inode.c revision 6174c2eb8ecef271159bdcde460ce8af54d8f72f
1/*
2 * inode.c
3 *
4 * PURPOSE
5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 *  This file is distributed under the terms of the GNU General Public
9 *  License (GPL). Copies of the GPL can be obtained from:
10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11 *  Each contributing author retains all rights to their own work.
12 *
13 *  (C) 1998 Dave Boynton
14 *  (C) 1998-2004 Ben Fennema
15 *  (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 *  10/04/98 dgb  Added rudimentary directory functions
20 *  10/07/98      Fully working udf_block_map! It works!
21 *  11/25/98      bmap altered to better support extents
22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
23 *                and udf_read_inode
24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25 *                block boundaries (which is not actually allowed)
26 *  12/20/98      added support for strategy 4096
27 *  03/07/99      rewrote udf_block_map (again)
28 *                New funcs, inode_bmap, udf_next_aext
29 *  04/19/99      Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39#include <linux/crc-itu-t.h>
40#include <linux/mpage.h>
41#include <linux/aio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46MODULE_AUTHOR("Ben Fennema");
47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48MODULE_LICENSE("GPL");
49
50#define EXTENT_MERGE_SIZE 5
51
52static umode_t udf_convert_permissions(struct fileEntry *);
53static int udf_update_inode(struct inode *, int);
54static int udf_sync_inode(struct inode *inode);
55static int udf_alloc_i_data(struct inode *inode, size_t size);
56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58			      struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67			       struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72	struct udf_inode_info *iinfo = UDF_I(inode);
73
74	if (iinfo->cached_extent.lstart != -1) {
75		brelse(iinfo->cached_extent.epos.bh);
76		iinfo->cached_extent.lstart = -1;
77	}
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83	struct udf_inode_info *iinfo = UDF_I(inode);
84
85	spin_lock(&iinfo->i_extent_cache_lock);
86	__udf_clear_extent_cache(inode);
87	spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92				 loff_t *lbcount, struct extent_position *pos)
93{
94	struct udf_inode_info *iinfo = UDF_I(inode);
95	int ret = 0;
96
97	spin_lock(&iinfo->i_extent_cache_lock);
98	if ((iinfo->cached_extent.lstart <= bcount) &&
99	    (iinfo->cached_extent.lstart != -1)) {
100		/* Cache hit */
101		*lbcount = iinfo->cached_extent.lstart;
102		memcpy(pos, &iinfo->cached_extent.epos,
103		       sizeof(struct extent_position));
104		if (pos->bh)
105			get_bh(pos->bh);
106		ret = 1;
107	}
108	spin_unlock(&iinfo->i_extent_cache_lock);
109	return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114				    struct extent_position *pos, int next_epos)
115{
116	struct udf_inode_info *iinfo = UDF_I(inode);
117
118	spin_lock(&iinfo->i_extent_cache_lock);
119	/* Invalidate previously cached extent */
120	__udf_clear_extent_cache(inode);
121	if (pos->bh)
122		get_bh(pos->bh);
123	memcpy(&iinfo->cached_extent.epos, pos,
124	       sizeof(struct extent_position));
125	iinfo->cached_extent.lstart = estart;
126	if (next_epos)
127		switch (iinfo->i_alloc_type) {
128		case ICBTAG_FLAG_AD_SHORT:
129			iinfo->cached_extent.epos.offset -=
130			sizeof(struct short_ad);
131			break;
132		case ICBTAG_FLAG_AD_LONG:
133			iinfo->cached_extent.epos.offset -=
134			sizeof(struct long_ad);
135		}
136	spin_unlock(&iinfo->i_extent_cache_lock);
137}
138
139void udf_evict_inode(struct inode *inode)
140{
141	struct udf_inode_info *iinfo = UDF_I(inode);
142	int want_delete = 0;
143
144	if (!inode->i_nlink && !is_bad_inode(inode)) {
145		want_delete = 1;
146		udf_setsize(inode, 0);
147		udf_update_inode(inode, IS_SYNC(inode));
148	}
149	truncate_inode_pages_final(&inode->i_data);
150	invalidate_inode_buffers(inode);
151	clear_inode(inode);
152	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153	    inode->i_size != iinfo->i_lenExtents) {
154		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155			 inode->i_ino, inode->i_mode,
156			 (unsigned long long)inode->i_size,
157			 (unsigned long long)iinfo->i_lenExtents);
158	}
159	kfree(iinfo->i_ext.i_data);
160	iinfo->i_ext.i_data = NULL;
161	udf_clear_extent_cache(inode);
162	if (want_delete) {
163		udf_free_inode(inode);
164	}
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169	struct inode *inode = mapping->host;
170	struct udf_inode_info *iinfo = UDF_I(inode);
171	loff_t isize = inode->i_size;
172
173	if (to > isize) {
174		truncate_pagecache(inode, isize);
175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176			down_write(&iinfo->i_data_sem);
177			udf_clear_extent_cache(inode);
178			udf_truncate_extents(inode);
179			up_write(&iinfo->i_data_sem);
180		}
181	}
182}
183
184static int udf_writepage(struct page *page, struct writeback_control *wbc)
185{
186	return block_write_full_page(page, udf_get_block, wbc);
187}
188
189static int udf_writepages(struct address_space *mapping,
190			struct writeback_control *wbc)
191{
192	return mpage_writepages(mapping, wbc, udf_get_block);
193}
194
195static int udf_readpage(struct file *file, struct page *page)
196{
197	return mpage_readpage(page, udf_get_block);
198}
199
200static int udf_readpages(struct file *file, struct address_space *mapping,
201			struct list_head *pages, unsigned nr_pages)
202{
203	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207			loff_t pos, unsigned len, unsigned flags,
208			struct page **pagep, void **fsdata)
209{
210	int ret;
211
212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213	if (unlikely(ret))
214		udf_write_failed(mapping, pos + len);
215	return ret;
216}
217
218static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
219			     struct iov_iter *iter,
220			     loff_t offset)
221{
222	struct file *file = iocb->ki_filp;
223	struct address_space *mapping = file->f_mapping;
224	struct inode *inode = mapping->host;
225	size_t count = iov_iter_count(iter);
226	ssize_t ret;
227
228	ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, udf_get_block);
229	if (unlikely(ret < 0 && (rw & WRITE)))
230		udf_write_failed(mapping, offset + count);
231	return ret;
232}
233
234static sector_t udf_bmap(struct address_space *mapping, sector_t block)
235{
236	return generic_block_bmap(mapping, block, udf_get_block);
237}
238
239const struct address_space_operations udf_aops = {
240	.readpage	= udf_readpage,
241	.readpages	= udf_readpages,
242	.writepage	= udf_writepage,
243	.writepages	= udf_writepages,
244	.write_begin	= udf_write_begin,
245	.write_end	= generic_write_end,
246	.direct_IO	= udf_direct_IO,
247	.bmap		= udf_bmap,
248};
249
250/*
251 * Expand file stored in ICB to a normal one-block-file
252 *
253 * This function requires i_data_sem for writing and releases it.
254 * This function requires i_mutex held
255 */
256int udf_expand_file_adinicb(struct inode *inode)
257{
258	struct page *page;
259	char *kaddr;
260	struct udf_inode_info *iinfo = UDF_I(inode);
261	int err;
262	struct writeback_control udf_wbc = {
263		.sync_mode = WB_SYNC_NONE,
264		.nr_to_write = 1,
265	};
266
267	WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
268	if (!iinfo->i_lenAlloc) {
269		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
270			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
271		else
272			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
273		/* from now on we have normal address_space methods */
274		inode->i_data.a_ops = &udf_aops;
275		up_write(&iinfo->i_data_sem);
276		mark_inode_dirty(inode);
277		return 0;
278	}
279	/*
280	 * Release i_data_sem so that we can lock a page - page lock ranks
281	 * above i_data_sem. i_mutex still protects us against file changes.
282	 */
283	up_write(&iinfo->i_data_sem);
284
285	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
286	if (!page)
287		return -ENOMEM;
288
289	if (!PageUptodate(page)) {
290		kaddr = kmap(page);
291		memset(kaddr + iinfo->i_lenAlloc, 0x00,
292		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
293		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
294			iinfo->i_lenAlloc);
295		flush_dcache_page(page);
296		SetPageUptodate(page);
297		kunmap(page);
298	}
299	down_write(&iinfo->i_data_sem);
300	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
301	       iinfo->i_lenAlloc);
302	iinfo->i_lenAlloc = 0;
303	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
304		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
305	else
306		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
307	/* from now on we have normal address_space methods */
308	inode->i_data.a_ops = &udf_aops;
309	up_write(&iinfo->i_data_sem);
310	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
311	if (err) {
312		/* Restore everything back so that we don't lose data... */
313		lock_page(page);
314		kaddr = kmap(page);
315		down_write(&iinfo->i_data_sem);
316		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
317		       inode->i_size);
318		kunmap(page);
319		unlock_page(page);
320		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
321		inode->i_data.a_ops = &udf_adinicb_aops;
322		up_write(&iinfo->i_data_sem);
323	}
324	page_cache_release(page);
325	mark_inode_dirty(inode);
326
327	return err;
328}
329
330struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
331					   int *err)
332{
333	int newblock;
334	struct buffer_head *dbh = NULL;
335	struct kernel_lb_addr eloc;
336	uint8_t alloctype;
337	struct extent_position epos;
338
339	struct udf_fileident_bh sfibh, dfibh;
340	loff_t f_pos = udf_ext0_offset(inode);
341	int size = udf_ext0_offset(inode) + inode->i_size;
342	struct fileIdentDesc cfi, *sfi, *dfi;
343	struct udf_inode_info *iinfo = UDF_I(inode);
344
345	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
346		alloctype = ICBTAG_FLAG_AD_SHORT;
347	else
348		alloctype = ICBTAG_FLAG_AD_LONG;
349
350	if (!inode->i_size) {
351		iinfo->i_alloc_type = alloctype;
352		mark_inode_dirty(inode);
353		return NULL;
354	}
355
356	/* alloc block, and copy data to it */
357	*block = udf_new_block(inode->i_sb, inode,
358			       iinfo->i_location.partitionReferenceNum,
359			       iinfo->i_location.logicalBlockNum, err);
360	if (!(*block))
361		return NULL;
362	newblock = udf_get_pblock(inode->i_sb, *block,
363				  iinfo->i_location.partitionReferenceNum,
364				0);
365	if (!newblock)
366		return NULL;
367	dbh = udf_tgetblk(inode->i_sb, newblock);
368	if (!dbh)
369		return NULL;
370	lock_buffer(dbh);
371	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
372	set_buffer_uptodate(dbh);
373	unlock_buffer(dbh);
374	mark_buffer_dirty_inode(dbh, inode);
375
376	sfibh.soffset = sfibh.eoffset =
377			f_pos & (inode->i_sb->s_blocksize - 1);
378	sfibh.sbh = sfibh.ebh = NULL;
379	dfibh.soffset = dfibh.eoffset = 0;
380	dfibh.sbh = dfibh.ebh = dbh;
381	while (f_pos < size) {
382		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
384					 NULL, NULL, NULL);
385		if (!sfi) {
386			brelse(dbh);
387			return NULL;
388		}
389		iinfo->i_alloc_type = alloctype;
390		sfi->descTag.tagLocation = cpu_to_le32(*block);
391		dfibh.soffset = dfibh.eoffset;
392		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
393		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
394		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
395				 sfi->fileIdent +
396					le16_to_cpu(sfi->lengthOfImpUse))) {
397			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
398			brelse(dbh);
399			return NULL;
400		}
401	}
402	mark_buffer_dirty_inode(dbh, inode);
403
404	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
405		iinfo->i_lenAlloc);
406	iinfo->i_lenAlloc = 0;
407	eloc.logicalBlockNum = *block;
408	eloc.partitionReferenceNum =
409				iinfo->i_location.partitionReferenceNum;
410	iinfo->i_lenExtents = inode->i_size;
411	epos.bh = NULL;
412	epos.block = iinfo->i_location;
413	epos.offset = udf_file_entry_alloc_offset(inode);
414	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
415	/* UniqueID stuff */
416
417	brelse(epos.bh);
418	mark_inode_dirty(inode);
419	return dbh;
420}
421
422static int udf_get_block(struct inode *inode, sector_t block,
423			 struct buffer_head *bh_result, int create)
424{
425	int err, new;
426	sector_t phys = 0;
427	struct udf_inode_info *iinfo;
428
429	if (!create) {
430		phys = udf_block_map(inode, block);
431		if (phys)
432			map_bh(bh_result, inode->i_sb, phys);
433		return 0;
434	}
435
436	err = -EIO;
437	new = 0;
438	iinfo = UDF_I(inode);
439
440	down_write(&iinfo->i_data_sem);
441	if (block == iinfo->i_next_alloc_block + 1) {
442		iinfo->i_next_alloc_block++;
443		iinfo->i_next_alloc_goal++;
444	}
445
446	udf_clear_extent_cache(inode);
447	phys = inode_getblk(inode, block, &err, &new);
448	if (!phys)
449		goto abort;
450
451	if (new)
452		set_buffer_new(bh_result);
453	map_bh(bh_result, inode->i_sb, phys);
454
455abort:
456	up_write(&iinfo->i_data_sem);
457	return err;
458}
459
460static struct buffer_head *udf_getblk(struct inode *inode, long block,
461				      int create, int *err)
462{
463	struct buffer_head *bh;
464	struct buffer_head dummy;
465
466	dummy.b_state = 0;
467	dummy.b_blocknr = -1000;
468	*err = udf_get_block(inode, block, &dummy, create);
469	if (!*err && buffer_mapped(&dummy)) {
470		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
471		if (buffer_new(&dummy)) {
472			lock_buffer(bh);
473			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
474			set_buffer_uptodate(bh);
475			unlock_buffer(bh);
476			mark_buffer_dirty_inode(bh, inode);
477		}
478		return bh;
479	}
480
481	return NULL;
482}
483
484/* Extend the file by 'blocks' blocks, return the number of extents added */
485static int udf_do_extend_file(struct inode *inode,
486			      struct extent_position *last_pos,
487			      struct kernel_long_ad *last_ext,
488			      sector_t blocks)
489{
490	sector_t add;
491	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
492	struct super_block *sb = inode->i_sb;
493	struct kernel_lb_addr prealloc_loc = {};
494	int prealloc_len = 0;
495	struct udf_inode_info *iinfo;
496	int err;
497
498	/* The previous extent is fake and we should not extend by anything
499	 * - there's nothing to do... */
500	if (!blocks && fake)
501		return 0;
502
503	iinfo = UDF_I(inode);
504	/* Round the last extent up to a multiple of block size */
505	if (last_ext->extLength & (sb->s_blocksize - 1)) {
506		last_ext->extLength =
507			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
508			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
509			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
510		iinfo->i_lenExtents =
511			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
512			~(sb->s_blocksize - 1);
513	}
514
515	/* Last extent are just preallocated blocks? */
516	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
517						EXT_NOT_RECORDED_ALLOCATED) {
518		/* Save the extent so that we can reattach it to the end */
519		prealloc_loc = last_ext->extLocation;
520		prealloc_len = last_ext->extLength;
521		/* Mark the extent as a hole */
522		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
523			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
524		last_ext->extLocation.logicalBlockNum = 0;
525		last_ext->extLocation.partitionReferenceNum = 0;
526	}
527
528	/* Can we merge with the previous extent? */
529	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
530					EXT_NOT_RECORDED_NOT_ALLOCATED) {
531		add = ((1 << 30) - sb->s_blocksize -
532			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
533			sb->s_blocksize_bits;
534		if (add > blocks)
535			add = blocks;
536		blocks -= add;
537		last_ext->extLength += add << sb->s_blocksize_bits;
538	}
539
540	if (fake) {
541		udf_add_aext(inode, last_pos, &last_ext->extLocation,
542			     last_ext->extLength, 1);
543		count++;
544	} else
545		udf_write_aext(inode, last_pos, &last_ext->extLocation,
546				last_ext->extLength, 1);
547
548	/* Managed to do everything necessary? */
549	if (!blocks)
550		goto out;
551
552	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
553	last_ext->extLocation.logicalBlockNum = 0;
554	last_ext->extLocation.partitionReferenceNum = 0;
555	add = (1 << (30-sb->s_blocksize_bits)) - 1;
556	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
557				(add << sb->s_blocksize_bits);
558
559	/* Create enough extents to cover the whole hole */
560	while (blocks > add) {
561		blocks -= add;
562		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563				   last_ext->extLength, 1);
564		if (err)
565			return err;
566		count++;
567	}
568	if (blocks) {
569		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570			(blocks << sb->s_blocksize_bits);
571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572				   last_ext->extLength, 1);
573		if (err)
574			return err;
575		count++;
576	}
577
578out:
579	/* Do we have some preallocated blocks saved? */
580	if (prealloc_len) {
581		err = udf_add_aext(inode, last_pos, &prealloc_loc,
582				   prealloc_len, 1);
583		if (err)
584			return err;
585		last_ext->extLocation = prealloc_loc;
586		last_ext->extLength = prealloc_len;
587		count++;
588	}
589
590	/* last_pos should point to the last written extent... */
591	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
592		last_pos->offset -= sizeof(struct short_ad);
593	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
594		last_pos->offset -= sizeof(struct long_ad);
595	else
596		return -EIO;
597
598	return count;
599}
600
601static int udf_extend_file(struct inode *inode, loff_t newsize)
602{
603
604	struct extent_position epos;
605	struct kernel_lb_addr eloc;
606	uint32_t elen;
607	int8_t etype;
608	struct super_block *sb = inode->i_sb;
609	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
610	int adsize;
611	struct udf_inode_info *iinfo = UDF_I(inode);
612	struct kernel_long_ad extent;
613	int err;
614
615	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
616		adsize = sizeof(struct short_ad);
617	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
618		adsize = sizeof(struct long_ad);
619	else
620		BUG();
621
622	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
623
624	/* File has extent covering the new size (could happen when extending
625	 * inside a block)? */
626	if (etype != -1)
627		return 0;
628	if (newsize & (sb->s_blocksize - 1))
629		offset++;
630	/* Extended file just to the boundary of the last file block? */
631	if (offset == 0)
632		return 0;
633
634	/* Truncate is extending the file by 'offset' blocks */
635	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
636	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
637		/* File has no extents at all or has empty last
638		 * indirect extent! Create a fake extent... */
639		extent.extLocation.logicalBlockNum = 0;
640		extent.extLocation.partitionReferenceNum = 0;
641		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
642	} else {
643		epos.offset -= adsize;
644		etype = udf_next_aext(inode, &epos, &extent.extLocation,
645				      &extent.extLength, 0);
646		extent.extLength |= etype << 30;
647	}
648	err = udf_do_extend_file(inode, &epos, &extent, offset);
649	if (err < 0)
650		goto out;
651	err = 0;
652	iinfo->i_lenExtents = newsize;
653out:
654	brelse(epos.bh);
655	return err;
656}
657
658static sector_t inode_getblk(struct inode *inode, sector_t block,
659			     int *err, int *new)
660{
661	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
662	struct extent_position prev_epos, cur_epos, next_epos;
663	int count = 0, startnum = 0, endnum = 0;
664	uint32_t elen = 0, tmpelen;
665	struct kernel_lb_addr eloc, tmpeloc;
666	int c = 1;
667	loff_t lbcount = 0, b_off = 0;
668	uint32_t newblocknum, newblock;
669	sector_t offset = 0;
670	int8_t etype;
671	struct udf_inode_info *iinfo = UDF_I(inode);
672	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
673	int lastblock = 0;
674	bool isBeyondEOF;
675
676	*err = 0;
677	*new = 0;
678	prev_epos.offset = udf_file_entry_alloc_offset(inode);
679	prev_epos.block = iinfo->i_location;
680	prev_epos.bh = NULL;
681	cur_epos = next_epos = prev_epos;
682	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
683
684	/* find the extent which contains the block we are looking for.
685	   alternate between laarr[0] and laarr[1] for locations of the
686	   current extent, and the previous extent */
687	do {
688		if (prev_epos.bh != cur_epos.bh) {
689			brelse(prev_epos.bh);
690			get_bh(cur_epos.bh);
691			prev_epos.bh = cur_epos.bh;
692		}
693		if (cur_epos.bh != next_epos.bh) {
694			brelse(cur_epos.bh);
695			get_bh(next_epos.bh);
696			cur_epos.bh = next_epos.bh;
697		}
698
699		lbcount += elen;
700
701		prev_epos.block = cur_epos.block;
702		cur_epos.block = next_epos.block;
703
704		prev_epos.offset = cur_epos.offset;
705		cur_epos.offset = next_epos.offset;
706
707		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
708		if (etype == -1)
709			break;
710
711		c = !c;
712
713		laarr[c].extLength = (etype << 30) | elen;
714		laarr[c].extLocation = eloc;
715
716		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
717			pgoal = eloc.logicalBlockNum +
718				((elen + inode->i_sb->s_blocksize - 1) >>
719				 inode->i_sb->s_blocksize_bits);
720
721		count++;
722	} while (lbcount + elen <= b_off);
723
724	b_off -= lbcount;
725	offset = b_off >> inode->i_sb->s_blocksize_bits;
726	/*
727	 * Move prev_epos and cur_epos into indirect extent if we are at
728	 * the pointer to it
729	 */
730	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
731	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
732
733	/* if the extent is allocated and recorded, return the block
734	   if the extent is not a multiple of the blocksize, round up */
735
736	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
737		if (elen & (inode->i_sb->s_blocksize - 1)) {
738			elen = EXT_RECORDED_ALLOCATED |
739				((elen + inode->i_sb->s_blocksize - 1) &
740				 ~(inode->i_sb->s_blocksize - 1));
741			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
742		}
743		brelse(prev_epos.bh);
744		brelse(cur_epos.bh);
745		brelse(next_epos.bh);
746		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
747		return newblock;
748	}
749
750	/* Are we beyond EOF? */
751	if (etype == -1) {
752		int ret;
753		isBeyondEOF = 1;
754		if (count) {
755			if (c)
756				laarr[0] = laarr[1];
757			startnum = 1;
758		} else {
759			/* Create a fake extent when there's not one */
760			memset(&laarr[0].extLocation, 0x00,
761				sizeof(struct kernel_lb_addr));
762			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
763			/* Will udf_do_extend_file() create real extent from
764			   a fake one? */
765			startnum = (offset > 0);
766		}
767		/* Create extents for the hole between EOF and offset */
768		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
769		if (ret < 0) {
770			brelse(prev_epos.bh);
771			brelse(cur_epos.bh);
772			brelse(next_epos.bh);
773			*err = ret;
774			return 0;
775		}
776		c = 0;
777		offset = 0;
778		count += ret;
779		/* We are not covered by a preallocated extent? */
780		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
781						EXT_NOT_RECORDED_ALLOCATED) {
782			/* Is there any real extent? - otherwise we overwrite
783			 * the fake one... */
784			if (count)
785				c = !c;
786			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
787				inode->i_sb->s_blocksize;
788			memset(&laarr[c].extLocation, 0x00,
789				sizeof(struct kernel_lb_addr));
790			count++;
791		}
792		endnum = c + 1;
793		lastblock = 1;
794	} else {
795		isBeyondEOF = 0;
796		endnum = startnum = ((count > 2) ? 2 : count);
797
798		/* if the current extent is in position 0,
799		   swap it with the previous */
800		if (!c && count != 1) {
801			laarr[2] = laarr[0];
802			laarr[0] = laarr[1];
803			laarr[1] = laarr[2];
804			c = 1;
805		}
806
807		/* if the current block is located in an extent,
808		   read the next extent */
809		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
810		if (etype != -1) {
811			laarr[c + 1].extLength = (etype << 30) | elen;
812			laarr[c + 1].extLocation = eloc;
813			count++;
814			startnum++;
815			endnum++;
816		} else
817			lastblock = 1;
818	}
819
820	/* if the current extent is not recorded but allocated, get the
821	 * block in the extent corresponding to the requested block */
822	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
823		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
824	else { /* otherwise, allocate a new block */
825		if (iinfo->i_next_alloc_block == block)
826			goal = iinfo->i_next_alloc_goal;
827
828		if (!goal) {
829			if (!(goal = pgoal)) /* XXX: what was intended here? */
830				goal = iinfo->i_location.logicalBlockNum + 1;
831		}
832
833		newblocknum = udf_new_block(inode->i_sb, inode,
834				iinfo->i_location.partitionReferenceNum,
835				goal, err);
836		if (!newblocknum) {
837			brelse(prev_epos.bh);
838			brelse(cur_epos.bh);
839			brelse(next_epos.bh);
840			*err = -ENOSPC;
841			return 0;
842		}
843		if (isBeyondEOF)
844			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
845	}
846
847	/* if the extent the requsted block is located in contains multiple
848	 * blocks, split the extent into at most three extents. blocks prior
849	 * to requested block, requested block, and blocks after requested
850	 * block */
851	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
852
853#ifdef UDF_PREALLOCATE
854	/* We preallocate blocks only for regular files. It also makes sense
855	 * for directories but there's a problem when to drop the
856	 * preallocation. We might use some delayed work for that but I feel
857	 * it's overengineering for a filesystem like UDF. */
858	if (S_ISREG(inode->i_mode))
859		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
860#endif
861
862	/* merge any continuous blocks in laarr */
863	udf_merge_extents(inode, laarr, &endnum);
864
865	/* write back the new extents, inserting new extents if the new number
866	 * of extents is greater than the old number, and deleting extents if
867	 * the new number of extents is less than the old number */
868	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
869
870	brelse(prev_epos.bh);
871	brelse(cur_epos.bh);
872	brelse(next_epos.bh);
873
874	newblock = udf_get_pblock(inode->i_sb, newblocknum,
875				iinfo->i_location.partitionReferenceNum, 0);
876	if (!newblock) {
877		*err = -EIO;
878		return 0;
879	}
880	*new = 1;
881	iinfo->i_next_alloc_block = block;
882	iinfo->i_next_alloc_goal = newblocknum;
883	inode->i_ctime = current_fs_time(inode->i_sb);
884
885	if (IS_SYNC(inode))
886		udf_sync_inode(inode);
887	else
888		mark_inode_dirty(inode);
889
890	return newblock;
891}
892
893static void udf_split_extents(struct inode *inode, int *c, int offset,
894			      int newblocknum,
895			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
896			      int *endnum)
897{
898	unsigned long blocksize = inode->i_sb->s_blocksize;
899	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
900
901	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
902	    (laarr[*c].extLength >> 30) ==
903				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
904		int curr = *c;
905		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
906			    blocksize - 1) >> blocksize_bits;
907		int8_t etype = (laarr[curr].extLength >> 30);
908
909		if (blen == 1)
910			;
911		else if (!offset || blen == offset + 1) {
912			laarr[curr + 2] = laarr[curr + 1];
913			laarr[curr + 1] = laarr[curr];
914		} else {
915			laarr[curr + 3] = laarr[curr + 1];
916			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
917		}
918
919		if (offset) {
920			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
921				udf_free_blocks(inode->i_sb, inode,
922						&laarr[curr].extLocation,
923						0, offset);
924				laarr[curr].extLength =
925					EXT_NOT_RECORDED_NOT_ALLOCATED |
926					(offset << blocksize_bits);
927				laarr[curr].extLocation.logicalBlockNum = 0;
928				laarr[curr].extLocation.
929						partitionReferenceNum = 0;
930			} else
931				laarr[curr].extLength = (etype << 30) |
932					(offset << blocksize_bits);
933			curr++;
934			(*c)++;
935			(*endnum)++;
936		}
937
938		laarr[curr].extLocation.logicalBlockNum = newblocknum;
939		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
940			laarr[curr].extLocation.partitionReferenceNum =
941				UDF_I(inode)->i_location.partitionReferenceNum;
942		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
943			blocksize;
944		curr++;
945
946		if (blen != offset + 1) {
947			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
948				laarr[curr].extLocation.logicalBlockNum +=
949								offset + 1;
950			laarr[curr].extLength = (etype << 30) |
951				((blen - (offset + 1)) << blocksize_bits);
952			curr++;
953			(*endnum)++;
954		}
955	}
956}
957
958static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
959				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
960				 int *endnum)
961{
962	int start, length = 0, currlength = 0, i;
963
964	if (*endnum >= (c + 1)) {
965		if (!lastblock)
966			return;
967		else
968			start = c;
969	} else {
970		if ((laarr[c + 1].extLength >> 30) ==
971					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972			start = c + 1;
973			length = currlength =
974				(((laarr[c + 1].extLength &
975					UDF_EXTENT_LENGTH_MASK) +
976				inode->i_sb->s_blocksize - 1) >>
977				inode->i_sb->s_blocksize_bits);
978		} else
979			start = c;
980	}
981
982	for (i = start + 1; i <= *endnum; i++) {
983		if (i == *endnum) {
984			if (lastblock)
985				length += UDF_DEFAULT_PREALLOC_BLOCKS;
986		} else if ((laarr[i].extLength >> 30) ==
987				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
988			length += (((laarr[i].extLength &
989						UDF_EXTENT_LENGTH_MASK) +
990				    inode->i_sb->s_blocksize - 1) >>
991				    inode->i_sb->s_blocksize_bits);
992		} else
993			break;
994	}
995
996	if (length) {
997		int next = laarr[start].extLocation.logicalBlockNum +
998			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
999			  inode->i_sb->s_blocksize - 1) >>
1000			  inode->i_sb->s_blocksize_bits);
1001		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1002				laarr[start].extLocation.partitionReferenceNum,
1003				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1004				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1005				currlength);
1006		if (numalloc) 	{
1007			if (start == (c + 1))
1008				laarr[start].extLength +=
1009					(numalloc <<
1010					 inode->i_sb->s_blocksize_bits);
1011			else {
1012				memmove(&laarr[c + 2], &laarr[c + 1],
1013					sizeof(struct long_ad) * (*endnum - (c + 1)));
1014				(*endnum)++;
1015				laarr[c + 1].extLocation.logicalBlockNum = next;
1016				laarr[c + 1].extLocation.partitionReferenceNum =
1017					laarr[c].extLocation.
1018							partitionReferenceNum;
1019				laarr[c + 1].extLength =
1020					EXT_NOT_RECORDED_ALLOCATED |
1021					(numalloc <<
1022					 inode->i_sb->s_blocksize_bits);
1023				start = c + 1;
1024			}
1025
1026			for (i = start + 1; numalloc && i < *endnum; i++) {
1027				int elen = ((laarr[i].extLength &
1028						UDF_EXTENT_LENGTH_MASK) +
1029					    inode->i_sb->s_blocksize - 1) >>
1030					    inode->i_sb->s_blocksize_bits;
1031
1032				if (elen > numalloc) {
1033					laarr[i].extLength -=
1034						(numalloc <<
1035						 inode->i_sb->s_blocksize_bits);
1036					numalloc = 0;
1037				} else {
1038					numalloc -= elen;
1039					if (*endnum > (i + 1))
1040						memmove(&laarr[i],
1041							&laarr[i + 1],
1042							sizeof(struct long_ad) *
1043							(*endnum - (i + 1)));
1044					i--;
1045					(*endnum)--;
1046				}
1047			}
1048			UDF_I(inode)->i_lenExtents +=
1049				numalloc << inode->i_sb->s_blocksize_bits;
1050		}
1051	}
1052}
1053
1054static void udf_merge_extents(struct inode *inode,
1055			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1056			      int *endnum)
1057{
1058	int i;
1059	unsigned long blocksize = inode->i_sb->s_blocksize;
1060	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1061
1062	for (i = 0; i < (*endnum - 1); i++) {
1063		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1064		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1065
1066		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1067			(((li->extLength >> 30) ==
1068				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1069			((lip1->extLocation.logicalBlockNum -
1070			  li->extLocation.logicalBlockNum) ==
1071			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1072			blocksize - 1) >> blocksize_bits)))) {
1073
1074			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1075				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1076				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1077				lip1->extLength = (lip1->extLength -
1078						  (li->extLength &
1079						   UDF_EXTENT_LENGTH_MASK) +
1080						   UDF_EXTENT_LENGTH_MASK) &
1081							~(blocksize - 1);
1082				li->extLength = (li->extLength &
1083						 UDF_EXTENT_FLAG_MASK) +
1084						(UDF_EXTENT_LENGTH_MASK + 1) -
1085						blocksize;
1086				lip1->extLocation.logicalBlockNum =
1087					li->extLocation.logicalBlockNum +
1088					((li->extLength &
1089						UDF_EXTENT_LENGTH_MASK) >>
1090						blocksize_bits);
1091			} else {
1092				li->extLength = lip1->extLength +
1093					(((li->extLength &
1094						UDF_EXTENT_LENGTH_MASK) +
1095					 blocksize - 1) & ~(blocksize - 1));
1096				if (*endnum > (i + 2))
1097					memmove(&laarr[i + 1], &laarr[i + 2],
1098						sizeof(struct long_ad) *
1099						(*endnum - (i + 2)));
1100				i--;
1101				(*endnum)--;
1102			}
1103		} else if (((li->extLength >> 30) ==
1104				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1105			   ((lip1->extLength >> 30) ==
1106				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1107			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1108					((li->extLength &
1109					  UDF_EXTENT_LENGTH_MASK) +
1110					 blocksize - 1) >> blocksize_bits);
1111			li->extLocation.logicalBlockNum = 0;
1112			li->extLocation.partitionReferenceNum = 0;
1113
1114			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1115			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1116			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1117				lip1->extLength = (lip1->extLength -
1118						   (li->extLength &
1119						   UDF_EXTENT_LENGTH_MASK) +
1120						   UDF_EXTENT_LENGTH_MASK) &
1121						   ~(blocksize - 1);
1122				li->extLength = (li->extLength &
1123						 UDF_EXTENT_FLAG_MASK) +
1124						(UDF_EXTENT_LENGTH_MASK + 1) -
1125						blocksize;
1126			} else {
1127				li->extLength = lip1->extLength +
1128					(((li->extLength &
1129						UDF_EXTENT_LENGTH_MASK) +
1130					  blocksize - 1) & ~(blocksize - 1));
1131				if (*endnum > (i + 2))
1132					memmove(&laarr[i + 1], &laarr[i + 2],
1133						sizeof(struct long_ad) *
1134						(*endnum - (i + 2)));
1135				i--;
1136				(*endnum)--;
1137			}
1138		} else if ((li->extLength >> 30) ==
1139					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1140			udf_free_blocks(inode->i_sb, inode,
1141					&li->extLocation, 0,
1142					((li->extLength &
1143						UDF_EXTENT_LENGTH_MASK) +
1144					 blocksize - 1) >> blocksize_bits);
1145			li->extLocation.logicalBlockNum = 0;
1146			li->extLocation.partitionReferenceNum = 0;
1147			li->extLength = (li->extLength &
1148						UDF_EXTENT_LENGTH_MASK) |
1149						EXT_NOT_RECORDED_NOT_ALLOCATED;
1150		}
1151	}
1152}
1153
1154static void udf_update_extents(struct inode *inode,
1155			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1156			       int startnum, int endnum,
1157			       struct extent_position *epos)
1158{
1159	int start = 0, i;
1160	struct kernel_lb_addr tmploc;
1161	uint32_t tmplen;
1162
1163	if (startnum > endnum) {
1164		for (i = 0; i < (startnum - endnum); i++)
1165			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1166					laarr[i].extLength);
1167	} else if (startnum < endnum) {
1168		for (i = 0; i < (endnum - startnum); i++) {
1169			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1170					laarr[i].extLength);
1171			udf_next_aext(inode, epos, &laarr[i].extLocation,
1172				      &laarr[i].extLength, 1);
1173			start++;
1174		}
1175	}
1176
1177	for (i = start; i < endnum; i++) {
1178		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1179		udf_write_aext(inode, epos, &laarr[i].extLocation,
1180			       laarr[i].extLength, 1);
1181	}
1182}
1183
1184struct buffer_head *udf_bread(struct inode *inode, int block,
1185			      int create, int *err)
1186{
1187	struct buffer_head *bh = NULL;
1188
1189	bh = udf_getblk(inode, block, create, err);
1190	if (!bh)
1191		return NULL;
1192
1193	if (buffer_uptodate(bh))
1194		return bh;
1195
1196	ll_rw_block(READ, 1, &bh);
1197
1198	wait_on_buffer(bh);
1199	if (buffer_uptodate(bh))
1200		return bh;
1201
1202	brelse(bh);
1203	*err = -EIO;
1204	return NULL;
1205}
1206
1207int udf_setsize(struct inode *inode, loff_t newsize)
1208{
1209	int err;
1210	struct udf_inode_info *iinfo;
1211	int bsize = 1 << inode->i_blkbits;
1212
1213	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214	      S_ISLNK(inode->i_mode)))
1215		return -EINVAL;
1216	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217		return -EPERM;
1218
1219	iinfo = UDF_I(inode);
1220	if (newsize > inode->i_size) {
1221		down_write(&iinfo->i_data_sem);
1222		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223			if (bsize <
1224			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1225				err = udf_expand_file_adinicb(inode);
1226				if (err)
1227					return err;
1228				down_write(&iinfo->i_data_sem);
1229			} else {
1230				iinfo->i_lenAlloc = newsize;
1231				goto set_size;
1232			}
1233		}
1234		err = udf_extend_file(inode, newsize);
1235		if (err) {
1236			up_write(&iinfo->i_data_sem);
1237			return err;
1238		}
1239set_size:
1240		truncate_setsize(inode, newsize);
1241		up_write(&iinfo->i_data_sem);
1242	} else {
1243		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244			down_write(&iinfo->i_data_sem);
1245			udf_clear_extent_cache(inode);
1246			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1247			       0x00, bsize - newsize -
1248			       udf_file_entry_alloc_offset(inode));
1249			iinfo->i_lenAlloc = newsize;
1250			truncate_setsize(inode, newsize);
1251			up_write(&iinfo->i_data_sem);
1252			goto update_time;
1253		}
1254		err = block_truncate_page(inode->i_mapping, newsize,
1255					  udf_get_block);
1256		if (err)
1257			return err;
1258		down_write(&iinfo->i_data_sem);
1259		udf_clear_extent_cache(inode);
1260		truncate_setsize(inode, newsize);
1261		udf_truncate_extents(inode);
1262		up_write(&iinfo->i_data_sem);
1263	}
1264update_time:
1265	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1266	if (IS_SYNC(inode))
1267		udf_sync_inode(inode);
1268	else
1269		mark_inode_dirty(inode);
1270	return 0;
1271}
1272
1273/*
1274 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1275 * arbitrary - just that we hopefully don't limit any real use of rewritten
1276 * inode on write-once media but avoid looping for too long on corrupted media.
1277 */
1278#define UDF_MAX_ICB_NESTING 1024
1279
1280static int udf_read_inode(struct inode *inode, bool hidden_inode)
1281{
1282	struct buffer_head *bh = NULL;
1283	struct fileEntry *fe;
1284	struct extendedFileEntry *efe;
1285	uint16_t ident;
1286	struct udf_inode_info *iinfo = UDF_I(inode);
1287	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1288	struct kernel_lb_addr *iloc = &iinfo->i_location;
1289	unsigned int link_count;
1290	unsigned int indirections = 0;
1291	int ret = -EIO;
1292
1293reread:
1294	if (iloc->logicalBlockNum >=
1295	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1296		udf_debug("block=%d, partition=%d out of range\n",
1297			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1298		return -EIO;
1299	}
1300
1301	/*
1302	 * Set defaults, but the inode is still incomplete!
1303	 * Note: get_new_inode() sets the following on a new inode:
1304	 *      i_sb = sb
1305	 *      i_no = ino
1306	 *      i_flags = sb->s_flags
1307	 *      i_state = 0
1308	 * clean_inode(): zero fills and sets
1309	 *      i_count = 1
1310	 *      i_nlink = 1
1311	 *      i_op = NULL;
1312	 */
1313	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1314	if (!bh) {
1315		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1316		return -EIO;
1317	}
1318
1319	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1320	    ident != TAG_IDENT_USE) {
1321		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1322			inode->i_ino, ident);
1323		goto out;
1324	}
1325
1326	fe = (struct fileEntry *)bh->b_data;
1327	efe = (struct extendedFileEntry *)bh->b_data;
1328
1329	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1330		struct buffer_head *ibh;
1331
1332		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1333		if (ident == TAG_IDENT_IE && ibh) {
1334			struct kernel_lb_addr loc;
1335			struct indirectEntry *ie;
1336
1337			ie = (struct indirectEntry *)ibh->b_data;
1338			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1339
1340			if (ie->indirectICB.extLength) {
1341				brelse(ibh);
1342				memcpy(&iinfo->i_location, &loc,
1343				       sizeof(struct kernel_lb_addr));
1344				if (++indirections > UDF_MAX_ICB_NESTING) {
1345					udf_err(inode->i_sb,
1346						"too many ICBs in ICB hierarchy"
1347						" (max %d supported)\n",
1348						UDF_MAX_ICB_NESTING);
1349					goto out;
1350				}
1351				brelse(bh);
1352				goto reread;
1353			}
1354		}
1355		brelse(ibh);
1356	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1357		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1358			le16_to_cpu(fe->icbTag.strategyType));
1359		goto out;
1360	}
1361	if (fe->icbTag.strategyType == cpu_to_le16(4))
1362		iinfo->i_strat4096 = 0;
1363	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1364		iinfo->i_strat4096 = 1;
1365
1366	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1367							ICBTAG_FLAG_AD_MASK;
1368	iinfo->i_unique = 0;
1369	iinfo->i_lenEAttr = 0;
1370	iinfo->i_lenExtents = 0;
1371	iinfo->i_lenAlloc = 0;
1372	iinfo->i_next_alloc_block = 0;
1373	iinfo->i_next_alloc_goal = 0;
1374	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1375		iinfo->i_efe = 1;
1376		iinfo->i_use = 0;
1377		ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1378					sizeof(struct extendedFileEntry));
1379		if (ret)
1380			goto out;
1381		memcpy(iinfo->i_ext.i_data,
1382		       bh->b_data + sizeof(struct extendedFileEntry),
1383		       inode->i_sb->s_blocksize -
1384					sizeof(struct extendedFileEntry));
1385	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1386		iinfo->i_efe = 0;
1387		iinfo->i_use = 0;
1388		ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1389						sizeof(struct fileEntry));
1390		if (ret)
1391			goto out;
1392		memcpy(iinfo->i_ext.i_data,
1393		       bh->b_data + sizeof(struct fileEntry),
1394		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1395	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1396		iinfo->i_efe = 0;
1397		iinfo->i_use = 1;
1398		iinfo->i_lenAlloc = le32_to_cpu(
1399				((struct unallocSpaceEntry *)bh->b_data)->
1400				 lengthAllocDescs);
1401		ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1402					sizeof(struct unallocSpaceEntry));
1403		if (ret)
1404			goto out;
1405		memcpy(iinfo->i_ext.i_data,
1406		       bh->b_data + sizeof(struct unallocSpaceEntry),
1407		       inode->i_sb->s_blocksize -
1408					sizeof(struct unallocSpaceEntry));
1409		return 0;
1410	}
1411
1412	ret = -EIO;
1413	read_lock(&sbi->s_cred_lock);
1414	i_uid_write(inode, le32_to_cpu(fe->uid));
1415	if (!uid_valid(inode->i_uid) ||
1416	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1417	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1418		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1419
1420	i_gid_write(inode, le32_to_cpu(fe->gid));
1421	if (!gid_valid(inode->i_gid) ||
1422	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1423	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1424		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1425
1426	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1427			sbi->s_fmode != UDF_INVALID_MODE)
1428		inode->i_mode = sbi->s_fmode;
1429	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1430			sbi->s_dmode != UDF_INVALID_MODE)
1431		inode->i_mode = sbi->s_dmode;
1432	else
1433		inode->i_mode = udf_convert_permissions(fe);
1434	inode->i_mode &= ~sbi->s_umask;
1435	read_unlock(&sbi->s_cred_lock);
1436
1437	link_count = le16_to_cpu(fe->fileLinkCount);
1438	if (!link_count) {
1439		if (!hidden_inode) {
1440			ret = -ESTALE;
1441			goto out;
1442		}
1443		link_count = 1;
1444	}
1445	set_nlink(inode, link_count);
1446
1447	inode->i_size = le64_to_cpu(fe->informationLength);
1448	iinfo->i_lenExtents = inode->i_size;
1449
1450	if (iinfo->i_efe == 0) {
1451		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1452			(inode->i_sb->s_blocksize_bits - 9);
1453
1454		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1455			inode->i_atime = sbi->s_record_time;
1456
1457		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1458					    fe->modificationTime))
1459			inode->i_mtime = sbi->s_record_time;
1460
1461		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1462			inode->i_ctime = sbi->s_record_time;
1463
1464		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1465		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1466		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1467		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1468	} else {
1469		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1470		    (inode->i_sb->s_blocksize_bits - 9);
1471
1472		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1473			inode->i_atime = sbi->s_record_time;
1474
1475		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1476					    efe->modificationTime))
1477			inode->i_mtime = sbi->s_record_time;
1478
1479		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1480			iinfo->i_crtime = sbi->s_record_time;
1481
1482		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1483			inode->i_ctime = sbi->s_record_time;
1484
1485		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1486		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1487		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1488		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1489	}
1490	inode->i_generation = iinfo->i_unique;
1491
1492	switch (fe->icbTag.fileType) {
1493	case ICBTAG_FILE_TYPE_DIRECTORY:
1494		inode->i_op = &udf_dir_inode_operations;
1495		inode->i_fop = &udf_dir_operations;
1496		inode->i_mode |= S_IFDIR;
1497		inc_nlink(inode);
1498		break;
1499	case ICBTAG_FILE_TYPE_REALTIME:
1500	case ICBTAG_FILE_TYPE_REGULAR:
1501	case ICBTAG_FILE_TYPE_UNDEF:
1502	case ICBTAG_FILE_TYPE_VAT20:
1503		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1504			inode->i_data.a_ops = &udf_adinicb_aops;
1505		else
1506			inode->i_data.a_ops = &udf_aops;
1507		inode->i_op = &udf_file_inode_operations;
1508		inode->i_fop = &udf_file_operations;
1509		inode->i_mode |= S_IFREG;
1510		break;
1511	case ICBTAG_FILE_TYPE_BLOCK:
1512		inode->i_mode |= S_IFBLK;
1513		break;
1514	case ICBTAG_FILE_TYPE_CHAR:
1515		inode->i_mode |= S_IFCHR;
1516		break;
1517	case ICBTAG_FILE_TYPE_FIFO:
1518		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1519		break;
1520	case ICBTAG_FILE_TYPE_SOCKET:
1521		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1522		break;
1523	case ICBTAG_FILE_TYPE_SYMLINK:
1524		inode->i_data.a_ops = &udf_symlink_aops;
1525		inode->i_op = &udf_symlink_inode_operations;
1526		inode->i_mode = S_IFLNK | S_IRWXUGO;
1527		break;
1528	case ICBTAG_FILE_TYPE_MAIN:
1529		udf_debug("METADATA FILE-----\n");
1530		break;
1531	case ICBTAG_FILE_TYPE_MIRROR:
1532		udf_debug("METADATA MIRROR FILE-----\n");
1533		break;
1534	case ICBTAG_FILE_TYPE_BITMAP:
1535		udf_debug("METADATA BITMAP FILE-----\n");
1536		break;
1537	default:
1538		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1539			inode->i_ino, fe->icbTag.fileType);
1540		goto out;
1541	}
1542	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1543		struct deviceSpec *dsea =
1544			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1545		if (dsea) {
1546			init_special_inode(inode, inode->i_mode,
1547				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1548				      le32_to_cpu(dsea->minorDeviceIdent)));
1549			/* Developer ID ??? */
1550		} else
1551			goto out;
1552	}
1553	ret = 0;
1554out:
1555	brelse(bh);
1556	return ret;
1557}
1558
1559static int udf_alloc_i_data(struct inode *inode, size_t size)
1560{
1561	struct udf_inode_info *iinfo = UDF_I(inode);
1562	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1563
1564	if (!iinfo->i_ext.i_data) {
1565		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1566			inode->i_ino);
1567		return -ENOMEM;
1568	}
1569
1570	return 0;
1571}
1572
1573static umode_t udf_convert_permissions(struct fileEntry *fe)
1574{
1575	umode_t mode;
1576	uint32_t permissions;
1577	uint32_t flags;
1578
1579	permissions = le32_to_cpu(fe->permissions);
1580	flags = le16_to_cpu(fe->icbTag.flags);
1581
1582	mode =	((permissions) & S_IRWXO) |
1583		((permissions >> 2) & S_IRWXG) |
1584		((permissions >> 4) & S_IRWXU) |
1585		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1586		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1587		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1588
1589	return mode;
1590}
1591
1592int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1593{
1594	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1595}
1596
1597static int udf_sync_inode(struct inode *inode)
1598{
1599	return udf_update_inode(inode, 1);
1600}
1601
1602static int udf_update_inode(struct inode *inode, int do_sync)
1603{
1604	struct buffer_head *bh = NULL;
1605	struct fileEntry *fe;
1606	struct extendedFileEntry *efe;
1607	uint64_t lb_recorded;
1608	uint32_t udfperms;
1609	uint16_t icbflags;
1610	uint16_t crclen;
1611	int err = 0;
1612	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1613	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1614	struct udf_inode_info *iinfo = UDF_I(inode);
1615
1616	bh = udf_tgetblk(inode->i_sb,
1617			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1618	if (!bh) {
1619		udf_debug("getblk failure\n");
1620		return -ENOMEM;
1621	}
1622
1623	lock_buffer(bh);
1624	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1625	fe = (struct fileEntry *)bh->b_data;
1626	efe = (struct extendedFileEntry *)bh->b_data;
1627
1628	if (iinfo->i_use) {
1629		struct unallocSpaceEntry *use =
1630			(struct unallocSpaceEntry *)bh->b_data;
1631
1632		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1633		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1634		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1635					sizeof(struct unallocSpaceEntry));
1636		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1637		use->descTag.tagLocation =
1638				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1639		crclen = sizeof(struct unallocSpaceEntry) +
1640				iinfo->i_lenAlloc - sizeof(struct tag);
1641		use->descTag.descCRCLength = cpu_to_le16(crclen);
1642		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1643							   sizeof(struct tag),
1644							   crclen));
1645		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1646
1647		goto out;
1648	}
1649
1650	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1651		fe->uid = cpu_to_le32(-1);
1652	else
1653		fe->uid = cpu_to_le32(i_uid_read(inode));
1654
1655	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1656		fe->gid = cpu_to_le32(-1);
1657	else
1658		fe->gid = cpu_to_le32(i_gid_read(inode));
1659
1660	udfperms = ((inode->i_mode & S_IRWXO)) |
1661		   ((inode->i_mode & S_IRWXG) << 2) |
1662		   ((inode->i_mode & S_IRWXU) << 4);
1663
1664	udfperms |= (le32_to_cpu(fe->permissions) &
1665		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1666		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1667		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1668	fe->permissions = cpu_to_le32(udfperms);
1669
1670	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1671		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1672	else
1673		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1674
1675	fe->informationLength = cpu_to_le64(inode->i_size);
1676
1677	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1678		struct regid *eid;
1679		struct deviceSpec *dsea =
1680			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1681		if (!dsea) {
1682			dsea = (struct deviceSpec *)
1683				udf_add_extendedattr(inode,
1684						     sizeof(struct deviceSpec) +
1685						     sizeof(struct regid), 12, 0x3);
1686			dsea->attrType = cpu_to_le32(12);
1687			dsea->attrSubtype = 1;
1688			dsea->attrLength = cpu_to_le32(
1689						sizeof(struct deviceSpec) +
1690						sizeof(struct regid));
1691			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1692		}
1693		eid = (struct regid *)dsea->impUse;
1694		memset(eid, 0, sizeof(struct regid));
1695		strcpy(eid->ident, UDF_ID_DEVELOPER);
1696		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1697		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1698		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1699		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1700	}
1701
1702	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1703		lb_recorded = 0; /* No extents => no blocks! */
1704	else
1705		lb_recorded =
1706			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1707			(blocksize_bits - 9);
1708
1709	if (iinfo->i_efe == 0) {
1710		memcpy(bh->b_data + sizeof(struct fileEntry),
1711		       iinfo->i_ext.i_data,
1712		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1713		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1714
1715		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1716		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1717		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1718		memset(&(fe->impIdent), 0, sizeof(struct regid));
1719		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1720		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1721		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1722		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1723		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1724		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1725		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1726		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1727		crclen = sizeof(struct fileEntry);
1728	} else {
1729		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1730		       iinfo->i_ext.i_data,
1731		       inode->i_sb->s_blocksize -
1732					sizeof(struct extendedFileEntry));
1733		efe->objectSize = cpu_to_le64(inode->i_size);
1734		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1735
1736		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1737		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1738		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1739			iinfo->i_crtime = inode->i_atime;
1740
1741		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1742		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1743		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1744			iinfo->i_crtime = inode->i_mtime;
1745
1746		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1747		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1748		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1749			iinfo->i_crtime = inode->i_ctime;
1750
1751		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1752		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1753		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1754		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1755
1756		memset(&(efe->impIdent), 0, sizeof(struct regid));
1757		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1758		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1759		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1760		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1761		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1762		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1763		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1764		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1765		crclen = sizeof(struct extendedFileEntry);
1766	}
1767	if (iinfo->i_strat4096) {
1768		fe->icbTag.strategyType = cpu_to_le16(4096);
1769		fe->icbTag.strategyParameter = cpu_to_le16(1);
1770		fe->icbTag.numEntries = cpu_to_le16(2);
1771	} else {
1772		fe->icbTag.strategyType = cpu_to_le16(4);
1773		fe->icbTag.numEntries = cpu_to_le16(1);
1774	}
1775
1776	if (S_ISDIR(inode->i_mode))
1777		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1778	else if (S_ISREG(inode->i_mode))
1779		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1780	else if (S_ISLNK(inode->i_mode))
1781		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1782	else if (S_ISBLK(inode->i_mode))
1783		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1784	else if (S_ISCHR(inode->i_mode))
1785		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1786	else if (S_ISFIFO(inode->i_mode))
1787		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1788	else if (S_ISSOCK(inode->i_mode))
1789		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1790
1791	icbflags =	iinfo->i_alloc_type |
1792			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1793			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1794			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1795			(le16_to_cpu(fe->icbTag.flags) &
1796				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1797				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1798
1799	fe->icbTag.flags = cpu_to_le16(icbflags);
1800	if (sbi->s_udfrev >= 0x0200)
1801		fe->descTag.descVersion = cpu_to_le16(3);
1802	else
1803		fe->descTag.descVersion = cpu_to_le16(2);
1804	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1805	fe->descTag.tagLocation = cpu_to_le32(
1806					iinfo->i_location.logicalBlockNum);
1807	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1808	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1809	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1810						  crclen));
1811	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1812
1813out:
1814	set_buffer_uptodate(bh);
1815	unlock_buffer(bh);
1816
1817	/* write the data blocks */
1818	mark_buffer_dirty(bh);
1819	if (do_sync) {
1820		sync_dirty_buffer(bh);
1821		if (buffer_write_io_error(bh)) {
1822			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1823				 inode->i_ino);
1824			err = -EIO;
1825		}
1826	}
1827	brelse(bh);
1828
1829	return err;
1830}
1831
1832struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1833			 bool hidden_inode)
1834{
1835	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1836	struct inode *inode = iget_locked(sb, block);
1837	int err;
1838
1839	if (!inode)
1840		return ERR_PTR(-ENOMEM);
1841
1842	if (!(inode->i_state & I_NEW))
1843		return inode;
1844
1845	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1846	err = udf_read_inode(inode, hidden_inode);
1847	if (err < 0) {
1848		iget_failed(inode);
1849		return ERR_PTR(err);
1850	}
1851	unlock_new_inode(inode);
1852
1853	return inode;
1854}
1855
1856int udf_add_aext(struct inode *inode, struct extent_position *epos,
1857		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1858{
1859	int adsize;
1860	struct short_ad *sad = NULL;
1861	struct long_ad *lad = NULL;
1862	struct allocExtDesc *aed;
1863	uint8_t *ptr;
1864	struct udf_inode_info *iinfo = UDF_I(inode);
1865
1866	if (!epos->bh)
1867		ptr = iinfo->i_ext.i_data + epos->offset -
1868			udf_file_entry_alloc_offset(inode) +
1869			iinfo->i_lenEAttr;
1870	else
1871		ptr = epos->bh->b_data + epos->offset;
1872
1873	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1874		adsize = sizeof(struct short_ad);
1875	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1876		adsize = sizeof(struct long_ad);
1877	else
1878		return -EIO;
1879
1880	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1881		unsigned char *sptr, *dptr;
1882		struct buffer_head *nbh;
1883		int err, loffset;
1884		struct kernel_lb_addr obloc = epos->block;
1885
1886		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1887						obloc.partitionReferenceNum,
1888						obloc.logicalBlockNum, &err);
1889		if (!epos->block.logicalBlockNum)
1890			return -ENOSPC;
1891		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1892								 &epos->block,
1893								 0));
1894		if (!nbh)
1895			return -EIO;
1896		lock_buffer(nbh);
1897		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1898		set_buffer_uptodate(nbh);
1899		unlock_buffer(nbh);
1900		mark_buffer_dirty_inode(nbh, inode);
1901
1902		aed = (struct allocExtDesc *)(nbh->b_data);
1903		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1904			aed->previousAllocExtLocation =
1905					cpu_to_le32(obloc.logicalBlockNum);
1906		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1907			loffset = epos->offset;
1908			aed->lengthAllocDescs = cpu_to_le32(adsize);
1909			sptr = ptr - adsize;
1910			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1911			memcpy(dptr, sptr, adsize);
1912			epos->offset = sizeof(struct allocExtDesc) + adsize;
1913		} else {
1914			loffset = epos->offset + adsize;
1915			aed->lengthAllocDescs = cpu_to_le32(0);
1916			sptr = ptr;
1917			epos->offset = sizeof(struct allocExtDesc);
1918
1919			if (epos->bh) {
1920				aed = (struct allocExtDesc *)epos->bh->b_data;
1921				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1922			} else {
1923				iinfo->i_lenAlloc += adsize;
1924				mark_inode_dirty(inode);
1925			}
1926		}
1927		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1928			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1929				    epos->block.logicalBlockNum, sizeof(struct tag));
1930		else
1931			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1932				    epos->block.logicalBlockNum, sizeof(struct tag));
1933		switch (iinfo->i_alloc_type) {
1934		case ICBTAG_FLAG_AD_SHORT:
1935			sad = (struct short_ad *)sptr;
1936			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1937						     inode->i_sb->s_blocksize);
1938			sad->extPosition =
1939				cpu_to_le32(epos->block.logicalBlockNum);
1940			break;
1941		case ICBTAG_FLAG_AD_LONG:
1942			lad = (struct long_ad *)sptr;
1943			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1944						     inode->i_sb->s_blocksize);
1945			lad->extLocation = cpu_to_lelb(epos->block);
1946			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1947			break;
1948		}
1949		if (epos->bh) {
1950			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1951			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1952				udf_update_tag(epos->bh->b_data, loffset);
1953			else
1954				udf_update_tag(epos->bh->b_data,
1955						sizeof(struct allocExtDesc));
1956			mark_buffer_dirty_inode(epos->bh, inode);
1957			brelse(epos->bh);
1958		} else {
1959			mark_inode_dirty(inode);
1960		}
1961		epos->bh = nbh;
1962	}
1963
1964	udf_write_aext(inode, epos, eloc, elen, inc);
1965
1966	if (!epos->bh) {
1967		iinfo->i_lenAlloc += adsize;
1968		mark_inode_dirty(inode);
1969	} else {
1970		aed = (struct allocExtDesc *)epos->bh->b_data;
1971		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1972		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1973				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1974			udf_update_tag(epos->bh->b_data,
1975					epos->offset + (inc ? 0 : adsize));
1976		else
1977			udf_update_tag(epos->bh->b_data,
1978					sizeof(struct allocExtDesc));
1979		mark_buffer_dirty_inode(epos->bh, inode);
1980	}
1981
1982	return 0;
1983}
1984
1985void udf_write_aext(struct inode *inode, struct extent_position *epos,
1986		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988	int adsize;
1989	uint8_t *ptr;
1990	struct short_ad *sad;
1991	struct long_ad *lad;
1992	struct udf_inode_info *iinfo = UDF_I(inode);
1993
1994	if (!epos->bh)
1995		ptr = iinfo->i_ext.i_data + epos->offset -
1996			udf_file_entry_alloc_offset(inode) +
1997			iinfo->i_lenEAttr;
1998	else
1999		ptr = epos->bh->b_data + epos->offset;
2000
2001	switch (iinfo->i_alloc_type) {
2002	case ICBTAG_FLAG_AD_SHORT:
2003		sad = (struct short_ad *)ptr;
2004		sad->extLength = cpu_to_le32(elen);
2005		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2006		adsize = sizeof(struct short_ad);
2007		break;
2008	case ICBTAG_FLAG_AD_LONG:
2009		lad = (struct long_ad *)ptr;
2010		lad->extLength = cpu_to_le32(elen);
2011		lad->extLocation = cpu_to_lelb(*eloc);
2012		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2013		adsize = sizeof(struct long_ad);
2014		break;
2015	default:
2016		return;
2017	}
2018
2019	if (epos->bh) {
2020		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2021		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2022			struct allocExtDesc *aed =
2023				(struct allocExtDesc *)epos->bh->b_data;
2024			udf_update_tag(epos->bh->b_data,
2025				       le32_to_cpu(aed->lengthAllocDescs) +
2026				       sizeof(struct allocExtDesc));
2027		}
2028		mark_buffer_dirty_inode(epos->bh, inode);
2029	} else {
2030		mark_inode_dirty(inode);
2031	}
2032
2033	if (inc)
2034		epos->offset += adsize;
2035}
2036
2037int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2038		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2039{
2040	int8_t etype;
2041
2042	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2043	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2044		int block;
2045		epos->block = *eloc;
2046		epos->offset = sizeof(struct allocExtDesc);
2047		brelse(epos->bh);
2048		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2049		epos->bh = udf_tread(inode->i_sb, block);
2050		if (!epos->bh) {
2051			udf_debug("reading block %d failed!\n", block);
2052			return -1;
2053		}
2054	}
2055
2056	return etype;
2057}
2058
2059int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2060			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2061{
2062	int alen;
2063	int8_t etype;
2064	uint8_t *ptr;
2065	struct short_ad *sad;
2066	struct long_ad *lad;
2067	struct udf_inode_info *iinfo = UDF_I(inode);
2068
2069	if (!epos->bh) {
2070		if (!epos->offset)
2071			epos->offset = udf_file_entry_alloc_offset(inode);
2072		ptr = iinfo->i_ext.i_data + epos->offset -
2073			udf_file_entry_alloc_offset(inode) +
2074			iinfo->i_lenEAttr;
2075		alen = udf_file_entry_alloc_offset(inode) +
2076							iinfo->i_lenAlloc;
2077	} else {
2078		if (!epos->offset)
2079			epos->offset = sizeof(struct allocExtDesc);
2080		ptr = epos->bh->b_data + epos->offset;
2081		alen = sizeof(struct allocExtDesc) +
2082			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2083							lengthAllocDescs);
2084	}
2085
2086	switch (iinfo->i_alloc_type) {
2087	case ICBTAG_FLAG_AD_SHORT:
2088		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2089		if (!sad)
2090			return -1;
2091		etype = le32_to_cpu(sad->extLength) >> 30;
2092		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2093		eloc->partitionReferenceNum =
2094				iinfo->i_location.partitionReferenceNum;
2095		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2096		break;
2097	case ICBTAG_FLAG_AD_LONG:
2098		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2099		if (!lad)
2100			return -1;
2101		etype = le32_to_cpu(lad->extLength) >> 30;
2102		*eloc = lelb_to_cpu(lad->extLocation);
2103		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2104		break;
2105	default:
2106		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2107		return -1;
2108	}
2109
2110	return etype;
2111}
2112
2113static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2114			      struct kernel_lb_addr neloc, uint32_t nelen)
2115{
2116	struct kernel_lb_addr oeloc;
2117	uint32_t oelen;
2118	int8_t etype;
2119
2120	if (epos.bh)
2121		get_bh(epos.bh);
2122
2123	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2124		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2125		neloc = oeloc;
2126		nelen = (etype << 30) | oelen;
2127	}
2128	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2129	brelse(epos.bh);
2130
2131	return (nelen >> 30);
2132}
2133
2134int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2135		       struct kernel_lb_addr eloc, uint32_t elen)
2136{
2137	struct extent_position oepos;
2138	int adsize;
2139	int8_t etype;
2140	struct allocExtDesc *aed;
2141	struct udf_inode_info *iinfo;
2142
2143	if (epos.bh) {
2144		get_bh(epos.bh);
2145		get_bh(epos.bh);
2146	}
2147
2148	iinfo = UDF_I(inode);
2149	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2150		adsize = sizeof(struct short_ad);
2151	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2152		adsize = sizeof(struct long_ad);
2153	else
2154		adsize = 0;
2155
2156	oepos = epos;
2157	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2158		return -1;
2159
2160	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2161		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2162		if (oepos.bh != epos.bh) {
2163			oepos.block = epos.block;
2164			brelse(oepos.bh);
2165			get_bh(epos.bh);
2166			oepos.bh = epos.bh;
2167			oepos.offset = epos.offset - adsize;
2168		}
2169	}
2170	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2171	elen = 0;
2172
2173	if (epos.bh != oepos.bh) {
2174		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2175		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2176		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2177		if (!oepos.bh) {
2178			iinfo->i_lenAlloc -= (adsize * 2);
2179			mark_inode_dirty(inode);
2180		} else {
2181			aed = (struct allocExtDesc *)oepos.bh->b_data;
2182			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2183			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2184			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2185				udf_update_tag(oepos.bh->b_data,
2186						oepos.offset - (2 * adsize));
2187			else
2188				udf_update_tag(oepos.bh->b_data,
2189						sizeof(struct allocExtDesc));
2190			mark_buffer_dirty_inode(oepos.bh, inode);
2191		}
2192	} else {
2193		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2194		if (!oepos.bh) {
2195			iinfo->i_lenAlloc -= adsize;
2196			mark_inode_dirty(inode);
2197		} else {
2198			aed = (struct allocExtDesc *)oepos.bh->b_data;
2199			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2200			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2201			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2202				udf_update_tag(oepos.bh->b_data,
2203						epos.offset - adsize);
2204			else
2205				udf_update_tag(oepos.bh->b_data,
2206						sizeof(struct allocExtDesc));
2207			mark_buffer_dirty_inode(oepos.bh, inode);
2208		}
2209	}
2210
2211	brelse(epos.bh);
2212	brelse(oepos.bh);
2213
2214	return (elen >> 30);
2215}
2216
2217int8_t inode_bmap(struct inode *inode, sector_t block,
2218		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2219		  uint32_t *elen, sector_t *offset)
2220{
2221	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2222	loff_t lbcount = 0, bcount =
2223	    (loff_t) block << blocksize_bits;
2224	int8_t etype;
2225	struct udf_inode_info *iinfo;
2226
2227	iinfo = UDF_I(inode);
2228	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2229		pos->offset = 0;
2230		pos->block = iinfo->i_location;
2231		pos->bh = NULL;
2232	}
2233	*elen = 0;
2234	do {
2235		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2236		if (etype == -1) {
2237			*offset = (bcount - lbcount) >> blocksize_bits;
2238			iinfo->i_lenExtents = lbcount;
2239			return -1;
2240		}
2241		lbcount += *elen;
2242	} while (lbcount <= bcount);
2243	/* update extent cache */
2244	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2245	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2246
2247	return etype;
2248}
2249
2250long udf_block_map(struct inode *inode, sector_t block)
2251{
2252	struct kernel_lb_addr eloc;
2253	uint32_t elen;
2254	sector_t offset;
2255	struct extent_position epos = {};
2256	int ret;
2257
2258	down_read(&UDF_I(inode)->i_data_sem);
2259
2260	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2261						(EXT_RECORDED_ALLOCATED >> 30))
2262		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2263	else
2264		ret = 0;
2265
2266	up_read(&UDF_I(inode)->i_data_sem);
2267	brelse(epos.bh);
2268
2269	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2270		return udf_fixed_to_variable(ret);
2271	else
2272		return ret;
2273}
2274