inode.c revision 6c79e987d629cb0f8f7e2983725f4434a2dec66b
1/*
2 * inode.c
3 *
4 * PURPOSE
5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 *  This file is distributed under the terms of the GNU General Public
9 *  License (GPL). Copies of the GPL can be obtained from:
10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11 *  Each contributing author retains all rights to their own work.
12 *
13 *  (C) 1998 Dave Boynton
14 *  (C) 1998-2004 Ben Fennema
15 *  (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 *  10/04/98 dgb  Added rudimentary directory functions
20 *  10/07/98      Fully working udf_block_map! It works!
21 *  11/25/98      bmap altered to better support extents
22 *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
23 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
24 *                block boundaries (which is not actually allowed)
25 *  12/20/98      added support for strategy 4096
26 *  03/07/99      rewrote udf_block_map (again)
27 *                New funcs, inode_bmap, udf_next_aext
28 *  04/19/99      Support for writing device EA's for major/minor #
29 */
30
31#include "udfdecl.h"
32#include <linux/mm.h>
33#include <linux/smp_lock.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39
40#include "udf_i.h"
41#include "udf_sb.h"
42
43MODULE_AUTHOR("Ben Fennema");
44MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45MODULE_LICENSE("GPL");
46
47#define EXTENT_MERGE_SIZE 5
48
49static mode_t udf_convert_permissions(struct fileEntry *);
50static int udf_update_inode(struct inode *, int);
51static void udf_fill_inode(struct inode *, struct buffer_head *);
52static int udf_alloc_i_data(struct inode *inode, size_t size);
53static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54					long *, int *);
55static int8_t udf_insert_aext(struct inode *, struct extent_position,
56			      kernel_lb_addr, uint32_t);
57static void udf_split_extents(struct inode *, int *, int, int,
58			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59static void udf_prealloc_extents(struct inode *, int, int,
60				 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_merge_extents(struct inode *,
62			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_update_extents(struct inode *,
64			       kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65			       struct extent_position *);
66static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67
68/*
69 * udf_delete_inode
70 *
71 * PURPOSE
72 *	Clean-up before the specified inode is destroyed.
73 *
74 * DESCRIPTION
75 *	This routine is called when the kernel destroys an inode structure
76 *	ie. when iput() finds i_count == 0.
77 *
78 * HISTORY
79 *	July 1, 1997 - Andrew E. Mileski
80 *	Written, tested, and released.
81 *
82 *  Called at the last iput() if i_nlink is zero.
83 */
84void udf_delete_inode(struct inode *inode)
85{
86	truncate_inode_pages(&inode->i_data, 0);
87
88	if (is_bad_inode(inode))
89		goto no_delete;
90
91	inode->i_size = 0;
92	udf_truncate(inode);
93	lock_kernel();
94
95	udf_update_inode(inode, IS_SYNC(inode));
96	udf_free_inode(inode);
97
98	unlock_kernel();
99	return;
100
101no_delete:
102	clear_inode(inode);
103}
104
105/*
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there.  We
109 * use clear_inode() but we have to make sure to write inode as it's not written
110 * automatically.
111 */
112void udf_clear_inode(struct inode *inode)
113{
114	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115		lock_kernel();
116		/* Discard preallocation for directories, symlinks, etc. */
117		udf_discard_prealloc(inode);
118		udf_truncate_tail_extent(inode);
119		unlock_kernel();
120		write_inode_now(inode, 1);
121	}
122	kfree(UDF_I_DATA(inode));
123	UDF_I_DATA(inode) = NULL;
124}
125
126static int udf_writepage(struct page *page, struct writeback_control *wbc)
127{
128	return block_write_full_page(page, udf_get_block, wbc);
129}
130
131static int udf_readpage(struct file *file, struct page *page)
132{
133	return block_read_full_page(page, udf_get_block);
134}
135
136static int udf_write_begin(struct file *file, struct address_space *mapping,
137			loff_t pos, unsigned len, unsigned flags,
138			struct page **pagep, void **fsdata)
139{
140	*pagep = NULL;
141	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
142				udf_get_block);
143}
144
145static sector_t udf_bmap(struct address_space *mapping, sector_t block)
146{
147	return generic_block_bmap(mapping, block, udf_get_block);
148}
149
150const struct address_space_operations udf_aops = {
151	.readpage	= udf_readpage,
152	.writepage	= udf_writepage,
153	.sync_page	= block_sync_page,
154	.write_begin		= udf_write_begin,
155	.write_end		= generic_write_end,
156	.bmap		= udf_bmap,
157};
158
159void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
160{
161	struct page *page;
162	char *kaddr;
163	struct writeback_control udf_wbc = {
164		.sync_mode = WB_SYNC_NONE,
165		.nr_to_write = 1,
166	};
167
168	/* from now on we have normal address_space methods */
169	inode->i_data.a_ops = &udf_aops;
170
171	if (!UDF_I_LENALLOC(inode)) {
172		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
173			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
174		else
175			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
176		mark_inode_dirty(inode);
177		return;
178	}
179
180	page = grab_cache_page(inode->i_mapping, 0);
181	BUG_ON(!PageLocked(page));
182
183	if (!PageUptodate(page)) {
184		kaddr = kmap(page);
185		memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
186		       PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
187		memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
188		       UDF_I_LENALLOC(inode));
189		flush_dcache_page(page);
190		SetPageUptodate(page);
191		kunmap(page);
192	}
193	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
194	       UDF_I_LENALLOC(inode));
195	UDF_I_LENALLOC(inode) = 0;
196	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
197		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
198	else
199		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
200
201	inode->i_data.a_ops->writepage(page, &udf_wbc);
202	page_cache_release(page);
203
204	mark_inode_dirty(inode);
205}
206
207struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
208					   int *err)
209{
210	int newblock;
211	struct buffer_head *dbh = NULL;
212	kernel_lb_addr eloc;
213	uint32_t elen;
214	uint8_t alloctype;
215	struct extent_position epos;
216
217	struct udf_fileident_bh sfibh, dfibh;
218	loff_t f_pos = udf_ext0_offset(inode) >> 2;
219	int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
220	struct fileIdentDesc cfi, *sfi, *dfi;
221
222	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
223		alloctype = ICBTAG_FLAG_AD_SHORT;
224	else
225		alloctype = ICBTAG_FLAG_AD_LONG;
226
227	if (!inode->i_size) {
228		UDF_I_ALLOCTYPE(inode) = alloctype;
229		mark_inode_dirty(inode);
230		return NULL;
231	}
232
233	/* alloc block, and copy data to it */
234	*block = udf_new_block(inode->i_sb, inode,
235			       UDF_I_LOCATION(inode).partitionReferenceNum,
236			       UDF_I_LOCATION(inode).logicalBlockNum, err);
237	if (!(*block))
238		return NULL;
239	newblock = udf_get_pblock(inode->i_sb, *block,
240				  UDF_I_LOCATION(inode).partitionReferenceNum, 0);
241	if (!newblock)
242		return NULL;
243	dbh = udf_tgetblk(inode->i_sb, newblock);
244	if (!dbh)
245		return NULL;
246	lock_buffer(dbh);
247	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
248	set_buffer_uptodate(dbh);
249	unlock_buffer(dbh);
250	mark_buffer_dirty_inode(dbh, inode);
251
252	sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
253	sfibh.sbh = sfibh.ebh = NULL;
254	dfibh.soffset = dfibh.eoffset = 0;
255	dfibh.sbh = dfibh.ebh = dbh;
256	while ((f_pos < size)) {
257		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
258		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
259		if (!sfi) {
260			brelse(dbh);
261			return NULL;
262		}
263		UDF_I_ALLOCTYPE(inode) = alloctype;
264		sfi->descTag.tagLocation = cpu_to_le32(*block);
265		dfibh.soffset = dfibh.eoffset;
266		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
267		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
268		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
269				 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
270			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
271			brelse(dbh);
272			return NULL;
273		}
274	}
275	mark_buffer_dirty_inode(dbh, inode);
276
277	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
278	UDF_I_LENALLOC(inode) = 0;
279	eloc.logicalBlockNum = *block;
280	eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
281	elen = inode->i_size;
282	UDF_I_LENEXTENTS(inode) = elen;
283	epos.bh = NULL;
284	epos.block = UDF_I_LOCATION(inode);
285	epos.offset = udf_file_entry_alloc_offset(inode);
286	udf_add_aext(inode, &epos, eloc, elen, 0);
287	/* UniqueID stuff */
288
289	brelse(epos.bh);
290	mark_inode_dirty(inode);
291	return dbh;
292}
293
294static int udf_get_block(struct inode *inode, sector_t block,
295			 struct buffer_head *bh_result, int create)
296{
297	int err, new;
298	struct buffer_head *bh;
299	unsigned long phys;
300
301	if (!create) {
302		phys = udf_block_map(inode, block);
303		if (phys)
304			map_bh(bh_result, inode->i_sb, phys);
305		return 0;
306	}
307
308	err = -EIO;
309	new = 0;
310	bh = NULL;
311
312	lock_kernel();
313
314	if (block < 0)
315		goto abort_negative;
316
317	if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
318		UDF_I_NEXT_ALLOC_BLOCK(inode)++;
319		UDF_I_NEXT_ALLOC_GOAL(inode)++;
320	}
321
322	err = 0;
323
324	bh = inode_getblk(inode, block, &err, &phys, &new);
325	BUG_ON(bh);
326	if (err)
327		goto abort;
328	BUG_ON(!phys);
329
330	if (new)
331		set_buffer_new(bh_result);
332	map_bh(bh_result, inode->i_sb, phys);
333
334abort:
335	unlock_kernel();
336	return err;
337
338abort_negative:
339	udf_warning(inode->i_sb, "udf_get_block", "block < 0");
340	goto abort;
341}
342
343static struct buffer_head *udf_getblk(struct inode *inode, long block,
344				      int create, int *err)
345{
346	struct buffer_head *bh;
347	struct buffer_head dummy;
348
349	dummy.b_state = 0;
350	dummy.b_blocknr = -1000;
351	*err = udf_get_block(inode, block, &dummy, create);
352	if (!*err && buffer_mapped(&dummy)) {
353		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
354		if (buffer_new(&dummy)) {
355			lock_buffer(bh);
356			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
357			set_buffer_uptodate(bh);
358			unlock_buffer(bh);
359			mark_buffer_dirty_inode(bh, inode);
360		}
361		return bh;
362	}
363
364	return NULL;
365}
366
367/* Extend the file by 'blocks' blocks, return the number of extents added */
368int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
369		    kernel_long_ad * last_ext, sector_t blocks)
370{
371	sector_t add;
372	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
373	struct super_block *sb = inode->i_sb;
374	kernel_lb_addr prealloc_loc = {};
375	int prealloc_len = 0;
376
377	/* The previous extent is fake and we should not extend by anything
378	 * - there's nothing to do... */
379	if (!blocks && fake)
380		return 0;
381
382	/* Round the last extent up to a multiple of block size */
383	if (last_ext->extLength & (sb->s_blocksize - 1)) {
384		last_ext->extLength =
385			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
386			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
387			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
388		UDF_I_LENEXTENTS(inode) =
389			(UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
390			~(sb->s_blocksize - 1);
391	}
392
393	/* Last extent are just preallocated blocks? */
394	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
395		/* Save the extent so that we can reattach it to the end */
396		prealloc_loc = last_ext->extLocation;
397		prealloc_len = last_ext->extLength;
398		/* Mark the extent as a hole */
399		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
400			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
401		last_ext->extLocation.logicalBlockNum = 0;
402       		last_ext->extLocation.partitionReferenceNum = 0;
403	}
404
405	/* Can we merge with the previous extent? */
406	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
407		add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
408						      UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
409		if (add > blocks)
410			add = blocks;
411		blocks -= add;
412		last_ext->extLength += add << sb->s_blocksize_bits;
413	}
414
415	if (fake) {
416		udf_add_aext(inode, last_pos, last_ext->extLocation,
417			     last_ext->extLength, 1);
418		count++;
419	} else {
420		udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
421	}
422
423	/* Managed to do everything necessary? */
424	if (!blocks)
425		goto out;
426
427	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
428	last_ext->extLocation.logicalBlockNum = 0;
429       	last_ext->extLocation.partitionReferenceNum = 0;
430	add = (1 << (30-sb->s_blocksize_bits)) - 1;
431	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
432
433	/* Create enough extents to cover the whole hole */
434	while (blocks > add) {
435		blocks -= add;
436		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
437				 last_ext->extLength, 1) == -1)
438			return -1;
439		count++;
440	}
441	if (blocks) {
442		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443			(blocks << sb->s_blocksize_bits);
444		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
445				 last_ext->extLength, 1) == -1)
446			return -1;
447		count++;
448	}
449
450out:
451	/* Do we have some preallocated blocks saved? */
452	if (prealloc_len) {
453		if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
454			return -1;
455		last_ext->extLocation = prealloc_loc;
456		last_ext->extLength = prealloc_len;
457		count++;
458	}
459
460	/* last_pos should point to the last written extent... */
461	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
462		last_pos->offset -= sizeof(short_ad);
463	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
464		last_pos->offset -= sizeof(long_ad);
465	else
466		return -1;
467
468	return count;
469}
470
471static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
472					int *err, long *phys, int *new)
473{
474	static sector_t last_block;
475	struct buffer_head *result = NULL;
476	kernel_long_ad laarr[EXTENT_MERGE_SIZE];
477	struct extent_position prev_epos, cur_epos, next_epos;
478	int count = 0, startnum = 0, endnum = 0;
479	uint32_t elen = 0, tmpelen;
480	kernel_lb_addr eloc, tmpeloc;
481	int c = 1;
482	loff_t lbcount = 0, b_off = 0;
483	uint32_t newblocknum, newblock;
484	sector_t offset = 0;
485	int8_t etype;
486	int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
487	int lastblock = 0;
488
489	prev_epos.offset = udf_file_entry_alloc_offset(inode);
490	prev_epos.block = UDF_I_LOCATION(inode);
491	prev_epos.bh = NULL;
492	cur_epos = next_epos = prev_epos;
493	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
494
495	/* find the extent which contains the block we are looking for.
496	   alternate between laarr[0] and laarr[1] for locations of the
497	   current extent, and the previous extent */
498	do {
499		if (prev_epos.bh != cur_epos.bh) {
500			brelse(prev_epos.bh);
501			get_bh(cur_epos.bh);
502			prev_epos.bh = cur_epos.bh;
503		}
504		if (cur_epos.bh != next_epos.bh) {
505			brelse(cur_epos.bh);
506			get_bh(next_epos.bh);
507			cur_epos.bh = next_epos.bh;
508		}
509
510		lbcount += elen;
511
512		prev_epos.block = cur_epos.block;
513		cur_epos.block = next_epos.block;
514
515		prev_epos.offset = cur_epos.offset;
516		cur_epos.offset = next_epos.offset;
517
518		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
519			break;
520
521		c = !c;
522
523		laarr[c].extLength = (etype << 30) | elen;
524		laarr[c].extLocation = eloc;
525
526		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527			pgoal = eloc.logicalBlockNum +
528				((elen + inode->i_sb->s_blocksize - 1) >>
529				 inode->i_sb->s_blocksize_bits);
530
531		count++;
532	} while (lbcount + elen <= b_off);
533
534	b_off -= lbcount;
535	offset = b_off >> inode->i_sb->s_blocksize_bits;
536	/*
537	 * Move prev_epos and cur_epos into indirect extent if we are at
538	 * the pointer to it
539	 */
540	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542
543	/* if the extent is allocated and recorded, return the block
544	   if the extent is not a multiple of the blocksize, round up */
545
546	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547		if (elen & (inode->i_sb->s_blocksize - 1)) {
548			elen = EXT_RECORDED_ALLOCATED |
549				((elen + inode->i_sb->s_blocksize - 1) &
550				 ~(inode->i_sb->s_blocksize - 1));
551			etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
552		}
553		brelse(prev_epos.bh);
554		brelse(cur_epos.bh);
555		brelse(next_epos.bh);
556		newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
557		*phys = newblock;
558		return NULL;
559	}
560
561	last_block = block;
562	/* Are we beyond EOF? */
563	if (etype == -1) {
564		int ret;
565
566		if (count) {
567			if (c)
568				laarr[0] = laarr[1];
569			startnum = 1;
570		} else {
571			/* Create a fake extent when there's not one */
572			memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
573			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574			/* Will udf_extend_file() create real extent from a fake one? */
575			startnum = (offset > 0);
576		}
577		/* Create extents for the hole between EOF and offset */
578		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
579		if (ret == -1) {
580			brelse(prev_epos.bh);
581			brelse(cur_epos.bh);
582			brelse(next_epos.bh);
583			/* We don't really know the error here so we just make
584			 * something up */
585			*err = -ENOSPC;
586			return NULL;
587		}
588		c = 0;
589		offset = 0;
590		count += ret;
591		/* We are not covered by a preallocated extent? */
592		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
593			/* Is there any real extent? - otherwise we overwrite
594			 * the fake one... */
595			if (count)
596				c = !c;
597			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
598				inode->i_sb->s_blocksize;
599			memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
600			count++;
601			endnum++;
602		}
603		endnum = c + 1;
604		lastblock = 1;
605	} else {
606		endnum = startnum = ((count > 2) ? 2 : count);
607
608		/* if the current extent is in position 0, swap it with the previous */
609		if (!c && count != 1) {
610			laarr[2] = laarr[0];
611			laarr[0] = laarr[1];
612			laarr[1] = laarr[2];
613			c = 1;
614		}
615
616		/* if the current block is located in an extent, read the next extent */
617		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
618			laarr[c + 1].extLength = (etype << 30) | elen;
619			laarr[c + 1].extLocation = eloc;
620			count++;
621			startnum++;
622			endnum++;
623		} else {
624			lastblock = 1;
625		}
626	}
627
628	/* if the current extent is not recorded but allocated, get the
629	 * block in the extent corresponding to the requested block */
630	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
631		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
632	} else { /* otherwise, allocate a new block */
633		if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
634			goal = UDF_I_NEXT_ALLOC_GOAL(inode);
635
636		if (!goal) {
637			if (!(goal = pgoal))
638				goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
639		}
640
641		if (!(newblocknum = udf_new_block(inode->i_sb, inode,
642						  UDF_I_LOCATION(inode).partitionReferenceNum,
643						  goal, err))) {
644			brelse(prev_epos.bh);
645			*err = -ENOSPC;
646			return NULL;
647		}
648		UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
649	}
650
651	/* if the extent the requsted block is located in contains multiple blocks,
652	 * split the extent into at most three extents. blocks prior to requested
653	 * block, requested block, and blocks after requested block */
654	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
655
656#ifdef UDF_PREALLOCATE
657	/* preallocate blocks */
658	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
659#endif
660
661	/* merge any continuous blocks in laarr */
662	udf_merge_extents(inode, laarr, &endnum);
663
664	/* write back the new extents, inserting new extents if the new number
665	 * of extents is greater than the old number, and deleting extents if
666	 * the new number of extents is less than the old number */
667	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
668
669	brelse(prev_epos.bh);
670
671	if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
672					UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
673		return NULL;
674	}
675	*phys = newblock;
676	*err = 0;
677	*new = 1;
678	UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
679	UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
680	inode->i_ctime = current_fs_time(inode->i_sb);
681
682	if (IS_SYNC(inode))
683		udf_sync_inode(inode);
684	else
685		mark_inode_dirty(inode);
686
687	return result;
688}
689
690static void udf_split_extents(struct inode *inode, int *c, int offset,
691			      int newblocknum,
692			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
693			      int *endnum)
694{
695	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
696	    (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
697		int curr = *c;
698		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
699			    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
700		int8_t etype = (laarr[curr].extLength >> 30);
701
702		if (blen == 1) {
703			;
704		} else if (!offset || blen == offset + 1) {
705			laarr[curr + 2] = laarr[curr + 1];
706			laarr[curr + 1] = laarr[curr];
707		} else {
708			laarr[curr + 3] = laarr[curr + 1];
709			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
710		}
711
712		if (offset) {
713			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
714				udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
715				laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
716					(offset << inode->i_sb->s_blocksize_bits);
717				laarr[curr].extLocation.logicalBlockNum = 0;
718				laarr[curr].extLocation.partitionReferenceNum = 0;
719			} else {
720				laarr[curr].extLength = (etype << 30) |
721					(offset << inode->i_sb->s_blocksize_bits);
722			}
723			curr++;
724			(*c)++;
725			(*endnum)++;
726		}
727
728		laarr[curr].extLocation.logicalBlockNum = newblocknum;
729		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
730			laarr[curr].extLocation.partitionReferenceNum =
731				UDF_I_LOCATION(inode).partitionReferenceNum;
732		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
733			inode->i_sb->s_blocksize;
734		curr++;
735
736		if (blen != offset + 1) {
737			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
738				laarr[curr].extLocation.logicalBlockNum += (offset + 1);
739			laarr[curr].extLength = (etype << 30) |
740				((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
741			curr++;
742			(*endnum)++;
743		}
744	}
745}
746
747static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
748				 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
749				 int *endnum)
750{
751	int start, length = 0, currlength = 0, i;
752
753	if (*endnum >= (c + 1)) {
754		if (!lastblock)
755			return;
756		else
757			start = c;
758	} else {
759		if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
760			start = c + 1;
761			length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
762						inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
763		} else {
764			start = c;
765		}
766	}
767
768	for (i = start + 1; i <= *endnum; i++) {
769		if (i == *endnum) {
770			if (lastblock)
771				length += UDF_DEFAULT_PREALLOC_BLOCKS;
772		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
773			length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
774				    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
775		} else {
776			break;
777		}
778	}
779
780	if (length) {
781		int next = laarr[start].extLocation.logicalBlockNum +
782			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
783			  inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
784		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
785						   laarr[start].extLocation.partitionReferenceNum,
786						   next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
787							  UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
788		if (numalloc) 	{
789			if (start == (c + 1)) {
790				laarr[start].extLength +=
791					(numalloc << inode->i_sb->s_blocksize_bits);
792			} else {
793				memmove(&laarr[c + 2], &laarr[c + 1],
794					sizeof(long_ad) * (*endnum - (c + 1)));
795				(*endnum)++;
796				laarr[c + 1].extLocation.logicalBlockNum = next;
797				laarr[c + 1].extLocation.partitionReferenceNum =
798					laarr[c].extLocation.partitionReferenceNum;
799				laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
800					(numalloc << inode->i_sb->s_blocksize_bits);
801				start = c + 1;
802			}
803
804			for (i = start + 1; numalloc && i < *endnum; i++) {
805				int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
806					    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
807
808				if (elen > numalloc) {
809					laarr[i].extLength -=
810						(numalloc << inode->i_sb->s_blocksize_bits);
811					numalloc = 0;
812				} else {
813					numalloc -= elen;
814					if (*endnum > (i + 1))
815						memmove(&laarr[i], &laarr[i + 1],
816							sizeof(long_ad) * (*endnum - (i + 1)));
817					i--;
818					(*endnum)--;
819				}
820			}
821			UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
822		}
823	}
824}
825
826static void udf_merge_extents(struct inode *inode,
827			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
828			      int *endnum)
829{
830	int i;
831
832	for (i = 0; i < (*endnum - 1); i++) {
833		if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
834			if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
835			    ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
836			     (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
837			       inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
838				if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
839				     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
840				     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
841					laarr[i + 1].extLength = (laarr[i + 1].extLength -
842								  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
843								  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
844					laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
845						(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
846					laarr[i + 1].extLocation.logicalBlockNum =
847						laarr[i].extLocation.logicalBlockNum +
848						((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
849						 inode->i_sb->s_blocksize_bits);
850				} else {
851					laarr[i].extLength = laarr[i + 1].extLength +
852						(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
853						  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
854					if (*endnum > (i + 2))
855						memmove(&laarr[i + 1], &laarr[i + 2],
856							sizeof(long_ad) * (*endnum - (i + 2)));
857					i--;
858					(*endnum)--;
859				}
860			}
861		} else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
862			   ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
863			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
864					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
865					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
866			laarr[i].extLocation.logicalBlockNum = 0;
867			laarr[i].extLocation.partitionReferenceNum = 0;
868
869			if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
870			     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
871			     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
872				laarr[i + 1].extLength = (laarr[i + 1].extLength -
873							  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
874							  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
875				laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
876					(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
877			} else {
878				laarr[i].extLength = laarr[i + 1].extLength +
879					(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
880					  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
881				if (*endnum > (i + 2))
882					memmove(&laarr[i + 1], &laarr[i + 2],
883						sizeof(long_ad) * (*endnum - (i + 2)));
884				i--;
885				(*endnum)--;
886			}
887		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
888			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
889					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
890					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
891			laarr[i].extLocation.logicalBlockNum = 0;
892			laarr[i].extLocation.partitionReferenceNum = 0;
893			laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
894				EXT_NOT_RECORDED_NOT_ALLOCATED;
895		}
896	}
897}
898
899static void udf_update_extents(struct inode *inode,
900			       kernel_long_ad laarr[EXTENT_MERGE_SIZE],
901			       int startnum, int endnum,
902			       struct extent_position *epos)
903{
904	int start = 0, i;
905	kernel_lb_addr tmploc;
906	uint32_t tmplen;
907
908	if (startnum > endnum) {
909		for (i = 0; i < (startnum - endnum); i++)
910			udf_delete_aext(inode, *epos, laarr[i].extLocation,
911					laarr[i].extLength);
912	} else if (startnum < endnum) {
913		for (i = 0; i < (endnum - startnum); i++) {
914			udf_insert_aext(inode, *epos, laarr[i].extLocation,
915					laarr[i].extLength);
916			udf_next_aext(inode, epos, &laarr[i].extLocation,
917				      &laarr[i].extLength, 1);
918			start++;
919		}
920	}
921
922	for (i = start; i < endnum; i++) {
923		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
924		udf_write_aext(inode, epos, laarr[i].extLocation,
925			       laarr[i].extLength, 1);
926	}
927}
928
929struct buffer_head *udf_bread(struct inode *inode, int block,
930			      int create, int *err)
931{
932	struct buffer_head *bh = NULL;
933
934	bh = udf_getblk(inode, block, create, err);
935	if (!bh)
936		return NULL;
937
938	if (buffer_uptodate(bh))
939		return bh;
940
941	ll_rw_block(READ, 1, &bh);
942
943	wait_on_buffer(bh);
944	if (buffer_uptodate(bh))
945		return bh;
946
947	brelse(bh);
948	*err = -EIO;
949	return NULL;
950}
951
952void udf_truncate(struct inode *inode)
953{
954	int offset;
955	int err;
956
957	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
958	      S_ISLNK(inode->i_mode)))
959		return;
960	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
961		return;
962
963	lock_kernel();
964	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
965		if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
966						inode->i_size)) {
967			udf_expand_file_adinicb(inode, inode->i_size, &err);
968			if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
969				inode->i_size = UDF_I_LENALLOC(inode);
970				unlock_kernel();
971				return;
972			} else {
973				udf_truncate_extents(inode);
974			}
975		} else {
976			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
977			memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
978			       inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
979			UDF_I_LENALLOC(inode) = inode->i_size;
980		}
981	} else {
982		block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
983		udf_truncate_extents(inode);
984	}
985
986	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
987	if (IS_SYNC(inode))
988		udf_sync_inode(inode);
989	else
990		mark_inode_dirty(inode);
991	unlock_kernel();
992}
993
994static void __udf_read_inode(struct inode *inode)
995{
996	struct buffer_head *bh = NULL;
997	struct fileEntry *fe;
998	uint16_t ident;
999
1000	/*
1001	 * Set defaults, but the inode is still incomplete!
1002	 * Note: get_new_inode() sets the following on a new inode:
1003	 *      i_sb = sb
1004	 *      i_no = ino
1005	 *      i_flags = sb->s_flags
1006	 *      i_state = 0
1007	 * clean_inode(): zero fills and sets
1008	 *      i_count = 1
1009	 *      i_nlink = 1
1010	 *      i_op = NULL;
1011	 */
1012	bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1013	if (!bh) {
1014		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1015		       inode->i_ino);
1016		make_bad_inode(inode);
1017		return;
1018	}
1019
1020	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1021	    ident != TAG_IDENT_USE) {
1022		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1023		       inode->i_ino, ident);
1024		brelse(bh);
1025		make_bad_inode(inode);
1026		return;
1027	}
1028
1029	fe = (struct fileEntry *)bh->b_data;
1030
1031	if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1032		struct buffer_head *ibh = NULL, *nbh = NULL;
1033		struct indirectEntry *ie;
1034
1035		ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1036		if (ident == TAG_IDENT_IE) {
1037			if (ibh) {
1038				kernel_lb_addr loc;
1039				ie = (struct indirectEntry *)ibh->b_data;
1040
1041				loc = lelb_to_cpu(ie->indirectICB.extLocation);
1042
1043				if (ie->indirectICB.extLength &&
1044				    (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1045					if (ident == TAG_IDENT_FE ||
1046					    ident == TAG_IDENT_EFE) {
1047						memcpy(&UDF_I_LOCATION(inode), &loc,
1048						       sizeof(kernel_lb_addr));
1049						brelse(bh);
1050						brelse(ibh);
1051						brelse(nbh);
1052						__udf_read_inode(inode);
1053						return;
1054					} else {
1055						brelse(nbh);
1056						brelse(ibh);
1057					}
1058				} else {
1059					brelse(ibh);
1060				}
1061			}
1062		} else {
1063			brelse(ibh);
1064		}
1065	} else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1066		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1067		       le16_to_cpu(fe->icbTag.strategyType));
1068		brelse(bh);
1069		make_bad_inode(inode);
1070		return;
1071	}
1072	udf_fill_inode(inode, bh);
1073
1074	brelse(bh);
1075}
1076
1077static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1078{
1079	struct fileEntry *fe;
1080	struct extendedFileEntry *efe;
1081	time_t convtime;
1082	long convtime_usec;
1083	int offset;
1084	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1085
1086	fe = (struct fileEntry *)bh->b_data;
1087	efe = (struct extendedFileEntry *)bh->b_data;
1088
1089	if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1090		UDF_I_STRAT4096(inode) = 0;
1091	else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1092		UDF_I_STRAT4096(inode) = 1;
1093
1094	UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1095	UDF_I_UNIQUE(inode) = 0;
1096	UDF_I_LENEATTR(inode) = 0;
1097	UDF_I_LENEXTENTS(inode) = 0;
1098	UDF_I_LENALLOC(inode) = 0;
1099	UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1100	UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1101	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1102		UDF_I_EFE(inode) = 1;
1103		UDF_I_USE(inode) = 0;
1104		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1105			make_bad_inode(inode);
1106			return;
1107		}
1108		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1109		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1110	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1111		UDF_I_EFE(inode) = 0;
1112		UDF_I_USE(inode) = 0;
1113		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1114			make_bad_inode(inode);
1115			return;
1116		}
1117		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1118		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1119	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1120		UDF_I_EFE(inode) = 0;
1121		UDF_I_USE(inode) = 1;
1122		UDF_I_LENALLOC(inode) =
1123		    le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1124		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1125			make_bad_inode(inode);
1126			return;
1127		}
1128		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1129		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1130		return;
1131	}
1132
1133	inode->i_uid = le32_to_cpu(fe->uid);
1134	if (inode->i_uid == -1 ||
1135	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1136	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1137		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1138
1139	inode->i_gid = le32_to_cpu(fe->gid);
1140	if (inode->i_gid == -1 ||
1141	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1142	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1143		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1144
1145	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1146	if (!inode->i_nlink)
1147		inode->i_nlink = 1;
1148
1149	inode->i_size = le64_to_cpu(fe->informationLength);
1150	UDF_I_LENEXTENTS(inode) = inode->i_size;
1151
1152	inode->i_mode = udf_convert_permissions(fe);
1153	inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1154
1155	if (UDF_I_EFE(inode) == 0) {
1156		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1157			(inode->i_sb->s_blocksize_bits - 9);
1158
1159		if (udf_stamp_to_time(&convtime, &convtime_usec,
1160				      lets_to_cpu(fe->accessTime))) {
1161			inode->i_atime.tv_sec = convtime;
1162			inode->i_atime.tv_nsec = convtime_usec * 1000;
1163		} else {
1164			inode->i_atime = sbi->s_record_time;
1165		}
1166
1167		if (udf_stamp_to_time(&convtime, &convtime_usec,
1168				      lets_to_cpu(fe->modificationTime))) {
1169			inode->i_mtime.tv_sec = convtime;
1170			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1171		} else {
1172			inode->i_mtime = sbi->s_record_time;
1173		}
1174
1175		if (udf_stamp_to_time(&convtime, &convtime_usec,
1176				      lets_to_cpu(fe->attrTime))) {
1177			inode->i_ctime.tv_sec = convtime;
1178			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1179		} else {
1180			inode->i_ctime = sbi->s_record_time;
1181		}
1182
1183		UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1184		UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1185		UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1186		offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1187	} else {
1188		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1189		    (inode->i_sb->s_blocksize_bits - 9);
1190
1191		if (udf_stamp_to_time(&convtime, &convtime_usec,
1192				      lets_to_cpu(efe->accessTime))) {
1193			inode->i_atime.tv_sec = convtime;
1194			inode->i_atime.tv_nsec = convtime_usec * 1000;
1195		} else {
1196			inode->i_atime = sbi->s_record_time;
1197		}
1198
1199		if (udf_stamp_to_time(&convtime, &convtime_usec,
1200				      lets_to_cpu(efe->modificationTime))) {
1201			inode->i_mtime.tv_sec = convtime;
1202			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1203		} else {
1204			inode->i_mtime = sbi->s_record_time;
1205		}
1206
1207		if (udf_stamp_to_time(&convtime, &convtime_usec,
1208				      lets_to_cpu(efe->createTime))) {
1209			UDF_I_CRTIME(inode).tv_sec = convtime;
1210			UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1211		} else {
1212			UDF_I_CRTIME(inode) = sbi->s_record_time;
1213		}
1214
1215		if (udf_stamp_to_time(&convtime, &convtime_usec,
1216				      lets_to_cpu(efe->attrTime))) {
1217			inode->i_ctime.tv_sec = convtime;
1218			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1219		} else {
1220			inode->i_ctime = sbi->s_record_time;
1221		}
1222
1223		UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1224		UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1225		UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1226		offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1227	}
1228
1229	switch (fe->icbTag.fileType) {
1230	case ICBTAG_FILE_TYPE_DIRECTORY:
1231		inode->i_op = &udf_dir_inode_operations;
1232		inode->i_fop = &udf_dir_operations;
1233		inode->i_mode |= S_IFDIR;
1234		inc_nlink(inode);
1235		break;
1236	case ICBTAG_FILE_TYPE_REALTIME:
1237	case ICBTAG_FILE_TYPE_REGULAR:
1238	case ICBTAG_FILE_TYPE_UNDEF:
1239		if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1240			inode->i_data.a_ops = &udf_adinicb_aops;
1241		else
1242			inode->i_data.a_ops = &udf_aops;
1243		inode->i_op = &udf_file_inode_operations;
1244		inode->i_fop = &udf_file_operations;
1245		inode->i_mode |= S_IFREG;
1246		break;
1247	case ICBTAG_FILE_TYPE_BLOCK:
1248		inode->i_mode |= S_IFBLK;
1249		break;
1250	case ICBTAG_FILE_TYPE_CHAR:
1251		inode->i_mode |= S_IFCHR;
1252		break;
1253	case ICBTAG_FILE_TYPE_FIFO:
1254		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1255		break;
1256	case ICBTAG_FILE_TYPE_SOCKET:
1257		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1258		break;
1259	case ICBTAG_FILE_TYPE_SYMLINK:
1260		inode->i_data.a_ops = &udf_symlink_aops;
1261		inode->i_op = &page_symlink_inode_operations;
1262		inode->i_mode = S_IFLNK | S_IRWXUGO;
1263		break;
1264	default:
1265		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1266		       inode->i_ino, fe->icbTag.fileType);
1267		make_bad_inode(inode);
1268		return;
1269	}
1270	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1271		struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1272		if (dsea) {
1273			init_special_inode(inode, inode->i_mode,
1274					   MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1275						 le32_to_cpu(dsea->minorDeviceIdent)));
1276			/* Developer ID ??? */
1277		} else {
1278			make_bad_inode(inode);
1279		}
1280	}
1281}
1282
1283static int udf_alloc_i_data(struct inode *inode, size_t size)
1284{
1285	UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1286
1287	if (!UDF_I_DATA(inode)) {
1288		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1289		       inode->i_ino);
1290		return -ENOMEM;
1291	}
1292
1293	return 0;
1294}
1295
1296static mode_t udf_convert_permissions(struct fileEntry *fe)
1297{
1298	mode_t mode;
1299	uint32_t permissions;
1300	uint32_t flags;
1301
1302	permissions = le32_to_cpu(fe->permissions);
1303	flags = le16_to_cpu(fe->icbTag.flags);
1304
1305	mode =	(( permissions      ) & S_IRWXO) |
1306		(( permissions >> 2 ) & S_IRWXG) |
1307		(( permissions >> 4 ) & S_IRWXU) |
1308		(( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1309		(( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1310		(( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1311
1312	return mode;
1313}
1314
1315/*
1316 * udf_write_inode
1317 *
1318 * PURPOSE
1319 *	Write out the specified inode.
1320 *
1321 * DESCRIPTION
1322 *	This routine is called whenever an inode is synced.
1323 *	Currently this routine is just a placeholder.
1324 *
1325 * HISTORY
1326 *	July 1, 1997 - Andrew E. Mileski
1327 *	Written, tested, and released.
1328 */
1329
1330int udf_write_inode(struct inode *inode, int sync)
1331{
1332	int ret;
1333
1334	lock_kernel();
1335	ret = udf_update_inode(inode, sync);
1336	unlock_kernel();
1337
1338	return ret;
1339}
1340
1341int udf_sync_inode(struct inode *inode)
1342{
1343	return udf_update_inode(inode, 1);
1344}
1345
1346static int udf_update_inode(struct inode *inode, int do_sync)
1347{
1348	struct buffer_head *bh = NULL;
1349	struct fileEntry *fe;
1350	struct extendedFileEntry *efe;
1351	uint32_t udfperms;
1352	uint16_t icbflags;
1353	uint16_t crclen;
1354	int i;
1355	kernel_timestamp cpu_time;
1356	int err = 0;
1357	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1358
1359	bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1360	if (!bh) {
1361		udf_debug("bread failure\n");
1362		return -EIO;
1363	}
1364
1365	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1366
1367	fe = (struct fileEntry *)bh->b_data;
1368	efe = (struct extendedFileEntry *)bh->b_data;
1369
1370	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1371		struct unallocSpaceEntry *use =
1372			(struct unallocSpaceEntry *)bh->b_data;
1373
1374		use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1375		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1376		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1377		crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1378		use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1379		use->descTag.descCRCLength = cpu_to_le16(crclen);
1380		use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1381
1382		use->descTag.tagChecksum = 0;
1383		for (i = 0; i < 16; i++) {
1384			if (i != 4)
1385				use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1386		}
1387
1388		mark_buffer_dirty(bh);
1389		brelse(bh);
1390		return err;
1391	}
1392
1393	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1394		fe->uid = cpu_to_le32(-1);
1395	else
1396		fe->uid = cpu_to_le32(inode->i_uid);
1397
1398	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1399		fe->gid = cpu_to_le32(-1);
1400	else
1401		fe->gid = cpu_to_le32(inode->i_gid);
1402
1403	udfperms =	((inode->i_mode & S_IRWXO)     ) |
1404			((inode->i_mode & S_IRWXG) << 2) |
1405			((inode->i_mode & S_IRWXU) << 4);
1406
1407	udfperms |=	(le32_to_cpu(fe->permissions) &
1408			(FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1409			 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1410			 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1411	fe->permissions = cpu_to_le32(udfperms);
1412
1413	if (S_ISDIR(inode->i_mode))
1414		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1415	else
1416		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1417
1418	fe->informationLength = cpu_to_le64(inode->i_size);
1419
1420	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1421		regid *eid;
1422		struct deviceSpec *dsea =
1423			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1424		if (!dsea) {
1425			dsea = (struct deviceSpec *)
1426				udf_add_extendedattr(inode,
1427						     sizeof(struct deviceSpec) +
1428						     sizeof(regid), 12, 0x3);
1429			dsea->attrType = cpu_to_le32(12);
1430			dsea->attrSubtype = 1;
1431			dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1432						       sizeof(regid));
1433			dsea->impUseLength = cpu_to_le32(sizeof(regid));
1434		}
1435		eid = (regid *)dsea->impUse;
1436		memset(eid, 0, sizeof(regid));
1437		strcpy(eid->ident, UDF_ID_DEVELOPER);
1438		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1439		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1440		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1441		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1442	}
1443
1444	if (UDF_I_EFE(inode) == 0) {
1445		memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1446		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1447		fe->logicalBlocksRecorded = cpu_to_le64(
1448			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1449			(inode->i_sb->s_blocksize_bits - 9));
1450
1451		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1452			fe->accessTime = cpu_to_lets(cpu_time);
1453		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1454			fe->modificationTime = cpu_to_lets(cpu_time);
1455		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1456			fe->attrTime = cpu_to_lets(cpu_time);
1457		memset(&(fe->impIdent), 0, sizeof(regid));
1458		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1459		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1460		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1461		fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1462		fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1463		fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1464		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1465		crclen = sizeof(struct fileEntry);
1466	} else {
1467		memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1468		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1469		efe->objectSize = cpu_to_le64(inode->i_size);
1470		efe->logicalBlocksRecorded = cpu_to_le64(
1471			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1472			(inode->i_sb->s_blocksize_bits - 9));
1473
1474		if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1475		    (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1476		     UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1477			UDF_I_CRTIME(inode) = inode->i_atime;
1478		}
1479		if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1480		    (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1481		     UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1482			UDF_I_CRTIME(inode) = inode->i_mtime;
1483		}
1484		if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1485		    (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1486		     UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1487			UDF_I_CRTIME(inode) = inode->i_ctime;
1488		}
1489
1490		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1491			efe->accessTime = cpu_to_lets(cpu_time);
1492		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1493			efe->modificationTime = cpu_to_lets(cpu_time);
1494		if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1495			efe->createTime = cpu_to_lets(cpu_time);
1496		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1497			efe->attrTime = cpu_to_lets(cpu_time);
1498
1499		memset(&(efe->impIdent), 0, sizeof(regid));
1500		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1501		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1502		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1503		efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1504		efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1505		efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1506		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1507		crclen = sizeof(struct extendedFileEntry);
1508	}
1509	if (UDF_I_STRAT4096(inode)) {
1510		fe->icbTag.strategyType = cpu_to_le16(4096);
1511		fe->icbTag.strategyParameter = cpu_to_le16(1);
1512		fe->icbTag.numEntries = cpu_to_le16(2);
1513	} else {
1514		fe->icbTag.strategyType = cpu_to_le16(4);
1515		fe->icbTag.numEntries = cpu_to_le16(1);
1516	}
1517
1518	if (S_ISDIR(inode->i_mode))
1519		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1520	else if (S_ISREG(inode->i_mode))
1521		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1522	else if (S_ISLNK(inode->i_mode))
1523		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1524	else if (S_ISBLK(inode->i_mode))
1525		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1526	else if (S_ISCHR(inode->i_mode))
1527		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1528	else if (S_ISFIFO(inode->i_mode))
1529		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1530	else if (S_ISSOCK(inode->i_mode))
1531		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1532
1533	icbflags =	UDF_I_ALLOCTYPE(inode) |
1534			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1535			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1536			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1537			(le16_to_cpu(fe->icbTag.flags) &
1538				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1539				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1540
1541	fe->icbTag.flags = cpu_to_le16(icbflags);
1542	if (sbi->s_udfrev >= 0x0200)
1543		fe->descTag.descVersion = cpu_to_le16(3);
1544	else
1545		fe->descTag.descVersion = cpu_to_le16(2);
1546	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1547	fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1548	crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1549	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1550	fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1551
1552	fe->descTag.tagChecksum = 0;
1553	for (i = 0; i < 16; i++) {
1554		if (i != 4)
1555			fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1556	}
1557
1558	/* write the data blocks */
1559	mark_buffer_dirty(bh);
1560	if (do_sync) {
1561		sync_dirty_buffer(bh);
1562		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1563			printk("IO error syncing udf inode [%s:%08lx]\n",
1564			       inode->i_sb->s_id, inode->i_ino);
1565			err = -EIO;
1566		}
1567	}
1568	brelse(bh);
1569
1570	return err;
1571}
1572
1573struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1574{
1575	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1576	struct inode *inode = iget_locked(sb, block);
1577
1578	if (!inode)
1579		return NULL;
1580
1581	if (inode->i_state & I_NEW) {
1582		memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1583		__udf_read_inode(inode);
1584		unlock_new_inode(inode);
1585	}
1586
1587	if (is_bad_inode(inode))
1588		goto out_iput;
1589
1590	if (ino.logicalBlockNum >= UDF_SB(sb)->s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1591		udf_debug("block=%d, partition=%d out of range\n",
1592			  ino.logicalBlockNum, ino.partitionReferenceNum);
1593		make_bad_inode(inode);
1594		goto out_iput;
1595	}
1596
1597	return inode;
1598
1599 out_iput:
1600	iput(inode);
1601	return NULL;
1602}
1603
1604int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1605		    kernel_lb_addr eloc, uint32_t elen, int inc)
1606{
1607	int adsize;
1608	short_ad *sad = NULL;
1609	long_ad *lad = NULL;
1610	struct allocExtDesc *aed;
1611	int8_t etype;
1612	uint8_t *ptr;
1613
1614	if (!epos->bh)
1615		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1616	else
1617		ptr = epos->bh->b_data + epos->offset;
1618
1619	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1620		adsize = sizeof(short_ad);
1621	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1622		adsize = sizeof(long_ad);
1623	else
1624		return -1;
1625
1626	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1627		char *sptr, *dptr;
1628		struct buffer_head *nbh;
1629		int err, loffset;
1630		kernel_lb_addr obloc = epos->block;
1631
1632		if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1633								  obloc.partitionReferenceNum,
1634								  obloc.logicalBlockNum, &err))) {
1635			return -1;
1636		}
1637		if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1638								       epos->block, 0)))) {
1639			return -1;
1640		}
1641		lock_buffer(nbh);
1642		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1643		set_buffer_uptodate(nbh);
1644		unlock_buffer(nbh);
1645		mark_buffer_dirty_inode(nbh, inode);
1646
1647		aed = (struct allocExtDesc *)(nbh->b_data);
1648		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1649			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1650		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1651			loffset = epos->offset;
1652			aed->lengthAllocDescs = cpu_to_le32(adsize);
1653			sptr = ptr - adsize;
1654			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1655			memcpy(dptr, sptr, adsize);
1656			epos->offset = sizeof(struct allocExtDesc) + adsize;
1657		} else {
1658			loffset = epos->offset + adsize;
1659			aed->lengthAllocDescs = cpu_to_le32(0);
1660			sptr = ptr;
1661			epos->offset = sizeof(struct allocExtDesc);
1662
1663			if (epos->bh) {
1664				aed = (struct allocExtDesc *)epos->bh->b_data;
1665				aed->lengthAllocDescs =
1666					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1667			} else {
1668				UDF_I_LENALLOC(inode) += adsize;
1669				mark_inode_dirty(inode);
1670			}
1671		}
1672		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1673			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1674				    epos->block.logicalBlockNum, sizeof(tag));
1675		else
1676			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1677				    epos->block.logicalBlockNum, sizeof(tag));
1678		switch (UDF_I_ALLOCTYPE(inode)) {
1679		case ICBTAG_FLAG_AD_SHORT:
1680			sad = (short_ad *)sptr;
1681			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1682						     inode->i_sb->s_blocksize);
1683			sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1684			break;
1685		case ICBTAG_FLAG_AD_LONG:
1686			lad = (long_ad *)sptr;
1687			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1688						     inode->i_sb->s_blocksize);
1689			lad->extLocation = cpu_to_lelb(epos->block);
1690			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1691			break;
1692		}
1693		if (epos->bh) {
1694			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1695			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1696				udf_update_tag(epos->bh->b_data, loffset);
1697			else
1698				udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1699			mark_buffer_dirty_inode(epos->bh, inode);
1700			brelse(epos->bh);
1701		} else {
1702			mark_inode_dirty(inode);
1703		}
1704		epos->bh = nbh;
1705	}
1706
1707	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1708
1709	if (!epos->bh) {
1710		UDF_I_LENALLOC(inode) += adsize;
1711		mark_inode_dirty(inode);
1712	} else {
1713		aed = (struct allocExtDesc *)epos->bh->b_data;
1714		aed->lengthAllocDescs =
1715			cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1716		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1717			udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1718		else
1719			udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1720		mark_buffer_dirty_inode(epos->bh, inode);
1721	}
1722
1723	return etype;
1724}
1725
1726int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1727		      kernel_lb_addr eloc, uint32_t elen, int inc)
1728{
1729	int adsize;
1730	uint8_t *ptr;
1731	short_ad *sad;
1732	long_ad *lad;
1733
1734	if (!epos->bh)
1735		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1736	else
1737		ptr = epos->bh->b_data + epos->offset;
1738
1739	switch (UDF_I_ALLOCTYPE(inode)) {
1740	case ICBTAG_FLAG_AD_SHORT:
1741		sad = (short_ad *)ptr;
1742		sad->extLength = cpu_to_le32(elen);
1743		sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1744		adsize = sizeof(short_ad);
1745		break;
1746	case ICBTAG_FLAG_AD_LONG:
1747		lad = (long_ad *)ptr;
1748		lad->extLength = cpu_to_le32(elen);
1749		lad->extLocation = cpu_to_lelb(eloc);
1750		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1751		adsize = sizeof(long_ad);
1752		break;
1753	default:
1754		return -1;
1755	}
1756
1757	if (epos->bh) {
1758		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1759		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1760			struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1761			udf_update_tag(epos->bh->b_data,
1762				       le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1763		}
1764		mark_buffer_dirty_inode(epos->bh, inode);
1765	} else {
1766		mark_inode_dirty(inode);
1767	}
1768
1769	if (inc)
1770		epos->offset += adsize;
1771
1772	return (elen >> 30);
1773}
1774
1775int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1776		     kernel_lb_addr * eloc, uint32_t * elen, int inc)
1777{
1778	int8_t etype;
1779
1780	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1781	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1782		epos->block = *eloc;
1783		epos->offset = sizeof(struct allocExtDesc);
1784		brelse(epos->bh);
1785		if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1786			udf_debug("reading block %d failed!\n",
1787				  udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1788			return -1;
1789		}
1790	}
1791
1792	return etype;
1793}
1794
1795int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1796			kernel_lb_addr * eloc, uint32_t * elen, int inc)
1797{
1798	int alen;
1799	int8_t etype;
1800	uint8_t *ptr;
1801	short_ad *sad;
1802	long_ad *lad;
1803
1804
1805	if (!epos->bh) {
1806		if (!epos->offset)
1807			epos->offset = udf_file_entry_alloc_offset(inode);
1808		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1809		alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1810	} else {
1811		if (!epos->offset)
1812			epos->offset = sizeof(struct allocExtDesc);
1813		ptr = epos->bh->b_data + epos->offset;
1814		alen = sizeof(struct allocExtDesc) +
1815			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1816	}
1817
1818	switch (UDF_I_ALLOCTYPE(inode)) {
1819	case ICBTAG_FLAG_AD_SHORT:
1820		if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1821			return -1;
1822		etype = le32_to_cpu(sad->extLength) >> 30;
1823		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1824		eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1825		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1826		break;
1827	case ICBTAG_FLAG_AD_LONG:
1828		if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1829			return -1;
1830		etype = le32_to_cpu(lad->extLength) >> 30;
1831		*eloc = lelb_to_cpu(lad->extLocation);
1832		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1833		break;
1834	default:
1835		udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1836		return -1;
1837	}
1838
1839	return etype;
1840}
1841
1842static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1843			      kernel_lb_addr neloc, uint32_t nelen)
1844{
1845	kernel_lb_addr oeloc;
1846	uint32_t oelen;
1847	int8_t etype;
1848
1849	if (epos.bh)
1850		get_bh(epos.bh);
1851
1852	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1853		udf_write_aext(inode, &epos, neloc, nelen, 1);
1854		neloc = oeloc;
1855		nelen = (etype << 30) | oelen;
1856	}
1857	udf_add_aext(inode, &epos, neloc, nelen, 1);
1858	brelse(epos.bh);
1859
1860	return (nelen >> 30);
1861}
1862
1863int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1864		       kernel_lb_addr eloc, uint32_t elen)
1865{
1866	struct extent_position oepos;
1867	int adsize;
1868	int8_t etype;
1869	struct allocExtDesc *aed;
1870
1871	if (epos.bh) {
1872		get_bh(epos.bh);
1873		get_bh(epos.bh);
1874	}
1875
1876	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1877		adsize = sizeof(short_ad);
1878	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1879		adsize = sizeof(long_ad);
1880	else
1881		adsize = 0;
1882
1883	oepos = epos;
1884	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1885		return -1;
1886
1887	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1888		udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1889		if (oepos.bh != epos.bh) {
1890			oepos.block = epos.block;
1891			brelse(oepos.bh);
1892			get_bh(epos.bh);
1893			oepos.bh = epos.bh;
1894			oepos.offset = epos.offset - adsize;
1895		}
1896	}
1897	memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1898	elen = 0;
1899
1900	if (epos.bh != oepos.bh) {
1901		udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1902		udf_write_aext(inode, &oepos, eloc, elen, 1);
1903		udf_write_aext(inode, &oepos, eloc, elen, 1);
1904		if (!oepos.bh) {
1905			UDF_I_LENALLOC(inode) -= (adsize * 2);
1906			mark_inode_dirty(inode);
1907		} else {
1908			aed = (struct allocExtDesc *)oepos.bh->b_data;
1909			aed->lengthAllocDescs =
1910				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1911			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1912			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1913				udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1914			else
1915				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1916			mark_buffer_dirty_inode(oepos.bh, inode);
1917		}
1918	} else {
1919		udf_write_aext(inode, &oepos, eloc, elen, 1);
1920		if (!oepos.bh) {
1921			UDF_I_LENALLOC(inode) -= adsize;
1922			mark_inode_dirty(inode);
1923		} else {
1924			aed = (struct allocExtDesc *)oepos.bh->b_data;
1925			aed->lengthAllocDescs =
1926				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1927			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1928			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1929				udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1930			else
1931				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1932			mark_buffer_dirty_inode(oepos.bh, inode);
1933		}
1934	}
1935
1936	brelse(epos.bh);
1937	brelse(oepos.bh);
1938
1939	return (elen >> 30);
1940}
1941
1942int8_t inode_bmap(struct inode * inode, sector_t block,
1943		  struct extent_position * pos, kernel_lb_addr * eloc,
1944		  uint32_t * elen, sector_t * offset)
1945{
1946	loff_t lbcount = 0, bcount =
1947	    (loff_t) block << inode->i_sb->s_blocksize_bits;
1948	int8_t etype;
1949
1950	if (block < 0) {
1951		printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1952		return -1;
1953	}
1954
1955	pos->offset = 0;
1956	pos->block = UDF_I_LOCATION(inode);
1957	pos->bh = NULL;
1958	*elen = 0;
1959
1960	do {
1961		if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1962			*offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1963			UDF_I_LENEXTENTS(inode) = lbcount;
1964			return -1;
1965		}
1966		lbcount += *elen;
1967	} while (lbcount <= bcount);
1968
1969	*offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1970
1971	return etype;
1972}
1973
1974long udf_block_map(struct inode *inode, sector_t block)
1975{
1976	kernel_lb_addr eloc;
1977	uint32_t elen;
1978	sector_t offset;
1979	struct extent_position epos = {};
1980	int ret;
1981
1982	lock_kernel();
1983
1984	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1985		ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1986	else
1987		ret = 0;
1988
1989	unlock_kernel();
1990	brelse(epos.bh);
1991
1992	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1993		return udf_fixed_to_variable(ret);
1994	else
1995		return ret;
1996}
1997