stree.c revision 5e69e3a4492ea5abfd2e8ddc575448becf28e4d9
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5/* 6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru 7 * Programm System Institute 8 * Pereslavl-Zalessky Russia 9 */ 10 11/* 12 * This file contains functions dealing with S+tree 13 * 14 * B_IS_IN_TREE 15 * copy_item_head 16 * comp_short_keys 17 * comp_keys 18 * comp_short_le_keys 19 * le_key2cpu_key 20 * comp_le_keys 21 * bin_search 22 * get_lkey 23 * get_rkey 24 * key_in_buffer 25 * decrement_bcount 26 * reiserfs_check_path 27 * pathrelse_and_restore 28 * pathrelse 29 * search_by_key_reada 30 * search_by_key 31 * search_for_position_by_key 32 * comp_items 33 * prepare_for_direct_item 34 * prepare_for_direntry_item 35 * prepare_for_delete_or_cut 36 * calc_deleted_bytes_number 37 * init_tb_struct 38 * padd_item 39 * reiserfs_delete_item 40 * reiserfs_delete_solid_item 41 * reiserfs_delete_object 42 * maybe_indirect_to_direct 43 * indirect_to_direct_roll_back 44 * reiserfs_cut_from_item 45 * truncate_directory 46 * reiserfs_do_truncate 47 * reiserfs_paste_into_item 48 * reiserfs_insert_item 49 */ 50 51#include <linux/time.h> 52#include <linux/string.h> 53#include <linux/pagemap.h> 54#include <linux/reiserfs_fs.h> 55#include <linux/buffer_head.h> 56#include <linux/quotaops.h> 57 58/* Does the buffer contain a disk block which is in the tree. */ 59inline int B_IS_IN_TREE(const struct buffer_head *bh) 60{ 61 62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT, 63 "PAP-1010: block (%b) has too big level (%z)", bh, bh); 64 65 return (B_LEVEL(bh) != FREE_LEVEL); 66} 67 68// 69// to gets item head in le form 70// 71inline void copy_item_head(struct item_head *to, 72 const struct item_head *from) 73{ 74 memcpy(to, from, IH_SIZE); 75} 76 77/* k1 is pointer to on-disk structure which is stored in little-endian 78 form. k2 is pointer to cpu variable. For key of items of the same 79 object this returns 0. 80 Returns: -1 if key1 < key2 81 0 if key1 == key2 82 1 if key1 > key2 */ 83inline int comp_short_keys(const struct reiserfs_key *le_key, 84 const struct cpu_key *cpu_key) 85{ 86 __u32 n; 87 n = le32_to_cpu(le_key->k_dir_id); 88 if (n < cpu_key->on_disk_key.k_dir_id) 89 return -1; 90 if (n > cpu_key->on_disk_key.k_dir_id) 91 return 1; 92 n = le32_to_cpu(le_key->k_objectid); 93 if (n < cpu_key->on_disk_key.k_objectid) 94 return -1; 95 if (n > cpu_key->on_disk_key.k_objectid) 96 return 1; 97 return 0; 98} 99 100/* k1 is pointer to on-disk structure which is stored in little-endian 101 form. k2 is pointer to cpu variable. 102 Compare keys using all 4 key fields. 103 Returns: -1 if key1 < key2 0 104 if key1 = key2 1 if key1 > key2 */ 105static inline int comp_keys(const struct reiserfs_key *le_key, 106 const struct cpu_key *cpu_key) 107{ 108 int retval; 109 110 retval = comp_short_keys(le_key, cpu_key); 111 if (retval) 112 return retval; 113 if (le_key_k_offset(le_key_version(le_key), le_key) < 114 cpu_key_k_offset(cpu_key)) 115 return -1; 116 if (le_key_k_offset(le_key_version(le_key), le_key) > 117 cpu_key_k_offset(cpu_key)) 118 return 1; 119 120 if (cpu_key->key_length == 3) 121 return 0; 122 123 /* this part is needed only when tail conversion is in progress */ 124 if (le_key_k_type(le_key_version(le_key), le_key) < 125 cpu_key_k_type(cpu_key)) 126 return -1; 127 128 if (le_key_k_type(le_key_version(le_key), le_key) > 129 cpu_key_k_type(cpu_key)) 130 return 1; 131 132 return 0; 133} 134 135inline int comp_short_le_keys(const struct reiserfs_key *key1, 136 const struct reiserfs_key *key2) 137{ 138 __u32 *k1_u32, *k2_u32; 139 int key_length = REISERFS_SHORT_KEY_LEN; 140 141 k1_u32 = (__u32 *) key1; 142 k2_u32 = (__u32 *) key2; 143 for (; key_length--; ++k1_u32, ++k2_u32) { 144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) 145 return -1; 146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) 147 return 1; 148 } 149 return 0; 150} 151 152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) 153{ 154 int version; 155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); 156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); 157 158 // find out version of the key 159 version = le_key_version(from); 160 to->version = version; 161 to->on_disk_key.k_offset = le_key_k_offset(version, from); 162 to->on_disk_key.k_type = le_key_k_type(version, from); 163} 164 165// this does not say which one is bigger, it only returns 1 if keys 166// are not equal, 0 otherwise 167inline int comp_le_keys(const struct reiserfs_key *k1, 168 const struct reiserfs_key *k2) 169{ 170 return memcmp(k1, k2, sizeof(struct reiserfs_key)); 171} 172 173/************************************************************************** 174 * Binary search toolkit function * 175 * Search for an item in the array by the item key * 176 * Returns: 1 if found, 0 if not found; * 177 * *pos = number of the searched element if found, else the * 178 * number of the first element that is larger than key. * 179 **************************************************************************/ 180/* For those not familiar with binary search: lbound is the leftmost item that it 181 could be, rbound the rightmost item that it could be. We examine the item 182 halfway between lbound and rbound, and that tells us either that we can increase 183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that 184 there are no possible items, and we have not found it. With each examination we 185 cut the number of possible items it could be by one more than half rounded down, 186 or we find it. */ 187static inline int bin_search(const void *key, /* Key to search for. */ 188 const void *base, /* First item in the array. */ 189 int num, /* Number of items in the array. */ 190 int width, /* Item size in the array. 191 searched. Lest the reader be 192 confused, note that this is crafted 193 as a general function, and when it 194 is applied specifically to the array 195 of item headers in a node, width 196 is actually the item header size not 197 the item size. */ 198 int *pos /* Number of the searched for element. */ 199 ) 200{ 201 int rbound, lbound, j; 202 203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2; 204 lbound <= rbound; j = (rbound + lbound) / 2) 205 switch (comp_keys 206 ((struct reiserfs_key *)((char *)base + j * width), 207 (struct cpu_key *)key)) { 208 case -1: 209 lbound = j + 1; 210 continue; 211 case 1: 212 rbound = j - 1; 213 continue; 214 case 0: 215 *pos = j; 216 return ITEM_FOUND; /* Key found in the array. */ 217 } 218 219 /* bin_search did not find given key, it returns position of key, 220 that is minimal and greater than the given one. */ 221 *pos = lbound; 222 return ITEM_NOT_FOUND; 223} 224 225#ifdef CONFIG_REISERFS_CHECK 226extern struct tree_balance *cur_tb; 227#endif 228 229/* Minimal possible key. It is never in the tree. */ 230const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; 231 232/* Maximal possible key. It is never in the tree. */ 233static const struct reiserfs_key MAX_KEY = { 234 __constant_cpu_to_le32(0xffffffff), 235 __constant_cpu_to_le32(0xffffffff), 236 {{__constant_cpu_to_le32(0xffffffff), 237 __constant_cpu_to_le32(0xffffffff)},} 238}; 239 240/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom 241 of the path, and going upwards. We must check the path's validity at each step. If the key is not in 242 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this 243 case we return a special key, either MIN_KEY or MAX_KEY. */ 244static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, 245 const struct super_block *sb) 246{ 247 int position, path_offset = chk_path->path_length; 248 struct buffer_head *parent; 249 250 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 251 "PAP-5010: invalid offset in the path"); 252 253 /* While not higher in path than first element. */ 254 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 255 256 RFALSE(!buffer_uptodate 257 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 258 "PAP-5020: parent is not uptodate"); 259 260 /* Parent at the path is not in the tree now. */ 261 if (!B_IS_IN_TREE 262 (parent = 263 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 264 return &MAX_KEY; 265 /* Check whether position in the parent is correct. */ 266 if ((position = 267 PATH_OFFSET_POSITION(chk_path, 268 path_offset)) > 269 B_NR_ITEMS(parent)) 270 return &MAX_KEY; 271 /* Check whether parent at the path really points to the child. */ 272 if (B_N_CHILD_NUM(parent, position) != 273 PATH_OFFSET_PBUFFER(chk_path, 274 path_offset + 1)->b_blocknr) 275 return &MAX_KEY; 276 /* Return delimiting key if position in the parent is not equal to zero. */ 277 if (position) 278 return B_N_PDELIM_KEY(parent, position - 1); 279 } 280 /* Return MIN_KEY if we are in the root of the buffer tree. */ 281 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 282 b_blocknr == SB_ROOT_BLOCK(sb)) 283 return &MIN_KEY; 284 return &MAX_KEY; 285} 286 287/* Get delimiting key of the buffer at the path and its right neighbor. */ 288inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 289 const struct super_block *sb) 290{ 291 int position, path_offset = chk_path->path_length; 292 struct buffer_head *parent; 293 294 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 295 "PAP-5030: invalid offset in the path"); 296 297 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 298 299 RFALSE(!buffer_uptodate 300 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 301 "PAP-5040: parent is not uptodate"); 302 303 /* Parent at the path is not in the tree now. */ 304 if (!B_IS_IN_TREE 305 (parent = 306 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 307 return &MIN_KEY; 308 /* Check whether position in the parent is correct. */ 309 if ((position = 310 PATH_OFFSET_POSITION(chk_path, 311 path_offset)) > 312 B_NR_ITEMS(parent)) 313 return &MIN_KEY; 314 /* Check whether parent at the path really points to the child. */ 315 if (B_N_CHILD_NUM(parent, position) != 316 PATH_OFFSET_PBUFFER(chk_path, 317 path_offset + 1)->b_blocknr) 318 return &MIN_KEY; 319 /* Return delimiting key if position in the parent is not the last one. */ 320 if (position != B_NR_ITEMS(parent)) 321 return B_N_PDELIM_KEY(parent, position); 322 } 323 /* Return MAX_KEY if we are in the root of the buffer tree. */ 324 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 325 b_blocknr == SB_ROOT_BLOCK(sb)) 326 return &MAX_KEY; 327 return &MIN_KEY; 328} 329 330/* Check whether a key is contained in the tree rooted from a buffer at a path. */ 331/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in 332 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the 333 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in 334 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ 335static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */ 336 const struct cpu_key *key, /* Key which should be checked. */ 337 struct super_block *sb 338 ) 339{ 340 341 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET 342 || chk_path->path_length > MAX_HEIGHT, 343 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", 344 key, chk_path->path_length); 345 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, 346 "PAP-5060: device must not be NODEV"); 347 348 if (comp_keys(get_lkey(chk_path, sb), key) == 1) 349 /* left delimiting key is bigger, that the key we look for */ 350 return 0; 351 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ 352 if (comp_keys(get_rkey(chk_path, sb), key) != 1) 353 /* key must be less than right delimitiing key */ 354 return 0; 355 return 1; 356} 357 358int reiserfs_check_path(struct treepath *p) 359{ 360 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, 361 "path not properly relsed"); 362 return 0; 363} 364 365/* Drop the reference to each buffer in a path and restore 366 * dirty bits clean when preparing the buffer for the log. 367 * This version should only be called from fix_nodes() */ 368void pathrelse_and_restore(struct super_block *sb, 369 struct treepath *search_path) 370{ 371 int path_offset = search_path->path_length; 372 373 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 374 "clm-4000: invalid path offset"); 375 376 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { 377 struct buffer_head *bh; 378 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); 379 reiserfs_restore_prepared_buffer(sb, bh); 380 brelse(bh); 381 } 382 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 383} 384 385/* Drop the reference to each buffer in a path */ 386void pathrelse(struct treepath *search_path) 387{ 388 int path_offset = search_path->path_length; 389 390 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 391 "PAP-5090: invalid path offset"); 392 393 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) 394 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); 395 396 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 397} 398 399static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) 400{ 401 struct block_head *blkh; 402 struct item_head *ih; 403 int used_space; 404 int prev_location; 405 int i; 406 int nr; 407 408 blkh = (struct block_head *)buf; 409 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { 410 reiserfs_warning(NULL, "reiserfs-5080", 411 "this should be caught earlier"); 412 return 0; 413 } 414 415 nr = blkh_nr_item(blkh); 416 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { 417 /* item number is too big or too small */ 418 reiserfs_warning(NULL, "reiserfs-5081", 419 "nr_item seems wrong: %z", bh); 420 return 0; 421 } 422 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; 423 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); 424 if (used_space != blocksize - blkh_free_space(blkh)) { 425 /* free space does not match to calculated amount of use space */ 426 reiserfs_warning(NULL, "reiserfs-5082", 427 "free space seems wrong: %z", bh); 428 return 0; 429 } 430 // FIXME: it is_leaf will hit performance too much - we may have 431 // return 1 here 432 433 /* check tables of item heads */ 434 ih = (struct item_head *)(buf + BLKH_SIZE); 435 prev_location = blocksize; 436 for (i = 0; i < nr; i++, ih++) { 437 if (le_ih_k_type(ih) == TYPE_ANY) { 438 reiserfs_warning(NULL, "reiserfs-5083", 439 "wrong item type for item %h", 440 ih); 441 return 0; 442 } 443 if (ih_location(ih) >= blocksize 444 || ih_location(ih) < IH_SIZE * nr) { 445 reiserfs_warning(NULL, "reiserfs-5084", 446 "item location seems wrong: %h", 447 ih); 448 return 0; 449 } 450 if (ih_item_len(ih) < 1 451 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { 452 reiserfs_warning(NULL, "reiserfs-5085", 453 "item length seems wrong: %h", 454 ih); 455 return 0; 456 } 457 if (prev_location - ih_location(ih) != ih_item_len(ih)) { 458 reiserfs_warning(NULL, "reiserfs-5086", 459 "item location seems wrong " 460 "(second one): %h", ih); 461 return 0; 462 } 463 prev_location = ih_location(ih); 464 } 465 466 // one may imagine much more checks 467 return 1; 468} 469 470/* returns 1 if buf looks like an internal node, 0 otherwise */ 471static int is_internal(char *buf, int blocksize, struct buffer_head *bh) 472{ 473 struct block_head *blkh; 474 int nr; 475 int used_space; 476 477 blkh = (struct block_head *)buf; 478 nr = blkh_level(blkh); 479 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { 480 /* this level is not possible for internal nodes */ 481 reiserfs_warning(NULL, "reiserfs-5087", 482 "this should be caught earlier"); 483 return 0; 484 } 485 486 nr = blkh_nr_item(blkh); 487 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { 488 /* for internal which is not root we might check min number of keys */ 489 reiserfs_warning(NULL, "reiserfs-5088", 490 "number of key seems wrong: %z", bh); 491 return 0; 492 } 493 494 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); 495 if (used_space != blocksize - blkh_free_space(blkh)) { 496 reiserfs_warning(NULL, "reiserfs-5089", 497 "free space seems wrong: %z", bh); 498 return 0; 499 } 500 // one may imagine much more checks 501 return 1; 502} 503 504// make sure that bh contains formatted node of reiserfs tree of 505// 'level'-th level 506static int is_tree_node(struct buffer_head *bh, int level) 507{ 508 if (B_LEVEL(bh) != level) { 509 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " 510 "not match to the expected one %d", 511 B_LEVEL(bh), level); 512 return 0; 513 } 514 if (level == DISK_LEAF_NODE_LEVEL) 515 return is_leaf(bh->b_data, bh->b_size, bh); 516 517 return is_internal(bh->b_data, bh->b_size, bh); 518} 519 520#define SEARCH_BY_KEY_READA 16 521 522/* The function is NOT SCHEDULE-SAFE! */ 523static void search_by_key_reada(struct super_block *s, 524 struct buffer_head **bh, 525 b_blocknr_t *b, int num) 526{ 527 int i, j; 528 529 for (i = 0; i < num; i++) { 530 bh[i] = sb_getblk(s, b[i]); 531 } 532 for (j = 0; j < i; j++) { 533 /* 534 * note, this needs attention if we are getting rid of the BKL 535 * you have to make sure the prepared bit isn't set on this buffer 536 */ 537 if (!buffer_uptodate(bh[j])) 538 ll_rw_block(READA, 1, bh + j); 539 brelse(bh[j]); 540 } 541} 542 543/************************************************************************** 544 * Algorithm SearchByKey * 545 * look for item in the Disk S+Tree by its key * 546 * Input: sb - super block * 547 * key - pointer to the key to search * 548 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR * 549 * search_path - path from the root to the needed leaf * 550 **************************************************************************/ 551 552/* This function fills up the path from the root to the leaf as it 553 descends the tree looking for the key. It uses reiserfs_bread to 554 try to find buffers in the cache given their block number. If it 555 does not find them in the cache it reads them from disk. For each 556 node search_by_key finds using reiserfs_bread it then uses 557 bin_search to look through that node. bin_search will find the 558 position of the block_number of the next node if it is looking 559 through an internal node. If it is looking through a leaf node 560 bin_search will find the position of the item which has key either 561 equal to given key, or which is the maximal key less than the given 562 key. search_by_key returns a path that must be checked for the 563 correctness of the top of the path but need not be checked for the 564 correctness of the bottom of the path */ 565/* The function is NOT SCHEDULE-SAFE! */ 566int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */ 567 struct treepath *search_path,/* This structure was 568 allocated and initialized 569 by the calling 570 function. It is filled up 571 by this function. */ 572 int stop_level /* How far down the tree to search. To 573 stop at leaf level - set to 574 DISK_LEAF_NODE_LEVEL */ 575 ) 576{ 577 b_blocknr_t block_number; 578 int expected_level; 579 struct buffer_head *bh; 580 struct path_element *last_element; 581 int node_level, retval; 582 int right_neighbor_of_leaf_node; 583 int fs_gen; 584 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; 585 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; 586 int reada_count = 0; 587 588#ifdef CONFIG_REISERFS_CHECK 589 int repeat_counter = 0; 590#endif 591 592 PROC_INFO_INC(sb, search_by_key); 593 594 /* As we add each node to a path we increase its count. This means that 595 we must be careful to release all nodes in a path before we either 596 discard the path struct or re-use the path struct, as we do here. */ 597 598 pathrelse(search_path); 599 600 right_neighbor_of_leaf_node = 0; 601 602 /* With each iteration of this loop we search through the items in the 603 current node, and calculate the next current node(next path element) 604 for the next iteration of this loop.. */ 605 block_number = SB_ROOT_BLOCK(sb); 606 expected_level = -1; 607 while (1) { 608 609#ifdef CONFIG_REISERFS_CHECK 610 if (!(++repeat_counter % 50000)) 611 reiserfs_warning(sb, "PAP-5100", 612 "%s: there were %d iterations of " 613 "while loop looking for key %K", 614 current->comm, repeat_counter, 615 key); 616#endif 617 618 /* prep path to have another element added to it. */ 619 last_element = 620 PATH_OFFSET_PELEMENT(search_path, 621 ++search_path->path_length); 622 fs_gen = get_generation(sb); 623 624 /* Read the next tree node, and set the last element in the path to 625 have a pointer to it. */ 626 if ((bh = last_element->pe_buffer = 627 sb_getblk(sb, block_number))) { 628 if (!buffer_uptodate(bh) && reada_count > 1) 629 search_by_key_reada(sb, reada_bh, 630 reada_blocks, reada_count); 631 ll_rw_block(READ, 1, &bh); 632 reiserfs_write_unlock(sb); 633 wait_on_buffer(bh); 634 reiserfs_write_lock(sb); 635 if (!buffer_uptodate(bh)) 636 goto io_error; 637 } else { 638 io_error: 639 search_path->path_length--; 640 pathrelse(search_path); 641 return IO_ERROR; 642 } 643 reada_count = 0; 644 if (expected_level == -1) 645 expected_level = SB_TREE_HEIGHT(sb); 646 expected_level--; 647 648 /* It is possible that schedule occurred. We must check whether the key 649 to search is still in the tree rooted from the current buffer. If 650 not then repeat search from the root. */ 651 if (fs_changed(fs_gen, sb) && 652 (!B_IS_IN_TREE(bh) || 653 B_LEVEL(bh) != expected_level || 654 !key_in_buffer(search_path, key, sb))) { 655 PROC_INFO_INC(sb, search_by_key_fs_changed); 656 PROC_INFO_INC(sb, search_by_key_restarted); 657 PROC_INFO_INC(sb, 658 sbk_restarted[expected_level - 1]); 659 pathrelse(search_path); 660 661 /* Get the root block number so that we can repeat the search 662 starting from the root. */ 663 block_number = SB_ROOT_BLOCK(sb); 664 expected_level = -1; 665 right_neighbor_of_leaf_node = 0; 666 667 /* repeat search from the root */ 668 continue; 669 } 670 671 /* only check that the key is in the buffer if key is not 672 equal to the MAX_KEY. Latter case is only possible in 673 "finish_unfinished()" processing during mount. */ 674 RFALSE(comp_keys(&MAX_KEY, key) && 675 !key_in_buffer(search_path, key, sb), 676 "PAP-5130: key is not in the buffer"); 677#ifdef CONFIG_REISERFS_CHECK 678 if (cur_tb) { 679 print_cur_tb("5140"); 680 reiserfs_panic(sb, "PAP-5140", 681 "schedule occurred in do_balance!"); 682 } 683#endif 684 685 // make sure, that the node contents look like a node of 686 // certain level 687 if (!is_tree_node(bh, expected_level)) { 688 reiserfs_error(sb, "vs-5150", 689 "invalid format found in block %ld. " 690 "Fsck?", bh->b_blocknr); 691 pathrelse(search_path); 692 return IO_ERROR; 693 } 694 695 /* ok, we have acquired next formatted node in the tree */ 696 node_level = B_LEVEL(bh); 697 698 PROC_INFO_BH_STAT(sb, bh, node_level - 1); 699 700 RFALSE(node_level < stop_level, 701 "vs-5152: tree level (%d) is less than stop level (%d)", 702 node_level, stop_level); 703 704 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0), 705 B_NR_ITEMS(bh), 706 (node_level == 707 DISK_LEAF_NODE_LEVEL) ? IH_SIZE : 708 KEY_SIZE, 709 &(last_element->pe_position)); 710 if (node_level == stop_level) { 711 return retval; 712 } 713 714 /* we are not in the stop level */ 715 if (retval == ITEM_FOUND) 716 /* item has been found, so we choose the pointer which is to the right of the found one */ 717 last_element->pe_position++; 718 719 /* if item was not found we choose the position which is to 720 the left of the found item. This requires no code, 721 bin_search did it already. */ 722 723 /* So we have chosen a position in the current node which is 724 an internal node. Now we calculate child block number by 725 position in the node. */ 726 block_number = 727 B_N_CHILD_NUM(bh, last_element->pe_position); 728 729 /* if we are going to read leaf nodes, try for read ahead as well */ 730 if ((search_path->reada & PATH_READA) && 731 node_level == DISK_LEAF_NODE_LEVEL + 1) { 732 int pos = last_element->pe_position; 733 int limit = B_NR_ITEMS(bh); 734 struct reiserfs_key *le_key; 735 736 if (search_path->reada & PATH_READA_BACK) 737 limit = 0; 738 while (reada_count < SEARCH_BY_KEY_READA) { 739 if (pos == limit) 740 break; 741 reada_blocks[reada_count++] = 742 B_N_CHILD_NUM(bh, pos); 743 if (search_path->reada & PATH_READA_BACK) 744 pos--; 745 else 746 pos++; 747 748 /* 749 * check to make sure we're in the same object 750 */ 751 le_key = B_N_PDELIM_KEY(bh, pos); 752 if (le32_to_cpu(le_key->k_objectid) != 753 key->on_disk_key.k_objectid) { 754 break; 755 } 756 } 757 } 758 } 759} 760 761/* Form the path to an item and position in this item which contains 762 file byte defined by key. If there is no such item 763 corresponding to the key, we point the path to the item with 764 maximal key less than key, and *pos_in_item is set to one 765 past the last entry/byte in the item. If searching for entry in a 766 directory item, and it is not found, *pos_in_item is set to one 767 entry more than the entry with maximal key which is less than the 768 sought key. 769 770 Note that if there is no entry in this same node which is one more, 771 then we point to an imaginary entry. for direct items, the 772 position is in units of bytes, for indirect items the position is 773 in units of blocknr entries, for directory items the position is in 774 units of directory entries. */ 775 776/* The function is NOT SCHEDULE-SAFE! */ 777int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */ 778 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */ 779 struct treepath *search_path /* Filled up by this function. */ 780 ) 781{ 782 struct item_head *p_le_ih; /* pointer to on-disk structure */ 783 int blk_size; 784 loff_t item_offset, offset; 785 struct reiserfs_dir_entry de; 786 int retval; 787 788 /* If searching for directory entry. */ 789 if (is_direntry_cpu_key(p_cpu_key)) 790 return search_by_entry_key(sb, p_cpu_key, search_path, 791 &de); 792 793 /* If not searching for directory entry. */ 794 795 /* If item is found. */ 796 retval = search_item(sb, p_cpu_key, search_path); 797 if (retval == IO_ERROR) 798 return retval; 799 if (retval == ITEM_FOUND) { 800 801 RFALSE(!ih_item_len 802 (B_N_PITEM_HEAD 803 (PATH_PLAST_BUFFER(search_path), 804 PATH_LAST_POSITION(search_path))), 805 "PAP-5165: item length equals zero"); 806 807 pos_in_item(search_path) = 0; 808 return POSITION_FOUND; 809 } 810 811 RFALSE(!PATH_LAST_POSITION(search_path), 812 "PAP-5170: position equals zero"); 813 814 /* Item is not found. Set path to the previous item. */ 815 p_le_ih = 816 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path), 817 --PATH_LAST_POSITION(search_path)); 818 blk_size = sb->s_blocksize; 819 820 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) { 821 return FILE_NOT_FOUND; 822 } 823 // FIXME: quite ugly this far 824 825 item_offset = le_ih_k_offset(p_le_ih); 826 offset = cpu_key_k_offset(p_cpu_key); 827 828 /* Needed byte is contained in the item pointed to by the path. */ 829 if (item_offset <= offset && 830 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { 831 pos_in_item(search_path) = offset - item_offset; 832 if (is_indirect_le_ih(p_le_ih)) { 833 pos_in_item(search_path) /= blk_size; 834 } 835 return POSITION_FOUND; 836 } 837 838 /* Needed byte is not contained in the item pointed to by the 839 path. Set pos_in_item out of the item. */ 840 if (is_indirect_le_ih(p_le_ih)) 841 pos_in_item(search_path) = 842 ih_item_len(p_le_ih) / UNFM_P_SIZE; 843 else 844 pos_in_item(search_path) = ih_item_len(p_le_ih); 845 846 return POSITION_NOT_FOUND; 847} 848 849/* Compare given item and item pointed to by the path. */ 850int comp_items(const struct item_head *stored_ih, const struct treepath *path) 851{ 852 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 853 struct item_head *ih; 854 855 /* Last buffer at the path is not in the tree. */ 856 if (!B_IS_IN_TREE(bh)) 857 return 1; 858 859 /* Last path position is invalid. */ 860 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) 861 return 1; 862 863 /* we need only to know, whether it is the same item */ 864 ih = get_ih(path); 865 return memcmp(stored_ih, ih, IH_SIZE); 866} 867 868/* unformatted nodes are not logged anymore, ever. This is safe 869** now 870*/ 871#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) 872 873// block can not be forgotten as it is in I/O or held by someone 874#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) 875 876// prepare for delete or cut of direct item 877static inline int prepare_for_direct_item(struct treepath *path, 878 struct item_head *le_ih, 879 struct inode *inode, 880 loff_t new_file_length, int *cut_size) 881{ 882 loff_t round_len; 883 884 if (new_file_length == max_reiserfs_offset(inode)) { 885 /* item has to be deleted */ 886 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 887 return M_DELETE; 888 } 889 // new file gets truncated 890 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { 891 // 892 round_len = ROUND_UP(new_file_length); 893 /* this was new_file_length < le_ih ... */ 894 if (round_len < le_ih_k_offset(le_ih)) { 895 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 896 return M_DELETE; /* Delete this item. */ 897 } 898 /* Calculate first position and size for cutting from item. */ 899 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); 900 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); 901 902 return M_CUT; /* Cut from this item. */ 903 } 904 905 // old file: items may have any length 906 907 if (new_file_length < le_ih_k_offset(le_ih)) { 908 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 909 return M_DELETE; /* Delete this item. */ 910 } 911 /* Calculate first position and size for cutting from item. */ 912 *cut_size = -(ih_item_len(le_ih) - 913 (pos_in_item(path) = 914 new_file_length + 1 - le_ih_k_offset(le_ih))); 915 return M_CUT; /* Cut from this item. */ 916} 917 918static inline int prepare_for_direntry_item(struct treepath *path, 919 struct item_head *le_ih, 920 struct inode *inode, 921 loff_t new_file_length, 922 int *cut_size) 923{ 924 if (le_ih_k_offset(le_ih) == DOT_OFFSET && 925 new_file_length == max_reiserfs_offset(inode)) { 926 RFALSE(ih_entry_count(le_ih) != 2, 927 "PAP-5220: incorrect empty directory item (%h)", le_ih); 928 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 929 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */ 930 } 931 932 if (ih_entry_count(le_ih) == 1) { 933 /* Delete the directory item such as there is one record only 934 in this item */ 935 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 936 return M_DELETE; 937 } 938 939 /* Cut one record from the directory item. */ 940 *cut_size = 941 -(DEH_SIZE + 942 entry_length(get_last_bh(path), le_ih, pos_in_item(path))); 943 return M_CUT; 944} 945 946#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) 947 948/* If the path points to a directory or direct item, calculate mode and the size cut, for balance. 949 If the path points to an indirect item, remove some number of its unformatted nodes. 950 In case of file truncate calculate whether this item must be deleted/truncated or last 951 unformatted node of this item will be converted to a direct item. 952 This function returns a determination of what balance mode the calling function should employ. */ 953static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed 954 from end of the file. */ 955 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */ 956 ) 957{ 958 struct super_block *sb = inode->i_sb; 959 struct item_head *p_le_ih = PATH_PITEM_HEAD(path); 960 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 961 962 BUG_ON(!th->t_trans_id); 963 964 /* Stat_data item. */ 965 if (is_statdata_le_ih(p_le_ih)) { 966 967 RFALSE(new_file_length != max_reiserfs_offset(inode), 968 "PAP-5210: mode must be M_DELETE"); 969 970 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); 971 return M_DELETE; 972 } 973 974 /* Directory item. */ 975 if (is_direntry_le_ih(p_le_ih)) 976 return prepare_for_direntry_item(path, p_le_ih, inode, 977 new_file_length, 978 cut_size); 979 980 /* Direct item. */ 981 if (is_direct_le_ih(p_le_ih)) 982 return prepare_for_direct_item(path, p_le_ih, inode, 983 new_file_length, cut_size); 984 985 /* Case of an indirect item. */ 986 { 987 int blk_size = sb->s_blocksize; 988 struct item_head s_ih; 989 int need_re_search; 990 int delete = 0; 991 int result = M_CUT; 992 int pos = 0; 993 994 if ( new_file_length == max_reiserfs_offset (inode) ) { 995 /* prepare_for_delete_or_cut() is called by 996 * reiserfs_delete_item() */ 997 new_file_length = 0; 998 delete = 1; 999 } 1000 1001 do { 1002 need_re_search = 0; 1003 *cut_size = 0; 1004 bh = PATH_PLAST_BUFFER(path); 1005 copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); 1006 pos = I_UNFM_NUM(&s_ih); 1007 1008 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { 1009 __le32 *unfm; 1010 __u32 block; 1011 1012 /* Each unformatted block deletion may involve one additional 1013 * bitmap block into the transaction, thereby the initial 1014 * journal space reservation might not be enough. */ 1015 if (!delete && (*cut_size) != 0 && 1016 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) 1017 break; 1018 1019 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1; 1020 block = get_block_num(unfm, 0); 1021 1022 if (block != 0) { 1023 reiserfs_prepare_for_journal(sb, bh, 1); 1024 put_block_num(unfm, 0, 0); 1025 journal_mark_dirty(th, sb, bh); 1026 reiserfs_free_block(th, inode, block, 1); 1027 } 1028 1029 reiserfs_write_unlock(sb); 1030 cond_resched(); 1031 reiserfs_write_lock(sb); 1032 1033 if (item_moved (&s_ih, path)) { 1034 need_re_search = 1; 1035 break; 1036 } 1037 1038 pos --; 1039 (*removed)++; 1040 (*cut_size) -= UNFM_P_SIZE; 1041 1042 if (pos == 0) { 1043 (*cut_size) -= IH_SIZE; 1044 result = M_DELETE; 1045 break; 1046 } 1047 } 1048 /* a trick. If the buffer has been logged, this will do nothing. If 1049 ** we've broken the loop without logging it, it will restore the 1050 ** buffer */ 1051 reiserfs_restore_prepared_buffer(sb, bh); 1052 } while (need_re_search && 1053 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); 1054 pos_in_item(path) = pos * UNFM_P_SIZE; 1055 1056 if (*cut_size == 0) { 1057 /* Nothing were cut. maybe convert last unformatted node to the 1058 * direct item? */ 1059 result = M_CONVERT; 1060 } 1061 return result; 1062 } 1063} 1064 1065/* Calculate number of bytes which will be deleted or cut during balance */ 1066static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) 1067{ 1068 int del_size; 1069 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path); 1070 1071 if (is_statdata_le_ih(p_le_ih)) 1072 return 0; 1073 1074 del_size = 1075 (mode == 1076 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; 1077 if (is_direntry_le_ih(p_le_ih)) { 1078 /* return EMPTY_DIR_SIZE; We delete emty directoris only. 1079 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different 1080 * empty size. ick. FIXME, is this right? */ 1081 return del_size; 1082 } 1083 1084 if (is_indirect_le_ih(p_le_ih)) 1085 del_size = (del_size / UNFM_P_SIZE) * 1086 (PATH_PLAST_BUFFER(tb->tb_path)->b_size); 1087 return del_size; 1088} 1089 1090static void init_tb_struct(struct reiserfs_transaction_handle *th, 1091 struct tree_balance *tb, 1092 struct super_block *sb, 1093 struct treepath *path, int size) 1094{ 1095 1096 BUG_ON(!th->t_trans_id); 1097 1098 memset(tb, '\0', sizeof(struct tree_balance)); 1099 tb->transaction_handle = th; 1100 tb->tb_sb = sb; 1101 tb->tb_path = path; 1102 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; 1103 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; 1104 tb->insert_size[0] = size; 1105} 1106 1107void padd_item(char *item, int total_length, int length) 1108{ 1109 int i; 1110 1111 for (i = total_length; i > length;) 1112 item[--i] = 0; 1113} 1114 1115#ifdef REISERQUOTA_DEBUG 1116char key2type(struct reiserfs_key *ih) 1117{ 1118 if (is_direntry_le_key(2, ih)) 1119 return 'd'; 1120 if (is_direct_le_key(2, ih)) 1121 return 'D'; 1122 if (is_indirect_le_key(2, ih)) 1123 return 'i'; 1124 if (is_statdata_le_key(2, ih)) 1125 return 's'; 1126 return 'u'; 1127} 1128 1129char head2type(struct item_head *ih) 1130{ 1131 if (is_direntry_le_ih(ih)) 1132 return 'd'; 1133 if (is_direct_le_ih(ih)) 1134 return 'D'; 1135 if (is_indirect_le_ih(ih)) 1136 return 'i'; 1137 if (is_statdata_le_ih(ih)) 1138 return 's'; 1139 return 'u'; 1140} 1141#endif 1142 1143/* Delete object item. 1144 * th - active transaction handle 1145 * path - path to the deleted item 1146 * item_key - key to search for the deleted item 1147 * indode - used for updating i_blocks and quotas 1148 * un_bh - NULL or unformatted node pointer 1149 */ 1150int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1151 struct treepath *path, const struct cpu_key *item_key, 1152 struct inode *inode, struct buffer_head *un_bh) 1153{ 1154 struct super_block *sb = inode->i_sb; 1155 struct tree_balance s_del_balance; 1156 struct item_head s_ih; 1157 struct item_head *q_ih; 1158 int quota_cut_bytes; 1159 int ret_value, del_size, removed; 1160 1161#ifdef CONFIG_REISERFS_CHECK 1162 char mode; 1163 int iter = 0; 1164#endif 1165 1166 BUG_ON(!th->t_trans_id); 1167 1168 init_tb_struct(th, &s_del_balance, sb, path, 1169 0 /*size is unknown */ ); 1170 1171 while (1) { 1172 removed = 0; 1173 1174#ifdef CONFIG_REISERFS_CHECK 1175 iter++; 1176 mode = 1177#endif 1178 prepare_for_delete_or_cut(th, inode, path, 1179 item_key, &removed, 1180 &del_size, 1181 max_reiserfs_offset(inode)); 1182 1183 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); 1184 1185 copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); 1186 s_del_balance.insert_size[0] = del_size; 1187 1188 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); 1189 if (ret_value != REPEAT_SEARCH) 1190 break; 1191 1192 PROC_INFO_INC(sb, delete_item_restarted); 1193 1194 // file system changed, repeat search 1195 ret_value = 1196 search_for_position_by_key(sb, item_key, path); 1197 if (ret_value == IO_ERROR) 1198 break; 1199 if (ret_value == FILE_NOT_FOUND) { 1200 reiserfs_warning(sb, "vs-5340", 1201 "no items of the file %K found", 1202 item_key); 1203 break; 1204 } 1205 } /* while (1) */ 1206 1207 if (ret_value != CARRY_ON) { 1208 unfix_nodes(&s_del_balance); 1209 return 0; 1210 } 1211 // reiserfs_delete_item returns item length when success 1212 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); 1213 q_ih = get_ih(path); 1214 quota_cut_bytes = ih_item_len(q_ih); 1215 1216 /* hack so the quota code doesn't have to guess if the file 1217 ** has a tail. On tail insert, we allocate quota for 1 unformatted node. 1218 ** We test the offset because the tail might have been 1219 ** split into multiple items, and we only want to decrement for 1220 ** the unfm node once 1221 */ 1222 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { 1223 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { 1224 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1225 } else { 1226 quota_cut_bytes = 0; 1227 } 1228 } 1229 1230 if (un_bh) { 1231 int off; 1232 char *data; 1233 1234 /* We are in direct2indirect conversion, so move tail contents 1235 to the unformatted node */ 1236 /* note, we do the copy before preparing the buffer because we 1237 ** don't care about the contents of the unformatted node yet. 1238 ** the only thing we really care about is the direct item's data 1239 ** is in the unformatted node. 1240 ** 1241 ** Otherwise, we would have to call reiserfs_prepare_for_journal on 1242 ** the unformatted node, which might schedule, meaning we'd have to 1243 ** loop all the way back up to the start of the while loop. 1244 ** 1245 ** The unformatted node must be dirtied later on. We can't be 1246 ** sure here if the entire tail has been deleted yet. 1247 ** 1248 ** un_bh is from the page cache (all unformatted nodes are 1249 ** from the page cache) and might be a highmem page. So, we 1250 ** can't use un_bh->b_data. 1251 ** -clm 1252 */ 1253 1254 data = kmap_atomic(un_bh->b_page, KM_USER0); 1255 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); 1256 memcpy(data + off, 1257 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih), 1258 ret_value); 1259 kunmap_atomic(data, KM_USER0); 1260 } 1261 /* Perform balancing after all resources have been collected at once. */ 1262 do_balance(&s_del_balance, NULL, NULL, M_DELETE); 1263 1264#ifdef REISERQUOTA_DEBUG 1265 reiserfs_debug(sb, REISERFS_DEBUG_CODE, 1266 "reiserquota delete_item(): freeing %u, id=%u type=%c", 1267 quota_cut_bytes, inode->i_uid, head2type(&s_ih)); 1268#endif 1269 vfs_dq_free_space_nodirty(inode, quota_cut_bytes); 1270 1271 /* Return deleted body length */ 1272 return ret_value; 1273} 1274 1275/* Summary Of Mechanisms For Handling Collisions Between Processes: 1276 1277 deletion of the body of the object is performed by iput(), with the 1278 result that if multiple processes are operating on a file, the 1279 deletion of the body of the file is deferred until the last process 1280 that has an open inode performs its iput(). 1281 1282 writes and truncates are protected from collisions by use of 1283 semaphores. 1284 1285 creates, linking, and mknod are protected from collisions with other 1286 processes by making the reiserfs_add_entry() the last step in the 1287 creation, and then rolling back all changes if there was a collision. 1288 - Hans 1289*/ 1290 1291/* this deletes item which never gets split */ 1292void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1293 struct inode *inode, struct reiserfs_key *key) 1294{ 1295 struct tree_balance tb; 1296 INITIALIZE_PATH(path); 1297 int item_len = 0; 1298 int tb_init = 0; 1299 struct cpu_key cpu_key; 1300 int retval; 1301 int quota_cut_bytes = 0; 1302 1303 BUG_ON(!th->t_trans_id); 1304 1305 le_key2cpu_key(&cpu_key, key); 1306 1307 while (1) { 1308 retval = search_item(th->t_super, &cpu_key, &path); 1309 if (retval == IO_ERROR) { 1310 reiserfs_error(th->t_super, "vs-5350", 1311 "i/o failure occurred trying " 1312 "to delete %K", &cpu_key); 1313 break; 1314 } 1315 if (retval != ITEM_FOUND) { 1316 pathrelse(&path); 1317 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir 1318 if (! 1319 ((unsigned long long) 1320 GET_HASH_VALUE(le_key_k_offset 1321 (le_key_version(key), key)) == 0 1322 && (unsigned long long) 1323 GET_GENERATION_NUMBER(le_key_k_offset 1324 (le_key_version(key), 1325 key)) == 1)) 1326 reiserfs_warning(th->t_super, "vs-5355", 1327 "%k not found", key); 1328 break; 1329 } 1330 if (!tb_init) { 1331 tb_init = 1; 1332 item_len = ih_item_len(PATH_PITEM_HEAD(&path)); 1333 init_tb_struct(th, &tb, th->t_super, &path, 1334 -(IH_SIZE + item_len)); 1335 } 1336 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)); 1337 1338 retval = fix_nodes(M_DELETE, &tb, NULL, NULL); 1339 if (retval == REPEAT_SEARCH) { 1340 PROC_INFO_INC(th->t_super, delete_solid_item_restarted); 1341 continue; 1342 } 1343 1344 if (retval == CARRY_ON) { 1345 do_balance(&tb, NULL, NULL, M_DELETE); 1346 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */ 1347#ifdef REISERQUOTA_DEBUG 1348 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 1349 "reiserquota delete_solid_item(): freeing %u id=%u type=%c", 1350 quota_cut_bytes, inode->i_uid, 1351 key2type(key)); 1352#endif 1353 vfs_dq_free_space_nodirty(inode, 1354 quota_cut_bytes); 1355 } 1356 break; 1357 } 1358 // IO_ERROR, NO_DISK_SPACE, etc 1359 reiserfs_warning(th->t_super, "vs-5360", 1360 "could not delete %K due to fix_nodes failure", 1361 &cpu_key); 1362 unfix_nodes(&tb); 1363 break; 1364 } 1365 1366 reiserfs_check_path(&path); 1367} 1368 1369int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1370 struct inode *inode) 1371{ 1372 int err; 1373 inode->i_size = 0; 1374 BUG_ON(!th->t_trans_id); 1375 1376 /* for directory this deletes item containing "." and ".." */ 1377 err = 1378 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); 1379 if (err) 1380 return err; 1381 1382#if defined( USE_INODE_GENERATION_COUNTER ) 1383 if (!old_format_only(th->t_super)) { 1384 __le32 *inode_generation; 1385 1386 inode_generation = 1387 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; 1388 le32_add_cpu(inode_generation, 1); 1389 } 1390/* USE_INODE_GENERATION_COUNTER */ 1391#endif 1392 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1393 1394 return err; 1395} 1396 1397static void unmap_buffers(struct page *page, loff_t pos) 1398{ 1399 struct buffer_head *bh; 1400 struct buffer_head *head; 1401 struct buffer_head *next; 1402 unsigned long tail_index; 1403 unsigned long cur_index; 1404 1405 if (page) { 1406 if (page_has_buffers(page)) { 1407 tail_index = pos & (PAGE_CACHE_SIZE - 1); 1408 cur_index = 0; 1409 head = page_buffers(page); 1410 bh = head; 1411 do { 1412 next = bh->b_this_page; 1413 1414 /* we want to unmap the buffers that contain the tail, and 1415 ** all the buffers after it (since the tail must be at the 1416 ** end of the file). We don't want to unmap file data 1417 ** before the tail, since it might be dirty and waiting to 1418 ** reach disk 1419 */ 1420 cur_index += bh->b_size; 1421 if (cur_index > tail_index) { 1422 reiserfs_unmap_buffer(bh); 1423 } 1424 bh = next; 1425 } while (bh != head); 1426 } 1427 } 1428} 1429 1430static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, 1431 struct inode *inode, 1432 struct page *page, 1433 struct treepath *path, 1434 const struct cpu_key *item_key, 1435 loff_t new_file_size, char *mode) 1436{ 1437 struct super_block *sb = inode->i_sb; 1438 int block_size = sb->s_blocksize; 1439 int cut_bytes; 1440 BUG_ON(!th->t_trans_id); 1441 BUG_ON(new_file_size != inode->i_size); 1442 1443 /* the page being sent in could be NULL if there was an i/o error 1444 ** reading in the last block. The user will hit problems trying to 1445 ** read the file, but for now we just skip the indirect2direct 1446 */ 1447 if (atomic_read(&inode->i_count) > 1 || 1448 !tail_has_to_be_packed(inode) || 1449 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { 1450 /* leave tail in an unformatted node */ 1451 *mode = M_SKIP_BALANCING; 1452 cut_bytes = 1453 block_size - (new_file_size & (block_size - 1)); 1454 pathrelse(path); 1455 return cut_bytes; 1456 } 1457 /* Perform the conversion to a direct_item. */ 1458 /* return indirect_to_direct(inode, path, item_key, 1459 new_file_size, mode); */ 1460 return indirect2direct(th, inode, page, path, item_key, 1461 new_file_size, mode); 1462} 1463 1464/* we did indirect_to_direct conversion. And we have inserted direct 1465 item successesfully, but there were no disk space to cut unfm 1466 pointer being converted. Therefore we have to delete inserted 1467 direct item(s) */ 1468static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, 1469 struct inode *inode, struct treepath *path) 1470{ 1471 struct cpu_key tail_key; 1472 int tail_len; 1473 int removed; 1474 BUG_ON(!th->t_trans_id); 1475 1476 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!! 1477 tail_key.key_length = 4; 1478 1479 tail_len = 1480 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; 1481 while (tail_len) { 1482 /* look for the last byte of the tail */ 1483 if (search_for_position_by_key(inode->i_sb, &tail_key, path) == 1484 POSITION_NOT_FOUND) 1485 reiserfs_panic(inode->i_sb, "vs-5615", 1486 "found invalid item"); 1487 RFALSE(path->pos_in_item != 1488 ih_item_len(PATH_PITEM_HEAD(path)) - 1, 1489 "vs-5616: appended bytes found"); 1490 PATH_LAST_POSITION(path)--; 1491 1492 removed = 1493 reiserfs_delete_item(th, path, &tail_key, inode, 1494 NULL /*unbh not needed */ ); 1495 RFALSE(removed <= 0 1496 || removed > tail_len, 1497 "vs-5617: there was tail %d bytes, removed item length %d bytes", 1498 tail_len, removed); 1499 tail_len -= removed; 1500 set_cpu_key_k_offset(&tail_key, 1501 cpu_key_k_offset(&tail_key) - removed); 1502 } 1503 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " 1504 "conversion has been rolled back due to " 1505 "lack of disk space"); 1506 //mark_file_without_tail (inode); 1507 mark_inode_dirty(inode); 1508} 1509 1510/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ 1511int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1512 struct treepath *path, 1513 struct cpu_key *item_key, 1514 struct inode *inode, 1515 struct page *page, loff_t new_file_size) 1516{ 1517 struct super_block *sb = inode->i_sb; 1518 /* Every function which is going to call do_balance must first 1519 create a tree_balance structure. Then it must fill up this 1520 structure by using the init_tb_struct and fix_nodes functions. 1521 After that we can make tree balancing. */ 1522 struct tree_balance s_cut_balance; 1523 struct item_head *p_le_ih; 1524 int cut_size = 0, /* Amount to be cut. */ 1525 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */ 1526 is_inode_locked = 0; 1527 char mode; /* Mode of the balance. */ 1528 int retval2 = -1; 1529 int quota_cut_bytes; 1530 loff_t tail_pos = 0; 1531 1532 BUG_ON(!th->t_trans_id); 1533 1534 init_tb_struct(th, &s_cut_balance, inode->i_sb, path, 1535 cut_size); 1536 1537 /* Repeat this loop until we either cut the item without needing 1538 to balance, or we fix_nodes without schedule occurring */ 1539 while (1) { 1540 /* Determine the balance mode, position of the first byte to 1541 be cut, and size to be cut. In case of the indirect item 1542 free unformatted nodes which are pointed to by the cut 1543 pointers. */ 1544 1545 mode = 1546 prepare_for_delete_or_cut(th, inode, path, 1547 item_key, &removed, 1548 &cut_size, new_file_size); 1549 if (mode == M_CONVERT) { 1550 /* convert last unformatted node to direct item or leave 1551 tail in the unformatted node */ 1552 RFALSE(ret_value != CARRY_ON, 1553 "PAP-5570: can not convert twice"); 1554 1555 ret_value = 1556 maybe_indirect_to_direct(th, inode, page, 1557 path, item_key, 1558 new_file_size, &mode); 1559 if (mode == M_SKIP_BALANCING) 1560 /* tail has been left in the unformatted node */ 1561 return ret_value; 1562 1563 is_inode_locked = 1; 1564 1565 /* removing of last unformatted node will change value we 1566 have to return to truncate. Save it */ 1567 retval2 = ret_value; 1568 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */ 1569 1570 /* So, we have performed the first part of the conversion: 1571 inserting the new direct item. Now we are removing the 1572 last unformatted node pointer. Set key to search for 1573 it. */ 1574 set_cpu_key_k_type(item_key, TYPE_INDIRECT); 1575 item_key->key_length = 4; 1576 new_file_size -= 1577 (new_file_size & (sb->s_blocksize - 1)); 1578 tail_pos = new_file_size; 1579 set_cpu_key_k_offset(item_key, new_file_size + 1); 1580 if (search_for_position_by_key 1581 (sb, item_key, 1582 path) == POSITION_NOT_FOUND) { 1583 print_block(PATH_PLAST_BUFFER(path), 3, 1584 PATH_LAST_POSITION(path) - 1, 1585 PATH_LAST_POSITION(path) + 1); 1586 reiserfs_panic(sb, "PAP-5580", "item to " 1587 "convert does not exist (%K)", 1588 item_key); 1589 } 1590 continue; 1591 } 1592 if (cut_size == 0) { 1593 pathrelse(path); 1594 return 0; 1595 } 1596 1597 s_cut_balance.insert_size[0] = cut_size; 1598 1599 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); 1600 if (ret_value != REPEAT_SEARCH) 1601 break; 1602 1603 PROC_INFO_INC(sb, cut_from_item_restarted); 1604 1605 ret_value = 1606 search_for_position_by_key(sb, item_key, path); 1607 if (ret_value == POSITION_FOUND) 1608 continue; 1609 1610 reiserfs_warning(sb, "PAP-5610", "item %K not found", 1611 item_key); 1612 unfix_nodes(&s_cut_balance); 1613 return (ret_value == IO_ERROR) ? -EIO : -ENOENT; 1614 } /* while */ 1615 1616 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) 1617 if (ret_value != CARRY_ON) { 1618 if (is_inode_locked) { 1619 // FIXME: this seems to be not needed: we are always able 1620 // to cut item 1621 indirect_to_direct_roll_back(th, inode, path); 1622 } 1623 if (ret_value == NO_DISK_SPACE) 1624 reiserfs_warning(sb, "reiserfs-5092", 1625 "NO_DISK_SPACE"); 1626 unfix_nodes(&s_cut_balance); 1627 return -EIO; 1628 } 1629 1630 /* go ahead and perform balancing */ 1631 1632 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); 1633 1634 /* Calculate number of bytes that need to be cut from the item. */ 1635 quota_cut_bytes = 1636 (mode == 1637 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance. 1638 insert_size[0]; 1639 if (retval2 == -1) 1640 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); 1641 else 1642 ret_value = retval2; 1643 1644 /* For direct items, we only change the quota when deleting the last 1645 ** item. 1646 */ 1647 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path); 1648 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { 1649 if (mode == M_DELETE && 1650 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == 1651 1) { 1652 // FIXME: this is to keep 3.5 happy 1653 REISERFS_I(inode)->i_first_direct_byte = U32_MAX; 1654 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1655 } else { 1656 quota_cut_bytes = 0; 1657 } 1658 } 1659#ifdef CONFIG_REISERFS_CHECK 1660 if (is_inode_locked) { 1661 struct item_head *le_ih = 1662 PATH_PITEM_HEAD(s_cut_balance.tb_path); 1663 /* we are going to complete indirect2direct conversion. Make 1664 sure, that we exactly remove last unformatted node pointer 1665 of the item */ 1666 if (!is_indirect_le_ih(le_ih)) 1667 reiserfs_panic(sb, "vs-5652", 1668 "item must be indirect %h", le_ih); 1669 1670 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) 1671 reiserfs_panic(sb, "vs-5653", "completing " 1672 "indirect2direct conversion indirect " 1673 "item %h being deleted must be of " 1674 "4 byte long", le_ih); 1675 1676 if (mode == M_CUT 1677 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { 1678 reiserfs_panic(sb, "vs-5654", "can not complete " 1679 "indirect2direct conversion of %h " 1680 "(CUT, insert_size==%d)", 1681 le_ih, s_cut_balance.insert_size[0]); 1682 } 1683 /* it would be useful to make sure, that right neighboring 1684 item is direct item of this file */ 1685 } 1686#endif 1687 1688 do_balance(&s_cut_balance, NULL, NULL, mode); 1689 if (is_inode_locked) { 1690 /* we've done an indirect->direct conversion. when the data block 1691 ** was freed, it was removed from the list of blocks that must 1692 ** be flushed before the transaction commits, make sure to 1693 ** unmap and invalidate it 1694 */ 1695 unmap_buffers(page, tail_pos); 1696 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 1697 } 1698#ifdef REISERQUOTA_DEBUG 1699 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1700 "reiserquota cut_from_item(): freeing %u id=%u type=%c", 1701 quota_cut_bytes, inode->i_uid, '?'); 1702#endif 1703 vfs_dq_free_space_nodirty(inode, quota_cut_bytes); 1704 return ret_value; 1705} 1706 1707static void truncate_directory(struct reiserfs_transaction_handle *th, 1708 struct inode *inode) 1709{ 1710 BUG_ON(!th->t_trans_id); 1711 if (inode->i_nlink) 1712 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); 1713 1714 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); 1715 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); 1716 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1717 reiserfs_update_sd(th, inode); 1718 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); 1719 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); 1720} 1721 1722/* Truncate file to the new size. Note, this must be called with a transaction 1723 already started */ 1724int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1725 struct inode *inode, /* ->i_size contains new size */ 1726 struct page *page, /* up to date for last block */ 1727 int update_timestamps /* when it is called by 1728 file_release to convert 1729 the tail - no timestamps 1730 should be updated */ 1731 ) 1732{ 1733 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ 1734 struct item_head *p_le_ih; /* Pointer to an item header. */ 1735 struct cpu_key s_item_key; /* Key to search for a previous file item. */ 1736 loff_t file_size, /* Old file size. */ 1737 new_file_size; /* New file size. */ 1738 int deleted; /* Number of deleted or truncated bytes. */ 1739 int retval; 1740 int err = 0; 1741 1742 BUG_ON(!th->t_trans_id); 1743 if (! 1744 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1745 || S_ISLNK(inode->i_mode))) 1746 return 0; 1747 1748 if (S_ISDIR(inode->i_mode)) { 1749 // deletion of directory - no need to update timestamps 1750 truncate_directory(th, inode); 1751 return 0; 1752 } 1753 1754 /* Get new file size. */ 1755 new_file_size = inode->i_size; 1756 1757 // FIXME: note, that key type is unimportant here 1758 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), 1759 TYPE_DIRECT, 3); 1760 1761 retval = 1762 search_for_position_by_key(inode->i_sb, &s_item_key, 1763 &s_search_path); 1764 if (retval == IO_ERROR) { 1765 reiserfs_error(inode->i_sb, "vs-5657", 1766 "i/o failure occurred trying to truncate %K", 1767 &s_item_key); 1768 err = -EIO; 1769 goto out; 1770 } 1771 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { 1772 reiserfs_error(inode->i_sb, "PAP-5660", 1773 "wrong result %d of search for %K", retval, 1774 &s_item_key); 1775 1776 err = -EIO; 1777 goto out; 1778 } 1779 1780 s_search_path.pos_in_item--; 1781 1782 /* Get real file size (total length of all file items) */ 1783 p_le_ih = PATH_PITEM_HEAD(&s_search_path); 1784 if (is_statdata_le_ih(p_le_ih)) 1785 file_size = 0; 1786 else { 1787 loff_t offset = le_ih_k_offset(p_le_ih); 1788 int bytes = 1789 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); 1790 1791 /* this may mismatch with real file size: if last direct item 1792 had no padding zeros and last unformatted node had no free 1793 space, this file would have this file size */ 1794 file_size = offset + bytes - 1; 1795 } 1796 /* 1797 * are we doing a full truncate or delete, if so 1798 * kick in the reada code 1799 */ 1800 if (new_file_size == 0) 1801 s_search_path.reada = PATH_READA | PATH_READA_BACK; 1802 1803 if (file_size == 0 || file_size < new_file_size) { 1804 goto update_and_out; 1805 } 1806 1807 /* Update key to search for the last file item. */ 1808 set_cpu_key_k_offset(&s_item_key, file_size); 1809 1810 do { 1811 /* Cut or delete file item. */ 1812 deleted = 1813 reiserfs_cut_from_item(th, &s_search_path, &s_item_key, 1814 inode, page, new_file_size); 1815 if (deleted < 0) { 1816 reiserfs_warning(inode->i_sb, "vs-5665", 1817 "reiserfs_cut_from_item failed"); 1818 reiserfs_check_path(&s_search_path); 1819 return 0; 1820 } 1821 1822 RFALSE(deleted > file_size, 1823 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", 1824 deleted, file_size, &s_item_key); 1825 1826 /* Change key to search the last file item. */ 1827 file_size -= deleted; 1828 1829 set_cpu_key_k_offset(&s_item_key, file_size); 1830 1831 /* While there are bytes to truncate and previous file item is presented in the tree. */ 1832 1833 /* 1834 ** This loop could take a really long time, and could log 1835 ** many more blocks than a transaction can hold. So, we do a polite 1836 ** journal end here, and if the transaction needs ending, we make 1837 ** sure the file is consistent before ending the current trans 1838 ** and starting a new one 1839 */ 1840 if (journal_transaction_should_end(th, 0) || 1841 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { 1842 int orig_len_alloc = th->t_blocks_allocated; 1843 pathrelse(&s_search_path); 1844 1845 if (update_timestamps) { 1846 inode->i_mtime = CURRENT_TIME_SEC; 1847 inode->i_ctime = CURRENT_TIME_SEC; 1848 } 1849 reiserfs_update_sd(th, inode); 1850 1851 err = journal_end(th, inode->i_sb, orig_len_alloc); 1852 if (err) 1853 goto out; 1854 err = journal_begin(th, inode->i_sb, 1855 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; 1856 if (err) 1857 goto out; 1858 reiserfs_update_inode_transaction(inode); 1859 } 1860 } while (file_size > ROUND_UP(new_file_size) && 1861 search_for_position_by_key(inode->i_sb, &s_item_key, 1862 &s_search_path) == POSITION_FOUND); 1863 1864 RFALSE(file_size > ROUND_UP(new_file_size), 1865 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", 1866 new_file_size, file_size, s_item_key.on_disk_key.k_objectid); 1867 1868 update_and_out: 1869 if (update_timestamps) { 1870 // this is truncate, not file closing 1871 inode->i_mtime = CURRENT_TIME_SEC; 1872 inode->i_ctime = CURRENT_TIME_SEC; 1873 } 1874 reiserfs_update_sd(th, inode); 1875 1876 out: 1877 pathrelse(&s_search_path); 1878 return err; 1879} 1880 1881#ifdef CONFIG_REISERFS_CHECK 1882// this makes sure, that we __append__, not overwrite or add holes 1883static void check_research_for_paste(struct treepath *path, 1884 const struct cpu_key *key) 1885{ 1886 struct item_head *found_ih = get_ih(path); 1887 1888 if (is_direct_le_ih(found_ih)) { 1889 if (le_ih_k_offset(found_ih) + 1890 op_bytes_number(found_ih, 1891 get_last_bh(path)->b_size) != 1892 cpu_key_k_offset(key) 1893 || op_bytes_number(found_ih, 1894 get_last_bh(path)->b_size) != 1895 pos_in_item(path)) 1896 reiserfs_panic(NULL, "PAP-5720", "found direct item " 1897 "%h or position (%d) does not match " 1898 "to key %K", found_ih, 1899 pos_in_item(path), key); 1900 } 1901 if (is_indirect_le_ih(found_ih)) { 1902 if (le_ih_k_offset(found_ih) + 1903 op_bytes_number(found_ih, 1904 get_last_bh(path)->b_size) != 1905 cpu_key_k_offset(key) 1906 || I_UNFM_NUM(found_ih) != pos_in_item(path) 1907 || get_ih_free_space(found_ih) != 0) 1908 reiserfs_panic(NULL, "PAP-5730", "found indirect " 1909 "item (%h) or position (%d) does not " 1910 "match to key (%K)", 1911 found_ih, pos_in_item(path), key); 1912 } 1913} 1914#endif /* config reiserfs check */ 1915 1916/* Paste bytes to the existing item. Returns bytes number pasted into the item. */ 1917int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */ 1918 const struct cpu_key *key, /* Key to search for the needed item. */ 1919 struct inode *inode, /* Inode item belongs to */ 1920 const char *body, /* Pointer to the bytes to paste. */ 1921 int pasted_size) 1922{ /* Size of pasted bytes. */ 1923 struct tree_balance s_paste_balance; 1924 int retval; 1925 int fs_gen; 1926 1927 BUG_ON(!th->t_trans_id); 1928 1929 fs_gen = get_generation(inode->i_sb); 1930 1931#ifdef REISERQUOTA_DEBUG 1932 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1933 "reiserquota paste_into_item(): allocating %u id=%u type=%c", 1934 pasted_size, inode->i_uid, 1935 key2type(&(key->on_disk_key))); 1936#endif 1937 1938 if (vfs_dq_alloc_space_nodirty(inode, pasted_size)) { 1939 pathrelse(search_path); 1940 return -EDQUOT; 1941 } 1942 init_tb_struct(th, &s_paste_balance, th->t_super, search_path, 1943 pasted_size); 1944#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1945 s_paste_balance.key = key->on_disk_key; 1946#endif 1947 1948 /* DQUOT_* can schedule, must check before the fix_nodes */ 1949 if (fs_changed(fs_gen, inode->i_sb)) { 1950 goto search_again; 1951 } 1952 1953 while ((retval = 1954 fix_nodes(M_PASTE, &s_paste_balance, NULL, 1955 body)) == REPEAT_SEARCH) { 1956 search_again: 1957 /* file system changed while we were in the fix_nodes */ 1958 PROC_INFO_INC(th->t_super, paste_into_item_restarted); 1959 retval = 1960 search_for_position_by_key(th->t_super, key, 1961 search_path); 1962 if (retval == IO_ERROR) { 1963 retval = -EIO; 1964 goto error_out; 1965 } 1966 if (retval == POSITION_FOUND) { 1967 reiserfs_warning(inode->i_sb, "PAP-5710", 1968 "entry or pasted byte (%K) exists", 1969 key); 1970 retval = -EEXIST; 1971 goto error_out; 1972 } 1973#ifdef CONFIG_REISERFS_CHECK 1974 check_research_for_paste(search_path, key); 1975#endif 1976 } 1977 1978 /* Perform balancing after all resources are collected by fix_nodes, and 1979 accessing them will not risk triggering schedule. */ 1980 if (retval == CARRY_ON) { 1981 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); 1982 return 0; 1983 } 1984 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 1985 error_out: 1986 /* this also releases the path */ 1987 unfix_nodes(&s_paste_balance); 1988#ifdef REISERQUOTA_DEBUG 1989 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1990 "reiserquota paste_into_item(): freeing %u id=%u type=%c", 1991 pasted_size, inode->i_uid, 1992 key2type(&(key->on_disk_key))); 1993#endif 1994 vfs_dq_free_space_nodirty(inode, pasted_size); 1995 return retval; 1996} 1997 1998/* Insert new item into the buffer at the path. 1999 * th - active transaction handle 2000 * path - path to the inserted item 2001 * ih - pointer to the item header to insert 2002 * body - pointer to the bytes to insert 2003 */ 2004int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2005 struct treepath *path, const struct cpu_key *key, 2006 struct item_head *ih, struct inode *inode, 2007 const char *body) 2008{ 2009 struct tree_balance s_ins_balance; 2010 int retval; 2011 int fs_gen = 0; 2012 int quota_bytes = 0; 2013 2014 BUG_ON(!th->t_trans_id); 2015 2016 if (inode) { /* Do we count quotas for item? */ 2017 fs_gen = get_generation(inode->i_sb); 2018 quota_bytes = ih_item_len(ih); 2019 2020 /* hack so the quota code doesn't have to guess if the file has 2021 ** a tail, links are always tails, so there's no guessing needed 2022 */ 2023 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) 2024 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; 2025#ifdef REISERQUOTA_DEBUG 2026 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2027 "reiserquota insert_item(): allocating %u id=%u type=%c", 2028 quota_bytes, inode->i_uid, head2type(ih)); 2029#endif 2030 /* We can't dirty inode here. It would be immediately written but 2031 * appropriate stat item isn't inserted yet... */ 2032 if (vfs_dq_alloc_space_nodirty(inode, quota_bytes)) { 2033 pathrelse(path); 2034 return -EDQUOT; 2035 } 2036 } 2037 init_tb_struct(th, &s_ins_balance, th->t_super, path, 2038 IH_SIZE + ih_item_len(ih)); 2039#ifdef DISPLACE_NEW_PACKING_LOCALITIES 2040 s_ins_balance.key = key->on_disk_key; 2041#endif 2042 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ 2043 if (inode && fs_changed(fs_gen, inode->i_sb)) { 2044 goto search_again; 2045 } 2046 2047 while ((retval = 2048 fix_nodes(M_INSERT, &s_ins_balance, ih, 2049 body)) == REPEAT_SEARCH) { 2050 search_again: 2051 /* file system changed while we were in the fix_nodes */ 2052 PROC_INFO_INC(th->t_super, insert_item_restarted); 2053 retval = search_item(th->t_super, key, path); 2054 if (retval == IO_ERROR) { 2055 retval = -EIO; 2056 goto error_out; 2057 } 2058 if (retval == ITEM_FOUND) { 2059 reiserfs_warning(th->t_super, "PAP-5760", 2060 "key %K already exists in the tree", 2061 key); 2062 retval = -EEXIST; 2063 goto error_out; 2064 } 2065 } 2066 2067 /* make balancing after all resources will be collected at a time */ 2068 if (retval == CARRY_ON) { 2069 do_balance(&s_ins_balance, ih, body, M_INSERT); 2070 return 0; 2071 } 2072 2073 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2074 error_out: 2075 /* also releases the path */ 2076 unfix_nodes(&s_ins_balance); 2077#ifdef REISERQUOTA_DEBUG 2078 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 2079 "reiserquota insert_item(): freeing %u id=%u type=%c", 2080 quota_bytes, inode->i_uid, head2type(ih)); 2081#endif 2082 if (inode) 2083 vfs_dq_free_space_nodirty(inode, quota_bytes); 2084 return retval; 2085} 2086