = tb->key,
2860		.block = 0,
2861		.formatted_node = 1
2862	};
2863	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2864					  0);
2865}
2866
2867static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2868					    *th, struct inode *inode,
2869					    b_blocknr_t * new_blocknrs,
2870					    struct treepath *path,
2871					    sector_t block)
2872{
2873	reiserfs_blocknr_hint_t hint = {
2874		.th = th,
2875		.path = path,
2876		.inode = inode,
2877		.block = block,
2878		.formatted_node = 0,
2879		.preallocate = 0
2880	};
2881	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2882}
2883
2884#ifdef REISERFS_PREALLOCATE
2885static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2886					     *th, struct inode *inode,
2887					     b_blocknr_t * new_blocknrs,
2888					     struct treepath *path,
2889					     sector_t block)
2890{
2891	reiserfs_blocknr_hint_t hint = {
2892		.th = th,
2893		.path = path,
2894		.inode = inode,
2895		.block = block,
2896		.formatted_node = 0,
2897		.preallocate = 1
2898	};
2899	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2900}
2901
2902void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2903			       struct inode *inode);
2904void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2905#endif
2906
2907/* hashes.c */
2908__u32 keyed_hash(const signed char *msg, int len);
2909__u32 yura_hash(const signed char *msg, int len);
2910__u32 r5_hash(const signed char *msg, int len);
2911
2912#define reiserfs_set_le_bit		__set_bit_le
2913#define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
2914#define reiserfs_clear_le_bit		__clear_bit_le
2915#define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
2916#define reiserfs_test_le_bit		test_bit_le
2917#define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
2918
2919/* sometimes reiserfs_truncate may require to allocate few new blocks
2920   to perform indirect2direct conversion. People probably used to
2921   think, that truncate should work without problems on a filesystem
2922   without free disk space. They may complain that they can not
2923   truncate due to lack of free disk space. This spare space allows us
2924   to not worry about it. 500 is probably too much, but it should be
2925   absolutely safe */
2926#define SPARE_SPACE 500
2927
2928/* prototypes from ioctl.c */
2929long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2930long reiserfs_compat_ioctl(struct file *filp,
2931		   unsigned int cmd, unsigned long arg);
2932int reiserfs_unpack(struct inode *inode, struct file *filp);
2933