stree.c revision 098297b27d23ad9d0fc302e3417474d9342c6c14
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5/* 6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru 7 * Programm System Institute 8 * Pereslavl-Zalessky Russia 9 */ 10 11#include <linux/time.h> 12#include <linux/string.h> 13#include <linux/pagemap.h> 14#include "reiserfs.h" 15#include <linux/buffer_head.h> 16#include <linux/quotaops.h> 17 18/* Does the buffer contain a disk block which is in the tree. */ 19inline int B_IS_IN_TREE(const struct buffer_head *bh) 20{ 21 22 RFALSE(B_LEVEL(bh) > MAX_HEIGHT, 23 "PAP-1010: block (%b) has too big level (%z)", bh, bh); 24 25 return (B_LEVEL(bh) != FREE_LEVEL); 26} 27 28/* to get item head in le form */ 29inline void copy_item_head(struct item_head *to, 30 const struct item_head *from) 31{ 32 memcpy(to, from, IH_SIZE); 33} 34 35/* 36 * k1 is pointer to on-disk structure which is stored in little-endian 37 * form. k2 is pointer to cpu variable. For key of items of the same 38 * object this returns 0. 39 * Returns: -1 if key1 < key2 40 * 0 if key1 == key2 41 * 1 if key1 > key2 42 */ 43inline int comp_short_keys(const struct reiserfs_key *le_key, 44 const struct cpu_key *cpu_key) 45{ 46 __u32 n; 47 n = le32_to_cpu(le_key->k_dir_id); 48 if (n < cpu_key->on_disk_key.k_dir_id) 49 return -1; 50 if (n > cpu_key->on_disk_key.k_dir_id) 51 return 1; 52 n = le32_to_cpu(le_key->k_objectid); 53 if (n < cpu_key->on_disk_key.k_objectid) 54 return -1; 55 if (n > cpu_key->on_disk_key.k_objectid) 56 return 1; 57 return 0; 58} 59 60/* 61 * k1 is pointer to on-disk structure which is stored in little-endian 62 * form. k2 is pointer to cpu variable. 63 * Compare keys using all 4 key fields. 64 * Returns: -1 if key1 < key2 0 65 * if key1 = key2 1 if key1 > key2 66 */ 67static inline int comp_keys(const struct reiserfs_key *le_key, 68 const struct cpu_key *cpu_key) 69{ 70 int retval; 71 72 retval = comp_short_keys(le_key, cpu_key); 73 if (retval) 74 return retval; 75 if (le_key_k_offset(le_key_version(le_key), le_key) < 76 cpu_key_k_offset(cpu_key)) 77 return -1; 78 if (le_key_k_offset(le_key_version(le_key), le_key) > 79 cpu_key_k_offset(cpu_key)) 80 return 1; 81 82 if (cpu_key->key_length == 3) 83 return 0; 84 85 /* this part is needed only when tail conversion is in progress */ 86 if (le_key_k_type(le_key_version(le_key), le_key) < 87 cpu_key_k_type(cpu_key)) 88 return -1; 89 90 if (le_key_k_type(le_key_version(le_key), le_key) > 91 cpu_key_k_type(cpu_key)) 92 return 1; 93 94 return 0; 95} 96 97inline int comp_short_le_keys(const struct reiserfs_key *key1, 98 const struct reiserfs_key *key2) 99{ 100 __u32 *k1_u32, *k2_u32; 101 int key_length = REISERFS_SHORT_KEY_LEN; 102 103 k1_u32 = (__u32 *) key1; 104 k2_u32 = (__u32 *) key2; 105 for (; key_length--; ++k1_u32, ++k2_u32) { 106 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) 107 return -1; 108 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) 109 return 1; 110 } 111 return 0; 112} 113 114inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) 115{ 116 int version; 117 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); 118 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); 119 120 /* find out version of the key */ 121 version = le_key_version(from); 122 to->version = version; 123 to->on_disk_key.k_offset = le_key_k_offset(version, from); 124 to->on_disk_key.k_type = le_key_k_type(version, from); 125} 126 127/* 128 * this does not say which one is bigger, it only returns 1 if keys 129 * are not equal, 0 otherwise 130 */ 131inline int comp_le_keys(const struct reiserfs_key *k1, 132 const struct reiserfs_key *k2) 133{ 134 return memcmp(k1, k2, sizeof(struct reiserfs_key)); 135} 136 137/************************************************************************** 138 * Binary search toolkit function * 139 * Search for an item in the array by the item key * 140 * Returns: 1 if found, 0 if not found; * 141 * *pos = number of the searched element if found, else the * 142 * number of the first element that is larger than key. * 143 **************************************************************************/ 144/* 145 * For those not familiar with binary search: lbound is the leftmost item 146 * that it could be, rbound the rightmost item that it could be. We examine 147 * the item halfway between lbound and rbound, and that tells us either 148 * that we can increase lbound, or decrease rbound, or that we have found it, 149 * or if lbound <= rbound that there are no possible items, and we have not 150 * found it. With each examination we cut the number of possible items it 151 * could be by one more than half rounded down, or we find it. 152 */ 153static inline int bin_search(const void *key, /* Key to search for. */ 154 const void *base, /* First item in the array. */ 155 int num, /* Number of items in the array. */ 156 /* 157 * Item size in the array. searched. Lest the 158 * reader be confused, note that this is crafted 159 * as a general function, and when it is applied 160 * specifically to the array of item headers in a 161 * node, width is actually the item header size 162 * not the item size. 163 */ 164 int width, 165 int *pos /* Number of the searched for element. */ 166 ) 167{ 168 int rbound, lbound, j; 169 170 for (j = ((rbound = num - 1) + (lbound = 0)) / 2; 171 lbound <= rbound; j = (rbound + lbound) / 2) 172 switch (comp_keys 173 ((struct reiserfs_key *)((char *)base + j * width), 174 (struct cpu_key *)key)) { 175 case -1: 176 lbound = j + 1; 177 continue; 178 case 1: 179 rbound = j - 1; 180 continue; 181 case 0: 182 *pos = j; 183 return ITEM_FOUND; /* Key found in the array. */ 184 } 185 186 /* 187 * bin_search did not find given key, it returns position of key, 188 * that is minimal and greater than the given one. 189 */ 190 *pos = lbound; 191 return ITEM_NOT_FOUND; 192} 193 194 195/* Minimal possible key. It is never in the tree. */ 196const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; 197 198/* Maximal possible key. It is never in the tree. */ 199static const struct reiserfs_key MAX_KEY = { 200 __constant_cpu_to_le32(0xffffffff), 201 __constant_cpu_to_le32(0xffffffff), 202 {{__constant_cpu_to_le32(0xffffffff), 203 __constant_cpu_to_le32(0xffffffff)},} 204}; 205 206/* 207 * Get delimiting key of the buffer by looking for it in the buffers in the 208 * path, starting from the bottom of the path, and going upwards. We must 209 * check the path's validity at each step. If the key is not in the path, 210 * there is no delimiting key in the tree (buffer is first or last buffer 211 * in tree), and in this case we return a special key, either MIN_KEY or 212 * MAX_KEY. 213 */ 214static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, 215 const struct super_block *sb) 216{ 217 int position, path_offset = chk_path->path_length; 218 struct buffer_head *parent; 219 220 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 221 "PAP-5010: invalid offset in the path"); 222 223 /* While not higher in path than first element. */ 224 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 225 226 RFALSE(!buffer_uptodate 227 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 228 "PAP-5020: parent is not uptodate"); 229 230 /* Parent at the path is not in the tree now. */ 231 if (!B_IS_IN_TREE 232 (parent = 233 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 234 return &MAX_KEY; 235 /* Check whether position in the parent is correct. */ 236 if ((position = 237 PATH_OFFSET_POSITION(chk_path, 238 path_offset)) > 239 B_NR_ITEMS(parent)) 240 return &MAX_KEY; 241 /* Check whether parent at the path really points to the child. */ 242 if (B_N_CHILD_NUM(parent, position) != 243 PATH_OFFSET_PBUFFER(chk_path, 244 path_offset + 1)->b_blocknr) 245 return &MAX_KEY; 246 /* 247 * Return delimiting key if position in the parent 248 * is not equal to zero. 249 */ 250 if (position) 251 return internal_key(parent, position - 1); 252 } 253 /* Return MIN_KEY if we are in the root of the buffer tree. */ 254 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 255 b_blocknr == SB_ROOT_BLOCK(sb)) 256 return &MIN_KEY; 257 return &MAX_KEY; 258} 259 260/* Get delimiting key of the buffer at the path and its right neighbor. */ 261inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 262 const struct super_block *sb) 263{ 264 int position, path_offset = chk_path->path_length; 265 struct buffer_head *parent; 266 267 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 268 "PAP-5030: invalid offset in the path"); 269 270 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 271 272 RFALSE(!buffer_uptodate 273 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 274 "PAP-5040: parent is not uptodate"); 275 276 /* Parent at the path is not in the tree now. */ 277 if (!B_IS_IN_TREE 278 (parent = 279 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 280 return &MIN_KEY; 281 /* Check whether position in the parent is correct. */ 282 if ((position = 283 PATH_OFFSET_POSITION(chk_path, 284 path_offset)) > 285 B_NR_ITEMS(parent)) 286 return &MIN_KEY; 287 /* 288 * Check whether parent at the path really points 289 * to the child. 290 */ 291 if (B_N_CHILD_NUM(parent, position) != 292 PATH_OFFSET_PBUFFER(chk_path, 293 path_offset + 1)->b_blocknr) 294 return &MIN_KEY; 295 296 /* 297 * Return delimiting key if position in the parent 298 * is not the last one. 299 */ 300 if (position != B_NR_ITEMS(parent)) 301 return internal_key(parent, position); 302 } 303 304 /* Return MAX_KEY if we are in the root of the buffer tree. */ 305 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 306 b_blocknr == SB_ROOT_BLOCK(sb)) 307 return &MAX_KEY; 308 return &MIN_KEY; 309} 310 311/* 312 * Check whether a key is contained in the tree rooted from a buffer at a path. 313 * This works by looking at the left and right delimiting keys for the buffer 314 * in the last path_element in the path. These delimiting keys are stored 315 * at least one level above that buffer in the tree. If the buffer is the 316 * first or last node in the tree order then one of the delimiting keys may 317 * be absent, and in this case get_lkey and get_rkey return a special key 318 * which is MIN_KEY or MAX_KEY. 319 */ 320static inline int key_in_buffer( 321 /* Path which should be checked. */ 322 struct treepath *chk_path, 323 /* Key which should be checked. */ 324 const struct cpu_key *key, 325 struct super_block *sb 326 ) 327{ 328 329 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET 330 || chk_path->path_length > MAX_HEIGHT, 331 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", 332 key, chk_path->path_length); 333 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, 334 "PAP-5060: device must not be NODEV"); 335 336 if (comp_keys(get_lkey(chk_path, sb), key) == 1) 337 /* left delimiting key is bigger, that the key we look for */ 338 return 0; 339 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ 340 if (comp_keys(get_rkey(chk_path, sb), key) != 1) 341 /* key must be less than right delimitiing key */ 342 return 0; 343 return 1; 344} 345 346int reiserfs_check_path(struct treepath *p) 347{ 348 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, 349 "path not properly relsed"); 350 return 0; 351} 352 353/* 354 * Drop the reference to each buffer in a path and restore 355 * dirty bits clean when preparing the buffer for the log. 356 * This version should only be called from fix_nodes() 357 */ 358void pathrelse_and_restore(struct super_block *sb, 359 struct treepath *search_path) 360{ 361 int path_offset = search_path->path_length; 362 363 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 364 "clm-4000: invalid path offset"); 365 366 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { 367 struct buffer_head *bh; 368 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); 369 reiserfs_restore_prepared_buffer(sb, bh); 370 brelse(bh); 371 } 372 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 373} 374 375/* Drop the reference to each buffer in a path */ 376void pathrelse(struct treepath *search_path) 377{ 378 int path_offset = search_path->path_length; 379 380 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 381 "PAP-5090: invalid path offset"); 382 383 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) 384 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); 385 386 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 387} 388 389static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) 390{ 391 struct block_head *blkh; 392 struct item_head *ih; 393 int used_space; 394 int prev_location; 395 int i; 396 int nr; 397 398 blkh = (struct block_head *)buf; 399 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { 400 reiserfs_warning(NULL, "reiserfs-5080", 401 "this should be caught earlier"); 402 return 0; 403 } 404 405 nr = blkh_nr_item(blkh); 406 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { 407 /* item number is too big or too small */ 408 reiserfs_warning(NULL, "reiserfs-5081", 409 "nr_item seems wrong: %z", bh); 410 return 0; 411 } 412 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; 413 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); 414 415 /* free space does not match to calculated amount of use space */ 416 if (used_space != blocksize - blkh_free_space(blkh)) { 417 reiserfs_warning(NULL, "reiserfs-5082", 418 "free space seems wrong: %z", bh); 419 return 0; 420 } 421 /* 422 * FIXME: it is_leaf will hit performance too much - we may have 423 * return 1 here 424 */ 425 426 /* check tables of item heads */ 427 ih = (struct item_head *)(buf + BLKH_SIZE); 428 prev_location = blocksize; 429 for (i = 0; i < nr; i++, ih++) { 430 if (le_ih_k_type(ih) == TYPE_ANY) { 431 reiserfs_warning(NULL, "reiserfs-5083", 432 "wrong item type for item %h", 433 ih); 434 return 0; 435 } 436 if (ih_location(ih) >= blocksize 437 || ih_location(ih) < IH_SIZE * nr) { 438 reiserfs_warning(NULL, "reiserfs-5084", 439 "item location seems wrong: %h", 440 ih); 441 return 0; 442 } 443 if (ih_item_len(ih) < 1 444 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { 445 reiserfs_warning(NULL, "reiserfs-5085", 446 "item length seems wrong: %h", 447 ih); 448 return 0; 449 } 450 if (prev_location - ih_location(ih) != ih_item_len(ih)) { 451 reiserfs_warning(NULL, "reiserfs-5086", 452 "item location seems wrong " 453 "(second one): %h", ih); 454 return 0; 455 } 456 prev_location = ih_location(ih); 457 } 458 459 /* one may imagine many more checks */ 460 return 1; 461} 462 463/* returns 1 if buf looks like an internal node, 0 otherwise */ 464static int is_internal(char *buf, int blocksize, struct buffer_head *bh) 465{ 466 struct block_head *blkh; 467 int nr; 468 int used_space; 469 470 blkh = (struct block_head *)buf; 471 nr = blkh_level(blkh); 472 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { 473 /* this level is not possible for internal nodes */ 474 reiserfs_warning(NULL, "reiserfs-5087", 475 "this should be caught earlier"); 476 return 0; 477 } 478 479 nr = blkh_nr_item(blkh); 480 /* for internal which is not root we might check min number of keys */ 481 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { 482 reiserfs_warning(NULL, "reiserfs-5088", 483 "number of key seems wrong: %z", bh); 484 return 0; 485 } 486 487 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); 488 if (used_space != blocksize - blkh_free_space(blkh)) { 489 reiserfs_warning(NULL, "reiserfs-5089", 490 "free space seems wrong: %z", bh); 491 return 0; 492 } 493 494 /* one may imagine many more checks */ 495 return 1; 496} 497 498/* 499 * make sure that bh contains formatted node of reiserfs tree of 500 * 'level'-th level 501 */ 502static int is_tree_node(struct buffer_head *bh, int level) 503{ 504 if (B_LEVEL(bh) != level) { 505 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " 506 "not match to the expected one %d", 507 B_LEVEL(bh), level); 508 return 0; 509 } 510 if (level == DISK_LEAF_NODE_LEVEL) 511 return is_leaf(bh->b_data, bh->b_size, bh); 512 513 return is_internal(bh->b_data, bh->b_size, bh); 514} 515 516#define SEARCH_BY_KEY_READA 16 517 518/* 519 * The function is NOT SCHEDULE-SAFE! 520 * It might unlock the write lock if we needed to wait for a block 521 * to be read. Note that in this case it won't recover the lock to avoid 522 * high contention resulting from too much lock requests, especially 523 * the caller (search_by_key) will perform other schedule-unsafe 524 * operations just after calling this function. 525 * 526 * @return depth of lock to be restored after read completes 527 */ 528static int search_by_key_reada(struct super_block *s, 529 struct buffer_head **bh, 530 b_blocknr_t *b, int num) 531{ 532 int i, j; 533 int depth = -1; 534 535 for (i = 0; i < num; i++) { 536 bh[i] = sb_getblk(s, b[i]); 537 } 538 /* 539 * We are going to read some blocks on which we 540 * have a reference. It's safe, though we might be 541 * reading blocks concurrently changed if we release 542 * the lock. But it's still fine because we check later 543 * if the tree changed 544 */ 545 for (j = 0; j < i; j++) { 546 /* 547 * note, this needs attention if we are getting rid of the BKL 548 * you have to make sure the prepared bit isn't set on this 549 * buffer 550 */ 551 if (!buffer_uptodate(bh[j])) { 552 if (depth == -1) 553 depth = reiserfs_write_unlock_nested(s); 554 ll_rw_block(READA, 1, bh + j); 555 } 556 brelse(bh[j]); 557 } 558 return depth; 559} 560 561/* 562 * This function fills up the path from the root to the leaf as it 563 * descends the tree looking for the key. It uses reiserfs_bread to 564 * try to find buffers in the cache given their block number. If it 565 * does not find them in the cache it reads them from disk. For each 566 * node search_by_key finds using reiserfs_bread it then uses 567 * bin_search to look through that node. bin_search will find the 568 * position of the block_number of the next node if it is looking 569 * through an internal node. If it is looking through a leaf node 570 * bin_search will find the position of the item which has key either 571 * equal to given key, or which is the maximal key less than the given 572 * key. search_by_key returns a path that must be checked for the 573 * correctness of the top of the path but need not be checked for the 574 * correctness of the bottom of the path 575 */ 576/* 577 * search_by_key - search for key (and item) in stree 578 * @sb: superblock 579 * @key: pointer to key to search for 580 * @search_path: Allocated and initialized struct treepath; Returned filled 581 * on success. 582 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to 583 * stop at leaf level. 584 * 585 * The function is NOT SCHEDULE-SAFE! 586 */ 587int search_by_key(struct super_block *sb, const struct cpu_key *key, 588 struct treepath *search_path, int stop_level) 589{ 590 b_blocknr_t block_number; 591 int expected_level; 592 struct buffer_head *bh; 593 struct path_element *last_element; 594 int node_level, retval; 595 int right_neighbor_of_leaf_node; 596 int fs_gen; 597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; 598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; 599 int reada_count = 0; 600 601#ifdef CONFIG_REISERFS_CHECK 602 int repeat_counter = 0; 603#endif 604 605 PROC_INFO_INC(sb, search_by_key); 606 607 /* 608 * As we add each node to a path we increase its count. This means 609 * that we must be careful to release all nodes in a path before we 610 * either discard the path struct or re-use the path struct, as we 611 * do here. 612 */ 613 614 pathrelse(search_path); 615 616 right_neighbor_of_leaf_node = 0; 617 618 /* 619 * With each iteration of this loop we search through the items in the 620 * current node, and calculate the next current node(next path element) 621 * for the next iteration of this loop.. 622 */ 623 block_number = SB_ROOT_BLOCK(sb); 624 expected_level = -1; 625 while (1) { 626 627#ifdef CONFIG_REISERFS_CHECK 628 if (!(++repeat_counter % 50000)) 629 reiserfs_warning(sb, "PAP-5100", 630 "%s: there were %d iterations of " 631 "while loop looking for key %K", 632 current->comm, repeat_counter, 633 key); 634#endif 635 636 /* prep path to have another element added to it. */ 637 last_element = 638 PATH_OFFSET_PELEMENT(search_path, 639 ++search_path->path_length); 640 fs_gen = get_generation(sb); 641 642 /* 643 * Read the next tree node, and set the last element 644 * in the path to have a pointer to it. 645 */ 646 if ((bh = last_element->pe_buffer = 647 sb_getblk(sb, block_number))) { 648 649 /* 650 * We'll need to drop the lock if we encounter any 651 * buffers that need to be read. If all of them are 652 * already up to date, we don't need to drop the lock. 653 */ 654 int depth = -1; 655 656 if (!buffer_uptodate(bh) && reada_count > 1) 657 depth = search_by_key_reada(sb, reada_bh, 658 reada_blocks, reada_count); 659 660 if (!buffer_uptodate(bh) && depth == -1) 661 depth = reiserfs_write_unlock_nested(sb); 662 663 ll_rw_block(READ, 1, &bh); 664 wait_on_buffer(bh); 665 666 if (depth != -1) 667 reiserfs_write_lock_nested(sb, depth); 668 if (!buffer_uptodate(bh)) 669 goto io_error; 670 } else { 671 io_error: 672 search_path->path_length--; 673 pathrelse(search_path); 674 return IO_ERROR; 675 } 676 reada_count = 0; 677 if (expected_level == -1) 678 expected_level = SB_TREE_HEIGHT(sb); 679 expected_level--; 680 681 /* 682 * It is possible that schedule occurred. We must check 683 * whether the key to search is still in the tree rooted 684 * from the current buffer. If not then repeat search 685 * from the root. 686 */ 687 if (fs_changed(fs_gen, sb) && 688 (!B_IS_IN_TREE(bh) || 689 B_LEVEL(bh) != expected_level || 690 !key_in_buffer(search_path, key, sb))) { 691 PROC_INFO_INC(sb, search_by_key_fs_changed); 692 PROC_INFO_INC(sb, search_by_key_restarted); 693 PROC_INFO_INC(sb, 694 sbk_restarted[expected_level - 1]); 695 pathrelse(search_path); 696 697 /* 698 * Get the root block number so that we can 699 * repeat the search starting from the root. 700 */ 701 block_number = SB_ROOT_BLOCK(sb); 702 expected_level = -1; 703 right_neighbor_of_leaf_node = 0; 704 705 /* repeat search from the root */ 706 continue; 707 } 708 709 /* 710 * only check that the key is in the buffer if key is not 711 * equal to the MAX_KEY. Latter case is only possible in 712 * "finish_unfinished()" processing during mount. 713 */ 714 RFALSE(comp_keys(&MAX_KEY, key) && 715 !key_in_buffer(search_path, key, sb), 716 "PAP-5130: key is not in the buffer"); 717#ifdef CONFIG_REISERFS_CHECK 718 if (REISERFS_SB(sb)->cur_tb) { 719 print_cur_tb("5140"); 720 reiserfs_panic(sb, "PAP-5140", 721 "schedule occurred in do_balance!"); 722 } 723#endif 724 725 /* 726 * make sure, that the node contents look like a node of 727 * certain level 728 */ 729 if (!is_tree_node(bh, expected_level)) { 730 reiserfs_error(sb, "vs-5150", 731 "invalid format found in block %ld. " 732 "Fsck?", bh->b_blocknr); 733 pathrelse(search_path); 734 return IO_ERROR; 735 } 736 737 /* ok, we have acquired next formatted node in the tree */ 738 node_level = B_LEVEL(bh); 739 740 PROC_INFO_BH_STAT(sb, bh, node_level - 1); 741 742 RFALSE(node_level < stop_level, 743 "vs-5152: tree level (%d) is less than stop level (%d)", 744 node_level, stop_level); 745 746 retval = bin_search(key, item_head(bh, 0), 747 B_NR_ITEMS(bh), 748 (node_level == 749 DISK_LEAF_NODE_LEVEL) ? IH_SIZE : 750 KEY_SIZE, 751 &(last_element->pe_position)); 752 if (node_level == stop_level) { 753 return retval; 754 } 755 756 /* we are not in the stop level */ 757 /* 758 * item has been found, so we choose the pointer which 759 * is to the right of the found one 760 */ 761 if (retval == ITEM_FOUND) 762 last_element->pe_position++; 763 764 /* 765 * if item was not found we choose the position which is to 766 * the left of the found item. This requires no code, 767 * bin_search did it already. 768 */ 769 770 /* 771 * So we have chosen a position in the current node which is 772 * an internal node. Now we calculate child block number by 773 * position in the node. 774 */ 775 block_number = 776 B_N_CHILD_NUM(bh, last_element->pe_position); 777 778 /* 779 * if we are going to read leaf nodes, try for read 780 * ahead as well 781 */ 782 if ((search_path->reada & PATH_READA) && 783 node_level == DISK_LEAF_NODE_LEVEL + 1) { 784 int pos = last_element->pe_position; 785 int limit = B_NR_ITEMS(bh); 786 struct reiserfs_key *le_key; 787 788 if (search_path->reada & PATH_READA_BACK) 789 limit = 0; 790 while (reada_count < SEARCH_BY_KEY_READA) { 791 if (pos == limit) 792 break; 793 reada_blocks[reada_count++] = 794 B_N_CHILD_NUM(bh, pos); 795 if (search_path->reada & PATH_READA_BACK) 796 pos--; 797 else 798 pos++; 799 800 /* 801 * check to make sure we're in the same object 802 */ 803 le_key = internal_key(bh, pos); 804 if (le32_to_cpu(le_key->k_objectid) != 805 key->on_disk_key.k_objectid) { 806 break; 807 } 808 } 809 } 810 } 811} 812 813/* 814 * Form the path to an item and position in this item which contains 815 * file byte defined by key. If there is no such item 816 * corresponding to the key, we point the path to the item with 817 * maximal key less than key, and *pos_in_item is set to one 818 * past the last entry/byte in the item. If searching for entry in a 819 * directory item, and it is not found, *pos_in_item is set to one 820 * entry more than the entry with maximal key which is less than the 821 * sought key. 822 * 823 * Note that if there is no entry in this same node which is one more, 824 * then we point to an imaginary entry. for direct items, the 825 * position is in units of bytes, for indirect items the position is 826 * in units of blocknr entries, for directory items the position is in 827 * units of directory entries. 828 */ 829/* The function is NOT SCHEDULE-SAFE! */ 830int search_for_position_by_key(struct super_block *sb, 831 /* Key to search (cpu variable) */ 832 const struct cpu_key *p_cpu_key, 833 /* Filled up by this function. */ 834 struct treepath *search_path) 835{ 836 struct item_head *p_le_ih; /* pointer to on-disk structure */ 837 int blk_size; 838 loff_t item_offset, offset; 839 struct reiserfs_dir_entry de; 840 int retval; 841 842 /* If searching for directory entry. */ 843 if (is_direntry_cpu_key(p_cpu_key)) 844 return search_by_entry_key(sb, p_cpu_key, search_path, 845 &de); 846 847 /* If not searching for directory entry. */ 848 849 /* If item is found. */ 850 retval = search_item(sb, p_cpu_key, search_path); 851 if (retval == IO_ERROR) 852 return retval; 853 if (retval == ITEM_FOUND) { 854 855 RFALSE(!ih_item_len 856 (item_head 857 (PATH_PLAST_BUFFER(search_path), 858 PATH_LAST_POSITION(search_path))), 859 "PAP-5165: item length equals zero"); 860 861 pos_in_item(search_path) = 0; 862 return POSITION_FOUND; 863 } 864 865 RFALSE(!PATH_LAST_POSITION(search_path), 866 "PAP-5170: position equals zero"); 867 868 /* Item is not found. Set path to the previous item. */ 869 p_le_ih = 870 item_head(PATH_PLAST_BUFFER(search_path), 871 --PATH_LAST_POSITION(search_path)); 872 blk_size = sb->s_blocksize; 873 874 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) { 875 return FILE_NOT_FOUND; 876 } 877 878 /* FIXME: quite ugly this far */ 879 880 item_offset = le_ih_k_offset(p_le_ih); 881 offset = cpu_key_k_offset(p_cpu_key); 882 883 /* Needed byte is contained in the item pointed to by the path. */ 884 if (item_offset <= offset && 885 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { 886 pos_in_item(search_path) = offset - item_offset; 887 if (is_indirect_le_ih(p_le_ih)) { 888 pos_in_item(search_path) /= blk_size; 889 } 890 return POSITION_FOUND; 891 } 892 893 /* 894 * Needed byte is not contained in the item pointed to by the 895 * path. Set pos_in_item out of the item. 896 */ 897 if (is_indirect_le_ih(p_le_ih)) 898 pos_in_item(search_path) = 899 ih_item_len(p_le_ih) / UNFM_P_SIZE; 900 else 901 pos_in_item(search_path) = ih_item_len(p_le_ih); 902 903 return POSITION_NOT_FOUND; 904} 905 906/* Compare given item and item pointed to by the path. */ 907int comp_items(const struct item_head *stored_ih, const struct treepath *path) 908{ 909 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 910 struct item_head *ih; 911 912 /* Last buffer at the path is not in the tree. */ 913 if (!B_IS_IN_TREE(bh)) 914 return 1; 915 916 /* Last path position is invalid. */ 917 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) 918 return 1; 919 920 /* we need only to know, whether it is the same item */ 921 ih = tp_item_head(path); 922 return memcmp(stored_ih, ih, IH_SIZE); 923} 924 925/* unformatted nodes are not logged anymore, ever. This is safe now */ 926#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) 927 928/* block can not be forgotten as it is in I/O or held by someone */ 929#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) 930 931/* prepare for delete or cut of direct item */ 932static inline int prepare_for_direct_item(struct treepath *path, 933 struct item_head *le_ih, 934 struct inode *inode, 935 loff_t new_file_length, int *cut_size) 936{ 937 loff_t round_len; 938 939 if (new_file_length == max_reiserfs_offset(inode)) { 940 /* item has to be deleted */ 941 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 942 return M_DELETE; 943 } 944 /* new file gets truncated */ 945 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { 946 round_len = ROUND_UP(new_file_length); 947 /* this was new_file_length < le_ih ... */ 948 if (round_len < le_ih_k_offset(le_ih)) { 949 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 950 return M_DELETE; /* Delete this item. */ 951 } 952 /* Calculate first position and size for cutting from item. */ 953 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); 954 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); 955 956 return M_CUT; /* Cut from this item. */ 957 } 958 959 /* old file: items may have any length */ 960 961 if (new_file_length < le_ih_k_offset(le_ih)) { 962 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 963 return M_DELETE; /* Delete this item. */ 964 } 965 966 /* Calculate first position and size for cutting from item. */ 967 *cut_size = -(ih_item_len(le_ih) - 968 (pos_in_item(path) = 969 new_file_length + 1 - le_ih_k_offset(le_ih))); 970 return M_CUT; /* Cut from this item. */ 971} 972 973static inline int prepare_for_direntry_item(struct treepath *path, 974 struct item_head *le_ih, 975 struct inode *inode, 976 loff_t new_file_length, 977 int *cut_size) 978{ 979 if (le_ih_k_offset(le_ih) == DOT_OFFSET && 980 new_file_length == max_reiserfs_offset(inode)) { 981 RFALSE(ih_entry_count(le_ih) != 2, 982 "PAP-5220: incorrect empty directory item (%h)", le_ih); 983 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 984 /* Delete the directory item containing "." and ".." entry. */ 985 return M_DELETE; 986 } 987 988 if (ih_entry_count(le_ih) == 1) { 989 /* 990 * Delete the directory item such as there is one record only 991 * in this item 992 */ 993 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 994 return M_DELETE; 995 } 996 997 /* Cut one record from the directory item. */ 998 *cut_size = 999 -(DEH_SIZE + 1000 entry_length(get_last_bh(path), le_ih, pos_in_item(path))); 1001 return M_CUT; 1002} 1003 1004#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) 1005 1006/* 1007 * If the path points to a directory or direct item, calculate mode 1008 * and the size cut, for balance. 1009 * If the path points to an indirect item, remove some number of its 1010 * unformatted nodes. 1011 * In case of file truncate calculate whether this item must be 1012 * deleted/truncated or last unformatted node of this item will be 1013 * converted to a direct item. 1014 * This function returns a determination of what balance mode the 1015 * calling function should employ. 1016 */ 1017static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, 1018 struct inode *inode, 1019 struct treepath *path, 1020 const struct cpu_key *item_key, 1021 /* 1022 * Number of unformatted nodes 1023 * which were removed from end 1024 * of the file. 1025 */ 1026 int *removed, 1027 int *cut_size, 1028 /* MAX_KEY_OFFSET in case of delete. */ 1029 unsigned long long new_file_length 1030 ) 1031{ 1032 struct super_block *sb = inode->i_sb; 1033 struct item_head *p_le_ih = tp_item_head(path); 1034 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 1035 1036 BUG_ON(!th->t_trans_id); 1037 1038 /* Stat_data item. */ 1039 if (is_statdata_le_ih(p_le_ih)) { 1040 1041 RFALSE(new_file_length != max_reiserfs_offset(inode), 1042 "PAP-5210: mode must be M_DELETE"); 1043 1044 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); 1045 return M_DELETE; 1046 } 1047 1048 /* Directory item. */ 1049 if (is_direntry_le_ih(p_le_ih)) 1050 return prepare_for_direntry_item(path, p_le_ih, inode, 1051 new_file_length, 1052 cut_size); 1053 1054 /* Direct item. */ 1055 if (is_direct_le_ih(p_le_ih)) 1056 return prepare_for_direct_item(path, p_le_ih, inode, 1057 new_file_length, cut_size); 1058 1059 /* Case of an indirect item. */ 1060 { 1061 int blk_size = sb->s_blocksize; 1062 struct item_head s_ih; 1063 int need_re_search; 1064 int delete = 0; 1065 int result = M_CUT; 1066 int pos = 0; 1067 1068 if ( new_file_length == max_reiserfs_offset (inode) ) { 1069 /* 1070 * prepare_for_delete_or_cut() is called by 1071 * reiserfs_delete_item() 1072 */ 1073 new_file_length = 0; 1074 delete = 1; 1075 } 1076 1077 do { 1078 need_re_search = 0; 1079 *cut_size = 0; 1080 bh = PATH_PLAST_BUFFER(path); 1081 copy_item_head(&s_ih, tp_item_head(path)); 1082 pos = I_UNFM_NUM(&s_ih); 1083 1084 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { 1085 __le32 *unfm; 1086 __u32 block; 1087 1088 /* 1089 * Each unformatted block deletion may involve 1090 * one additional bitmap block into the transaction, 1091 * thereby the initial journal space reservation 1092 * might not be enough. 1093 */ 1094 if (!delete && (*cut_size) != 0 && 1095 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) 1096 break; 1097 1098 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; 1099 block = get_block_num(unfm, 0); 1100 1101 if (block != 0) { 1102 reiserfs_prepare_for_journal(sb, bh, 1); 1103 put_block_num(unfm, 0, 0); 1104 journal_mark_dirty(th, sb, bh); 1105 reiserfs_free_block(th, inode, block, 1); 1106 } 1107 1108 reiserfs_cond_resched(sb); 1109 1110 if (item_moved (&s_ih, path)) { 1111 need_re_search = 1; 1112 break; 1113 } 1114 1115 pos --; 1116 (*removed)++; 1117 (*cut_size) -= UNFM_P_SIZE; 1118 1119 if (pos == 0) { 1120 (*cut_size) -= IH_SIZE; 1121 result = M_DELETE; 1122 break; 1123 } 1124 } 1125 /* 1126 * a trick. If the buffer has been logged, this will 1127 * do nothing. If we've broken the loop without logging 1128 * it, it will restore the buffer 1129 */ 1130 reiserfs_restore_prepared_buffer(sb, bh); 1131 } while (need_re_search && 1132 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); 1133 pos_in_item(path) = pos * UNFM_P_SIZE; 1134 1135 if (*cut_size == 0) { 1136 /* 1137 * Nothing was cut. maybe convert last unformatted node to the 1138 * direct item? 1139 */ 1140 result = M_CONVERT; 1141 } 1142 return result; 1143 } 1144} 1145 1146/* Calculate number of bytes which will be deleted or cut during balance */ 1147static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) 1148{ 1149 int del_size; 1150 struct item_head *p_le_ih = tp_item_head(tb->tb_path); 1151 1152 if (is_statdata_le_ih(p_le_ih)) 1153 return 0; 1154 1155 del_size = 1156 (mode == 1157 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; 1158 if (is_direntry_le_ih(p_le_ih)) { 1159 /* 1160 * return EMPTY_DIR_SIZE; We delete emty directories only. 1161 * we can't use EMPTY_DIR_SIZE, as old format dirs have a 1162 * different empty size. ick. FIXME, is this right? 1163 */ 1164 return del_size; 1165 } 1166 1167 if (is_indirect_le_ih(p_le_ih)) 1168 del_size = (del_size / UNFM_P_SIZE) * 1169 (PATH_PLAST_BUFFER(tb->tb_path)->b_size); 1170 return del_size; 1171} 1172 1173static void init_tb_struct(struct reiserfs_transaction_handle *th, 1174 struct tree_balance *tb, 1175 struct super_block *sb, 1176 struct treepath *path, int size) 1177{ 1178 1179 BUG_ON(!th->t_trans_id); 1180 1181 memset(tb, '\0', sizeof(struct tree_balance)); 1182 tb->transaction_handle = th; 1183 tb->tb_sb = sb; 1184 tb->tb_path = path; 1185 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; 1186 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; 1187 tb->insert_size[0] = size; 1188} 1189 1190void padd_item(char *item, int total_length, int length) 1191{ 1192 int i; 1193 1194 for (i = total_length; i > length;) 1195 item[--i] = 0; 1196} 1197 1198#ifdef REISERQUOTA_DEBUG 1199char key2type(struct reiserfs_key *ih) 1200{ 1201 if (is_direntry_le_key(2, ih)) 1202 return 'd'; 1203 if (is_direct_le_key(2, ih)) 1204 return 'D'; 1205 if (is_indirect_le_key(2, ih)) 1206 return 'i'; 1207 if (is_statdata_le_key(2, ih)) 1208 return 's'; 1209 return 'u'; 1210} 1211 1212char head2type(struct item_head *ih) 1213{ 1214 if (is_direntry_le_ih(ih)) 1215 return 'd'; 1216 if (is_direct_le_ih(ih)) 1217 return 'D'; 1218 if (is_indirect_le_ih(ih)) 1219 return 'i'; 1220 if (is_statdata_le_ih(ih)) 1221 return 's'; 1222 return 'u'; 1223} 1224#endif 1225 1226/* 1227 * Delete object item. 1228 * th - active transaction handle 1229 * path - path to the deleted item 1230 * item_key - key to search for the deleted item 1231 * indode - used for updating i_blocks and quotas 1232 * un_bh - NULL or unformatted node pointer 1233 */ 1234int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1235 struct treepath *path, const struct cpu_key *item_key, 1236 struct inode *inode, struct buffer_head *un_bh) 1237{ 1238 struct super_block *sb = inode->i_sb; 1239 struct tree_balance s_del_balance; 1240 struct item_head s_ih; 1241 struct item_head *q_ih; 1242 int quota_cut_bytes; 1243 int ret_value, del_size, removed; 1244 int depth; 1245 1246#ifdef CONFIG_REISERFS_CHECK 1247 char mode; 1248 int iter = 0; 1249#endif 1250 1251 BUG_ON(!th->t_trans_id); 1252 1253 init_tb_struct(th, &s_del_balance, sb, path, 1254 0 /*size is unknown */ ); 1255 1256 while (1) { 1257 removed = 0; 1258 1259#ifdef CONFIG_REISERFS_CHECK 1260 iter++; 1261 mode = 1262#endif 1263 prepare_for_delete_or_cut(th, inode, path, 1264 item_key, &removed, 1265 &del_size, 1266 max_reiserfs_offset(inode)); 1267 1268 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); 1269 1270 copy_item_head(&s_ih, tp_item_head(path)); 1271 s_del_balance.insert_size[0] = del_size; 1272 1273 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); 1274 if (ret_value != REPEAT_SEARCH) 1275 break; 1276 1277 PROC_INFO_INC(sb, delete_item_restarted); 1278 1279 /* file system changed, repeat search */ 1280 ret_value = 1281 search_for_position_by_key(sb, item_key, path); 1282 if (ret_value == IO_ERROR) 1283 break; 1284 if (ret_value == FILE_NOT_FOUND) { 1285 reiserfs_warning(sb, "vs-5340", 1286 "no items of the file %K found", 1287 item_key); 1288 break; 1289 } 1290 } /* while (1) */ 1291 1292 if (ret_value != CARRY_ON) { 1293 unfix_nodes(&s_del_balance); 1294 return 0; 1295 } 1296 1297 /* reiserfs_delete_item returns item length when success */ 1298 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); 1299 q_ih = tp_item_head(path); 1300 quota_cut_bytes = ih_item_len(q_ih); 1301 1302 /* 1303 * hack so the quota code doesn't have to guess if the file has a 1304 * tail. On tail insert, we allocate quota for 1 unformatted node. 1305 * We test the offset because the tail might have been 1306 * split into multiple items, and we only want to decrement for 1307 * the unfm node once 1308 */ 1309 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { 1310 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { 1311 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1312 } else { 1313 quota_cut_bytes = 0; 1314 } 1315 } 1316 1317 if (un_bh) { 1318 int off; 1319 char *data; 1320 1321 /* 1322 * We are in direct2indirect conversion, so move tail contents 1323 * to the unformatted node 1324 */ 1325 /* 1326 * note, we do the copy before preparing the buffer because we 1327 * don't care about the contents of the unformatted node yet. 1328 * the only thing we really care about is the direct item's 1329 * data is in the unformatted node. 1330 * 1331 * Otherwise, we would have to call 1332 * reiserfs_prepare_for_journal on the unformatted node, 1333 * which might schedule, meaning we'd have to loop all the 1334 * way back up to the start of the while loop. 1335 * 1336 * The unformatted node must be dirtied later on. We can't be 1337 * sure here if the entire tail has been deleted yet. 1338 * 1339 * un_bh is from the page cache (all unformatted nodes are 1340 * from the page cache) and might be a highmem page. So, we 1341 * can't use un_bh->b_data. 1342 * -clm 1343 */ 1344 1345 data = kmap_atomic(un_bh->b_page); 1346 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); 1347 memcpy(data + off, 1348 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), 1349 ret_value); 1350 kunmap_atomic(data); 1351 } 1352 1353 /* Perform balancing after all resources have been collected at once. */ 1354 do_balance(&s_del_balance, NULL, NULL, M_DELETE); 1355 1356#ifdef REISERQUOTA_DEBUG 1357 reiserfs_debug(sb, REISERFS_DEBUG_CODE, 1358 "reiserquota delete_item(): freeing %u, id=%u type=%c", 1359 quota_cut_bytes, inode->i_uid, head2type(&s_ih)); 1360#endif 1361 depth = reiserfs_write_unlock_nested(inode->i_sb); 1362 dquot_free_space_nodirty(inode, quota_cut_bytes); 1363 reiserfs_write_lock_nested(inode->i_sb, depth); 1364 1365 /* Return deleted body length */ 1366 return ret_value; 1367} 1368 1369/* 1370 * Summary Of Mechanisms For Handling Collisions Between Processes: 1371 * 1372 * deletion of the body of the object is performed by iput(), with the 1373 * result that if multiple processes are operating on a file, the 1374 * deletion of the body of the file is deferred until the last process 1375 * that has an open inode performs its iput(). 1376 * 1377 * writes and truncates are protected from collisions by use of 1378 * semaphores. 1379 * 1380 * creates, linking, and mknod are protected from collisions with other 1381 * processes by making the reiserfs_add_entry() the last step in the 1382 * creation, and then rolling back all changes if there was a collision. 1383 * - Hans 1384*/ 1385 1386/* this deletes item which never gets split */ 1387void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1388 struct inode *inode, struct reiserfs_key *key) 1389{ 1390 struct super_block *sb = th->t_super; 1391 struct tree_balance tb; 1392 INITIALIZE_PATH(path); 1393 int item_len = 0; 1394 int tb_init = 0; 1395 struct cpu_key cpu_key; 1396 int retval; 1397 int quota_cut_bytes = 0; 1398 1399 BUG_ON(!th->t_trans_id); 1400 1401 le_key2cpu_key(&cpu_key, key); 1402 1403 while (1) { 1404 retval = search_item(th->t_super, &cpu_key, &path); 1405 if (retval == IO_ERROR) { 1406 reiserfs_error(th->t_super, "vs-5350", 1407 "i/o failure occurred trying " 1408 "to delete %K", &cpu_key); 1409 break; 1410 } 1411 if (retval != ITEM_FOUND) { 1412 pathrelse(&path); 1413 /* 1414 * No need for a warning, if there is just no free 1415 * space to insert '..' item into the 1416 * newly-created subdir 1417 */ 1418 if (! 1419 ((unsigned long long) 1420 GET_HASH_VALUE(le_key_k_offset 1421 (le_key_version(key), key)) == 0 1422 && (unsigned long long) 1423 GET_GENERATION_NUMBER(le_key_k_offset 1424 (le_key_version(key), 1425 key)) == 1)) 1426 reiserfs_warning(th->t_super, "vs-5355", 1427 "%k not found", key); 1428 break; 1429 } 1430 if (!tb_init) { 1431 tb_init = 1; 1432 item_len = ih_item_len(tp_item_head(&path)); 1433 init_tb_struct(th, &tb, th->t_super, &path, 1434 -(IH_SIZE + item_len)); 1435 } 1436 quota_cut_bytes = ih_item_len(tp_item_head(&path)); 1437 1438 retval = fix_nodes(M_DELETE, &tb, NULL, NULL); 1439 if (retval == REPEAT_SEARCH) { 1440 PROC_INFO_INC(th->t_super, delete_solid_item_restarted); 1441 continue; 1442 } 1443 1444 if (retval == CARRY_ON) { 1445 do_balance(&tb, NULL, NULL, M_DELETE); 1446 /* 1447 * Should we count quota for item? (we don't 1448 * count quotas for save-links) 1449 */ 1450 if (inode) { 1451 int depth; 1452#ifdef REISERQUOTA_DEBUG 1453 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 1454 "reiserquota delete_solid_item(): freeing %u id=%u type=%c", 1455 quota_cut_bytes, inode->i_uid, 1456 key2type(key)); 1457#endif 1458 depth = reiserfs_write_unlock_nested(sb); 1459 dquot_free_space_nodirty(inode, 1460 quota_cut_bytes); 1461 reiserfs_write_lock_nested(sb, depth); 1462 } 1463 break; 1464 } 1465 1466 /* IO_ERROR, NO_DISK_SPACE, etc */ 1467 reiserfs_warning(th->t_super, "vs-5360", 1468 "could not delete %K due to fix_nodes failure", 1469 &cpu_key); 1470 unfix_nodes(&tb); 1471 break; 1472 } 1473 1474 reiserfs_check_path(&path); 1475} 1476 1477int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1478 struct inode *inode) 1479{ 1480 int err; 1481 inode->i_size = 0; 1482 BUG_ON(!th->t_trans_id); 1483 1484 /* for directory this deletes item containing "." and ".." */ 1485 err = 1486 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); 1487 if (err) 1488 return err; 1489 1490#if defined( USE_INODE_GENERATION_COUNTER ) 1491 if (!old_format_only(th->t_super)) { 1492 __le32 *inode_generation; 1493 1494 inode_generation = 1495 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; 1496 le32_add_cpu(inode_generation, 1); 1497 } 1498/* USE_INODE_GENERATION_COUNTER */ 1499#endif 1500 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1501 1502 return err; 1503} 1504 1505static void unmap_buffers(struct page *page, loff_t pos) 1506{ 1507 struct buffer_head *bh; 1508 struct buffer_head *head; 1509 struct buffer_head *next; 1510 unsigned long tail_index; 1511 unsigned long cur_index; 1512 1513 if (page) { 1514 if (page_has_buffers(page)) { 1515 tail_index = pos & (PAGE_CACHE_SIZE - 1); 1516 cur_index = 0; 1517 head = page_buffers(page); 1518 bh = head; 1519 do { 1520 next = bh->b_this_page; 1521 1522 /* 1523 * we want to unmap the buffers that contain 1524 * the tail, and all the buffers after it 1525 * (since the tail must be at the end of the 1526 * file). We don't want to unmap file data 1527 * before the tail, since it might be dirty 1528 * and waiting to reach disk 1529 */ 1530 cur_index += bh->b_size; 1531 if (cur_index > tail_index) { 1532 reiserfs_unmap_buffer(bh); 1533 } 1534 bh = next; 1535 } while (bh != head); 1536 } 1537 } 1538} 1539 1540static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, 1541 struct inode *inode, 1542 struct page *page, 1543 struct treepath *path, 1544 const struct cpu_key *item_key, 1545 loff_t new_file_size, char *mode) 1546{ 1547 struct super_block *sb = inode->i_sb; 1548 int block_size = sb->s_blocksize; 1549 int cut_bytes; 1550 BUG_ON(!th->t_trans_id); 1551 BUG_ON(new_file_size != inode->i_size); 1552 1553 /* 1554 * the page being sent in could be NULL if there was an i/o error 1555 * reading in the last block. The user will hit problems trying to 1556 * read the file, but for now we just skip the indirect2direct 1557 */ 1558 if (atomic_read(&inode->i_count) > 1 || 1559 !tail_has_to_be_packed(inode) || 1560 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { 1561 /* leave tail in an unformatted node */ 1562 *mode = M_SKIP_BALANCING; 1563 cut_bytes = 1564 block_size - (new_file_size & (block_size - 1)); 1565 pathrelse(path); 1566 return cut_bytes; 1567 } 1568 1569 /* Perform the conversion to a direct_item. */ 1570 return indirect2direct(th, inode, page, path, item_key, 1571 new_file_size, mode); 1572} 1573 1574/* 1575 * we did indirect_to_direct conversion. And we have inserted direct 1576 * item successesfully, but there were no disk space to cut unfm 1577 * pointer being converted. Therefore we have to delete inserted 1578 * direct item(s) 1579 */ 1580static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, 1581 struct inode *inode, struct treepath *path) 1582{ 1583 struct cpu_key tail_key; 1584 int tail_len; 1585 int removed; 1586 BUG_ON(!th->t_trans_id); 1587 1588 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); 1589 tail_key.key_length = 4; 1590 1591 tail_len = 1592 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; 1593 while (tail_len) { 1594 /* look for the last byte of the tail */ 1595 if (search_for_position_by_key(inode->i_sb, &tail_key, path) == 1596 POSITION_NOT_FOUND) 1597 reiserfs_panic(inode->i_sb, "vs-5615", 1598 "found invalid item"); 1599 RFALSE(path->pos_in_item != 1600 ih_item_len(tp_item_head(path)) - 1, 1601 "vs-5616: appended bytes found"); 1602 PATH_LAST_POSITION(path)--; 1603 1604 removed = 1605 reiserfs_delete_item(th, path, &tail_key, inode, 1606 NULL /*unbh not needed */ ); 1607 RFALSE(removed <= 0 1608 || removed > tail_len, 1609 "vs-5617: there was tail %d bytes, removed item length %d bytes", 1610 tail_len, removed); 1611 tail_len -= removed; 1612 set_cpu_key_k_offset(&tail_key, 1613 cpu_key_k_offset(&tail_key) - removed); 1614 } 1615 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " 1616 "conversion has been rolled back due to " 1617 "lack of disk space"); 1618 mark_inode_dirty(inode); 1619} 1620 1621/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ 1622int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1623 struct treepath *path, 1624 struct cpu_key *item_key, 1625 struct inode *inode, 1626 struct page *page, loff_t new_file_size) 1627{ 1628 struct super_block *sb = inode->i_sb; 1629 /* 1630 * Every function which is going to call do_balance must first 1631 * create a tree_balance structure. Then it must fill up this 1632 * structure by using the init_tb_struct and fix_nodes functions. 1633 * After that we can make tree balancing. 1634 */ 1635 struct tree_balance s_cut_balance; 1636 struct item_head *p_le_ih; 1637 int cut_size = 0; /* Amount to be cut. */ 1638 int ret_value = CARRY_ON; 1639 int removed = 0; /* Number of the removed unformatted nodes. */ 1640 int is_inode_locked = 0; 1641 char mode; /* Mode of the balance. */ 1642 int retval2 = -1; 1643 int quota_cut_bytes; 1644 loff_t tail_pos = 0; 1645 int depth; 1646 1647 BUG_ON(!th->t_trans_id); 1648 1649 init_tb_struct(th, &s_cut_balance, inode->i_sb, path, 1650 cut_size); 1651 1652 /* 1653 * Repeat this loop until we either cut the item without needing 1654 * to balance, or we fix_nodes without schedule occurring 1655 */ 1656 while (1) { 1657 /* 1658 * Determine the balance mode, position of the first byte to 1659 * be cut, and size to be cut. In case of the indirect item 1660 * free unformatted nodes which are pointed to by the cut 1661 * pointers. 1662 */ 1663 1664 mode = 1665 prepare_for_delete_or_cut(th, inode, path, 1666 item_key, &removed, 1667 &cut_size, new_file_size); 1668 if (mode == M_CONVERT) { 1669 /* 1670 * convert last unformatted node to direct item or 1671 * leave tail in the unformatted node 1672 */ 1673 RFALSE(ret_value != CARRY_ON, 1674 "PAP-5570: can not convert twice"); 1675 1676 ret_value = 1677 maybe_indirect_to_direct(th, inode, page, 1678 path, item_key, 1679 new_file_size, &mode); 1680 if (mode == M_SKIP_BALANCING) 1681 /* tail has been left in the unformatted node */ 1682 return ret_value; 1683 1684 is_inode_locked = 1; 1685 1686 /* 1687 * removing of last unformatted node will 1688 * change value we have to return to truncate. 1689 * Save it 1690 */ 1691 retval2 = ret_value; 1692 1693 /* 1694 * So, we have performed the first part of the 1695 * conversion: 1696 * inserting the new direct item. Now we are 1697 * removing the last unformatted node pointer. 1698 * Set key to search for it. 1699 */ 1700 set_cpu_key_k_type(item_key, TYPE_INDIRECT); 1701 item_key->key_length = 4; 1702 new_file_size -= 1703 (new_file_size & (sb->s_blocksize - 1)); 1704 tail_pos = new_file_size; 1705 set_cpu_key_k_offset(item_key, new_file_size + 1); 1706 if (search_for_position_by_key 1707 (sb, item_key, 1708 path) == POSITION_NOT_FOUND) { 1709 print_block(PATH_PLAST_BUFFER(path), 3, 1710 PATH_LAST_POSITION(path) - 1, 1711 PATH_LAST_POSITION(path) + 1); 1712 reiserfs_panic(sb, "PAP-5580", "item to " 1713 "convert does not exist (%K)", 1714 item_key); 1715 } 1716 continue; 1717 } 1718 if (cut_size == 0) { 1719 pathrelse(path); 1720 return 0; 1721 } 1722 1723 s_cut_balance.insert_size[0] = cut_size; 1724 1725 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); 1726 if (ret_value != REPEAT_SEARCH) 1727 break; 1728 1729 PROC_INFO_INC(sb, cut_from_item_restarted); 1730 1731 ret_value = 1732 search_for_position_by_key(sb, item_key, path); 1733 if (ret_value == POSITION_FOUND) 1734 continue; 1735 1736 reiserfs_warning(sb, "PAP-5610", "item %K not found", 1737 item_key); 1738 unfix_nodes(&s_cut_balance); 1739 return (ret_value == IO_ERROR) ? -EIO : -ENOENT; 1740 } /* while */ 1741 1742 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ 1743 if (ret_value != CARRY_ON) { 1744 if (is_inode_locked) { 1745 /* 1746 * FIXME: this seems to be not needed: we are always 1747 * able to cut item 1748 */ 1749 indirect_to_direct_roll_back(th, inode, path); 1750 } 1751 if (ret_value == NO_DISK_SPACE) 1752 reiserfs_warning(sb, "reiserfs-5092", 1753 "NO_DISK_SPACE"); 1754 unfix_nodes(&s_cut_balance); 1755 return -EIO; 1756 } 1757 1758 /* go ahead and perform balancing */ 1759 1760 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); 1761 1762 /* Calculate number of bytes that need to be cut from the item. */ 1763 quota_cut_bytes = 1764 (mode == 1765 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. 1766 insert_size[0]; 1767 if (retval2 == -1) 1768 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); 1769 else 1770 ret_value = retval2; 1771 1772 /* 1773 * For direct items, we only change the quota when deleting the last 1774 * item. 1775 */ 1776 p_le_ih = tp_item_head(s_cut_balance.tb_path); 1777 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { 1778 if (mode == M_DELETE && 1779 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == 1780 1) { 1781 /* FIXME: this is to keep 3.5 happy */ 1782 REISERFS_I(inode)->i_first_direct_byte = U32_MAX; 1783 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1784 } else { 1785 quota_cut_bytes = 0; 1786 } 1787 } 1788#ifdef CONFIG_REISERFS_CHECK 1789 if (is_inode_locked) { 1790 struct item_head *le_ih = 1791 tp_item_head(s_cut_balance.tb_path); 1792 /* 1793 * we are going to complete indirect2direct conversion. Make 1794 * sure, that we exactly remove last unformatted node pointer 1795 * of the item 1796 */ 1797 if (!is_indirect_le_ih(le_ih)) 1798 reiserfs_panic(sb, "vs-5652", 1799 "item must be indirect %h", le_ih); 1800 1801 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) 1802 reiserfs_panic(sb, "vs-5653", "completing " 1803 "indirect2direct conversion indirect " 1804 "item %h being deleted must be of " 1805 "4 byte long", le_ih); 1806 1807 if (mode == M_CUT 1808 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { 1809 reiserfs_panic(sb, "vs-5654", "can not complete " 1810 "indirect2direct conversion of %h " 1811 "(CUT, insert_size==%d)", 1812 le_ih, s_cut_balance.insert_size[0]); 1813 } 1814 /* 1815 * it would be useful to make sure, that right neighboring 1816 * item is direct item of this file 1817 */ 1818 } 1819#endif 1820 1821 do_balance(&s_cut_balance, NULL, NULL, mode); 1822 if (is_inode_locked) { 1823 /* 1824 * we've done an indirect->direct conversion. when the 1825 * data block was freed, it was removed from the list of 1826 * blocks that must be flushed before the transaction 1827 * commits, make sure to unmap and invalidate it 1828 */ 1829 unmap_buffers(page, tail_pos); 1830 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 1831 } 1832#ifdef REISERQUOTA_DEBUG 1833 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1834 "reiserquota cut_from_item(): freeing %u id=%u type=%c", 1835 quota_cut_bytes, inode->i_uid, '?'); 1836#endif 1837 depth = reiserfs_write_unlock_nested(sb); 1838 dquot_free_space_nodirty(inode, quota_cut_bytes); 1839 reiserfs_write_lock_nested(sb, depth); 1840 return ret_value; 1841} 1842 1843static void truncate_directory(struct reiserfs_transaction_handle *th, 1844 struct inode *inode) 1845{ 1846 BUG_ON(!th->t_trans_id); 1847 if (inode->i_nlink) 1848 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); 1849 1850 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); 1851 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); 1852 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1853 reiserfs_update_sd(th, inode); 1854 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); 1855 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); 1856} 1857 1858/* 1859 * Truncate file to the new size. Note, this must be called with a 1860 * transaction already started 1861 */ 1862int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1863 struct inode *inode, /* ->i_size contains new size */ 1864 struct page *page, /* up to date for last block */ 1865 /* 1866 * when it is called by file_release to convert 1867 * the tail - no timestamps should be updated 1868 */ 1869 int update_timestamps 1870 ) 1871{ 1872 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ 1873 struct item_head *p_le_ih; /* Pointer to an item header. */ 1874 1875 /* Key to search for a previous file item. */ 1876 struct cpu_key s_item_key; 1877 loff_t file_size, /* Old file size. */ 1878 new_file_size; /* New file size. */ 1879 int deleted; /* Number of deleted or truncated bytes. */ 1880 int retval; 1881 int err = 0; 1882 1883 BUG_ON(!th->t_trans_id); 1884 if (! 1885 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1886 || S_ISLNK(inode->i_mode))) 1887 return 0; 1888 1889 /* deletion of directory - no need to update timestamps */ 1890 if (S_ISDIR(inode->i_mode)) { 1891 truncate_directory(th, inode); 1892 return 0; 1893 } 1894 1895 /* Get new file size. */ 1896 new_file_size = inode->i_size; 1897 1898 /* FIXME: note, that key type is unimportant here */ 1899 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), 1900 TYPE_DIRECT, 3); 1901 1902 retval = 1903 search_for_position_by_key(inode->i_sb, &s_item_key, 1904 &s_search_path); 1905 if (retval == IO_ERROR) { 1906 reiserfs_error(inode->i_sb, "vs-5657", 1907 "i/o failure occurred trying to truncate %K", 1908 &s_item_key); 1909 err = -EIO; 1910 goto out; 1911 } 1912 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { 1913 reiserfs_error(inode->i_sb, "PAP-5660", 1914 "wrong result %d of search for %K", retval, 1915 &s_item_key); 1916 1917 err = -EIO; 1918 goto out; 1919 } 1920 1921 s_search_path.pos_in_item--; 1922 1923 /* Get real file size (total length of all file items) */ 1924 p_le_ih = tp_item_head(&s_search_path); 1925 if (is_statdata_le_ih(p_le_ih)) 1926 file_size = 0; 1927 else { 1928 loff_t offset = le_ih_k_offset(p_le_ih); 1929 int bytes = 1930 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); 1931 1932 /* 1933 * this may mismatch with real file size: if last direct item 1934 * had no padding zeros and last unformatted node had no free 1935 * space, this file would have this file size 1936 */ 1937 file_size = offset + bytes - 1; 1938 } 1939 /* 1940 * are we doing a full truncate or delete, if so 1941 * kick in the reada code 1942 */ 1943 if (new_file_size == 0) 1944 s_search_path.reada = PATH_READA | PATH_READA_BACK; 1945 1946 if (file_size == 0 || file_size < new_file_size) { 1947 goto update_and_out; 1948 } 1949 1950 /* Update key to search for the last file item. */ 1951 set_cpu_key_k_offset(&s_item_key, file_size); 1952 1953 do { 1954 /* Cut or delete file item. */ 1955 deleted = 1956 reiserfs_cut_from_item(th, &s_search_path, &s_item_key, 1957 inode, page, new_file_size); 1958 if (deleted < 0) { 1959 reiserfs_warning(inode->i_sb, "vs-5665", 1960 "reiserfs_cut_from_item failed"); 1961 reiserfs_check_path(&s_search_path); 1962 return 0; 1963 } 1964 1965 RFALSE(deleted > file_size, 1966 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", 1967 deleted, file_size, &s_item_key); 1968 1969 /* Change key to search the last file item. */ 1970 file_size -= deleted; 1971 1972 set_cpu_key_k_offset(&s_item_key, file_size); 1973 1974 /* 1975 * While there are bytes to truncate and previous 1976 * file item is presented in the tree. 1977 */ 1978 1979 /* 1980 * This loop could take a really long time, and could log 1981 * many more blocks than a transaction can hold. So, we do 1982 * a polite journal end here, and if the transaction needs 1983 * ending, we make sure the file is consistent before ending 1984 * the current trans and starting a new one 1985 */ 1986 if (journal_transaction_should_end(th, 0) || 1987 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { 1988 int orig_len_alloc = th->t_blocks_allocated; 1989 pathrelse(&s_search_path); 1990 1991 if (update_timestamps) { 1992 inode->i_mtime = CURRENT_TIME_SEC; 1993 inode->i_ctime = CURRENT_TIME_SEC; 1994 } 1995 reiserfs_update_sd(th, inode); 1996 1997 err = journal_end(th, inode->i_sb, orig_len_alloc); 1998 if (err) 1999 goto out; 2000 err = journal_begin(th, inode->i_sb, 2001 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; 2002 if (err) 2003 goto out; 2004 reiserfs_update_inode_transaction(inode); 2005 } 2006 } while (file_size > ROUND_UP(new_file_size) && 2007 search_for_position_by_key(inode->i_sb, &s_item_key, 2008 &s_search_path) == POSITION_FOUND); 2009 2010 RFALSE(file_size > ROUND_UP(new_file_size), 2011 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", 2012 new_file_size, file_size, s_item_key.on_disk_key.k_objectid); 2013 2014 update_and_out: 2015 if (update_timestamps) { 2016 /* this is truncate, not file closing */ 2017 inode->i_mtime = CURRENT_TIME_SEC; 2018 inode->i_ctime = CURRENT_TIME_SEC; 2019 } 2020 reiserfs_update_sd(th, inode); 2021 2022 out: 2023 pathrelse(&s_search_path); 2024 return err; 2025} 2026 2027#ifdef CONFIG_REISERFS_CHECK 2028/* this makes sure, that we __append__, not overwrite or add holes */ 2029static void check_research_for_paste(struct treepath *path, 2030 const struct cpu_key *key) 2031{ 2032 struct item_head *found_ih = tp_item_head(path); 2033 2034 if (is_direct_le_ih(found_ih)) { 2035 if (le_ih_k_offset(found_ih) + 2036 op_bytes_number(found_ih, 2037 get_last_bh(path)->b_size) != 2038 cpu_key_k_offset(key) 2039 || op_bytes_number(found_ih, 2040 get_last_bh(path)->b_size) != 2041 pos_in_item(path)) 2042 reiserfs_panic(NULL, "PAP-5720", "found direct item " 2043 "%h or position (%d) does not match " 2044 "to key %K", found_ih, 2045 pos_in_item(path), key); 2046 } 2047 if (is_indirect_le_ih(found_ih)) { 2048 if (le_ih_k_offset(found_ih) + 2049 op_bytes_number(found_ih, 2050 get_last_bh(path)->b_size) != 2051 cpu_key_k_offset(key) 2052 || I_UNFM_NUM(found_ih) != pos_in_item(path) 2053 || get_ih_free_space(found_ih) != 0) 2054 reiserfs_panic(NULL, "PAP-5730", "found indirect " 2055 "item (%h) or position (%d) does not " 2056 "match to key (%K)", 2057 found_ih, pos_in_item(path), key); 2058 } 2059} 2060#endif /* config reiserfs check */ 2061 2062/* 2063 * Paste bytes to the existing item. 2064 * Returns bytes number pasted into the item. 2065 */ 2066int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 2067 /* Path to the pasted item. */ 2068 struct treepath *search_path, 2069 /* Key to search for the needed item. */ 2070 const struct cpu_key *key, 2071 /* Inode item belongs to */ 2072 struct inode *inode, 2073 /* Pointer to the bytes to paste. */ 2074 const char *body, 2075 /* Size of pasted bytes. */ 2076 int pasted_size) 2077{ 2078 struct super_block *sb = inode->i_sb; 2079 struct tree_balance s_paste_balance; 2080 int retval; 2081 int fs_gen; 2082 int depth; 2083 2084 BUG_ON(!th->t_trans_id); 2085 2086 fs_gen = get_generation(inode->i_sb); 2087 2088#ifdef REISERQUOTA_DEBUG 2089 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2090 "reiserquota paste_into_item(): allocating %u id=%u type=%c", 2091 pasted_size, inode->i_uid, 2092 key2type(&(key->on_disk_key))); 2093#endif 2094 2095 depth = reiserfs_write_unlock_nested(sb); 2096 retval = dquot_alloc_space_nodirty(inode, pasted_size); 2097 reiserfs_write_lock_nested(sb, depth); 2098 if (retval) { 2099 pathrelse(search_path); 2100 return retval; 2101 } 2102 init_tb_struct(th, &s_paste_balance, th->t_super, search_path, 2103 pasted_size); 2104#ifdef DISPLACE_NEW_PACKING_LOCALITIES 2105 s_paste_balance.key = key->on_disk_key; 2106#endif 2107 2108 /* DQUOT_* can schedule, must check before the fix_nodes */ 2109 if (fs_changed(fs_gen, inode->i_sb)) { 2110 goto search_again; 2111 } 2112 2113 while ((retval = 2114 fix_nodes(M_PASTE, &s_paste_balance, NULL, 2115 body)) == REPEAT_SEARCH) { 2116 search_again: 2117 /* file system changed while we were in the fix_nodes */ 2118 PROC_INFO_INC(th->t_super, paste_into_item_restarted); 2119 retval = 2120 search_for_position_by_key(th->t_super, key, 2121 search_path); 2122 if (retval == IO_ERROR) { 2123 retval = -EIO; 2124 goto error_out; 2125 } 2126 if (retval == POSITION_FOUND) { 2127 reiserfs_warning(inode->i_sb, "PAP-5710", 2128 "entry or pasted byte (%K) exists", 2129 key); 2130 retval = -EEXIST; 2131 goto error_out; 2132 } 2133#ifdef CONFIG_REISERFS_CHECK 2134 check_research_for_paste(search_path, key); 2135#endif 2136 } 2137 2138 /* 2139 * Perform balancing after all resources are collected by fix_nodes, 2140 * and accessing them will not risk triggering schedule. 2141 */ 2142 if (retval == CARRY_ON) { 2143 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); 2144 return 0; 2145 } 2146 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2147 error_out: 2148 /* this also releases the path */ 2149 unfix_nodes(&s_paste_balance); 2150#ifdef REISERQUOTA_DEBUG 2151 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2152 "reiserquota paste_into_item(): freeing %u id=%u type=%c", 2153 pasted_size, inode->i_uid, 2154 key2type(&(key->on_disk_key))); 2155#endif 2156 depth = reiserfs_write_unlock_nested(sb); 2157 dquot_free_space_nodirty(inode, pasted_size); 2158 reiserfs_write_lock_nested(sb, depth); 2159 return retval; 2160} 2161 2162/* 2163 * Insert new item into the buffer at the path. 2164 * th - active transaction handle 2165 * path - path to the inserted item 2166 * ih - pointer to the item header to insert 2167 * body - pointer to the bytes to insert 2168 */ 2169int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2170 struct treepath *path, const struct cpu_key *key, 2171 struct item_head *ih, struct inode *inode, 2172 const char *body) 2173{ 2174 struct tree_balance s_ins_balance; 2175 int retval; 2176 int fs_gen = 0; 2177 int quota_bytes = 0; 2178 2179 BUG_ON(!th->t_trans_id); 2180 2181 if (inode) { /* Do we count quotas for item? */ 2182 int depth; 2183 fs_gen = get_generation(inode->i_sb); 2184 quota_bytes = ih_item_len(ih); 2185 2186 /* 2187 * hack so the quota code doesn't have to guess 2188 * if the file has a tail, links are always tails, 2189 * so there's no guessing needed 2190 */ 2191 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) 2192 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; 2193#ifdef REISERQUOTA_DEBUG 2194 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2195 "reiserquota insert_item(): allocating %u id=%u type=%c", 2196 quota_bytes, inode->i_uid, head2type(ih)); 2197#endif 2198 /* 2199 * We can't dirty inode here. It would be immediately 2200 * written but appropriate stat item isn't inserted yet... 2201 */ 2202 depth = reiserfs_write_unlock_nested(inode->i_sb); 2203 retval = dquot_alloc_space_nodirty(inode, quota_bytes); 2204 reiserfs_write_lock_nested(inode->i_sb, depth); 2205 if (retval) { 2206 pathrelse(path); 2207 return retval; 2208 } 2209 } 2210 init_tb_struct(th, &s_ins_balance, th->t_super, path, 2211 IH_SIZE + ih_item_len(ih)); 2212#ifdef DISPLACE_NEW_PACKING_LOCALITIES 2213 s_ins_balance.key = key->on_disk_key; 2214#endif 2215 /* 2216 * DQUOT_* can schedule, must check to be sure calling 2217 * fix_nodes is safe 2218 */ 2219 if (inode && fs_changed(fs_gen, inode->i_sb)) { 2220 goto search_again; 2221 } 2222 2223 while ((retval = 2224 fix_nodes(M_INSERT, &s_ins_balance, ih, 2225 body)) == REPEAT_SEARCH) { 2226 search_again: 2227 /* file system changed while we were in the fix_nodes */ 2228 PROC_INFO_INC(th->t_super, insert_item_restarted); 2229 retval = search_item(th->t_super, key, path); 2230 if (retval == IO_ERROR) { 2231 retval = -EIO; 2232 goto error_out; 2233 } 2234 if (retval == ITEM_FOUND) { 2235 reiserfs_warning(th->t_super, "PAP-5760", 2236 "key %K already exists in the tree", 2237 key); 2238 retval = -EEXIST; 2239 goto error_out; 2240 } 2241 } 2242 2243 /* make balancing after all resources will be collected at a time */ 2244 if (retval == CARRY_ON) { 2245 do_balance(&s_ins_balance, ih, body, M_INSERT); 2246 return 0; 2247 } 2248 2249 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2250 error_out: 2251 /* also releases the path */ 2252 unfix_nodes(&s_ins_balance); 2253#ifdef REISERQUOTA_DEBUG 2254 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 2255 "reiserquota insert_item(): freeing %u id=%u type=%c", 2256 quota_bytes, inode->i_uid, head2type(ih)); 2257#endif 2258 if (inode) { 2259 int depth = reiserfs_write_unlock_nested(inode->i_sb); 2260 dquot_free_space_nodirty(inode, quota_bytes); 2261 reiserfs_write_lock_nested(inode->i_sb, depth); 2262 } 2263 return retval; 2264} 2265