reiserfs.h revision b0b0382bb4904965a9e9fca77ad87514dfda0d1c
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5#include <linux/reiserfs_fs.h>
6
7#include <linux/slab.h>
8#include <linux/interrupt.h>
9#include <linux/sched.h>
10#include <linux/bug.h>
11#include <linux/workqueue.h>
12#include <asm/unaligned.h>
13#include <linux/bitops.h>
14#include <linux/proc_fs.h>
15#include <linux/buffer_head.h>
16
17/* the 32 bit compat definitions with int argument */
18#define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
19#define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
20#define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
21#define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22#define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23
24struct reiserfs_journal_list;
25
26/** bitmasks for i_flags field in reiserfs-specific part of inode */
27typedef enum {
28    /** this says what format of key do all items (but stat data) of
29      an object have.  If this is set, that format is 3.6 otherwise
30      - 3.5 */
31	i_item_key_version_mask = 0x0001,
32    /** If this is unset, object has 3.5 stat data, otherwise, it has
33      3.6 stat data with 64bit size, 32bit nlink etc. */
34	i_stat_data_version_mask = 0x0002,
35    /** file might need tail packing on close */
36	i_pack_on_close_mask = 0x0004,
37    /** don't pack tail of file */
38	i_nopack_mask = 0x0008,
39    /** If those is set, "safe link" was created for this file during
40      truncate or unlink. Safe link is used to avoid leakage of disk
41      space on crash with some files open, but unlinked. */
42	i_link_saved_unlink_mask = 0x0010,
43	i_link_saved_truncate_mask = 0x0020,
44	i_has_xattr_dir = 0x0040,
45	i_data_log = 0x0080,
46} reiserfs_inode_flags;
47
48struct reiserfs_inode_info {
49	__u32 i_key[4];		/* key is still 4 32 bit integers */
50    /** transient inode flags that are never stored on disk. Bitmasks
51      for this field are defined above. */
52	__u32 i_flags;
53
54	__u32 i_first_direct_byte;	// offset of first byte stored in direct item.
55
56	/* copy of persistent inode flags read from sd_attrs. */
57	__u32 i_attrs;
58
59	int i_prealloc_block;	/* first unused block of a sequence of unused blocks */
60	int i_prealloc_count;	/* length of that sequence */
61	struct list_head i_prealloc_list;	/* per-transaction list of inodes which
62						 * have preallocated blocks */
63
64	unsigned new_packing_locality:1;	/* new_packig_locality is created; new blocks
65						 * for the contents of this directory should be
66						 * displaced */
67
68	/* we use these for fsync or O_SYNC to decide which transaction
69	 ** needs to be committed in order for this inode to be properly
70	 ** flushed */
71	unsigned int i_trans_id;
72	struct reiserfs_journal_list *i_jl;
73	atomic_t openers;
74	struct mutex tailpack;
75#ifdef CONFIG_REISERFS_FS_XATTR
76	struct rw_semaphore i_xattr_sem;
77#endif
78	struct inode vfs_inode;
79};
80
81typedef enum {
82	reiserfs_attrs_cleared = 0x00000001,
83} reiserfs_super_block_flags;
84
85/* struct reiserfs_super_block accessors/mutators
86 * since this is a disk structure, it will always be in
87 * little endian format. */
88#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
89#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
90#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
91#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
92#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
93#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
94
95#define sb_jp_journal_1st_block(sbp)  \
96              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
97#define set_sb_jp_journal_1st_block(sbp,v) \
98              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
99#define sb_jp_journal_dev(sbp) \
100              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
101#define set_sb_jp_journal_dev(sbp,v) \
102              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
103#define sb_jp_journal_size(sbp) \
104              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
105#define set_sb_jp_journal_size(sbp,v) \
106              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
107#define sb_jp_journal_trans_max(sbp) \
108              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
109#define set_sb_jp_journal_trans_max(sbp,v) \
110              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
111#define sb_jp_journal_magic(sbp) \
112              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
113#define set_sb_jp_journal_magic(sbp,v) \
114              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
115#define sb_jp_journal_max_batch(sbp) \
116              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
117#define set_sb_jp_journal_max_batch(sbp,v) \
118              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
119#define sb_jp_jourmal_max_commit_age(sbp) \
120              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
121#define set_sb_jp_journal_max_commit_age(sbp,v) \
122              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
123
124#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
125#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
126#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
127#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
128#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
129#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
130#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
131#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
132#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
133#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
134#define sb_hash_function_code(sbp) \
135              (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
136#define set_sb_hash_function_code(sbp,v) \
137              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
138#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
139#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
140#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
141#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
142#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
143#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
144
145#define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
146#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
147
148#define sb_reserved_for_journal(sbp) \
149              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
150#define set_sb_reserved_for_journal(sbp,v) \
151              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
152
153/* LOGGING -- */
154
155/* These all interelate for performance.
156**
157** If the journal block count is smaller than n transactions, you lose speed.
158** I don't know what n is yet, I'm guessing 8-16.
159**
160** typical transaction size depends on the application, how often fsync is
161** called, and how many metadata blocks you dirty in a 30 second period.
162** The more small files (<16k) you use, the larger your transactions will
163** be.
164**
165** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
166** to wrap, which slows things down.  If you need high speed meta data updates, the journal should be big enough
167** to prevent wrapping before dirty meta blocks get to disk.
168**
169** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
170** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
171**
172** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
173**
174*/
175
176/* don't mess with these for a while */
177				/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
178#define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
179#define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
180#define JOURNAL_HASH_SIZE 8192
181#define JOURNAL_NUM_BITMAPS 5	/* number of copies of the bitmaps to have floating.  Must be >= 2 */
182
183/* One of these for every block in every transaction
184** Each one is in two hash tables.  First, a hash of the current transaction, and after journal_end, a
185** hash of all the in memory transactions.
186** next and prev are used by the current transaction (journal_hash).
187** hnext and hprev are used by journal_list_hash.  If a block is in more than one transaction, the journal_list_hash
188** links it in multiple times.  This allows flush_journal_list to remove just the cnode belonging
189** to a given transaction.
190*/
191struct reiserfs_journal_cnode {
192	struct buffer_head *bh;	/* real buffer head */
193	struct super_block *sb;	/* dev of real buffer head */
194	__u32 blocknr;		/* block number of real buffer head, == 0 when buffer on disk */
195	unsigned long state;
196	struct reiserfs_journal_list *jlist;	/* journal list this cnode lives in */
197	struct reiserfs_journal_cnode *next;	/* next in transaction list */
198	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
199	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
200	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
201};
202
203struct reiserfs_bitmap_node {
204	int id;
205	char *data;
206	struct list_head list;
207};
208
209struct reiserfs_list_bitmap {
210	struct reiserfs_journal_list *journal_list;
211	struct reiserfs_bitmap_node **bitmaps;
212};
213
214/*
215** one of these for each transaction.  The most important part here is the j_realblock.
216** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
217** real buffer heads dirty once all the commits hit the disk,
218** and to make sure every real block in a transaction is on disk before allowing the log area
219** to be overwritten */
220struct reiserfs_journal_list {
221	unsigned long j_start;
222	unsigned long j_state;
223	unsigned long j_len;
224	atomic_t j_nonzerolen;
225	atomic_t j_commit_left;
226	atomic_t j_older_commits_done;	/* all commits older than this on disk */
227	struct mutex j_commit_mutex;
228	unsigned int j_trans_id;
229	time_t j_timestamp;
230	struct reiserfs_list_bitmap *j_list_bitmap;
231	struct buffer_head *j_commit_bh;	/* commit buffer head */
232	struct reiserfs_journal_cnode *j_realblock;
233	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
234	/* time ordered list of all active transactions */
235	struct list_head j_list;
236
237	/* time ordered list of all transactions we haven't tried to flush yet */
238	struct list_head j_working_list;
239
240	/* list of tail conversion targets in need of flush before commit */
241	struct list_head j_tail_bh_list;
242	/* list of data=ordered buffers in need of flush before commit */
243	struct list_head j_bh_list;
244	int j_refcount;
245};
246
247struct reiserfs_journal {
248	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
249	struct reiserfs_journal_cnode *j_last;	/* newest journal block */
250	struct reiserfs_journal_cnode *j_first;	/*  oldest journal block.  start here for traverse */
251
252	struct block_device *j_dev_bd;
253	fmode_t j_dev_mode;
254	int j_1st_reserved_block;	/* first block on s_dev of reserved area journal */
255
256	unsigned long j_state;
257	unsigned int j_trans_id;
258	unsigned long j_mount_id;
259	unsigned long j_start;	/* start of current waiting commit (index into j_ap_blocks) */
260	unsigned long j_len;	/* length of current waiting commit */
261	unsigned long j_len_alloc;	/* number of buffers requested by journal_begin() */
262	atomic_t j_wcount;	/* count of writers for current commit */
263	unsigned long j_bcount;	/* batch count. allows turning X transactions into 1 */
264	unsigned long j_first_unflushed_offset;	/* first unflushed transactions offset */
265	unsigned j_last_flush_trans_id;	/* last fully flushed journal timestamp */
266	struct buffer_head *j_header_bh;
267
268	time_t j_trans_start_time;	/* time this transaction started */
269	struct mutex j_mutex;
270	struct mutex j_flush_mutex;
271	wait_queue_head_t j_join_wait;	/* wait for current transaction to finish before starting new one */
272	atomic_t j_jlock;	/* lock for j_join_wait */
273	int j_list_bitmap_index;	/* number of next list bitmap to use */
274	int j_must_wait;	/* no more journal begins allowed. MUST sleep on j_join_wait */
275	int j_next_full_flush;	/* next journal_end will flush all journal list */
276	int j_next_async_flush;	/* next journal_end will flush all async commits */
277
278	int j_cnode_used;	/* number of cnodes on the used list */
279	int j_cnode_free;	/* number of cnodes on the free list */
280
281	unsigned int j_trans_max;	/* max number of blocks in a transaction.  */
282	unsigned int j_max_batch;	/* max number of blocks to batch into a trans */
283	unsigned int j_max_commit_age;	/* in seconds, how old can an async commit be */
284	unsigned int j_max_trans_age;	/* in seconds, how old can a transaction be */
285	unsigned int j_default_max_commit_age;	/* the default for the max commit age */
286
287	struct reiserfs_journal_cnode *j_cnode_free_list;
288	struct reiserfs_journal_cnode *j_cnode_free_orig;	/* orig pointer returned from vmalloc */
289
290	struct reiserfs_journal_list *j_current_jl;
291	int j_free_bitmap_nodes;
292	int j_used_bitmap_nodes;
293
294	int j_num_lists;	/* total number of active transactions */
295	int j_num_work_lists;	/* number that need attention from kreiserfsd */
296
297	/* debugging to make sure things are flushed in order */
298	unsigned int j_last_flush_id;
299
300	/* debugging to make sure things are committed in order */
301	unsigned int j_last_commit_id;
302
303	struct list_head j_bitmap_nodes;
304	struct list_head j_dirty_buffers;
305	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
306
307	/* list of all active transactions */
308	struct list_head j_journal_list;
309	/* lists that haven't been touched by writeback attempts */
310	struct list_head j_working_list;
311
312	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];	/* array of bitmaps to record the deleted blocks */
313	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];	/* hash table for real buffer heads in current trans */
314	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];	/* hash table for all the real buffer heads in all
315										   the transactions */
316	struct list_head j_prealloc_list;	/* list of inodes which have preallocated blocks */
317	int j_persistent_trans;
318	unsigned long j_max_trans_size;
319	unsigned long j_max_batch_size;
320
321	int j_errno;
322
323	/* when flushing ordered buffers, throttle new ordered writers */
324	struct delayed_work j_work;
325	struct super_block *j_work_sb;
326	atomic_t j_async_throttle;
327};
328
329enum journal_state_bits {
330	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
331	J_WRITERS_QUEUED,	/* set when log is full due to too many writers */
332	J_ABORTED,		/* set when log is aborted */
333};
334
335#define JOURNAL_DESC_MAGIC "ReIsErLB"	/* ick.  magic string to find desc blocks in the journal */
336
337typedef __u32(*hashf_t) (const signed char *, int);
338
339struct reiserfs_bitmap_info {
340	__u32 free_count;
341};
342
343struct proc_dir_entry;
344
345#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
346typedef unsigned long int stat_cnt_t;
347typedef struct reiserfs_proc_info_data {
348	spinlock_t lock;
349	int exiting;
350	int max_hash_collisions;
351
352	stat_cnt_t breads;
353	stat_cnt_t bread_miss;
354	stat_cnt_t search_by_key;
355	stat_cnt_t search_by_key_fs_changed;
356	stat_cnt_t search_by_key_restarted;
357
358	stat_cnt_t insert_item_restarted;
359	stat_cnt_t paste_into_item_restarted;
360	stat_cnt_t cut_from_item_restarted;
361	stat_cnt_t delete_solid_item_restarted;
362	stat_cnt_t delete_item_restarted;
363
364	stat_cnt_t leaked_oid;
365	stat_cnt_t leaves_removable;
366
367	/* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
368	stat_cnt_t balance_at[5];	/* XXX */
369	/* sbk == search_by_key */
370	stat_cnt_t sbk_read_at[5];	/* XXX */
371	stat_cnt_t sbk_fs_changed[5];
372	stat_cnt_t sbk_restarted[5];
373	stat_cnt_t items_at[5];	/* XXX */
374	stat_cnt_t free_at[5];	/* XXX */
375	stat_cnt_t can_node_be_removed[5];	/* XXX */
376	long int lnum[5];	/* XXX */
377	long int rnum[5];	/* XXX */
378	long int lbytes[5];	/* XXX */
379	long int rbytes[5];	/* XXX */
380	stat_cnt_t get_neighbors[5];
381	stat_cnt_t get_neighbors_restart[5];
382	stat_cnt_t need_l_neighbor[5];
383	stat_cnt_t need_r_neighbor[5];
384
385	stat_cnt_t free_block;
386	struct __scan_bitmap_stats {
387		stat_cnt_t call;
388		stat_cnt_t wait;
389		stat_cnt_t bmap;
390		stat_cnt_t retry;
391		stat_cnt_t in_journal_hint;
392		stat_cnt_t in_journal_nohint;
393		stat_cnt_t stolen;
394	} scan_bitmap;
395	struct __journal_stats {
396		stat_cnt_t in_journal;
397		stat_cnt_t in_journal_bitmap;
398		stat_cnt_t in_journal_reusable;
399		stat_cnt_t lock_journal;
400		stat_cnt_t lock_journal_wait;
401		stat_cnt_t journal_being;
402		stat_cnt_t journal_relock_writers;
403		stat_cnt_t journal_relock_wcount;
404		stat_cnt_t mark_dirty;
405		stat_cnt_t mark_dirty_already;
406		stat_cnt_t mark_dirty_notjournal;
407		stat_cnt_t restore_prepared;
408		stat_cnt_t prepare;
409		stat_cnt_t prepare_retry;
410	} journal;
411} reiserfs_proc_info_data_t;
412#else
413typedef struct reiserfs_proc_info_data {
414} reiserfs_proc_info_data_t;
415#endif
416
417/* reiserfs union of in-core super block data */
418struct reiserfs_sb_info {
419	struct buffer_head *s_sbh;	/* Buffer containing the super block */
420	/* both the comment and the choice of
421	   name are unclear for s_rs -Hans */
422	struct reiserfs_super_block *s_rs;	/* Pointer to the super block in the buffer */
423	struct reiserfs_bitmap_info *s_ap_bitmap;
424	struct reiserfs_journal *s_journal;	/* pointer to journal information */
425	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
426
427	/* Serialize writers access, replace the old bkl */
428	struct mutex lock;
429	/* Owner of the lock (can be recursive) */
430	struct task_struct *lock_owner;
431	/* Depth of the lock, start from -1 like the bkl */
432	int lock_depth;
433
434	/* Comment? -Hans */
435	void (*end_io_handler) (struct buffer_head *, int);
436	hashf_t s_hash_function;	/* pointer to function which is used
437					   to sort names in directory. Set on
438					   mount */
439	unsigned long s_mount_opt;	/* reiserfs's mount options are set
440					   here (currently - NOTAIL, NOLOG,
441					   REPLAYONLY) */
442
443	struct {		/* This is a structure that describes block allocator options */
444		unsigned long bits;	/* Bitfield for enable/disable kind of options */
445		unsigned long large_file_size;	/* size started from which we consider file to be a large one(in blocks) */
446		int border;	/* percentage of disk, border takes */
447		int preallocmin;	/* Minimal file size (in blocks) starting from which we do preallocations */
448		int preallocsize;	/* Number of blocks we try to prealloc when file
449					   reaches preallocmin size (in blocks) or
450					   prealloc_list is empty. */
451	} s_alloc_options;
452
453	/* Comment? -Hans */
454	wait_queue_head_t s_wait;
455	/* To be obsoleted soon by per buffer seals.. -Hans */
456	atomic_t s_generation_counter;	// increased by one every time the
457	// tree gets re-balanced
458	unsigned long s_properties;	/* File system properties. Currently holds
459					   on-disk FS format */
460
461	/* session statistics */
462	int s_disk_reads;
463	int s_disk_writes;
464	int s_fix_nodes;
465	int s_do_balance;
466	int s_unneeded_left_neighbor;
467	int s_good_search_by_key_reada;
468	int s_bmaps;
469	int s_bmaps_without_search;
470	int s_direct2indirect;
471	int s_indirect2direct;
472	/* set up when it's ok for reiserfs_read_inode2() to read from
473	   disk inode with nlink==0. Currently this is only used during
474	   finish_unfinished() processing at mount time */
475	int s_is_unlinked_ok;
476	reiserfs_proc_info_data_t s_proc_info_data;
477	struct proc_dir_entry *procdir;
478	int reserved_blocks;	/* amount of blocks reserved for further allocations */
479	spinlock_t bitmap_lock;	/* this lock on now only used to protect reserved_blocks variable */
480	struct dentry *priv_root;	/* root of /.reiserfs_priv */
481	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
482	int j_errno;
483#ifdef CONFIG_QUOTA
484	char *s_qf_names[MAXQUOTAS];
485	int s_jquota_fmt;
486#endif
487	char *s_jdev;		/* Stored jdev for mount option showing */
488#ifdef CONFIG_REISERFS_CHECK
489
490	struct tree_balance *cur_tb;	/*
491					 * Detects whether more than one
492					 * copy of tb exists per superblock
493					 * as a means of checking whether
494					 * do_balance is executing concurrently
495					 * against another tree reader/writer
496					 * on a same mount point.
497					 */
498#endif
499};
500
501/* Definitions of reiserfs on-disk properties: */
502#define REISERFS_3_5 0
503#define REISERFS_3_6 1
504#define REISERFS_OLD_FORMAT 2
505
506enum reiserfs_mount_options {
507/* Mount options */
508	REISERFS_LARGETAIL,	/* large tails will be created in a session */
509	REISERFS_SMALLTAIL,	/* small (for files less than block size) tails will be created in a session */
510	REPLAYONLY,		/* replay journal and return 0. Use by fsck */
511	REISERFS_CONVERT,	/* -o conv: causes conversion of old
512				   format super block to the new
513				   format. If not specified - old
514				   partition will be dealt with in a
515				   manner of 3.5.x */
516
517/* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
518** reiserfs disks from 3.5.19 or earlier.  99% of the time, this option
519** is not required.  If the normal autodection code can't determine which
520** hash to use (because both hashes had the same value for a file)
521** use this option to force a specific hash.  It won't allow you to override
522** the existing hash on the FS, so if you have a tea hash disk, and mount
523** with -o hash=rupasov, the mount will fail.
524*/
525	FORCE_TEA_HASH,		/* try to force tea hash on mount */
526	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
527	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
528	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
529
530	REISERFS_DATA_LOG,
531	REISERFS_DATA_ORDERED,
532	REISERFS_DATA_WRITEBACK,
533
534/* used for testing experimental features, makes benchmarking new
535   features with and without more convenient, should never be used by
536   users in any code shipped to users (ideally) */
537
538	REISERFS_NO_BORDER,
539	REISERFS_NO_UNHASHED_RELOCATION,
540	REISERFS_HASHED_RELOCATION,
541	REISERFS_ATTRS,
542	REISERFS_XATTRS_USER,
543	REISERFS_POSIXACL,
544	REISERFS_EXPOSE_PRIVROOT,
545	REISERFS_BARRIER_NONE,
546	REISERFS_BARRIER_FLUSH,
547
548	/* Actions on error */
549	REISERFS_ERROR_PANIC,
550	REISERFS_ERROR_RO,
551	REISERFS_ERROR_CONTINUE,
552
553	REISERFS_USRQUOTA,	/* User quota option specified */
554	REISERFS_GRPQUOTA,	/* Group quota option specified */
555
556	REISERFS_TEST1,
557	REISERFS_TEST2,
558	REISERFS_TEST3,
559	REISERFS_TEST4,
560	REISERFS_UNSUPPORTED_OPT,
561};
562
563#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
564#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
565#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
566#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
567#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
568#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
569#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
570#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
571
572#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
573#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
574#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
575#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
576#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
577#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
578#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
579#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
580#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
581#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
582#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
583#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
584#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
585#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
586#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
587
588#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
589#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
590
591void reiserfs_file_buffer(struct buffer_head *bh, int list);
592extern struct file_system_type reiserfs_fs_type;
593int reiserfs_resize(struct super_block *, unsigned long);
594
595#define CARRY_ON                0
596#define SCHEDULE_OCCURRED       1
597
598#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
599#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
600#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
601#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
602#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
603
604#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
605
606/* A safe version of the "bdevname", which returns the "s_id" field of
607 * a superblock or else "Null superblock" if the super block is NULL.
608 */
609static inline char *reiserfs_bdevname(struct super_block *s)
610{
611	return (s == NULL) ? "Null superblock" : s->s_id;
612}
613
614#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
615static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
616						*journal)
617{
618	return test_bit(J_ABORTED, &journal->j_state);
619}
620
621/*
622 * Locking primitives. The write lock is a per superblock
623 * special mutex that has properties close to the Big Kernel Lock
624 * which was used in the previous locking scheme.
625 */
626void reiserfs_write_lock(struct super_block *s);
627void reiserfs_write_unlock(struct super_block *s);
628int reiserfs_write_lock_once(struct super_block *s);
629void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
630
631#ifdef CONFIG_REISERFS_CHECK
632void reiserfs_lock_check_recursive(struct super_block *s);
633#else
634static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
635#endif
636
637/*
638 * Several mutexes depend on the write lock.
639 * However sometimes we want to relax the write lock while we hold
640 * these mutexes, according to the release/reacquire on schedule()
641 * properties of the Bkl that were used.
642 * Reiserfs performances and locking were based on this scheme.
643 * Now that the write lock is a mutex and not the bkl anymore, doing so
644 * may result in a deadlock:
645 *
646 * A acquire write_lock
647 * A acquire j_commit_mutex
648 * A release write_lock and wait for something
649 * B acquire write_lock
650 * B can't acquire j_commit_mutex and sleep
651 * A can't acquire write lock anymore
652 * deadlock
653 *
654 * What we do here is avoiding such deadlock by playing the same game
655 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
656 * we release the write lock, wait a bit and then retry.
657 *
658 * The mutexes concerned by this hack are:
659 * - The commit mutex of a journal list
660 * - The flush mutex
661 * - The journal lock
662 * - The inode mutex
663 */
664static inline void reiserfs_mutex_lock_safe(struct mutex *m,
665			       struct super_block *s)
666{
667	reiserfs_lock_check_recursive(s);
668	reiserfs_write_unlock(s);
669	mutex_lock(m);
670	reiserfs_write_lock(s);
671}
672
673static inline void
674reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
675			       struct super_block *s)
676{
677	reiserfs_lock_check_recursive(s);
678	reiserfs_write_unlock(s);
679	mutex_lock_nested(m, subclass);
680	reiserfs_write_lock(s);
681}
682
683static inline void
684reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
685{
686	reiserfs_lock_check_recursive(s);
687	reiserfs_write_unlock(s);
688	down_read(sem);
689	reiserfs_write_lock(s);
690}
691
692/*
693 * When we schedule, we usually want to also release the write lock,
694 * according to the previous bkl based locking scheme of reiserfs.
695 */
696static inline void reiserfs_cond_resched(struct super_block *s)
697{
698	if (need_resched()) {
699		reiserfs_write_unlock(s);
700		schedule();
701		reiserfs_write_lock(s);
702	}
703}
704
705struct fid;
706
707/* in reading the #defines, it may help to understand that they employ
708   the following abbreviations:
709
710   B = Buffer
711   I = Item header
712   H = Height within the tree (should be changed to LEV)
713   N = Number of the item in the node
714   STAT = stat data
715   DEH = Directory Entry Header
716   EC = Entry Count
717   E = Entry number
718   UL = Unsigned Long
719   BLKH = BLocK Header
720   UNFM = UNForMatted node
721   DC = Disk Child
722   P = Path
723
724   These #defines are named by concatenating these abbreviations,
725   where first comes the arguments, and last comes the return value,
726   of the macro.
727
728*/
729
730#define USE_INODE_GENERATION_COUNTER
731
732#define REISERFS_PREALLOCATE
733#define DISPLACE_NEW_PACKING_LOCALITIES
734#define PREALLOCATION_SIZE 9
735
736/* n must be power of 2 */
737#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
738
739// to be ok for alpha and others we have to align structures to 8 byte
740// boundary.
741// FIXME: do not change 4 by anything else: there is code which relies on that
742#define ROUND_UP(x) _ROUND_UP(x,8LL)
743
744/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
745** messages.
746*/
747#define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
748
749void __reiserfs_warning(struct super_block *s, const char *id,
750			 const char *func, const char *fmt, ...);
751#define reiserfs_warning(s, id, fmt, args...) \
752	 __reiserfs_warning(s, id, __func__, fmt, ##args)
753/* assertions handling */
754
755/** always check a condition and panic if it's false. */
756#define __RASSERT(cond, scond, format, args...)			\
757do {									\
758	if (!(cond))							\
759		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
760			       __FILE__ ":%i:%s: " format "\n",		\
761			       in_interrupt() ? -1 : task_pid_nr(current), \
762			       __LINE__, __func__ , ##args);		\
763} while (0)
764
765#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
766
767#if defined( CONFIG_REISERFS_CHECK )
768#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
769#else
770#define RFALSE( cond, format, args... ) do {;} while( 0 )
771#endif
772
773#define CONSTF __attribute_const__
774/*
775 * Disk Data Structures
776 */
777
778/***************************************************************************/
779/*                             SUPER BLOCK                                 */
780/***************************************************************************/
781
782/*
783 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
784 * the version in RAM is part of a larger structure containing fields never written to disk.
785 */
786#define UNSET_HASH 0		// read_super will guess about, what hash names
787		     // in directories were sorted with
788#define TEA_HASH  1
789#define YURA_HASH 2
790#define R5_HASH   3
791#define DEFAULT_HASH R5_HASH
792
793struct journal_params {
794	__le32 jp_journal_1st_block;	/* where does journal start from on its
795					 * device */
796	__le32 jp_journal_dev;	/* journal device st_rdev */
797	__le32 jp_journal_size;	/* size of the journal */
798	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
799	__le32 jp_journal_magic;	/* random value made on fs creation (this
800					 * was sb_journal_block_count) */
801	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
802					 * trans */
803	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
804						 * commit be */
805	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
806						 * be */
807};
808
809/* this is the super from 3.5.X, where X >= 10 */
810struct reiserfs_super_block_v1 {
811	__le32 s_block_count;	/* blocks count         */
812	__le32 s_free_blocks;	/* free blocks count    */
813	__le32 s_root_block;	/* root block number    */
814	struct journal_params s_journal;
815	__le16 s_blocksize;	/* block size */
816	__le16 s_oid_maxsize;	/* max size of object id array, see
817				 * get_objectid() commentary  */
818	__le16 s_oid_cursize;	/* current size of object id array */
819	__le16 s_umount_state;	/* this is set to 1 when filesystem was
820				 * umounted, to 2 - when not */
821	char s_magic[10];	/* reiserfs magic string indicates that
822				 * file system is reiserfs:
823				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
824	__le16 s_fs_state;	/* it is set to used by fsck to mark which
825				 * phase of rebuilding is done */
826	__le32 s_hash_function_code;	/* indicate, what hash function is being use
827					 * to sort names in a directory*/
828	__le16 s_tree_height;	/* height of disk tree */
829	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
830				 * each block of file system */
831	__le16 s_version;	/* this field is only reliable on filesystem
832				 * with non-standard journal */
833	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
834					 * device, we need to keep after
835					 * making fs with non-standard journal */
836} __attribute__ ((__packed__));
837
838#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
839
840/* this is the on disk super block */
841struct reiserfs_super_block {
842	struct reiserfs_super_block_v1 s_v1;
843	__le32 s_inode_generation;
844	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
845	unsigned char s_uuid[16];	/* filesystem unique identifier */
846	unsigned char s_label[16];	/* filesystem volume label */
847	__le16 s_mnt_count;		/* Count of mounts since last fsck */
848	__le16 s_max_mnt_count;		/* Maximum mounts before check */
849	__le32 s_lastcheck;		/* Timestamp of last fsck */
850	__le32 s_check_interval;	/* Interval between checks */
851	char s_unused[76];	/* zero filled by mkreiserfs and
852				 * reiserfs_convert_objectid_map_v1()
853				 * so any additions must be updated
854				 * there as well. */
855} __attribute__ ((__packed__));
856
857#define SB_SIZE (sizeof(struct reiserfs_super_block))
858
859#define REISERFS_VERSION_1 0
860#define REISERFS_VERSION_2 2
861
862// on-disk super block fields converted to cpu form
863#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
864#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
865#define SB_BLOCKSIZE(s) \
866        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
867#define SB_BLOCK_COUNT(s) \
868        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
869#define SB_FREE_BLOCKS(s) \
870        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
871#define SB_REISERFS_MAGIC(s) \
872        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
873#define SB_ROOT_BLOCK(s) \
874        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
875#define SB_TREE_HEIGHT(s) \
876        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
877#define SB_REISERFS_STATE(s) \
878        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
879#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
880#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
881
882#define PUT_SB_BLOCK_COUNT(s, val) \
883   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
884#define PUT_SB_FREE_BLOCKS(s, val) \
885   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
886#define PUT_SB_ROOT_BLOCK(s, val) \
887   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
888#define PUT_SB_TREE_HEIGHT(s, val) \
889   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
890#define PUT_SB_REISERFS_STATE(s, val) \
891   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
892#define PUT_SB_VERSION(s, val) \
893   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
894#define PUT_SB_BMAP_NR(s, val) \
895   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
896
897#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
898#define SB_ONDISK_JOURNAL_SIZE(s) \
899         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
900#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
901         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
902#define SB_ONDISK_JOURNAL_DEVICE(s) \
903         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
904#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
905         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
906
907#define is_block_in_log_or_reserved_area(s, block) \
908         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
909         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
910         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
911         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
912
913int is_reiserfs_3_5(struct reiserfs_super_block *rs);
914int is_reiserfs_3_6(struct reiserfs_super_block *rs);
915int is_reiserfs_jr(struct reiserfs_super_block *rs);
916
917/* ReiserFS leaves the first 64k unused, so that partition labels have
918   enough space.  If someone wants to write a fancy bootloader that
919   needs more than 64k, let us know, and this will be increased in size.
920   This number must be larger than than the largest block size on any
921   platform, or code will break.  -Hans */
922#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
923#define REISERFS_FIRST_BLOCK unused_define
924#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
925
926/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
927#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
928
929/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
930#define CARRY_ON      0
931#define REPEAT_SEARCH -1
932#define IO_ERROR      -2
933#define NO_DISK_SPACE -3
934#define NO_BALANCING_NEEDED  (-4)
935#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
936#define QUOTA_EXCEEDED -6
937
938typedef __u32 b_blocknr_t;
939typedef __le32 unp_t;
940
941struct unfm_nodeinfo {
942	unp_t unfm_nodenum;
943	unsigned short unfm_freespace;
944};
945
946/* there are two formats of keys: 3.5 and 3.6
947 */
948#define KEY_FORMAT_3_5 0
949#define KEY_FORMAT_3_6 1
950
951/* there are two stat datas */
952#define STAT_DATA_V1 0
953#define STAT_DATA_V2 1
954
955static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
956{
957	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
958}
959
960static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
961{
962	return sb->s_fs_info;
963}
964
965/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
966 * which overflows on large file systems. */
967static inline __u32 reiserfs_bmap_count(struct super_block *sb)
968{
969	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
970}
971
972static inline int bmap_would_wrap(unsigned bmap_nr)
973{
974	return bmap_nr > ((1LL << 16) - 1);
975}
976
977/** this says about version of key of all items (but stat data) the
978    object consists of */
979#define get_inode_item_key_version( inode )                                    \
980    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
981
982#define set_inode_item_key_version( inode, version )                           \
983         ({ if((version)==KEY_FORMAT_3_6)                                      \
984                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
985            else                                                               \
986                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
987
988#define get_inode_sd_version(inode)                                            \
989    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
990
991#define set_inode_sd_version(inode, version)                                   \
992         ({ if((version)==STAT_DATA_V2)                                        \
993                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
994            else                                                               \
995                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
996
997/* This is an aggressive tail suppression policy, I am hoping it
998   improves our benchmarks. The principle behind it is that percentage
999   space saving is what matters, not absolute space saving.  This is
1000   non-intuitive, but it helps to understand it if you consider that the
1001   cost to access 4 blocks is not much more than the cost to access 1
1002   block, if you have to do a seek and rotate.  A tail risks a
1003   non-linear disk access that is significant as a percentage of total
1004   time cost for a 4 block file and saves an amount of space that is
1005   less significant as a percentage of space, or so goes the hypothesis.
1006   -Hans */
1007#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1008(\
1009  (!(n_tail_size)) || \
1010  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1011   ( (n_file_size) >= (n_block_size) * 4 ) || \
1012   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1013     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1014   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1015     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1016   ( ( (n_file_size) >= (n_block_size) ) && \
1017     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1018)
1019
1020/* Another strategy for tails, this one means only create a tail if all the
1021   file would fit into one DIRECT item.
1022   Primary intention for this one is to increase performance by decreasing
1023   seeking.
1024*/
1025#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1026(\
1027  (!(n_tail_size)) || \
1028  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1029)
1030
1031/*
1032 * values for s_umount_state field
1033 */
1034#define REISERFS_VALID_FS    1
1035#define REISERFS_ERROR_FS    2
1036
1037//
1038// there are 5 item types currently
1039//
1040#define TYPE_STAT_DATA 0
1041#define TYPE_INDIRECT 1
1042#define TYPE_DIRECT 2
1043#define TYPE_DIRENTRY 3
1044#define TYPE_MAXTYPE 3
1045#define TYPE_ANY 15		// FIXME: comment is required
1046
1047/***************************************************************************/
1048/*                       KEY & ITEM HEAD                                   */
1049/***************************************************************************/
1050
1051//
1052// directories use this key as well as old files
1053//
1054struct offset_v1 {
1055	__le32 k_offset;
1056	__le32 k_uniqueness;
1057} __attribute__ ((__packed__));
1058
1059struct offset_v2 {
1060	__le64 v;
1061} __attribute__ ((__packed__));
1062
1063static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1064{
1065	__u8 type = le64_to_cpu(v2->v) >> 60;
1066	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1067}
1068
1069static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1070{
1071	v2->v =
1072	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1073}
1074
1075static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1076{
1077	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1078}
1079
1080static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1081{
1082	offset &= (~0ULL >> 4);
1083	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1084}
1085
1086/* Key of an item determines its location in the S+tree, and
1087   is composed of 4 components */
1088struct reiserfs_key {
1089	__le32 k_dir_id;	/* packing locality: by default parent
1090				   directory object id */
1091	__le32 k_objectid;	/* object identifier */
1092	union {
1093		struct offset_v1 k_offset_v1;
1094		struct offset_v2 k_offset_v2;
1095	} __attribute__ ((__packed__)) u;
1096} __attribute__ ((__packed__));
1097
1098struct in_core_key {
1099	__u32 k_dir_id;		/* packing locality: by default parent
1100				   directory object id */
1101	__u32 k_objectid;	/* object identifier */
1102	__u64 k_offset;
1103	__u8 k_type;
1104};
1105
1106struct cpu_key {
1107	struct in_core_key on_disk_key;
1108	int version;
1109	int key_length;		/* 3 in all cases but direct2indirect and
1110				   indirect2direct conversion */
1111};
1112
1113/* Our function for comparing keys can compare keys of different
1114   lengths.  It takes as a parameter the length of the keys it is to
1115   compare.  These defines are used in determining what is to be passed
1116   to it as that parameter. */
1117#define REISERFS_FULL_KEY_LEN     4
1118#define REISERFS_SHORT_KEY_LEN    2
1119
1120/* The result of the key compare */
1121#define FIRST_GREATER 1
1122#define SECOND_GREATER -1
1123#define KEYS_IDENTICAL 0
1124#define KEY_FOUND 1
1125#define KEY_NOT_FOUND 0
1126
1127#define KEY_SIZE (sizeof(struct reiserfs_key))
1128#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1129
1130/* return values for search_by_key and clones */
1131#define ITEM_FOUND 1
1132#define ITEM_NOT_FOUND 0
1133#define ENTRY_FOUND 1
1134#define ENTRY_NOT_FOUND 0
1135#define DIRECTORY_NOT_FOUND -1
1136#define REGULAR_FILE_FOUND -2
1137#define DIRECTORY_FOUND -3
1138#define BYTE_FOUND 1
1139#define BYTE_NOT_FOUND 0
1140#define FILE_NOT_FOUND -1
1141
1142#define POSITION_FOUND 1
1143#define POSITION_NOT_FOUND 0
1144
1145// return values for reiserfs_find_entry and search_by_entry_key
1146#define NAME_FOUND 1
1147#define NAME_NOT_FOUND 0
1148#define GOTO_PREVIOUS_ITEM 2
1149#define NAME_FOUND_INVISIBLE 3
1150
1151/*  Everything in the filesystem is stored as a set of items.  The
1152    item head contains the key of the item, its free space (for
1153    indirect items) and specifies the location of the item itself
1154    within the block.  */
1155
1156struct item_head {
1157	/* Everything in the tree is found by searching for it based on
1158	 * its key.*/
1159	struct reiserfs_key ih_key;
1160	union {
1161		/* The free space in the last unformatted node of an
1162		   indirect item if this is an indirect item.  This
1163		   equals 0xFFFF iff this is a direct item or stat data
1164		   item. Note that the key, not this field, is used to
1165		   determine the item type, and thus which field this
1166		   union contains. */
1167		__le16 ih_free_space_reserved;
1168		/* Iff this is a directory item, this field equals the
1169		   number of directory entries in the directory item. */
1170		__le16 ih_entry_count;
1171	} __attribute__ ((__packed__)) u;
1172	__le16 ih_item_len;	/* total size of the item body */
1173	__le16 ih_item_location;	/* an offset to the item body
1174					 * within the block */
1175	__le16 ih_version;	/* 0 for all old items, 2 for new
1176				   ones. Highest bit is set by fsck
1177				   temporary, cleaned after all
1178				   done */
1179} __attribute__ ((__packed__));
1180/* size of item header     */
1181#define IH_SIZE (sizeof(struct item_head))
1182
1183#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1184#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1185#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1186#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1187#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1188
1189#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1190#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1191#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1192#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1193#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1194
1195#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1196
1197#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1198#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1199
1200/* these operate on indirect items, where you've got an array of ints
1201** at a possibly unaligned location.  These are a noop on ia32
1202**
1203** p is the array of __u32, i is the index into the array, v is the value
1204** to store there.
1205*/
1206#define get_block_num(p, i) get_unaligned_le32((p) + (i))
1207#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1208
1209//
1210// in old version uniqueness field shows key type
1211//
1212#define V1_SD_UNIQUENESS 0
1213#define V1_INDIRECT_UNIQUENESS 0xfffffffe
1214#define V1_DIRECT_UNIQUENESS 0xffffffff
1215#define V1_DIRENTRY_UNIQUENESS 500
1216#define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
1217
1218//
1219// here are conversion routines
1220//
1221static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1222static inline int uniqueness2type(__u32 uniqueness)
1223{
1224	switch ((int)uniqueness) {
1225	case V1_SD_UNIQUENESS:
1226		return TYPE_STAT_DATA;
1227	case V1_INDIRECT_UNIQUENESS:
1228		return TYPE_INDIRECT;
1229	case V1_DIRECT_UNIQUENESS:
1230		return TYPE_DIRECT;
1231	case V1_DIRENTRY_UNIQUENESS:
1232		return TYPE_DIRENTRY;
1233	case V1_ANY_UNIQUENESS:
1234	default:
1235		return TYPE_ANY;
1236	}
1237}
1238
1239static inline __u32 type2uniqueness(int type) CONSTF;
1240static inline __u32 type2uniqueness(int type)
1241{
1242	switch (type) {
1243	case TYPE_STAT_DATA:
1244		return V1_SD_UNIQUENESS;
1245	case TYPE_INDIRECT:
1246		return V1_INDIRECT_UNIQUENESS;
1247	case TYPE_DIRECT:
1248		return V1_DIRECT_UNIQUENESS;
1249	case TYPE_DIRENTRY:
1250		return V1_DIRENTRY_UNIQUENESS;
1251	case TYPE_ANY:
1252	default:
1253		return V1_ANY_UNIQUENESS;
1254	}
1255}
1256
1257//
1258// key is pointer to on disk key which is stored in le, result is cpu,
1259// there is no way to get version of object from key, so, provide
1260// version to these defines
1261//
1262static inline loff_t le_key_k_offset(int version,
1263				     const struct reiserfs_key *key)
1264{
1265	return (version == KEY_FORMAT_3_5) ?
1266	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1267	    offset_v2_k_offset(&(key->u.k_offset_v2));
1268}
1269
1270static inline loff_t le_ih_k_offset(const struct item_head *ih)
1271{
1272	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1273}
1274
1275static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1276{
1277	return (version == KEY_FORMAT_3_5) ?
1278	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
1279	    offset_v2_k_type(&(key->u.k_offset_v2));
1280}
1281
1282static inline loff_t le_ih_k_type(const struct item_head *ih)
1283{
1284	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1285}
1286
1287static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1288				       loff_t offset)
1289{
1290	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
1291	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1292}
1293
1294static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1295{
1296	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1297}
1298
1299static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1300				     int type)
1301{
1302	(version == KEY_FORMAT_3_5) ?
1303	    (void)(key->u.k_offset_v1.k_uniqueness =
1304		   cpu_to_le32(type2uniqueness(type)))
1305	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1306}
1307
1308static inline void set_le_ih_k_type(struct item_head *ih, int type)
1309{
1310	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1311}
1312
1313static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1314{
1315	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1316}
1317
1318static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1319{
1320	return le_key_k_type(version, key) == TYPE_DIRECT;
1321}
1322
1323static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1324{
1325	return le_key_k_type(version, key) == TYPE_INDIRECT;
1326}
1327
1328static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1329{
1330	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1331}
1332
1333//
1334// item header has version.
1335//
1336static inline int is_direntry_le_ih(struct item_head *ih)
1337{
1338	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1339}
1340
1341static inline int is_direct_le_ih(struct item_head *ih)
1342{
1343	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1344}
1345
1346static inline int is_indirect_le_ih(struct item_head *ih)
1347{
1348	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1349}
1350
1351static inline int is_statdata_le_ih(struct item_head *ih)
1352{
1353	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1354}
1355
1356//
1357// key is pointer to cpu key, result is cpu
1358//
1359static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1360{
1361	return key->on_disk_key.k_offset;
1362}
1363
1364static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1365{
1366	return key->on_disk_key.k_type;
1367}
1368
1369static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1370{
1371	key->on_disk_key.k_offset = offset;
1372}
1373
1374static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1375{
1376	key->on_disk_key.k_type = type;
1377}
1378
1379static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1380{
1381	key->on_disk_key.k_offset--;
1382}
1383
1384#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1385#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1386#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1387#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1388
1389/* are these used ? */
1390#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1391#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1392#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1393#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1394
1395#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1396    (!COMP_SHORT_KEYS(ih, key) && \
1397	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1398
1399/* maximal length of item */
1400#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1401#define MIN_ITEM_LEN 1
1402
1403/* object identifier for root dir */
1404#define REISERFS_ROOT_OBJECTID 2
1405#define REISERFS_ROOT_PARENT_OBJECTID 1
1406
1407extern struct reiserfs_key root_key;
1408
1409/*
1410 * Picture represents a leaf of the S+tree
1411 *  ______________________________________________________
1412 * |      |  Array of     |                   |           |
1413 * |Block |  Object-Item  |      F r e e      |  Objects- |
1414 * | head |  Headers      |     S p a c e     |   Items   |
1415 * |______|_______________|___________________|___________|
1416 */
1417
1418/* Header of a disk block.  More precisely, header of a formatted leaf
1419   or internal node, and not the header of an unformatted node. */
1420struct block_head {
1421	__le16 blk_level;	/* Level of a block in the tree. */
1422	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1423	__le16 blk_free_space;	/* Block free space in bytes. */
1424	__le16 blk_reserved;
1425	/* dump this in v4/planA */
1426	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
1427};
1428
1429#define BLKH_SIZE                     (sizeof(struct block_head))
1430#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1431#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1432#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1433#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1434#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1435#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1436#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1437#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1438#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1439#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1440
1441/*
1442 * values for blk_level field of the struct block_head
1443 */
1444
1445#define FREE_LEVEL 0		/* when node gets removed from the tree its
1446				   blk_level is set to FREE_LEVEL. It is then
1447				   used to see whether the node is still in the
1448				   tree */
1449
1450#define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1451
1452/* Given the buffer head of a formatted node, resolve to the block head of that node. */
1453#define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1454/* Number of items that are in buffer. */
1455#define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1456#define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1457#define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1458
1459#define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1460#define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1461#define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1462
1463/* Get right delimiting key. -- little endian */
1464#define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1465
1466/* Does the buffer contain a disk leaf. */
1467#define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1468
1469/* Does the buffer contain a disk internal node */
1470#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1471					    && B_LEVEL(bh) <= MAX_HEIGHT)
1472
1473/***************************************************************************/
1474/*                             STAT DATA                                   */
1475/***************************************************************************/
1476
1477//
1478// old stat data is 32 bytes long. We are going to distinguish new one by
1479// different size
1480//
1481struct stat_data_v1 {
1482	__le16 sd_mode;		/* file type, permissions */
1483	__le16 sd_nlink;	/* number of hard links */
1484	__le16 sd_uid;		/* owner */
1485	__le16 sd_gid;		/* group */
1486	__le32 sd_size;		/* file size */
1487	__le32 sd_atime;	/* time of last access */
1488	__le32 sd_mtime;	/* time file was last modified  */
1489	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1490	union {
1491		__le32 sd_rdev;
1492		__le32 sd_blocks;	/* number of blocks file uses */
1493	} __attribute__ ((__packed__)) u;
1494	__le32 sd_first_direct_byte;	/* first byte of file which is stored
1495					   in a direct item: except that if it
1496					   equals 1 it is a symlink and if it
1497					   equals ~(__u32)0 there is no
1498					   direct item.  The existence of this
1499					   field really grates on me. Let's
1500					   replace it with a macro based on
1501					   sd_size and our tail suppression
1502					   policy.  Someday.  -Hans */
1503} __attribute__ ((__packed__));
1504
1505#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1506#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1507#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1508#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1509#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1510#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1511#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1512#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1513#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1514#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1515#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1516#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1517#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1518#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1519#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1520#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1521#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1522#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1523#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1524#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1525#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1526#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1527#define sd_v1_first_direct_byte(sdp) \
1528                                (le32_to_cpu((sdp)->sd_first_direct_byte))
1529#define set_sd_v1_first_direct_byte(sdp,v) \
1530                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1531
1532/* inode flags stored in sd_attrs (nee sd_reserved) */
1533
1534/* we want common flags to have the same values as in ext2,
1535   so chattr(1) will work without problems */
1536#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1537#define REISERFS_APPEND_FL    FS_APPEND_FL
1538#define REISERFS_SYNC_FL      FS_SYNC_FL
1539#define REISERFS_NOATIME_FL   FS_NOATIME_FL
1540#define REISERFS_NODUMP_FL    FS_NODUMP_FL
1541#define REISERFS_SECRM_FL     FS_SECRM_FL
1542#define REISERFS_UNRM_FL      FS_UNRM_FL
1543#define REISERFS_COMPR_FL     FS_COMPR_FL
1544#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1545
1546/* persistent flags that file inherits from the parent directory */
1547#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1548				REISERFS_SYNC_FL |	\
1549				REISERFS_NOATIME_FL |	\
1550				REISERFS_NODUMP_FL |	\
1551				REISERFS_SECRM_FL |	\
1552				REISERFS_COMPR_FL |	\
1553				REISERFS_NOTAIL_FL )
1554
1555/* Stat Data on disk (reiserfs version of UFS disk inode minus the
1556   address blocks) */
1557struct stat_data {
1558	__le16 sd_mode;		/* file type, permissions */
1559	__le16 sd_attrs;	/* persistent inode flags */
1560	__le32 sd_nlink;	/* number of hard links */
1561	__le64 sd_size;		/* file size */
1562	__le32 sd_uid;		/* owner */
1563	__le32 sd_gid;		/* group */
1564	__le32 sd_atime;	/* time of last access */
1565	__le32 sd_mtime;	/* time file was last modified  */
1566	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1567	__le32 sd_blocks;
1568	union {
1569		__le32 sd_rdev;
1570		__le32 sd_generation;
1571		//__le32 sd_first_direct_byte;
1572		/* first byte of file which is stored in a
1573		   direct item: except that if it equals 1
1574		   it is a symlink and if it equals
1575		   ~(__u32)0 there is no direct item.  The
1576		   existence of this field really grates
1577		   on me. Let's replace it with a macro
1578		   based on sd_size and our tail
1579		   suppression policy? */
1580	} __attribute__ ((__packed__)) u;
1581} __attribute__ ((__packed__));
1582//
1583// this is 44 bytes long
1584//
1585#define SD_SIZE (sizeof(struct stat_data))
1586#define SD_V2_SIZE              SD_SIZE
1587#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1588#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1589#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1590/* sd_reserved */
1591/* set_sd_reserved */
1592#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1593#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1594#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1595#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1596#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1597#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1598#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1599#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1600#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1601#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1602#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1603#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1604#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1605#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1606#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1607#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1608#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1609#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1610#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1611#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1612#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1613#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1614
1615/***************************************************************************/
1616/*                      DIRECTORY STRUCTURE                                */
1617/***************************************************************************/
1618/*
1619   Picture represents the structure of directory items
1620   ________________________________________________
1621   |  Array of     |   |     |        |       |   |
1622   | directory     |N-1| N-2 | ....   |   1st |0th|
1623   | entry headers |   |     |        |       |   |
1624   |_______________|___|_____|________|_______|___|
1625                    <----   directory entries         ------>
1626
1627 First directory item has k_offset component 1. We store "." and ".."
1628 in one item, always, we never split "." and ".." into differing
1629 items.  This makes, among other things, the code for removing
1630 directories simpler. */
1631#define SD_OFFSET  0
1632#define SD_UNIQUENESS 0
1633#define DOT_OFFSET 1
1634#define DOT_DOT_OFFSET 2
1635#define DIRENTRY_UNIQUENESS 500
1636
1637/* */
1638#define FIRST_ITEM_OFFSET 1
1639
1640/*
1641   Q: How to get key of object pointed to by entry from entry?
1642
1643   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1644      of object, entry points to */
1645
1646/* NOT IMPLEMENTED:
1647   Directory will someday contain stat data of object */
1648
1649struct reiserfs_de_head {
1650	__le32 deh_offset;	/* third component of the directory entry key */
1651	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
1652				   by directory entry */
1653	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
1654	__le16 deh_location;	/* offset of name in the whole item */
1655	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
1656				   entry is hidden (unlinked) */
1657} __attribute__ ((__packed__));
1658#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1659#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1660#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1661#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1662#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1663#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1664
1665#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1666#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1667#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1668#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1669#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1670
1671/* empty directory contains two entries "." and ".." and their headers */
1672#define EMPTY_DIR_SIZE \
1673(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1674
1675/* old format directories have this size when empty */
1676#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1677
1678#define DEH_Statdata 0		/* not used now */
1679#define DEH_Visible 2
1680
1681/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1682#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1683#   define ADDR_UNALIGNED_BITS  (3)
1684#endif
1685
1686/* These are only used to manipulate deh_state.
1687 * Because of this, we'll use the ext2_ bit routines,
1688 * since they are little endian */
1689#ifdef ADDR_UNALIGNED_BITS
1690
1691#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1692#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1693
1694#   define set_bit_unaligned(nr, addr)	\
1695	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1696#   define clear_bit_unaligned(nr, addr)	\
1697	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1698#   define test_bit_unaligned(nr, addr)	\
1699	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1700
1701#else
1702
1703#   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1704#   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1705#   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1706
1707#endif
1708
1709#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1710#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1711#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1712#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1713
1714#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1715#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1716#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1717
1718extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1719				   __le32 par_dirid, __le32 par_objid);
1720extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1721				__le32 par_dirid, __le32 par_objid);
1722
1723/* array of the entry headers */
1724 /* get item body */
1725#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1726#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1727
1728/* length of the directory entry in directory item. This define
1729   calculates length of i-th directory entry using directory entry
1730   locations from dir entry head. When it calculates length of 0-th
1731   directory entry, it uses length of whole item in place of entry
1732   location of the non-existent following entry in the calculation.
1733   See picture above.*/
1734/*
1735#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1736((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1737*/
1738static inline int entry_length(const struct buffer_head *bh,
1739			       const struct item_head *ih, int pos_in_item)
1740{
1741	struct reiserfs_de_head *deh;
1742
1743	deh = B_I_DEH(bh, ih) + pos_in_item;
1744	if (pos_in_item)
1745		return deh_location(deh - 1) - deh_location(deh);
1746
1747	return ih_item_len(ih) - deh_location(deh);
1748}
1749
1750/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1751#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1752
1753/* name by bh, ih and entry_num */
1754#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1755
1756// two entries per block (at least)
1757#define REISERFS_MAX_NAME(block_size) 255
1758
1759/* this structure is used for operations on directory entries. It is
1760   not a disk structure. */
1761/* When reiserfs_find_entry or search_by_entry_key find directory
1762   entry, they return filled reiserfs_dir_entry structure */
1763struct reiserfs_dir_entry {
1764	struct buffer_head *de_bh;
1765	int de_item_num;
1766	struct item_head *de_ih;
1767	int de_entry_num;
1768	struct reiserfs_de_head *de_deh;
1769	int de_entrylen;
1770	int de_namelen;
1771	char *de_name;
1772	unsigned long *de_gen_number_bit_string;
1773
1774	__u32 de_dir_id;
1775	__u32 de_objectid;
1776
1777	struct cpu_key de_entry_key;
1778};
1779
1780/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1781
1782/* pointer to file name, stored in entry */
1783#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1784
1785/* length of name */
1786#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1787(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1788
1789/* hash value occupies bits from 7 up to 30 */
1790#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1791/* generation number occupies 7 bits starting from 0 up to 6 */
1792#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1793#define MAX_GENERATION_NUMBER  127
1794
1795#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1796
1797/*
1798 * Picture represents an internal node of the reiserfs tree
1799 *  ______________________________________________________
1800 * |      |  Array of     |  Array of         |  Free     |
1801 * |block |    keys       |  pointers         | space     |
1802 * | head |      N        |      N+1          |           |
1803 * |______|_______________|___________________|___________|
1804 */
1805
1806/***************************************************************************/
1807/*                      DISK CHILD                                         */
1808/***************************************************************************/
1809/* Disk child pointer: The pointer from an internal node of the tree
1810   to a node that is on disk. */
1811struct disk_child {
1812	__le32 dc_block_number;	/* Disk child's block number. */
1813	__le16 dc_size;		/* Disk child's used space.   */
1814	__le16 dc_reserved;
1815};
1816
1817#define DC_SIZE (sizeof(struct disk_child))
1818#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1819#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1820#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1821#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1822
1823/* Get disk child by buffer header and position in the tree node. */
1824#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
1825((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1826
1827/* Get disk child number by buffer header and position in the tree node. */
1828#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1829#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1830				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1831
1832 /* maximal value of field child_size in structure disk_child */
1833 /* child size is the combined size of all items and their headers */
1834#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1835
1836/* amount of used space in buffer (not including block head) */
1837#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1838
1839/* max and min number of keys in internal node */
1840#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1841#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1842
1843/***************************************************************************/
1844/*                      PATH STRUCTURES AND DEFINES                        */
1845/***************************************************************************/
1846
1847/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1848   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1849   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1850   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1851   position of the block_number of the next node if it is looking through an internal node.  If it
1852   is looking through a leaf node bin_search will find the position of the item which has key either
1853   equal to given key, or which is the maximal key less than the given key. */
1854
1855struct path_element {
1856	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
1857	int pe_position;	/* Position in the tree node which is placed in the */
1858	/* buffer above.                                  */
1859};
1860
1861#define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1862#define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1863#define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
1864
1865#define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1866#define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
1867
1868/* We need to keep track of who the ancestors of nodes are.  When we
1869   perform a search we record which nodes were visited while
1870   descending the tree looking for the node we searched for. This list
1871   of nodes is called the path.  This information is used while
1872   performing balancing.  Note that this path information may become
1873   invalid, and this means we must check it when using it to see if it
1874   is still valid. You'll need to read search_by_key and the comments
1875   in it, especially about decrement_counters_in_path(), to understand
1876   this structure.
1877
1878Paths make the code so much harder to work with and debug.... An
1879enormous number of bugs are due to them, and trying to write or modify
1880code that uses them just makes my head hurt.  They are based on an
1881excessive effort to avoid disturbing the precious VFS code.:-( The
1882gods only know how we are going to SMP the code that uses them.
1883znodes are the way! */
1884
1885#define PATH_READA	0x1	/* do read ahead */
1886#define PATH_READA_BACK 0x2	/* read backwards */
1887
1888struct treepath {
1889	int path_length;	/* Length of the array above.   */
1890	int reada;
1891	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1892	int pos_in_item;
1893};
1894
1895#define pos_in_item(path) ((path)->pos_in_item)
1896
1897#define INITIALIZE_PATH(var) \
1898struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1899
1900/* Get path element by path and path position. */
1901#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
1902
1903/* Get buffer header at the path by path and path position. */
1904#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1905
1906/* Get position in the element at the path by path and path position. */
1907#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1908
1909#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1910				/* you know, to the person who didn't
1911				   write this the macro name does not
1912				   at first suggest what it does.
1913				   Maybe POSITION_FROM_PATH_END? Or
1914				   maybe we should just focus on
1915				   dumping paths... -Hans */
1916#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1917
1918#define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1919
1920/* in do_balance leaf has h == 0 in contrast with path structure,
1921   where root has level == 0. That is why we need these defines */
1922#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */
1923#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
1924#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1925#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
1926
1927#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1928
1929#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1930#define get_ih(path) PATH_PITEM_HEAD(path)
1931#define get_item_pos(path) PATH_LAST_POSITION(path)
1932#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1933#define item_moved(ih,path) comp_items(ih, path)
1934#define path_changed(ih,path) comp_items (ih, path)
1935
1936/***************************************************************************/
1937/*                       MISC                                              */
1938/***************************************************************************/
1939
1940/* Size of pointer to the unformatted node. */
1941#define UNFM_P_SIZE (sizeof(unp_t))
1942#define UNFM_P_SHIFT 2
1943
1944// in in-core inode key is stored on le form
1945#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1946
1947#define MAX_UL_INT 0xffffffff
1948#define MAX_INT    0x7ffffff
1949#define MAX_US_INT 0xffff
1950
1951// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1952#define U32_MAX (~(__u32)0)
1953
1954static inline loff_t max_reiserfs_offset(struct inode *inode)
1955{
1956	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1957		return (loff_t) U32_MAX;
1958
1959	return (loff_t) ((~(__u64) 0) >> 4);
1960}
1961
1962/*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1963#define MAX_KEY_OBJECTID	MAX_UL_INT
1964
1965#define MAX_B_NUM  MAX_UL_INT
1966#define MAX_FC_NUM MAX_US_INT
1967
1968/* the purpose is to detect overflow of an unsigned short */
1969#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1970
1971/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1972#define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
1973#define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
1974
1975#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1976#define get_generation(s) atomic_read (&fs_generation(s))
1977#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1978#define __fs_changed(gen,s) (gen != get_generation (s))
1979#define fs_changed(gen,s)		\
1980({					\
1981	reiserfs_cond_resched(s);	\
1982	__fs_changed(gen, s);		\
1983})
1984
1985/***************************************************************************/
1986/*                  FIXATE NODES                                           */
1987/***************************************************************************/
1988
1989#define VI_TYPE_LEFT_MERGEABLE 1
1990#define VI_TYPE_RIGHT_MERGEABLE 2
1991
1992/* To make any changes in the tree we always first find node, that
1993   contains item to be changed/deleted or place to insert a new
1994   item. We call this node S. To do balancing we need to decide what
1995   we will shift to left/right neighbor, or to a new node, where new
1996   item will be etc. To make this analysis simpler we build virtual
1997   node. Virtual node is an array of items, that will replace items of
1998   node S. (For instance if we are going to delete an item, virtual
1999   node does not contain it). Virtual node keeps information about
2000   item sizes and types, mergeability of first and last items, sizes
2001   of all entries in directory item. We use this array of items when
2002   calculating what we can shift to neighbors and how many nodes we
2003   have to have if we do not any shiftings, if we shift to left/right
2004   neighbor or to both. */
2005struct virtual_item {
2006	int vi_index;		// index in the array of item operations
2007	unsigned short vi_type;	// left/right mergeability
2008	unsigned short vi_item_len;	/* length of item that it will have after balancing */
2009	struct item_head *vi_ih;
2010	const char *vi_item;	// body of item (old or new)
2011	const void *vi_new_data;	// 0 always but paste mode
2012	void *vi_uarea;		// item specific area
2013};
2014
2015struct virtual_node {
2016	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
2017	unsigned short vn_nr_item;	/* number of items in virtual node */
2018	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
2019	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
2020	short vn_affected_item_num;
2021	short vn_pos_in_item;
2022	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
2023	const void *vn_data;
2024	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
2025};
2026
2027/* used by directory items when creating virtual nodes */
2028struct direntry_uarea {
2029	int flags;
2030	__u16 entry_count;
2031	__u16 entry_sizes[1];
2032} __attribute__ ((__packed__));
2033
2034/***************************************************************************/
2035/*                  TREE BALANCE                                           */
2036/***************************************************************************/
2037
2038/* This temporary structure is used in tree balance algorithms, and
2039   constructed as we go to the extent that its various parts are
2040   needed.  It contains arrays of nodes that can potentially be
2041   involved in the balancing of node S, and parameters that define how
2042   each of the nodes must be balanced.  Note that in these algorithms
2043   for balancing the worst case is to need to balance the current node
2044   S and the left and right neighbors and all of their parents plus
2045   create a new node.  We implement S1 balancing for the leaf nodes
2046   and S0 balancing for the internal nodes (S1 and S0 are defined in
2047   our papers.)*/
2048
2049#define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
2050
2051/* maximum number of FEB blocknrs on a single level */
2052#define MAX_AMOUNT_NEEDED 2
2053
2054/* someday somebody will prefix every field in this struct with tb_ */
2055struct tree_balance {
2056	int tb_mode;
2057	int need_balance_dirty;
2058	struct super_block *tb_sb;
2059	struct reiserfs_transaction_handle *transaction_handle;
2060	struct treepath *tb_path;
2061	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
2062	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
2063	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
2064	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
2065	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
2066	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
2067
2068	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
2069						   cur_blknum. */
2070	struct buffer_head *used[MAX_FEB_SIZE];
2071	struct buffer_head *thrown[MAX_FEB_SIZE];
2072	int lnum[MAX_HEIGHT];	/* array of number of items which must be
2073				   shifted to the left in order to balance the
2074				   current node; for leaves includes item that
2075				   will be partially shifted; for internal
2076				   nodes, it is the number of child pointers
2077				   rather than items. It includes the new item
2078				   being created. The code sometimes subtracts
2079				   one to get the number of wholly shifted
2080				   items for other purposes. */
2081	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
2082	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
2083				   S[h] to its item number within the node CFL[h] */
2084	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
2085	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
2086					   S[h]. A negative value means removing.  */
2087	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
2088				   balancing on the level h of the tree.  If 0 then S is
2089				   being deleted, if 1 then S is remaining and no new nodes
2090				   are being created, if 2 or 3 then 1 or 2 new nodes is
2091				   being created */
2092
2093	/* fields that are used only for balancing leaves of the tree */
2094	int cur_blknum;		/* number of empty blocks having been already allocated                 */
2095	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
2096	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
2097	int s2num;		/* number of items that fall into second new node when S[0] splits     */
2098	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
2099	/* most liquid item that cannot be shifted from S[0] entirely         */
2100	/* if -1 then nothing will be partially shifted */
2101	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
2102	/* most liquid item that cannot be shifted from S[0] entirely         */
2103	/* if -1 then nothing will be partially shifted                           */
2104	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
2105	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
2106	int s2bytes;
2107	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
2108	char *vn_buf;		/* kmalloced memory. Used to create
2109				   virtual node and keep map of
2110				   dirtied bitmap blocks */
2111	int vn_buf_size;	/* size of the vn_buf */
2112	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
2113
2114	int fs_gen;		/* saved value of `reiserfs_generation' counter
2115				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
2116#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2117	struct in_core_key key;	/* key pointer, to pass to block allocator or
2118				   another low-level subsystem */
2119#endif
2120};
2121
2122/* These are modes of balancing */
2123
2124/* When inserting an item. */
2125#define M_INSERT	'i'
2126/* When inserting into (directories only) or appending onto an already
2127   existent item. */
2128#define M_PASTE		'p'
2129/* When deleting an item. */
2130#define M_DELETE	'd'
2131/* When truncating an item or removing an entry from a (directory) item. */
2132#define M_CUT 		'c'
2133
2134/* used when balancing on leaf level skipped (in reiserfsck) */
2135#define M_INTERNAL	'n'
2136
2137/* When further balancing is not needed, then do_balance does not need
2138   to be called. */
2139#define M_SKIP_BALANCING 		's'
2140#define M_CONVERT	'v'
2141
2142/* modes of leaf_move_items */
2143#define LEAF_FROM_S_TO_L 0
2144#define LEAF_FROM_S_TO_R 1
2145#define LEAF_FROM_R_TO_L 2
2146#define LEAF_FROM_L_TO_R 3
2147#define LEAF_FROM_S_TO_SNEW 4
2148
2149#define FIRST_TO_LAST 0
2150#define LAST_TO_FIRST 1
2151
2152/* used in do_balance for passing parent of node information that has
2153   been gotten from tb struct */
2154struct buffer_info {
2155	struct tree_balance *tb;
2156	struct buffer_head *bi_bh;
2157	struct buffer_head *bi_parent;
2158	int bi_position;
2159};
2160
2161static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2162{
2163	return tb ? tb->tb_sb : NULL;
2164}
2165
2166static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2167{
2168	return bi ? sb_from_tb(bi->tb) : NULL;
2169}
2170
2171/* there are 4 types of items: stat data, directory item, indirect, direct.
2172+-------------------+------------+--------------+------------+
2173|	            |  k_offset  | k_uniqueness | mergeable? |
2174+-------------------+------------+--------------+------------+
2175|     stat data     |	0        |      0       |   no       |
2176+-------------------+------------+--------------+------------+
2177| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
2178| non 1st directory | hash value |              |   yes      |
2179|     item          |            |              |            |
2180+-------------------+------------+--------------+------------+
2181| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
2182+-------------------+------------+--------------+------------+
2183| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
2184+-------------------+------------+--------------+------------+
2185*/
2186
2187struct item_operations {
2188	int (*bytes_number) (struct item_head * ih, int block_size);
2189	void (*decrement_key) (struct cpu_key *);
2190	int (*is_left_mergeable) (struct reiserfs_key * ih,
2191				  unsigned long bsize);
2192	void (*print_item) (struct item_head *, char *item);
2193	void (*check_item) (struct item_head *, char *item);
2194
2195	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2196			  int is_affected, int insert_size);
2197	int (*check_left) (struct virtual_item * vi, int free,
2198			   int start_skip, int end_skip);
2199	int (*check_right) (struct virtual_item * vi, int free);
2200	int (*part_size) (struct virtual_item * vi, int from, int to);
2201	int (*unit_num) (struct virtual_item * vi);
2202	void (*print_vi) (struct virtual_item * vi);
2203};
2204
2205extern struct item_operations *item_ops[TYPE_ANY + 1];
2206
2207#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2208#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2209#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2210#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2211#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2212#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2213#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2214#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2215#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2216#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2217
2218#define COMP_SHORT_KEYS comp_short_keys
2219
2220/* number of blocks pointed to by the indirect item */
2221#define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2222
2223/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
2224#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2225
2226/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
2227
2228/* get the item header */
2229#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2230
2231/* get key */
2232#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2233
2234/* get the key */
2235#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
2236
2237/* get item body */
2238#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
2239
2240/* get the stat data by the buffer header and the item order */
2241#define B_N_STAT_DATA(bh,nr) \
2242( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
2243
2244    /* following defines use reiserfs buffer header and item header */
2245
2246/* get stat-data */
2247#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2248
2249// this is 3976 for size==4096
2250#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2251
2252/* indirect items consist of entries which contain blocknrs, pos
2253   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2254   blocknr contained by the entry pos points to */
2255#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
2256#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
2257
2258struct reiserfs_iget_args {
2259	__u32 objectid;
2260	__u32 dirid;
2261};
2262
2263/***************************************************************************/
2264/*                    FUNCTION DECLARATIONS                                */
2265/***************************************************************************/
2266
2267#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2268
2269#define journal_trans_half(blocksize) \
2270	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2271
2272/* journal.c see journal.c for all the comments here */
2273
2274/* first block written in a commit.  */
2275struct reiserfs_journal_desc {
2276	__le32 j_trans_id;	/* id of commit */
2277	__le32 j_len;		/* length of commit. len +1 is the commit block */
2278	__le32 j_mount_id;	/* mount id of this trans */
2279	__le32 j_realblock[1];	/* real locations for each block */
2280};
2281
2282#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2283#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2284#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2285
2286#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2287#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2288#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2289
2290/* last block written in a commit */
2291struct reiserfs_journal_commit {
2292	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2293	__le32 j_len;		/* ditto */
2294	__le32 j_realblock[1];	/* real locations for each block */
2295};
2296
2297#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2298#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2299#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2300
2301#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2302#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2303
2304/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
2305** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
2306** and this transaction does not need to be replayed.
2307*/
2308struct reiserfs_journal_header {
2309	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
2310	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
2311	__le32 j_mount_id;
2312	/* 12 */ struct journal_params jh_journal;
2313};
2314
2315/* biggest tunable defines are right here */
2316#define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2317#define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
2318#define JOURNAL_TRANS_MIN_DEFAULT 256
2319#define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
2320#define JOURNAL_MIN_RATIO 2
2321#define JOURNAL_MAX_COMMIT_AGE 30
2322#define JOURNAL_MAX_TRANS_AGE 30
2323#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2324#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2325					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2326					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2327
2328#ifdef CONFIG_QUOTA
2329#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2330/* We need to update data and inode (atime) */
2331#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2332/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2333#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2334(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2335/* same as with INIT */
2336#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2337(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2338#else
2339#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2340#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2341#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2342#endif
2343
2344/* both of these can be as low as 1, or as high as you want.  The min is the
2345** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2346** as needed, and released when transactions are committed.  On release, if
2347** the current number of nodes is > max, the node is freed, otherwise,
2348** it is put on a free list for faster use later.
2349*/
2350#define REISERFS_MIN_BITMAP_NODES 10
2351#define REISERFS_MAX_BITMAP_NODES 100
2352
2353#define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
2354#define JBH_HASH_MASK 8191
2355
2356#define _jhashfn(sb,block)	\
2357	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2358	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2359#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2360
2361// We need these to make journal.c code more readable
2362#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2363#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2364#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2365
2366enum reiserfs_bh_state_bits {
2367	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2368	BH_JDirty_wait,
2369	BH_JNew,		/* disk block was taken off free list before
2370				 * being in a finished transaction, or
2371				 * written to disk. Can be reused immed. */
2372	BH_JPrepared,
2373	BH_JRestore_dirty,
2374	BH_JTest,		// debugging only will go away
2375};
2376
2377BUFFER_FNS(JDirty, journaled);
2378TAS_BUFFER_FNS(JDirty, journaled);
2379BUFFER_FNS(JDirty_wait, journal_dirty);
2380TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2381BUFFER_FNS(JNew, journal_new);
2382TAS_BUFFER_FNS(JNew, journal_new);
2383BUFFER_FNS(JPrepared, journal_prepared);
2384TAS_BUFFER_FNS(JPrepared, journal_prepared);
2385BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2386TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2387BUFFER_FNS(JTest, journal_test);
2388TAS_BUFFER_FNS(JTest, journal_test);
2389
2390/*
2391** transaction handle which is passed around for all journal calls
2392*/
2393struct reiserfs_transaction_handle {
2394	struct super_block *t_super;	/* super for this FS when journal_begin was
2395					   called. saves calls to reiserfs_get_super
2396					   also used by nested transactions to make
2397					   sure they are nesting on the right FS
2398					   _must_ be first in the handle
2399					 */
2400	int t_refcount;
2401	int t_blocks_logged;	/* number of blocks this writer has logged */
2402	int t_blocks_allocated;	/* number of blocks this writer allocated */
2403	unsigned int t_trans_id;	/* sanity check, equals the current trans id */
2404	void *t_handle_save;	/* save existing current->journal_info */
2405	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
2406					   should be displaced from others */
2407	struct list_head t_list;
2408};
2409
2410/* used to keep track of ordered and tail writes, attached to the buffer
2411 * head through b_journal_head.
2412 */
2413struct reiserfs_jh {
2414	struct reiserfs_journal_list *jl;
2415	struct buffer_head *bh;
2416	struct list_head list;
2417};
2418
2419void reiserfs_free_jh(struct buffer_head *bh);
2420int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2421int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2422int journal_mark_dirty(struct reiserfs_transaction_handle *,
2423		       struct super_block *, struct buffer_head *bh);
2424
2425static inline int reiserfs_file_data_log(struct inode *inode)
2426{
2427	if (reiserfs_data_log(inode->i_sb) ||
2428	    (REISERFS_I(inode)->i_flags & i_data_log))
2429		return 1;
2430	return 0;
2431}
2432
2433static inline int reiserfs_transaction_running(struct super_block *s)
2434{
2435	struct reiserfs_transaction_handle *th = current->journal_info;
2436	if (th && th->t_super == s)
2437		return 1;
2438	if (th && th->t_super == NULL)
2439		BUG();
2440	return 0;
2441}
2442
2443static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2444{
2445	return th->t_blocks_allocated - th->t_blocks_logged;
2446}
2447
2448struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2449								    super_block
2450								    *,
2451								    int count);
2452int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2453int reiserfs_commit_page(struct inode *inode, struct page *page,
2454			 unsigned from, unsigned to);
2455int reiserfs_flush_old_commits(struct super_block *);
2456int reiserfs_commit_for_inode(struct inode *);
2457int reiserfs_inode_needs_commit(struct inode *);
2458void reiserfs_update_inode_transaction(struct inode *);
2459void reiserfs_wait_on_write_block(struct super_block *s);
2460void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2461void reiserfs_allow_writes(struct super_block *s);
2462void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2463int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2464				 int wait);
2465void reiserfs_restore_prepared_buffer(struct super_block *,
2466				      struct buffer_head *bh);
2467int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2468		 unsigned int);
2469int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2470int journal_release_error(struct reiserfs_transaction_handle *,
2471			  struct super_block *);
2472int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
2473		unsigned long);
2474int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
2475		     unsigned long);
2476int journal_mark_freed(struct reiserfs_transaction_handle *,
2477		       struct super_block *, b_blocknr_t blocknr);
2478int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2479int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2480			 int bit_nr, int searchall, b_blocknr_t *next);
2481int journal_begin(struct reiserfs_transaction_handle *,
2482		  struct super_block *sb, unsigned long);
2483int journal_join_abort(struct reiserfs_transaction_handle *,
2484		       struct super_block *sb, unsigned long);
2485void reiserfs_abort_journal(struct super_block *sb, int errno);
2486void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2487int reiserfs_allocate_list_bitmaps(struct super_block *s,
2488				   struct reiserfs_list_bitmap *, unsigned int);
2489
2490void add_save_link(struct reiserfs_transaction_handle *th,
2491		   struct inode *inode, int truncate);
2492int remove_save_link(struct inode *inode, int truncate);
2493
2494/* objectid.c */
2495__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2496void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2497			       __u32 objectid_to_release);
2498int reiserfs_convert_objectid_map_v1(struct super_block *);
2499
2500/* stree.c */
2501int B_IS_IN_TREE(const struct buffer_head *);
2502extern void copy_item_head(struct item_head *to,
2503			   const struct item_head *from);
2504
2505// first key is in cpu form, second - le
2506extern int comp_short_keys(const struct reiserfs_key *le_key,
2507			   const struct cpu_key *cpu_key);
2508extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2509
2510// both are in le form
2511extern int comp_le_keys(const struct reiserfs_key *,
2512			const struct reiserfs_key *);
2513extern int comp_short_le_keys(const struct reiserfs_key *,
2514			      const struct reiserfs_key *);
2515
2516//
2517// get key version from on disk key - kludge
2518//
2519static inline int le_key_version(const struct reiserfs_key *key)
2520{
2521	int type;
2522
2523	type = offset_v2_k_type(&(key->u.k_offset_v2));
2524	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2525	    && type != TYPE_DIRENTRY)
2526		return KEY_FORMAT_3_5;
2527
2528	return KEY_FORMAT_3_6;
2529
2530}
2531
2532static inline void copy_key(struct reiserfs_key *to,
2533			    const struct reiserfs_key *from)
2534{
2535	memcpy(to, from, KEY_SIZE);
2536}
2537
2538int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2539const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2540				    const struct super_block *sb);
2541int search_by_key(struct super_block *, const struct cpu_key *,
2542		  struct treepath *, int);
2543#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2544int search_for_position_by_key(struct super_block *sb,
2545			       const struct cpu_key *cpu_key,
2546			       struct treepath *search_path);
2547extern void decrement_bcount(struct buffer_head *bh);
2548void decrement_counters_in_path(struct treepath *search_path);
2549void pathrelse(struct treepath *search_path);
2550int reiserfs_check_path(struct treepath *p);
2551void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
2552
2553int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2554			 struct treepath *path,
2555			 const struct cpu_key *key,
2556			 struct item_head *ih,
2557			 struct inode *inode, const char *body);
2558
2559int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2560			     struct treepath *path,
2561			     const struct cpu_key *key,
2562			     struct inode *inode,
2563			     const char *body, int paste_size);
2564
2565int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
2566			   struct treepath *path,
2567			   struct cpu_key *key,
2568			   struct inode *inode,
2569			   struct page *page, loff_t new_file_size);
2570
2571int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2572			 struct treepath *path,
2573			 const struct cpu_key *key,
2574			 struct inode *inode, struct buffer_head *un_bh);
2575
2576void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2577				struct inode *inode, struct reiserfs_key *key);
2578int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2579			   struct inode *inode);
2580int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2581			 struct inode *inode, struct page *,
2582			 int update_timestamps);
2583
2584#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2585#define file_size(inode) ((inode)->i_size)
2586#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2587
2588#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2589!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2590
2591void padd_item(char *item, int total_length, int length);
2592
2593/* inode.c */
2594/* args for the create parameter of reiserfs_get_block */
2595#define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
2596#define GET_BLOCK_CREATE 1	/* add anything you need to find block */
2597#define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
2598#define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
2599#define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
2600#define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
2601
2602void reiserfs_read_locked_inode(struct inode *inode,
2603				struct reiserfs_iget_args *args);
2604int reiserfs_find_actor(struct inode *inode, void *p);
2605int reiserfs_init_locked_inode(struct inode *inode, void *p);
2606void reiserfs_evict_inode(struct inode *inode);
2607int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2608int reiserfs_get_block(struct inode *inode, sector_t block,
2609		       struct buffer_head *bh_result, int create);
2610struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2611				     int fh_len, int fh_type);
2612struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2613				     int fh_len, int fh_type);
2614int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
2615		       struct inode *parent);
2616
2617int reiserfs_truncate_file(struct inode *, int update_timestamps);
2618void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2619		  int type, int key_length);
2620void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2621		       int version,
2622		       loff_t offset, int type, int length, int entry_count);
2623struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2624
2625struct reiserfs_security_handle;
2626int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2627		       struct inode *dir, umode_t mode,
2628		       const char *symname, loff_t i_size,
2629		       struct dentry *dentry, struct inode *inode,
2630		       struct reiserfs_security_handle *security);
2631
2632void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2633			     struct inode *inode, loff_t size);
2634
2635static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2636				      struct inode *inode)
2637{
2638	reiserfs_update_sd_size(th, inode, inode->i_size);
2639}
2640
2641void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2642void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2643int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2644
2645int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2646
2647/* namei.c */
2648void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2649int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2650			struct treepath *path, struct reiserfs_dir_entry *de);
2651struct dentry *reiserfs_get_parent(struct dentry *);
2652
2653#ifdef CONFIG_REISERFS_PROC_INFO
2654int reiserfs_proc_info_init(struct super_block *sb);
2655int reiserfs_proc_info_done(struct super_block *sb);
2656int reiserfs_proc_info_global_init(void);
2657int reiserfs_proc_info_global_done(void);
2658
2659#define PROC_EXP( e )   e
2660
2661#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2662#define PROC_INFO_MAX( sb, field, value )								\
2663    __PINFO( sb ).field =												\
2664        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2665#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2666#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2667#define PROC_INFO_BH_STAT( sb, bh, level )							\
2668    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
2669    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
2670    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2671#else
2672static inline int reiserfs_proc_info_init(struct super_block *sb)
2673{
2674	return 0;
2675}
2676
2677static inline int reiserfs_proc_info_done(struct super_block *sb)
2678{
2679	return 0;
2680}
2681
2682static inline int reiserfs_proc_info_global_init(void)
2683{
2684	return 0;
2685}
2686
2687static inline int reiserfs_proc_info_global_done(void)
2688{
2689	return 0;
2690}
2691
2692#define PROC_EXP( e )
2693#define VOID_V ( ( void ) 0 )
2694#define PROC_INFO_MAX( sb, field, value ) VOID_V
2695#define PROC_INFO_INC( sb, field ) VOID_V
2696#define PROC_INFO_ADD( sb, field, val ) VOID_V
2697#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2698#endif
2699
2700/* dir.c */
2701extern const struct inode_operations reiserfs_dir_inode_operations;
2702extern const struct inode_operations reiserfs_symlink_inode_operations;
2703extern const struct inode_operations reiserfs_special_inode_operations;
2704extern const struct file_operations reiserfs_dir_operations;
2705int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2706
2707/* tail_conversion.c */
2708int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2709		    struct treepath *, struct buffer_head *, loff_t);
2710int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2711		    struct page *, struct treepath *, const struct cpu_key *,
2712		    loff_t, char *);
2713void reiserfs_unmap_buffer(struct buffer_head *);
2714
2715/* file.c */
2716extern const struct inode_operations reiserfs_file_inode_operations;
2717extern const struct file_operations reiserfs_file_operations;
2718extern const struct address_space_operations reiserfs_address_space_operations;
2719
2720/* fix_nodes.c */
2721
2722int fix_nodes(int n_op_mode, struct tree_balance *tb,
2723	      struct item_head *ins_ih, const void *);
2724void unfix_nodes(struct tree_balance *);
2725
2726/* prints.c */
2727void __reiserfs_panic(struct super_block *s, const char *id,
2728		      const char *function, const char *fmt, ...)
2729    __attribute__ ((noreturn));
2730#define reiserfs_panic(s, id, fmt, args...) \
2731	__reiserfs_panic(s, id, __func__, fmt, ##args)
2732void __reiserfs_error(struct super_block *s, const char *id,
2733		      const char *function, const char *fmt, ...);
2734#define reiserfs_error(s, id, fmt, args...) \
2735	 __reiserfs_error(s, id, __func__, fmt, ##args)
2736void reiserfs_info(struct super_block *s, const char *fmt, ...);
2737void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2738void print_indirect_item(struct buffer_head *bh, int item_num);
2739void store_print_tb(struct tree_balance *tb);
2740void print_cur_tb(char *mes);
2741void print_de(struct reiserfs_dir_entry *de);
2742void print_bi(struct buffer_info *bi, char *mes);
2743#define PRINT_LEAF_ITEMS 1	/* print all items */
2744#define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
2745#define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
2746void print_block(struct buffer_head *bh, ...);
2747void print_bmap(struct super_block *s, int silent);
2748void print_bmap_block(int i, char *data, int size, int silent);
2749/*void print_super_block (struct super_block * s, char * mes);*/
2750void print_objectid_map(struct super_block *s);
2751void print_block_head(struct buffer_head *bh, char *mes);
2752void check_leaf(struct buffer_head *bh);
2753void check_internal(struct buffer_head *bh);
2754void print_statistics(struct super_block *s);
2755char *reiserfs_hashname(int code);
2756
2757/* lbalance.c */
2758int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2759		    int mov_bytes, struct buffer_head *Snew);
2760int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2761int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2762void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2763		       int del_num, int del_bytes);
2764void leaf_insert_into_buf(struct buffer_info *bi, int before,
2765			  struct item_head *inserted_item_ih,
2766			  const char *inserted_item_body, int zeros_number);
2767void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2768			  int pos_in_item, int paste_size, const char *body,
2769			  int zeros_number);
2770void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2771			  int pos_in_item, int cut_size);
2772void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2773			int new_entry_count, struct reiserfs_de_head *new_dehs,
2774			const char *records, int paste_size);
2775/* ibalance.c */
2776int balance_internal(struct tree_balance *, int, int, struct item_head *,
2777		     struct buffer_head **);
2778
2779/* do_balance.c */
2780void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2781				struct buffer_head *bh, int flag);
2782#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2783#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2784
2785void do_balance(struct tree_balance *tb, struct item_head *ih,
2786		const char *body, int flag);
2787void reiserfs_invalidate_buffer(struct tree_balance *tb,
2788				struct buffer_head *bh);
2789
2790int get_left_neighbor_position(struct tree_balance *tb, int h);
2791int get_right_neighbor_position(struct tree_balance *tb, int h);
2792void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2793		 struct buffer_head *, int);
2794void make_empty_node(struct buffer_info *);
2795struct buffer_head *get_FEB(struct tree_balance *);
2796
2797/* bitmap.c */
2798
2799/* structure contains hints for block allocator, and it is a container for
2800 * arguments, such as node, search path, transaction_handle, etc. */
2801struct __reiserfs_blocknr_hint {
2802	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
2803	sector_t block;		/* file offset, in blocks */
2804	struct in_core_key key;
2805	struct treepath *path;	/* search path, used by allocator to deternine search_start by
2806				 * various ways */
2807	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
2808						 * bitmap blocks changes  */
2809	b_blocknr_t beg, end;
2810	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
2811					 * between different block allocator procedures
2812					 * (determine_search_start() and others) */
2813	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
2814				 * function that do actual allocation */
2815
2816	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
2817					 * formatted/unformatted blocks with/without preallocation */
2818	unsigned preallocate:1;
2819};
2820
2821typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2822
2823int reiserfs_parse_alloc_options(struct super_block *, char *);
2824void reiserfs_init_alloc_options(struct super_block *s);
2825
2826/*
2827 * given a directory, this will tell you what packing locality
2828 * to use for a new object underneat it.  The locality is returned
2829 * in disk byte order (le).
2830 */
2831__le32 reiserfs_choose_packing(struct inode *dir);
2832
2833int reiserfs_init_bitmap_cache(struct super_block *sb);
2834void reiserfs_free_bitmap_cache(struct super_block *sb);
2835void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2836struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2837int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2838void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2839			 b_blocknr_t, int for_unformatted);
2840int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2841			       int);
2842static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2843					     b_blocknr_t * new_blocknrs,
2844					     int amount_needed)
2845{
2846	reiserfs_blocknr_hint_t hint = {
2847		.th = tb->transaction_handle,
2848		.path = tb->tb_path,
2849		.inode = NULL,
2850		.key = tb->key,
2851		.block = 0,
2852		.formatted_node = 1
2853	};
2854	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2855					  0);
2856}
2857
2858static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2859					    *th, struct inode *inode,
2860					    b_blocknr_t * new_blocknrs,
2861					    struct treepath *path,
2862					    sector_t block)
2863{
2864	reiserfs_blocknr_hint_t hint = {
2865		.th = th,
2866		.path = path,
2867		.inode = inode,
2868		.block = block,
2869		.formatted_node = 0,
2870		.preallocate = 0
2871	};
2872	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2873}
2874
2875#ifdef REISERFS_PREALLOCATE
2876static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2877					     *th, struct inode *inode,
2878					     b_blocknr_t * new_blocknrs,
2879					     struct treepath *path,
2880					     sector_t block)
2881{
2882	reiserfs_blocknr_hint_t hint = {
2883		.th = th,
2884		.path = path,
2885		.inode = inode,
2886		.block = block,
2887		.formatted_node = 0,
2888		.preallocate = 1
2889	};
2890	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2891}
2892
2893void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2894			       struct inode *inode);
2895void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2896#endif
2897
2898/* hashes.c */
2899__u32 keyed_hash(const signed char *msg, int len);
2900__u32 yura_hash(const signed char *msg, int len);
2901__u32 r5_hash(const signed char *msg, int len);
2902
2903#define reiserfs_set_le_bit		__set_bit_le
2904#define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
2905#define reiserfs_clear_le_bit		__clear_bit_le
2906#define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
2907#define reiserfs_test_le_bit		test_bit_le
2908#define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
2909
2910/* sometimes reiserfs_truncate may require to allocate few new blocks
2911   to perform indirect2direct conversion. People probably used to
2912   think, that truncate should work without problems on a filesystem
2913   without free disk space. They may complain that they can not
2914   truncate due to lack of free disk space. This spare space allows us
2915   to not worry about it. 500 is probably too much, but it should be
2916   absolutely safe */
2917#define SPARE_SPACE 500
2918
2919/* prototypes from ioctl.c */
2920long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2921long reiserfs_compat_ioctl(struct file *filp,
2922		   unsigned int cmd, unsigned long arg);
2923int reiserfs_unpack(struct inode *inode, struct file *filp);
2924