stree.c revision 098297b27d23ad9d0fc302e3417474d9342c6c14
1/*
2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 *  Programm System Institute
8 *  Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include "reiserfs.h"
15#include <linux/buffer_head.h>
16#include <linux/quotaops.h>
17
18/* Does the buffer contain a disk block which is in the tree. */
19inline int B_IS_IN_TREE(const struct buffer_head *bh)
20{
21
22	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
23	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
24
25	return (B_LEVEL(bh) != FREE_LEVEL);
26}
27
28/* to get item head in le form */
29inline void copy_item_head(struct item_head *to,
30			   const struct item_head *from)
31{
32	memcpy(to, from, IH_SIZE);
33}
34
35/*
36 * k1 is pointer to on-disk structure which is stored in little-endian
37 * form. k2 is pointer to cpu variable. For key of items of the same
38 * object this returns 0.
39 * Returns: -1 if key1 < key2
40 * 0 if key1 == key2
41 * 1 if key1 > key2
42 */
43inline int comp_short_keys(const struct reiserfs_key *le_key,
44			   const struct cpu_key *cpu_key)
45{
46	__u32 n;
47	n = le32_to_cpu(le_key->k_dir_id);
48	if (n < cpu_key->on_disk_key.k_dir_id)
49		return -1;
50	if (n > cpu_key->on_disk_key.k_dir_id)
51		return 1;
52	n = le32_to_cpu(le_key->k_objectid);
53	if (n < cpu_key->on_disk_key.k_objectid)
54		return -1;
55	if (n > cpu_key->on_disk_key.k_objectid)
56		return 1;
57	return 0;
58}
59
60/*
61 * k1 is pointer to on-disk structure which is stored in little-endian
62 * form. k2 is pointer to cpu variable.
63 * Compare keys using all 4 key fields.
64 * Returns: -1 if key1 < key2 0
65 * if key1 = key2 1 if key1 > key2
66 */
67static inline int comp_keys(const struct reiserfs_key *le_key,
68			    const struct cpu_key *cpu_key)
69{
70	int retval;
71
72	retval = comp_short_keys(le_key, cpu_key);
73	if (retval)
74		return retval;
75	if (le_key_k_offset(le_key_version(le_key), le_key) <
76	    cpu_key_k_offset(cpu_key))
77		return -1;
78	if (le_key_k_offset(le_key_version(le_key), le_key) >
79	    cpu_key_k_offset(cpu_key))
80		return 1;
81
82	if (cpu_key->key_length == 3)
83		return 0;
84
85	/* this part is needed only when tail conversion is in progress */
86	if (le_key_k_type(le_key_version(le_key), le_key) <
87	    cpu_key_k_type(cpu_key))
88		return -1;
89
90	if (le_key_k_type(le_key_version(le_key), le_key) >
91	    cpu_key_k_type(cpu_key))
92		return 1;
93
94	return 0;
95}
96
97inline int comp_short_le_keys(const struct reiserfs_key *key1,
98			      const struct reiserfs_key *key2)
99{
100	__u32 *k1_u32, *k2_u32;
101	int key_length = REISERFS_SHORT_KEY_LEN;
102
103	k1_u32 = (__u32 *) key1;
104	k2_u32 = (__u32 *) key2;
105	for (; key_length--; ++k1_u32, ++k2_u32) {
106		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
107			return -1;
108		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
109			return 1;
110	}
111	return 0;
112}
113
114inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
115{
116	int version;
117	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
118	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
119
120	/* find out version of the key */
121	version = le_key_version(from);
122	to->version = version;
123	to->on_disk_key.k_offset = le_key_k_offset(version, from);
124	to->on_disk_key.k_type = le_key_k_type(version, from);
125}
126
127/*
128 * this does not say which one is bigger, it only returns 1 if keys
129 * are not equal, 0 otherwise
130 */
131inline int comp_le_keys(const struct reiserfs_key *k1,
132			const struct reiserfs_key *k2)
133{
134	return memcmp(k1, k2, sizeof(struct reiserfs_key));
135}
136
137/**************************************************************************
138 *  Binary search toolkit function                                        *
139 *  Search for an item in the array by the item key                       *
140 *  Returns:    1 if found,  0 if not found;                              *
141 *        *pos = number of the searched element if found, else the        *
142 *        number of the first element that is larger than key.            *
143 **************************************************************************/
144/*
145 * For those not familiar with binary search: lbound is the leftmost item
146 * that it could be, rbound the rightmost item that it could be.  We examine
147 * the item halfway between lbound and rbound, and that tells us either
148 * that we can increase lbound, or decrease rbound, or that we have found it,
149 * or if lbound <= rbound that there are no possible items, and we have not
150 * found it. With each examination we cut the number of possible items it
151 * could be by one more than half rounded down, or we find it.
152 */
153static inline int bin_search(const void *key,	/* Key to search for. */
154			     const void *base,	/* First item in the array. */
155			     int num,	/* Number of items in the array. */
156			     /*
157			      * Item size in the array.  searched. Lest the
158			      * reader be confused, note that this is crafted
159			      * as a general function, and when it is applied
160			      * specifically to the array of item headers in a
161			      * node, width is actually the item header size
162			      * not the item size.
163			      */
164			     int width,
165			     int *pos /* Number of the searched for element. */
166    )
167{
168	int rbound, lbound, j;
169
170	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
171	     lbound <= rbound; j = (rbound + lbound) / 2)
172		switch (comp_keys
173			((struct reiserfs_key *)((char *)base + j * width),
174			 (struct cpu_key *)key)) {
175		case -1:
176			lbound = j + 1;
177			continue;
178		case 1:
179			rbound = j - 1;
180			continue;
181		case 0:
182			*pos = j;
183			return ITEM_FOUND;	/* Key found in the array.  */
184		}
185
186	/*
187	 * bin_search did not find given key, it returns position of key,
188	 * that is minimal and greater than the given one.
189	 */
190	*pos = lbound;
191	return ITEM_NOT_FOUND;
192}
193
194
195/* Minimal possible key. It is never in the tree. */
196const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
197
198/* Maximal possible key. It is never in the tree. */
199static const struct reiserfs_key MAX_KEY = {
200	__constant_cpu_to_le32(0xffffffff),
201	__constant_cpu_to_le32(0xffffffff),
202	{{__constant_cpu_to_le32(0xffffffff),
203	  __constant_cpu_to_le32(0xffffffff)},}
204};
205
206/*
207 * Get delimiting key of the buffer by looking for it in the buffers in the
208 * path, starting from the bottom of the path, and going upwards.  We must
209 * check the path's validity at each step.  If the key is not in the path,
210 * there is no delimiting key in the tree (buffer is first or last buffer
211 * in tree), and in this case we return a special key, either MIN_KEY or
212 * MAX_KEY.
213 */
214static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
215						  const struct super_block *sb)
216{
217	int position, path_offset = chk_path->path_length;
218	struct buffer_head *parent;
219
220	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
221	       "PAP-5010: invalid offset in the path");
222
223	/* While not higher in path than first element. */
224	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
225
226		RFALSE(!buffer_uptodate
227		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
228		       "PAP-5020: parent is not uptodate");
229
230		/* Parent at the path is not in the tree now. */
231		if (!B_IS_IN_TREE
232		    (parent =
233		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
234			return &MAX_KEY;
235		/* Check whether position in the parent is correct. */
236		if ((position =
237		     PATH_OFFSET_POSITION(chk_path,
238					  path_offset)) >
239		    B_NR_ITEMS(parent))
240			return &MAX_KEY;
241		/* Check whether parent at the path really points to the child. */
242		if (B_N_CHILD_NUM(parent, position) !=
243		    PATH_OFFSET_PBUFFER(chk_path,
244					path_offset + 1)->b_blocknr)
245			return &MAX_KEY;
246		/*
247		 * Return delimiting key if position in the parent
248		 * is not equal to zero.
249		 */
250		if (position)
251			return internal_key(parent, position - 1);
252	}
253	/* Return MIN_KEY if we are in the root of the buffer tree. */
254	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
255	    b_blocknr == SB_ROOT_BLOCK(sb))
256		return &MIN_KEY;
257	return &MAX_KEY;
258}
259
260/* Get delimiting key of the buffer at the path and its right neighbor. */
261inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
262					   const struct super_block *sb)
263{
264	int position, path_offset = chk_path->path_length;
265	struct buffer_head *parent;
266
267	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
268	       "PAP-5030: invalid offset in the path");
269
270	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
271
272		RFALSE(!buffer_uptodate
273		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
274		       "PAP-5040: parent is not uptodate");
275
276		/* Parent at the path is not in the tree now. */
277		if (!B_IS_IN_TREE
278		    (parent =
279		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
280			return &MIN_KEY;
281		/* Check whether position in the parent is correct. */
282		if ((position =
283		     PATH_OFFSET_POSITION(chk_path,
284					  path_offset)) >
285		    B_NR_ITEMS(parent))
286			return &MIN_KEY;
287		/*
288		 * Check whether parent at the path really points
289		 * to the child.
290		 */
291		if (B_N_CHILD_NUM(parent, position) !=
292		    PATH_OFFSET_PBUFFER(chk_path,
293					path_offset + 1)->b_blocknr)
294			return &MIN_KEY;
295
296		/*
297		 * Return delimiting key if position in the parent
298		 * is not the last one.
299		 */
300		if (position != B_NR_ITEMS(parent))
301			return internal_key(parent, position);
302	}
303
304	/* Return MAX_KEY if we are in the root of the buffer tree. */
305	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
306	    b_blocknr == SB_ROOT_BLOCK(sb))
307		return &MAX_KEY;
308	return &MIN_KEY;
309}
310
311/*
312 * Check whether a key is contained in the tree rooted from a buffer at a path.
313 * This works by looking at the left and right delimiting keys for the buffer
314 * in the last path_element in the path.  These delimiting keys are stored
315 * at least one level above that buffer in the tree. If the buffer is the
316 * first or last node in the tree order then one of the delimiting keys may
317 * be absent, and in this case get_lkey and get_rkey return a special key
318 * which is MIN_KEY or MAX_KEY.
319 */
320static inline int key_in_buffer(
321				/* Path which should be checked. */
322				struct treepath *chk_path,
323				/* Key which should be checked. */
324				const struct cpu_key *key,
325				struct super_block *sb
326    )
327{
328
329	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
330	       || chk_path->path_length > MAX_HEIGHT,
331	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
332	       key, chk_path->path_length);
333	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
334	       "PAP-5060: device must not be NODEV");
335
336	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
337		/* left delimiting key is bigger, that the key we look for */
338		return 0;
339	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
340	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
341		/* key must be less than right delimitiing key */
342		return 0;
343	return 1;
344}
345
346int reiserfs_check_path(struct treepath *p)
347{
348	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
349	       "path not properly relsed");
350	return 0;
351}
352
353/*
354 * Drop the reference to each buffer in a path and restore
355 * dirty bits clean when preparing the buffer for the log.
356 * This version should only be called from fix_nodes()
357 */
358void pathrelse_and_restore(struct super_block *sb,
359			   struct treepath *search_path)
360{
361	int path_offset = search_path->path_length;
362
363	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
364	       "clm-4000: invalid path offset");
365
366	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
367		struct buffer_head *bh;
368		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
369		reiserfs_restore_prepared_buffer(sb, bh);
370		brelse(bh);
371	}
372	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
373}
374
375/* Drop the reference to each buffer in a path */
376void pathrelse(struct treepath *search_path)
377{
378	int path_offset = search_path->path_length;
379
380	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
381	       "PAP-5090: invalid path offset");
382
383	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
384		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
385
386	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
387}
388
389static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
390{
391	struct block_head *blkh;
392	struct item_head *ih;
393	int used_space;
394	int prev_location;
395	int i;
396	int nr;
397
398	blkh = (struct block_head *)buf;
399	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
400		reiserfs_warning(NULL, "reiserfs-5080",
401				 "this should be caught earlier");
402		return 0;
403	}
404
405	nr = blkh_nr_item(blkh);
406	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
407		/* item number is too big or too small */
408		reiserfs_warning(NULL, "reiserfs-5081",
409				 "nr_item seems wrong: %z", bh);
410		return 0;
411	}
412	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
413	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
414
415	/* free space does not match to calculated amount of use space */
416	if (used_space != blocksize - blkh_free_space(blkh)) {
417		reiserfs_warning(NULL, "reiserfs-5082",
418				 "free space seems wrong: %z", bh);
419		return 0;
420	}
421	/*
422	 * FIXME: it is_leaf will hit performance too much - we may have
423	 * return 1 here
424	 */
425
426	/* check tables of item heads */
427	ih = (struct item_head *)(buf + BLKH_SIZE);
428	prev_location = blocksize;
429	for (i = 0; i < nr; i++, ih++) {
430		if (le_ih_k_type(ih) == TYPE_ANY) {
431			reiserfs_warning(NULL, "reiserfs-5083",
432					 "wrong item type for item %h",
433					 ih);
434			return 0;
435		}
436		if (ih_location(ih) >= blocksize
437		    || ih_location(ih) < IH_SIZE * nr) {
438			reiserfs_warning(NULL, "reiserfs-5084",
439					 "item location seems wrong: %h",
440					 ih);
441			return 0;
442		}
443		if (ih_item_len(ih) < 1
444		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
445			reiserfs_warning(NULL, "reiserfs-5085",
446					 "item length seems wrong: %h",
447					 ih);
448			return 0;
449		}
450		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
451			reiserfs_warning(NULL, "reiserfs-5086",
452					 "item location seems wrong "
453					 "(second one): %h", ih);
454			return 0;
455		}
456		prev_location = ih_location(ih);
457	}
458
459	/* one may imagine many more checks */
460	return 1;
461}
462
463/* returns 1 if buf looks like an internal node, 0 otherwise */
464static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
465{
466	struct block_head *blkh;
467	int nr;
468	int used_space;
469
470	blkh = (struct block_head *)buf;
471	nr = blkh_level(blkh);
472	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
473		/* this level is not possible for internal nodes */
474		reiserfs_warning(NULL, "reiserfs-5087",
475				 "this should be caught earlier");
476		return 0;
477	}
478
479	nr = blkh_nr_item(blkh);
480	/* for internal which is not root we might check min number of keys */
481	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
482		reiserfs_warning(NULL, "reiserfs-5088",
483				 "number of key seems wrong: %z", bh);
484		return 0;
485	}
486
487	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
488	if (used_space != blocksize - blkh_free_space(blkh)) {
489		reiserfs_warning(NULL, "reiserfs-5089",
490				 "free space seems wrong: %z", bh);
491		return 0;
492	}
493
494	/* one may imagine many more checks */
495	return 1;
496}
497
498/*
499 * make sure that bh contains formatted node of reiserfs tree of
500 * 'level'-th level
501 */
502static int is_tree_node(struct buffer_head *bh, int level)
503{
504	if (B_LEVEL(bh) != level) {
505		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
506				 "not match to the expected one %d",
507				 B_LEVEL(bh), level);
508		return 0;
509	}
510	if (level == DISK_LEAF_NODE_LEVEL)
511		return is_leaf(bh->b_data, bh->b_size, bh);
512
513	return is_internal(bh->b_data, bh->b_size, bh);
514}
515
516#define SEARCH_BY_KEY_READA 16
517
518/*
519 * The function is NOT SCHEDULE-SAFE!
520 * It might unlock the write lock if we needed to wait for a block
521 * to be read. Note that in this case it won't recover the lock to avoid
522 * high contention resulting from too much lock requests, especially
523 * the caller (search_by_key) will perform other schedule-unsafe
524 * operations just after calling this function.
525 *
526 * @return depth of lock to be restored after read completes
527 */
528static int search_by_key_reada(struct super_block *s,
529				struct buffer_head **bh,
530				b_blocknr_t *b, int num)
531{
532	int i, j;
533	int depth = -1;
534
535	for (i = 0; i < num; i++) {
536		bh[i] = sb_getblk(s, b[i]);
537	}
538	/*
539	 * We are going to read some blocks on which we
540	 * have a reference. It's safe, though we might be
541	 * reading blocks concurrently changed if we release
542	 * the lock. But it's still fine because we check later
543	 * if the tree changed
544	 */
545	for (j = 0; j < i; j++) {
546		/*
547		 * note, this needs attention if we are getting rid of the BKL
548		 * you have to make sure the prepared bit isn't set on this
549		 * buffer
550		 */
551		if (!buffer_uptodate(bh[j])) {
552			if (depth == -1)
553				depth = reiserfs_write_unlock_nested(s);
554			ll_rw_block(READA, 1, bh + j);
555		}
556		brelse(bh[j]);
557	}
558	return depth;
559}
560
561/*
562 * This function fills up the path from the root to the leaf as it
563 * descends the tree looking for the key.  It uses reiserfs_bread to
564 * try to find buffers in the cache given their block number.  If it
565 * does not find them in the cache it reads them from disk.  For each
566 * node search_by_key finds using reiserfs_bread it then uses
567 * bin_search to look through that node.  bin_search will find the
568 * position of the block_number of the next node if it is looking
569 * through an internal node.  If it is looking through a leaf node
570 * bin_search will find the position of the item which has key either
571 * equal to given key, or which is the maximal key less than the given
572 * key.  search_by_key returns a path that must be checked for the
573 * correctness of the top of the path but need not be checked for the
574 * correctness of the bottom of the path
575 */
576/*
577 * search_by_key - search for key (and item) in stree
578 * @sb: superblock
579 * @key: pointer to key to search for
580 * @search_path: Allocated and initialized struct treepath; Returned filled
581 *		 on success.
582 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
583 *		stop at leaf level.
584 *
585 * The function is NOT SCHEDULE-SAFE!
586 */
587int search_by_key(struct super_block *sb, const struct cpu_key *key,
588		  struct treepath *search_path, int stop_level)
589{
590	b_blocknr_t block_number;
591	int expected_level;
592	struct buffer_head *bh;
593	struct path_element *last_element;
594	int node_level, retval;
595	int right_neighbor_of_leaf_node;
596	int fs_gen;
597	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599	int reada_count = 0;
600
601#ifdef CONFIG_REISERFS_CHECK
602	int repeat_counter = 0;
603#endif
604
605	PROC_INFO_INC(sb, search_by_key);
606
607	/*
608	 * As we add each node to a path we increase its count.  This means
609	 * that we must be careful to release all nodes in a path before we
610	 * either discard the path struct or re-use the path struct, as we
611	 * do here.
612	 */
613
614	pathrelse(search_path);
615
616	right_neighbor_of_leaf_node = 0;
617
618	/*
619	 * With each iteration of this loop we search through the items in the
620	 * current node, and calculate the next current node(next path element)
621	 * for the next iteration of this loop..
622	 */
623	block_number = SB_ROOT_BLOCK(sb);
624	expected_level = -1;
625	while (1) {
626
627#ifdef CONFIG_REISERFS_CHECK
628		if (!(++repeat_counter % 50000))
629			reiserfs_warning(sb, "PAP-5100",
630					 "%s: there were %d iterations of "
631					 "while loop looking for key %K",
632					 current->comm, repeat_counter,
633					 key);
634#endif
635
636		/* prep path to have another element added to it. */
637		last_element =
638		    PATH_OFFSET_PELEMENT(search_path,
639					 ++search_path->path_length);
640		fs_gen = get_generation(sb);
641
642		/*
643		 * Read the next tree node, and set the last element
644		 * in the path to have a pointer to it.
645		 */
646		if ((bh = last_element->pe_buffer =
647		     sb_getblk(sb, block_number))) {
648
649			/*
650			 * We'll need to drop the lock if we encounter any
651			 * buffers that need to be read. If all of them are
652			 * already up to date, we don't need to drop the lock.
653			 */
654			int depth = -1;
655
656			if (!buffer_uptodate(bh) && reada_count > 1)
657				depth = search_by_key_reada(sb, reada_bh,
658						    reada_blocks, reada_count);
659
660			if (!buffer_uptodate(bh) && depth == -1)
661				depth = reiserfs_write_unlock_nested(sb);
662
663			ll_rw_block(READ, 1, &bh);
664			wait_on_buffer(bh);
665
666			if (depth != -1)
667				reiserfs_write_lock_nested(sb, depth);
668			if (!buffer_uptodate(bh))
669				goto io_error;
670		} else {
671		      io_error:
672			search_path->path_length--;
673			pathrelse(search_path);
674			return IO_ERROR;
675		}
676		reada_count = 0;
677		if (expected_level == -1)
678			expected_level = SB_TREE_HEIGHT(sb);
679		expected_level--;
680
681		/*
682		 * It is possible that schedule occurred. We must check
683		 * whether the key to search is still in the tree rooted
684		 * from the current buffer. If not then repeat search
685		 * from the root.
686		 */
687		if (fs_changed(fs_gen, sb) &&
688		    (!B_IS_IN_TREE(bh) ||
689		     B_LEVEL(bh) != expected_level ||
690		     !key_in_buffer(search_path, key, sb))) {
691			PROC_INFO_INC(sb, search_by_key_fs_changed);
692			PROC_INFO_INC(sb, search_by_key_restarted);
693			PROC_INFO_INC(sb,
694				      sbk_restarted[expected_level - 1]);
695			pathrelse(search_path);
696
697			/*
698			 * Get the root block number so that we can
699			 * repeat the search starting from the root.
700			 */
701			block_number = SB_ROOT_BLOCK(sb);
702			expected_level = -1;
703			right_neighbor_of_leaf_node = 0;
704
705			/* repeat search from the root */
706			continue;
707		}
708
709		/*
710		 * only check that the key is in the buffer if key is not
711		 * equal to the MAX_KEY. Latter case is only possible in
712		 * "finish_unfinished()" processing during mount.
713		 */
714		RFALSE(comp_keys(&MAX_KEY, key) &&
715		       !key_in_buffer(search_path, key, sb),
716		       "PAP-5130: key is not in the buffer");
717#ifdef CONFIG_REISERFS_CHECK
718		if (REISERFS_SB(sb)->cur_tb) {
719			print_cur_tb("5140");
720			reiserfs_panic(sb, "PAP-5140",
721				       "schedule occurred in do_balance!");
722		}
723#endif
724
725		/*
726		 * make sure, that the node contents look like a node of
727		 * certain level
728		 */
729		if (!is_tree_node(bh, expected_level)) {
730			reiserfs_error(sb, "vs-5150",
731				       "invalid format found in block %ld. "
732				       "Fsck?", bh->b_blocknr);
733			pathrelse(search_path);
734			return IO_ERROR;
735		}
736
737		/* ok, we have acquired next formatted node in the tree */
738		node_level = B_LEVEL(bh);
739
740		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
741
742		RFALSE(node_level < stop_level,
743		       "vs-5152: tree level (%d) is less than stop level (%d)",
744		       node_level, stop_level);
745
746		retval = bin_search(key, item_head(bh, 0),
747				      B_NR_ITEMS(bh),
748				      (node_level ==
749				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
750				      KEY_SIZE,
751				      &(last_element->pe_position));
752		if (node_level == stop_level) {
753			return retval;
754		}
755
756		/* we are not in the stop level */
757		/*
758		 * item has been found, so we choose the pointer which
759		 * is to the right of the found one
760		 */
761		if (retval == ITEM_FOUND)
762			last_element->pe_position++;
763
764		/*
765		 * if item was not found we choose the position which is to
766		 * the left of the found item. This requires no code,
767		 * bin_search did it already.
768		 */
769
770		/*
771		 * So we have chosen a position in the current node which is
772		 * an internal node.  Now we calculate child block number by
773		 * position in the node.
774		 */
775		block_number =
776		    B_N_CHILD_NUM(bh, last_element->pe_position);
777
778		/*
779		 * if we are going to read leaf nodes, try for read
780		 * ahead as well
781		 */
782		if ((search_path->reada & PATH_READA) &&
783		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
784			int pos = last_element->pe_position;
785			int limit = B_NR_ITEMS(bh);
786			struct reiserfs_key *le_key;
787
788			if (search_path->reada & PATH_READA_BACK)
789				limit = 0;
790			while (reada_count < SEARCH_BY_KEY_READA) {
791				if (pos == limit)
792					break;
793				reada_blocks[reada_count++] =
794				    B_N_CHILD_NUM(bh, pos);
795				if (search_path->reada & PATH_READA_BACK)
796					pos--;
797				else
798					pos++;
799
800				/*
801				 * check to make sure we're in the same object
802				 */
803				le_key = internal_key(bh, pos);
804				if (le32_to_cpu(le_key->k_objectid) !=
805				    key->on_disk_key.k_objectid) {
806					break;
807				}
808			}
809		}
810	}
811}
812
813/*
814 * Form the path to an item and position in this item which contains
815 * file byte defined by key. If there is no such item
816 * corresponding to the key, we point the path to the item with
817 * maximal key less than key, and *pos_in_item is set to one
818 * past the last entry/byte in the item.  If searching for entry in a
819 * directory item, and it is not found, *pos_in_item is set to one
820 * entry more than the entry with maximal key which is less than the
821 * sought key.
822 *
823 * Note that if there is no entry in this same node which is one more,
824 * then we point to an imaginary entry.  for direct items, the
825 * position is in units of bytes, for indirect items the position is
826 * in units of blocknr entries, for directory items the position is in
827 * units of directory entries.
828 */
829/* The function is NOT SCHEDULE-SAFE! */
830int search_for_position_by_key(struct super_block *sb,
831			       /* Key to search (cpu variable) */
832			       const struct cpu_key *p_cpu_key,
833			       /* Filled up by this function. */
834			       struct treepath *search_path)
835{
836	struct item_head *p_le_ih;	/* pointer to on-disk structure */
837	int blk_size;
838	loff_t item_offset, offset;
839	struct reiserfs_dir_entry de;
840	int retval;
841
842	/* If searching for directory entry. */
843	if (is_direntry_cpu_key(p_cpu_key))
844		return search_by_entry_key(sb, p_cpu_key, search_path,
845					   &de);
846
847	/* If not searching for directory entry. */
848
849	/* If item is found. */
850	retval = search_item(sb, p_cpu_key, search_path);
851	if (retval == IO_ERROR)
852		return retval;
853	if (retval == ITEM_FOUND) {
854
855		RFALSE(!ih_item_len
856		       (item_head
857			(PATH_PLAST_BUFFER(search_path),
858			 PATH_LAST_POSITION(search_path))),
859		       "PAP-5165: item length equals zero");
860
861		pos_in_item(search_path) = 0;
862		return POSITION_FOUND;
863	}
864
865	RFALSE(!PATH_LAST_POSITION(search_path),
866	       "PAP-5170: position equals zero");
867
868	/* Item is not found. Set path to the previous item. */
869	p_le_ih =
870	    item_head(PATH_PLAST_BUFFER(search_path),
871			   --PATH_LAST_POSITION(search_path));
872	blk_size = sb->s_blocksize;
873
874	if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
875		return FILE_NOT_FOUND;
876	}
877
878	/* FIXME: quite ugly this far */
879
880	item_offset = le_ih_k_offset(p_le_ih);
881	offset = cpu_key_k_offset(p_cpu_key);
882
883	/* Needed byte is contained in the item pointed to by the path. */
884	if (item_offset <= offset &&
885	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
886		pos_in_item(search_path) = offset - item_offset;
887		if (is_indirect_le_ih(p_le_ih)) {
888			pos_in_item(search_path) /= blk_size;
889		}
890		return POSITION_FOUND;
891	}
892
893	/*
894	 * Needed byte is not contained in the item pointed to by the
895	 * path. Set pos_in_item out of the item.
896	 */
897	if (is_indirect_le_ih(p_le_ih))
898		pos_in_item(search_path) =
899		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
900	else
901		pos_in_item(search_path) = ih_item_len(p_le_ih);
902
903	return POSITION_NOT_FOUND;
904}
905
906/* Compare given item and item pointed to by the path. */
907int comp_items(const struct item_head *stored_ih, const struct treepath *path)
908{
909	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
910	struct item_head *ih;
911
912	/* Last buffer at the path is not in the tree. */
913	if (!B_IS_IN_TREE(bh))
914		return 1;
915
916	/* Last path position is invalid. */
917	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
918		return 1;
919
920	/* we need only to know, whether it is the same item */
921	ih = tp_item_head(path);
922	return memcmp(stored_ih, ih, IH_SIZE);
923}
924
925/* unformatted nodes are not logged anymore, ever.  This is safe now */
926#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
927
928/* block can not be forgotten as it is in I/O or held by someone */
929#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
930
931/* prepare for delete or cut of direct item */
932static inline int prepare_for_direct_item(struct treepath *path,
933					  struct item_head *le_ih,
934					  struct inode *inode,
935					  loff_t new_file_length, int *cut_size)
936{
937	loff_t round_len;
938
939	if (new_file_length == max_reiserfs_offset(inode)) {
940		/* item has to be deleted */
941		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
942		return M_DELETE;
943	}
944	/* new file gets truncated */
945	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
946		round_len = ROUND_UP(new_file_length);
947		/* this was new_file_length < le_ih ... */
948		if (round_len < le_ih_k_offset(le_ih)) {
949			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
950			return M_DELETE;	/* Delete this item. */
951		}
952		/* Calculate first position and size for cutting from item. */
953		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
954		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
955
956		return M_CUT;	/* Cut from this item. */
957	}
958
959	/* old file: items may have any length */
960
961	if (new_file_length < le_ih_k_offset(le_ih)) {
962		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
963		return M_DELETE;	/* Delete this item. */
964	}
965
966	/* Calculate first position and size for cutting from item. */
967	*cut_size = -(ih_item_len(le_ih) -
968		      (pos_in_item(path) =
969		       new_file_length + 1 - le_ih_k_offset(le_ih)));
970	return M_CUT;		/* Cut from this item. */
971}
972
973static inline int prepare_for_direntry_item(struct treepath *path,
974					    struct item_head *le_ih,
975					    struct inode *inode,
976					    loff_t new_file_length,
977					    int *cut_size)
978{
979	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
980	    new_file_length == max_reiserfs_offset(inode)) {
981		RFALSE(ih_entry_count(le_ih) != 2,
982		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
983		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
984		/* Delete the directory item containing "." and ".." entry. */
985		return M_DELETE;
986	}
987
988	if (ih_entry_count(le_ih) == 1) {
989		/*
990		 * Delete the directory item such as there is one record only
991		 * in this item
992		 */
993		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
994		return M_DELETE;
995	}
996
997	/* Cut one record from the directory item. */
998	*cut_size =
999	    -(DEH_SIZE +
1000	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1001	return M_CUT;
1002}
1003
1004#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1005
1006/*
1007 * If the path points to a directory or direct item, calculate mode
1008 * and the size cut, for balance.
1009 * If the path points to an indirect item, remove some number of its
1010 * unformatted nodes.
1011 * In case of file truncate calculate whether this item must be
1012 * deleted/truncated or last unformatted node of this item will be
1013 * converted to a direct item.
1014 * This function returns a determination of what balance mode the
1015 * calling function should employ.
1016 */
1017static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1018				      struct inode *inode,
1019				      struct treepath *path,
1020				      const struct cpu_key *item_key,
1021				      /*
1022				       * Number of unformatted nodes
1023				       * which were removed from end
1024				       * of the file.
1025				       */
1026				      int *removed,
1027				      int *cut_size,
1028				      /* MAX_KEY_OFFSET in case of delete. */
1029				      unsigned long long new_file_length
1030    )
1031{
1032	struct super_block *sb = inode->i_sb;
1033	struct item_head *p_le_ih = tp_item_head(path);
1034	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1035
1036	BUG_ON(!th->t_trans_id);
1037
1038	/* Stat_data item. */
1039	if (is_statdata_le_ih(p_le_ih)) {
1040
1041		RFALSE(new_file_length != max_reiserfs_offset(inode),
1042		       "PAP-5210: mode must be M_DELETE");
1043
1044		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1045		return M_DELETE;
1046	}
1047
1048	/* Directory item. */
1049	if (is_direntry_le_ih(p_le_ih))
1050		return prepare_for_direntry_item(path, p_le_ih, inode,
1051						 new_file_length,
1052						 cut_size);
1053
1054	/* Direct item. */
1055	if (is_direct_le_ih(p_le_ih))
1056		return prepare_for_direct_item(path, p_le_ih, inode,
1057					       new_file_length, cut_size);
1058
1059	/* Case of an indirect item. */
1060	{
1061	    int blk_size = sb->s_blocksize;
1062	    struct item_head s_ih;
1063	    int need_re_search;
1064	    int delete = 0;
1065	    int result = M_CUT;
1066	    int pos = 0;
1067
1068	    if ( new_file_length == max_reiserfs_offset (inode) ) {
1069		/*
1070		 * prepare_for_delete_or_cut() is called by
1071		 * reiserfs_delete_item()
1072		 */
1073		new_file_length = 0;
1074		delete = 1;
1075	    }
1076
1077	    do {
1078		need_re_search = 0;
1079		*cut_size = 0;
1080		bh = PATH_PLAST_BUFFER(path);
1081		copy_item_head(&s_ih, tp_item_head(path));
1082		pos = I_UNFM_NUM(&s_ih);
1083
1084		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1085		    __le32 *unfm;
1086		    __u32 block;
1087
1088		    /*
1089		     * Each unformatted block deletion may involve
1090		     * one additional bitmap block into the transaction,
1091		     * thereby the initial journal space reservation
1092		     * might not be enough.
1093		     */
1094		    if (!delete && (*cut_size) != 0 &&
1095			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1096			break;
1097
1098		    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1099		    block = get_block_num(unfm, 0);
1100
1101		    if (block != 0) {
1102			reiserfs_prepare_for_journal(sb, bh, 1);
1103			put_block_num(unfm, 0, 0);
1104			journal_mark_dirty(th, sb, bh);
1105			reiserfs_free_block(th, inode, block, 1);
1106		    }
1107
1108		    reiserfs_cond_resched(sb);
1109
1110		    if (item_moved (&s_ih, path))  {
1111			need_re_search = 1;
1112			break;
1113		    }
1114
1115		    pos --;
1116		    (*removed)++;
1117		    (*cut_size) -= UNFM_P_SIZE;
1118
1119		    if (pos == 0) {
1120			(*cut_size) -= IH_SIZE;
1121			result = M_DELETE;
1122			break;
1123		    }
1124		}
1125		/*
1126		 * a trick.  If the buffer has been logged, this will
1127		 * do nothing.  If we've broken the loop without logging
1128		 * it, it will restore the buffer
1129		 */
1130		reiserfs_restore_prepared_buffer(sb, bh);
1131	    } while (need_re_search &&
1132		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1133	    pos_in_item(path) = pos * UNFM_P_SIZE;
1134
1135	    if (*cut_size == 0) {
1136		/*
1137		 * Nothing was cut. maybe convert last unformatted node to the
1138		 * direct item?
1139		 */
1140		result = M_CONVERT;
1141	    }
1142	    return result;
1143	}
1144}
1145
1146/* Calculate number of bytes which will be deleted or cut during balance */
1147static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1148{
1149	int del_size;
1150	struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1151
1152	if (is_statdata_le_ih(p_le_ih))
1153		return 0;
1154
1155	del_size =
1156	    (mode ==
1157	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1158	if (is_direntry_le_ih(p_le_ih)) {
1159		/*
1160		 * return EMPTY_DIR_SIZE; We delete emty directories only.
1161		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1162		 * different empty size.  ick. FIXME, is this right?
1163		 */
1164		return del_size;
1165	}
1166
1167	if (is_indirect_le_ih(p_le_ih))
1168		del_size = (del_size / UNFM_P_SIZE) *
1169				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1170	return del_size;
1171}
1172
1173static void init_tb_struct(struct reiserfs_transaction_handle *th,
1174			   struct tree_balance *tb,
1175			   struct super_block *sb,
1176			   struct treepath *path, int size)
1177{
1178
1179	BUG_ON(!th->t_trans_id);
1180
1181	memset(tb, '\0', sizeof(struct tree_balance));
1182	tb->transaction_handle = th;
1183	tb->tb_sb = sb;
1184	tb->tb_path = path;
1185	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1186	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1187	tb->insert_size[0] = size;
1188}
1189
1190void padd_item(char *item, int total_length, int length)
1191{
1192	int i;
1193
1194	for (i = total_length; i > length;)
1195		item[--i] = 0;
1196}
1197
1198#ifdef REISERQUOTA_DEBUG
1199char key2type(struct reiserfs_key *ih)
1200{
1201	if (is_direntry_le_key(2, ih))
1202		return 'd';
1203	if (is_direct_le_key(2, ih))
1204		return 'D';
1205	if (is_indirect_le_key(2, ih))
1206		return 'i';
1207	if (is_statdata_le_key(2, ih))
1208		return 's';
1209	return 'u';
1210}
1211
1212char head2type(struct item_head *ih)
1213{
1214	if (is_direntry_le_ih(ih))
1215		return 'd';
1216	if (is_direct_le_ih(ih))
1217		return 'D';
1218	if (is_indirect_le_ih(ih))
1219		return 'i';
1220	if (is_statdata_le_ih(ih))
1221		return 's';
1222	return 'u';
1223}
1224#endif
1225
1226/*
1227 * Delete object item.
1228 * th       - active transaction handle
1229 * path     - path to the deleted item
1230 * item_key - key to search for the deleted item
1231 * indode   - used for updating i_blocks and quotas
1232 * un_bh    - NULL or unformatted node pointer
1233 */
1234int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1235			 struct treepath *path, const struct cpu_key *item_key,
1236			 struct inode *inode, struct buffer_head *un_bh)
1237{
1238	struct super_block *sb = inode->i_sb;
1239	struct tree_balance s_del_balance;
1240	struct item_head s_ih;
1241	struct item_head *q_ih;
1242	int quota_cut_bytes;
1243	int ret_value, del_size, removed;
1244	int depth;
1245
1246#ifdef CONFIG_REISERFS_CHECK
1247	char mode;
1248	int iter = 0;
1249#endif
1250
1251	BUG_ON(!th->t_trans_id);
1252
1253	init_tb_struct(th, &s_del_balance, sb, path,
1254		       0 /*size is unknown */ );
1255
1256	while (1) {
1257		removed = 0;
1258
1259#ifdef CONFIG_REISERFS_CHECK
1260		iter++;
1261		mode =
1262#endif
1263		    prepare_for_delete_or_cut(th, inode, path,
1264					      item_key, &removed,
1265					      &del_size,
1266					      max_reiserfs_offset(inode));
1267
1268		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1269
1270		copy_item_head(&s_ih, tp_item_head(path));
1271		s_del_balance.insert_size[0] = del_size;
1272
1273		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1274		if (ret_value != REPEAT_SEARCH)
1275			break;
1276
1277		PROC_INFO_INC(sb, delete_item_restarted);
1278
1279		/* file system changed, repeat search */
1280		ret_value =
1281		    search_for_position_by_key(sb, item_key, path);
1282		if (ret_value == IO_ERROR)
1283			break;
1284		if (ret_value == FILE_NOT_FOUND) {
1285			reiserfs_warning(sb, "vs-5340",
1286					 "no items of the file %K found",
1287					 item_key);
1288			break;
1289		}
1290	}			/* while (1) */
1291
1292	if (ret_value != CARRY_ON) {
1293		unfix_nodes(&s_del_balance);
1294		return 0;
1295	}
1296
1297	/* reiserfs_delete_item returns item length when success */
1298	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1299	q_ih = tp_item_head(path);
1300	quota_cut_bytes = ih_item_len(q_ih);
1301
1302	/*
1303	 * hack so the quota code doesn't have to guess if the file has a
1304	 * tail.  On tail insert, we allocate quota for 1 unformatted node.
1305	 * We test the offset because the tail might have been
1306	 * split into multiple items, and we only want to decrement for
1307	 * the unfm node once
1308	 */
1309	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1310		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1311			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1312		} else {
1313			quota_cut_bytes = 0;
1314		}
1315	}
1316
1317	if (un_bh) {
1318		int off;
1319		char *data;
1320
1321		/*
1322		 * We are in direct2indirect conversion, so move tail contents
1323		 * to the unformatted node
1324		 */
1325		/*
1326		 * note, we do the copy before preparing the buffer because we
1327		 * don't care about the contents of the unformatted node yet.
1328		 * the only thing we really care about is the direct item's
1329		 * data is in the unformatted node.
1330		 *
1331		 * Otherwise, we would have to call
1332		 * reiserfs_prepare_for_journal on the unformatted node,
1333		 * which might schedule, meaning we'd have to loop all the
1334		 * way back up to the start of the while loop.
1335		 *
1336		 * The unformatted node must be dirtied later on.  We can't be
1337		 * sure here if the entire tail has been deleted yet.
1338		 *
1339		 * un_bh is from the page cache (all unformatted nodes are
1340		 * from the page cache) and might be a highmem page.  So, we
1341		 * can't use un_bh->b_data.
1342		 * -clm
1343		 */
1344
1345		data = kmap_atomic(un_bh->b_page);
1346		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1347		memcpy(data + off,
1348		       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1349		       ret_value);
1350		kunmap_atomic(data);
1351	}
1352
1353	/* Perform balancing after all resources have been collected at once. */
1354	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1355
1356#ifdef REISERQUOTA_DEBUG
1357	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1358		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1359		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1360#endif
1361	depth = reiserfs_write_unlock_nested(inode->i_sb);
1362	dquot_free_space_nodirty(inode, quota_cut_bytes);
1363	reiserfs_write_lock_nested(inode->i_sb, depth);
1364
1365	/* Return deleted body length */
1366	return ret_value;
1367}
1368
1369/*
1370 * Summary Of Mechanisms For Handling Collisions Between Processes:
1371 *
1372 *  deletion of the body of the object is performed by iput(), with the
1373 *  result that if multiple processes are operating on a file, the
1374 *  deletion of the body of the file is deferred until the last process
1375 *  that has an open inode performs its iput().
1376 *
1377 *  writes and truncates are protected from collisions by use of
1378 *  semaphores.
1379 *
1380 *  creates, linking, and mknod are protected from collisions with other
1381 *  processes by making the reiserfs_add_entry() the last step in the
1382 *  creation, and then rolling back all changes if there was a collision.
1383 *  - Hans
1384*/
1385
1386/* this deletes item which never gets split */
1387void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1388				struct inode *inode, struct reiserfs_key *key)
1389{
1390	struct super_block *sb = th->t_super;
1391	struct tree_balance tb;
1392	INITIALIZE_PATH(path);
1393	int item_len = 0;
1394	int tb_init = 0;
1395	struct cpu_key cpu_key;
1396	int retval;
1397	int quota_cut_bytes = 0;
1398
1399	BUG_ON(!th->t_trans_id);
1400
1401	le_key2cpu_key(&cpu_key, key);
1402
1403	while (1) {
1404		retval = search_item(th->t_super, &cpu_key, &path);
1405		if (retval == IO_ERROR) {
1406			reiserfs_error(th->t_super, "vs-5350",
1407				       "i/o failure occurred trying "
1408				       "to delete %K", &cpu_key);
1409			break;
1410		}
1411		if (retval != ITEM_FOUND) {
1412			pathrelse(&path);
1413			/*
1414			 * No need for a warning, if there is just no free
1415			 * space to insert '..' item into the
1416			 * newly-created subdir
1417			 */
1418			if (!
1419			    ((unsigned long long)
1420			     GET_HASH_VALUE(le_key_k_offset
1421					    (le_key_version(key), key)) == 0
1422			     && (unsigned long long)
1423			     GET_GENERATION_NUMBER(le_key_k_offset
1424						   (le_key_version(key),
1425						    key)) == 1))
1426				reiserfs_warning(th->t_super, "vs-5355",
1427						 "%k not found", key);
1428			break;
1429		}
1430		if (!tb_init) {
1431			tb_init = 1;
1432			item_len = ih_item_len(tp_item_head(&path));
1433			init_tb_struct(th, &tb, th->t_super, &path,
1434				       -(IH_SIZE + item_len));
1435		}
1436		quota_cut_bytes = ih_item_len(tp_item_head(&path));
1437
1438		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1439		if (retval == REPEAT_SEARCH) {
1440			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1441			continue;
1442		}
1443
1444		if (retval == CARRY_ON) {
1445			do_balance(&tb, NULL, NULL, M_DELETE);
1446			/*
1447			 * Should we count quota for item? (we don't
1448			 * count quotas for save-links)
1449			 */
1450			if (inode) {
1451				int depth;
1452#ifdef REISERQUOTA_DEBUG
1453				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1454					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1455					       quota_cut_bytes, inode->i_uid,
1456					       key2type(key));
1457#endif
1458				depth = reiserfs_write_unlock_nested(sb);
1459				dquot_free_space_nodirty(inode,
1460							 quota_cut_bytes);
1461				reiserfs_write_lock_nested(sb, depth);
1462			}
1463			break;
1464		}
1465
1466		/* IO_ERROR, NO_DISK_SPACE, etc */
1467		reiserfs_warning(th->t_super, "vs-5360",
1468				 "could not delete %K due to fix_nodes failure",
1469				 &cpu_key);
1470		unfix_nodes(&tb);
1471		break;
1472	}
1473
1474	reiserfs_check_path(&path);
1475}
1476
1477int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1478			   struct inode *inode)
1479{
1480	int err;
1481	inode->i_size = 0;
1482	BUG_ON(!th->t_trans_id);
1483
1484	/* for directory this deletes item containing "." and ".." */
1485	err =
1486	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1487	if (err)
1488		return err;
1489
1490#if defined( USE_INODE_GENERATION_COUNTER )
1491	if (!old_format_only(th->t_super)) {
1492		__le32 *inode_generation;
1493
1494		inode_generation =
1495		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1496		le32_add_cpu(inode_generation, 1);
1497	}
1498/* USE_INODE_GENERATION_COUNTER */
1499#endif
1500	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1501
1502	return err;
1503}
1504
1505static void unmap_buffers(struct page *page, loff_t pos)
1506{
1507	struct buffer_head *bh;
1508	struct buffer_head *head;
1509	struct buffer_head *next;
1510	unsigned long tail_index;
1511	unsigned long cur_index;
1512
1513	if (page) {
1514		if (page_has_buffers(page)) {
1515			tail_index = pos & (PAGE_CACHE_SIZE - 1);
1516			cur_index = 0;
1517			head = page_buffers(page);
1518			bh = head;
1519			do {
1520				next = bh->b_this_page;
1521
1522				/*
1523				 * we want to unmap the buffers that contain
1524				 * the tail, and all the buffers after it
1525				 * (since the tail must be at the end of the
1526				 * file).  We don't want to unmap file data
1527				 * before the tail, since it might be dirty
1528				 * and waiting to reach disk
1529				 */
1530				cur_index += bh->b_size;
1531				if (cur_index > tail_index) {
1532					reiserfs_unmap_buffer(bh);
1533				}
1534				bh = next;
1535			} while (bh != head);
1536		}
1537	}
1538}
1539
1540static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1541				    struct inode *inode,
1542				    struct page *page,
1543				    struct treepath *path,
1544				    const struct cpu_key *item_key,
1545				    loff_t new_file_size, char *mode)
1546{
1547	struct super_block *sb = inode->i_sb;
1548	int block_size = sb->s_blocksize;
1549	int cut_bytes;
1550	BUG_ON(!th->t_trans_id);
1551	BUG_ON(new_file_size != inode->i_size);
1552
1553	/*
1554	 * the page being sent in could be NULL if there was an i/o error
1555	 * reading in the last block.  The user will hit problems trying to
1556	 * read the file, but for now we just skip the indirect2direct
1557	 */
1558	if (atomic_read(&inode->i_count) > 1 ||
1559	    !tail_has_to_be_packed(inode) ||
1560	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1561		/* leave tail in an unformatted node */
1562		*mode = M_SKIP_BALANCING;
1563		cut_bytes =
1564		    block_size - (new_file_size & (block_size - 1));
1565		pathrelse(path);
1566		return cut_bytes;
1567	}
1568
1569	/* Perform the conversion to a direct_item. */
1570	return indirect2direct(th, inode, page, path, item_key,
1571			       new_file_size, mode);
1572}
1573
1574/*
1575 * we did indirect_to_direct conversion. And we have inserted direct
1576 * item successesfully, but there were no disk space to cut unfm
1577 * pointer being converted. Therefore we have to delete inserted
1578 * direct item(s)
1579 */
1580static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1581					 struct inode *inode, struct treepath *path)
1582{
1583	struct cpu_key tail_key;
1584	int tail_len;
1585	int removed;
1586	BUG_ON(!th->t_trans_id);
1587
1588	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1589	tail_key.key_length = 4;
1590
1591	tail_len =
1592	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1593	while (tail_len) {
1594		/* look for the last byte of the tail */
1595		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1596		    POSITION_NOT_FOUND)
1597			reiserfs_panic(inode->i_sb, "vs-5615",
1598				       "found invalid item");
1599		RFALSE(path->pos_in_item !=
1600		       ih_item_len(tp_item_head(path)) - 1,
1601		       "vs-5616: appended bytes found");
1602		PATH_LAST_POSITION(path)--;
1603
1604		removed =
1605		    reiserfs_delete_item(th, path, &tail_key, inode,
1606					 NULL /*unbh not needed */ );
1607		RFALSE(removed <= 0
1608		       || removed > tail_len,
1609		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1610		       tail_len, removed);
1611		tail_len -= removed;
1612		set_cpu_key_k_offset(&tail_key,
1613				     cpu_key_k_offset(&tail_key) - removed);
1614	}
1615	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1616			 "conversion has been rolled back due to "
1617			 "lack of disk space");
1618	mark_inode_dirty(inode);
1619}
1620
1621/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1622int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1623			   struct treepath *path,
1624			   struct cpu_key *item_key,
1625			   struct inode *inode,
1626			   struct page *page, loff_t new_file_size)
1627{
1628	struct super_block *sb = inode->i_sb;
1629	/*
1630	 * Every function which is going to call do_balance must first
1631	 * create a tree_balance structure.  Then it must fill up this
1632	 * structure by using the init_tb_struct and fix_nodes functions.
1633	 * After that we can make tree balancing.
1634	 */
1635	struct tree_balance s_cut_balance;
1636	struct item_head *p_le_ih;
1637	int cut_size = 0;	/* Amount to be cut. */
1638	int ret_value = CARRY_ON;
1639	int removed = 0;	/* Number of the removed unformatted nodes. */
1640	int is_inode_locked = 0;
1641	char mode;		/* Mode of the balance. */
1642	int retval2 = -1;
1643	int quota_cut_bytes;
1644	loff_t tail_pos = 0;
1645	int depth;
1646
1647	BUG_ON(!th->t_trans_id);
1648
1649	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1650		       cut_size);
1651
1652	/*
1653	 * Repeat this loop until we either cut the item without needing
1654	 * to balance, or we fix_nodes without schedule occurring
1655	 */
1656	while (1) {
1657		/*
1658		 * Determine the balance mode, position of the first byte to
1659		 * be cut, and size to be cut.  In case of the indirect item
1660		 * free unformatted nodes which are pointed to by the cut
1661		 * pointers.
1662		 */
1663
1664		mode =
1665		    prepare_for_delete_or_cut(th, inode, path,
1666					      item_key, &removed,
1667					      &cut_size, new_file_size);
1668		if (mode == M_CONVERT) {
1669			/*
1670			 * convert last unformatted node to direct item or
1671			 * leave tail in the unformatted node
1672			 */
1673			RFALSE(ret_value != CARRY_ON,
1674			       "PAP-5570: can not convert twice");
1675
1676			ret_value =
1677			    maybe_indirect_to_direct(th, inode, page,
1678						     path, item_key,
1679						     new_file_size, &mode);
1680			if (mode == M_SKIP_BALANCING)
1681				/* tail has been left in the unformatted node */
1682				return ret_value;
1683
1684			is_inode_locked = 1;
1685
1686			/*
1687			 * removing of last unformatted node will
1688			 * change value we have to return to truncate.
1689			 * Save it
1690			 */
1691			retval2 = ret_value;
1692
1693			/*
1694			 * So, we have performed the first part of the
1695			 * conversion:
1696			 * inserting the new direct item.  Now we are
1697			 * removing the last unformatted node pointer.
1698			 * Set key to search for it.
1699			 */
1700			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1701			item_key->key_length = 4;
1702			new_file_size -=
1703			    (new_file_size & (sb->s_blocksize - 1));
1704			tail_pos = new_file_size;
1705			set_cpu_key_k_offset(item_key, new_file_size + 1);
1706			if (search_for_position_by_key
1707			    (sb, item_key,
1708			     path) == POSITION_NOT_FOUND) {
1709				print_block(PATH_PLAST_BUFFER(path), 3,
1710					    PATH_LAST_POSITION(path) - 1,
1711					    PATH_LAST_POSITION(path) + 1);
1712				reiserfs_panic(sb, "PAP-5580", "item to "
1713					       "convert does not exist (%K)",
1714					       item_key);
1715			}
1716			continue;
1717		}
1718		if (cut_size == 0) {
1719			pathrelse(path);
1720			return 0;
1721		}
1722
1723		s_cut_balance.insert_size[0] = cut_size;
1724
1725		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1726		if (ret_value != REPEAT_SEARCH)
1727			break;
1728
1729		PROC_INFO_INC(sb, cut_from_item_restarted);
1730
1731		ret_value =
1732		    search_for_position_by_key(sb, item_key, path);
1733		if (ret_value == POSITION_FOUND)
1734			continue;
1735
1736		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1737				 item_key);
1738		unfix_nodes(&s_cut_balance);
1739		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1740	}			/* while */
1741
1742	/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1743	if (ret_value != CARRY_ON) {
1744		if (is_inode_locked) {
1745			/*
1746			 * FIXME: this seems to be not needed: we are always
1747			 * able to cut item
1748			 */
1749			indirect_to_direct_roll_back(th, inode, path);
1750		}
1751		if (ret_value == NO_DISK_SPACE)
1752			reiserfs_warning(sb, "reiserfs-5092",
1753					 "NO_DISK_SPACE");
1754		unfix_nodes(&s_cut_balance);
1755		return -EIO;
1756	}
1757
1758	/* go ahead and perform balancing */
1759
1760	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1761
1762	/* Calculate number of bytes that need to be cut from the item. */
1763	quota_cut_bytes =
1764	    (mode ==
1765	     M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1766	    insert_size[0];
1767	if (retval2 == -1)
1768		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1769	else
1770		ret_value = retval2;
1771
1772	/*
1773	 * For direct items, we only change the quota when deleting the last
1774	 * item.
1775	 */
1776	p_le_ih = tp_item_head(s_cut_balance.tb_path);
1777	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1778		if (mode == M_DELETE &&
1779		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1780		    1) {
1781			/* FIXME: this is to keep 3.5 happy */
1782			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1783			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1784		} else {
1785			quota_cut_bytes = 0;
1786		}
1787	}
1788#ifdef CONFIG_REISERFS_CHECK
1789	if (is_inode_locked) {
1790		struct item_head *le_ih =
1791		    tp_item_head(s_cut_balance.tb_path);
1792		/*
1793		 * we are going to complete indirect2direct conversion. Make
1794		 * sure, that we exactly remove last unformatted node pointer
1795		 * of the item
1796		 */
1797		if (!is_indirect_le_ih(le_ih))
1798			reiserfs_panic(sb, "vs-5652",
1799				       "item must be indirect %h", le_ih);
1800
1801		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1802			reiserfs_panic(sb, "vs-5653", "completing "
1803				       "indirect2direct conversion indirect "
1804				       "item %h being deleted must be of "
1805				       "4 byte long", le_ih);
1806
1807		if (mode == M_CUT
1808		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1809			reiserfs_panic(sb, "vs-5654", "can not complete "
1810				       "indirect2direct conversion of %h "
1811				       "(CUT, insert_size==%d)",
1812				       le_ih, s_cut_balance.insert_size[0]);
1813		}
1814		/*
1815		 * it would be useful to make sure, that right neighboring
1816		 * item is direct item of this file
1817		 */
1818	}
1819#endif
1820
1821	do_balance(&s_cut_balance, NULL, NULL, mode);
1822	if (is_inode_locked) {
1823		/*
1824		 * we've done an indirect->direct conversion.  when the
1825		 * data block was freed, it was removed from the list of
1826		 * blocks that must be flushed before the transaction
1827		 * commits, make sure to unmap and invalidate it
1828		 */
1829		unmap_buffers(page, tail_pos);
1830		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1831	}
1832#ifdef REISERQUOTA_DEBUG
1833	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1834		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1835		       quota_cut_bytes, inode->i_uid, '?');
1836#endif
1837	depth = reiserfs_write_unlock_nested(sb);
1838	dquot_free_space_nodirty(inode, quota_cut_bytes);
1839	reiserfs_write_lock_nested(sb, depth);
1840	return ret_value;
1841}
1842
1843static void truncate_directory(struct reiserfs_transaction_handle *th,
1844			       struct inode *inode)
1845{
1846	BUG_ON(!th->t_trans_id);
1847	if (inode->i_nlink)
1848		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1849
1850	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1851	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1852	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1853	reiserfs_update_sd(th, inode);
1854	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1855	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1856}
1857
1858/*
1859 * Truncate file to the new size. Note, this must be called with a
1860 * transaction already started
1861 */
1862int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1863			 struct inode *inode,	/* ->i_size contains new size */
1864			 struct page *page,	/* up to date for last block */
1865			 /*
1866			  * when it is called by file_release to convert
1867			  * the tail - no timestamps should be updated
1868			  */
1869			 int update_timestamps
1870    )
1871{
1872	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1873	struct item_head *p_le_ih;	/* Pointer to an item header. */
1874
1875	/* Key to search for a previous file item. */
1876	struct cpu_key s_item_key;
1877	loff_t file_size,	/* Old file size. */
1878	 new_file_size;	/* New file size. */
1879	int deleted;		/* Number of deleted or truncated bytes. */
1880	int retval;
1881	int err = 0;
1882
1883	BUG_ON(!th->t_trans_id);
1884	if (!
1885	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1886	     || S_ISLNK(inode->i_mode)))
1887		return 0;
1888
1889	/* deletion of directory - no need to update timestamps */
1890	if (S_ISDIR(inode->i_mode)) {
1891		truncate_directory(th, inode);
1892		return 0;
1893	}
1894
1895	/* Get new file size. */
1896	new_file_size = inode->i_size;
1897
1898	/* FIXME: note, that key type is unimportant here */
1899	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1900		     TYPE_DIRECT, 3);
1901
1902	retval =
1903	    search_for_position_by_key(inode->i_sb, &s_item_key,
1904				       &s_search_path);
1905	if (retval == IO_ERROR) {
1906		reiserfs_error(inode->i_sb, "vs-5657",
1907			       "i/o failure occurred trying to truncate %K",
1908			       &s_item_key);
1909		err = -EIO;
1910		goto out;
1911	}
1912	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1913		reiserfs_error(inode->i_sb, "PAP-5660",
1914			       "wrong result %d of search for %K", retval,
1915			       &s_item_key);
1916
1917		err = -EIO;
1918		goto out;
1919	}
1920
1921	s_search_path.pos_in_item--;
1922
1923	/* Get real file size (total length of all file items) */
1924	p_le_ih = tp_item_head(&s_search_path);
1925	if (is_statdata_le_ih(p_le_ih))
1926		file_size = 0;
1927	else {
1928		loff_t offset = le_ih_k_offset(p_le_ih);
1929		int bytes =
1930		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1931
1932		/*
1933		 * this may mismatch with real file size: if last direct item
1934		 * had no padding zeros and last unformatted node had no free
1935		 * space, this file would have this file size
1936		 */
1937		file_size = offset + bytes - 1;
1938	}
1939	/*
1940	 * are we doing a full truncate or delete, if so
1941	 * kick in the reada code
1942	 */
1943	if (new_file_size == 0)
1944		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1945
1946	if (file_size == 0 || file_size < new_file_size) {
1947		goto update_and_out;
1948	}
1949
1950	/* Update key to search for the last file item. */
1951	set_cpu_key_k_offset(&s_item_key, file_size);
1952
1953	do {
1954		/* Cut or delete file item. */
1955		deleted =
1956		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1957					   inode, page, new_file_size);
1958		if (deleted < 0) {
1959			reiserfs_warning(inode->i_sb, "vs-5665",
1960					 "reiserfs_cut_from_item failed");
1961			reiserfs_check_path(&s_search_path);
1962			return 0;
1963		}
1964
1965		RFALSE(deleted > file_size,
1966		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1967		       deleted, file_size, &s_item_key);
1968
1969		/* Change key to search the last file item. */
1970		file_size -= deleted;
1971
1972		set_cpu_key_k_offset(&s_item_key, file_size);
1973
1974		/*
1975		 * While there are bytes to truncate and previous
1976		 * file item is presented in the tree.
1977		 */
1978
1979		/*
1980		 * This loop could take a really long time, and could log
1981		 * many more blocks than a transaction can hold.  So, we do
1982		 * a polite journal end here, and if the transaction needs
1983		 * ending, we make sure the file is consistent before ending
1984		 * the current trans and starting a new one
1985		 */
1986		if (journal_transaction_should_end(th, 0) ||
1987		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1988			int orig_len_alloc = th->t_blocks_allocated;
1989			pathrelse(&s_search_path);
1990
1991			if (update_timestamps) {
1992				inode->i_mtime = CURRENT_TIME_SEC;
1993				inode->i_ctime = CURRENT_TIME_SEC;
1994			}
1995			reiserfs_update_sd(th, inode);
1996
1997			err = journal_end(th, inode->i_sb, orig_len_alloc);
1998			if (err)
1999				goto out;
2000			err = journal_begin(th, inode->i_sb,
2001					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2002			if (err)
2003				goto out;
2004			reiserfs_update_inode_transaction(inode);
2005		}
2006	} while (file_size > ROUND_UP(new_file_size) &&
2007		 search_for_position_by_key(inode->i_sb, &s_item_key,
2008					    &s_search_path) == POSITION_FOUND);
2009
2010	RFALSE(file_size > ROUND_UP(new_file_size),
2011	       "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
2012	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2013
2014      update_and_out:
2015	if (update_timestamps) {
2016		/* this is truncate, not file closing */
2017		inode->i_mtime = CURRENT_TIME_SEC;
2018		inode->i_ctime = CURRENT_TIME_SEC;
2019	}
2020	reiserfs_update_sd(th, inode);
2021
2022      out:
2023	pathrelse(&s_search_path);
2024	return err;
2025}
2026
2027#ifdef CONFIG_REISERFS_CHECK
2028/* this makes sure, that we __append__, not overwrite or add holes */
2029static void check_research_for_paste(struct treepath *path,
2030				     const struct cpu_key *key)
2031{
2032	struct item_head *found_ih = tp_item_head(path);
2033
2034	if (is_direct_le_ih(found_ih)) {
2035		if (le_ih_k_offset(found_ih) +
2036		    op_bytes_number(found_ih,
2037				    get_last_bh(path)->b_size) !=
2038		    cpu_key_k_offset(key)
2039		    || op_bytes_number(found_ih,
2040				       get_last_bh(path)->b_size) !=
2041		    pos_in_item(path))
2042			reiserfs_panic(NULL, "PAP-5720", "found direct item "
2043				       "%h or position (%d) does not match "
2044				       "to key %K", found_ih,
2045				       pos_in_item(path), key);
2046	}
2047	if (is_indirect_le_ih(found_ih)) {
2048		if (le_ih_k_offset(found_ih) +
2049		    op_bytes_number(found_ih,
2050				    get_last_bh(path)->b_size) !=
2051		    cpu_key_k_offset(key)
2052		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2053		    || get_ih_free_space(found_ih) != 0)
2054			reiserfs_panic(NULL, "PAP-5730", "found indirect "
2055				       "item (%h) or position (%d) does not "
2056				       "match to key (%K)",
2057				       found_ih, pos_in_item(path), key);
2058	}
2059}
2060#endif				/* config reiserfs check */
2061
2062/*
2063 * Paste bytes to the existing item.
2064 * Returns bytes number pasted into the item.
2065 */
2066int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2067			     /* Path to the pasted item. */
2068			     struct treepath *search_path,
2069			     /* Key to search for the needed item. */
2070			     const struct cpu_key *key,
2071			     /* Inode item belongs to */
2072			     struct inode *inode,
2073			     /* Pointer to the bytes to paste. */
2074			     const char *body,
2075			     /* Size of pasted bytes. */
2076			     int pasted_size)
2077{
2078	struct super_block *sb = inode->i_sb;
2079	struct tree_balance s_paste_balance;
2080	int retval;
2081	int fs_gen;
2082	int depth;
2083
2084	BUG_ON(!th->t_trans_id);
2085
2086	fs_gen = get_generation(inode->i_sb);
2087
2088#ifdef REISERQUOTA_DEBUG
2089	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2090		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2091		       pasted_size, inode->i_uid,
2092		       key2type(&(key->on_disk_key)));
2093#endif
2094
2095	depth = reiserfs_write_unlock_nested(sb);
2096	retval = dquot_alloc_space_nodirty(inode, pasted_size);
2097	reiserfs_write_lock_nested(sb, depth);
2098	if (retval) {
2099		pathrelse(search_path);
2100		return retval;
2101	}
2102	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2103		       pasted_size);
2104#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2105	s_paste_balance.key = key->on_disk_key;
2106#endif
2107
2108	/* DQUOT_* can schedule, must check before the fix_nodes */
2109	if (fs_changed(fs_gen, inode->i_sb)) {
2110		goto search_again;
2111	}
2112
2113	while ((retval =
2114		fix_nodes(M_PASTE, &s_paste_balance, NULL,
2115			  body)) == REPEAT_SEARCH) {
2116	      search_again:
2117		/* file system changed while we were in the fix_nodes */
2118		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2119		retval =
2120		    search_for_position_by_key(th->t_super, key,
2121					       search_path);
2122		if (retval == IO_ERROR) {
2123			retval = -EIO;
2124			goto error_out;
2125		}
2126		if (retval == POSITION_FOUND) {
2127			reiserfs_warning(inode->i_sb, "PAP-5710",
2128					 "entry or pasted byte (%K) exists",
2129					 key);
2130			retval = -EEXIST;
2131			goto error_out;
2132		}
2133#ifdef CONFIG_REISERFS_CHECK
2134		check_research_for_paste(search_path, key);
2135#endif
2136	}
2137
2138	/*
2139	 * Perform balancing after all resources are collected by fix_nodes,
2140	 * and accessing them will not risk triggering schedule.
2141	 */
2142	if (retval == CARRY_ON) {
2143		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2144		return 0;
2145	}
2146	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2147      error_out:
2148	/* this also releases the path */
2149	unfix_nodes(&s_paste_balance);
2150#ifdef REISERQUOTA_DEBUG
2151	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2152		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2153		       pasted_size, inode->i_uid,
2154		       key2type(&(key->on_disk_key)));
2155#endif
2156	depth = reiserfs_write_unlock_nested(sb);
2157	dquot_free_space_nodirty(inode, pasted_size);
2158	reiserfs_write_lock_nested(sb, depth);
2159	return retval;
2160}
2161
2162/*
2163 * Insert new item into the buffer at the path.
2164 * th   - active transaction handle
2165 * path - path to the inserted item
2166 * ih   - pointer to the item header to insert
2167 * body - pointer to the bytes to insert
2168 */
2169int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2170			 struct treepath *path, const struct cpu_key *key,
2171			 struct item_head *ih, struct inode *inode,
2172			 const char *body)
2173{
2174	struct tree_balance s_ins_balance;
2175	int retval;
2176	int fs_gen = 0;
2177	int quota_bytes = 0;
2178
2179	BUG_ON(!th->t_trans_id);
2180
2181	if (inode) {		/* Do we count quotas for item? */
2182		int depth;
2183		fs_gen = get_generation(inode->i_sb);
2184		quota_bytes = ih_item_len(ih);
2185
2186		/*
2187		 * hack so the quota code doesn't have to guess
2188		 * if the file has a tail, links are always tails,
2189		 * so there's no guessing needed
2190		 */
2191		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2192			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2193#ifdef REISERQUOTA_DEBUG
2194		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2195			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2196			       quota_bytes, inode->i_uid, head2type(ih));
2197#endif
2198		/*
2199		 * We can't dirty inode here. It would be immediately
2200		 * written but appropriate stat item isn't inserted yet...
2201		 */
2202		depth = reiserfs_write_unlock_nested(inode->i_sb);
2203		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2204		reiserfs_write_lock_nested(inode->i_sb, depth);
2205		if (retval) {
2206			pathrelse(path);
2207			return retval;
2208		}
2209	}
2210	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2211		       IH_SIZE + ih_item_len(ih));
2212#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2213	s_ins_balance.key = key->on_disk_key;
2214#endif
2215	/*
2216	 * DQUOT_* can schedule, must check to be sure calling
2217	 * fix_nodes is safe
2218	 */
2219	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2220		goto search_again;
2221	}
2222
2223	while ((retval =
2224		fix_nodes(M_INSERT, &s_ins_balance, ih,
2225			  body)) == REPEAT_SEARCH) {
2226	      search_again:
2227		/* file system changed while we were in the fix_nodes */
2228		PROC_INFO_INC(th->t_super, insert_item_restarted);
2229		retval = search_item(th->t_super, key, path);
2230		if (retval == IO_ERROR) {
2231			retval = -EIO;
2232			goto error_out;
2233		}
2234		if (retval == ITEM_FOUND) {
2235			reiserfs_warning(th->t_super, "PAP-5760",
2236					 "key %K already exists in the tree",
2237					 key);
2238			retval = -EEXIST;
2239			goto error_out;
2240		}
2241	}
2242
2243	/* make balancing after all resources will be collected at a time */
2244	if (retval == CARRY_ON) {
2245		do_balance(&s_ins_balance, ih, body, M_INSERT);
2246		return 0;
2247	}
2248
2249	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2250      error_out:
2251	/* also releases the path */
2252	unfix_nodes(&s_ins_balance);
2253#ifdef REISERQUOTA_DEBUG
2254	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2255		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2256		       quota_bytes, inode->i_uid, head2type(ih));
2257#endif
2258	if (inode) {
2259		int depth = reiserfs_write_unlock_nested(inode->i_sb);
2260		dquot_free_space_nodirty(inode, quota_bytes);
2261		reiserfs_write_lock_nested(inode->i_sb, depth);
2262	}
2263	return retval;
2264}
2265