xfs_log_cil.c revision 80168676ebfe4af51407d30f336d67f082d45201
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_trans_priv.h"
26#include "xfs_log_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_alloc.h"
32
33/*
34 * Perform initial CIL structure initialisation. If the CIL is not
35 * enabled in this filesystem, ensure the log->l_cilp is null so
36 * we can check this conditional to determine if we are doing delayed
37 * logging or not.
38 */
39int
40xlog_cil_init(
41	struct log	*log)
42{
43	struct xfs_cil	*cil;
44	struct xfs_cil_ctx *ctx;
45
46	log->l_cilp = NULL;
47	if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG))
48		return 0;
49
50	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
51	if (!cil)
52		return ENOMEM;
53
54	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
55	if (!ctx) {
56		kmem_free(cil);
57		return ENOMEM;
58	}
59
60	INIT_LIST_HEAD(&cil->xc_cil);
61	INIT_LIST_HEAD(&cil->xc_committing);
62	spin_lock_init(&cil->xc_cil_lock);
63	init_rwsem(&cil->xc_ctx_lock);
64	sv_init(&cil->xc_commit_wait, SV_DEFAULT, "cilwait");
65
66	INIT_LIST_HEAD(&ctx->committing);
67	INIT_LIST_HEAD(&ctx->busy_extents);
68	ctx->sequence = 1;
69	ctx->cil = cil;
70	cil->xc_ctx = ctx;
71	cil->xc_current_sequence = ctx->sequence;
72
73	cil->xc_log = log;
74	log->l_cilp = cil;
75	return 0;
76}
77
78void
79xlog_cil_destroy(
80	struct log	*log)
81{
82	if (!log->l_cilp)
83		return;
84
85	if (log->l_cilp->xc_ctx) {
86		if (log->l_cilp->xc_ctx->ticket)
87			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
88		kmem_free(log->l_cilp->xc_ctx);
89	}
90
91	ASSERT(list_empty(&log->l_cilp->xc_cil));
92	kmem_free(log->l_cilp);
93}
94
95/*
96 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
97 * recover, so we don't allow failure here. Also, we allocate in a context that
98 * we don't want to be issuing transactions from, so we need to tell the
99 * allocation code this as well.
100 *
101 * We don't reserve any space for the ticket - we are going to steal whatever
102 * space we require from transactions as they commit. To ensure we reserve all
103 * the space required, we need to set the current reservation of the ticket to
104 * zero so that we know to steal the initial transaction overhead from the
105 * first transaction commit.
106 */
107static struct xlog_ticket *
108xlog_cil_ticket_alloc(
109	struct log	*log)
110{
111	struct xlog_ticket *tic;
112
113	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
114				KM_SLEEP|KM_NOFS);
115	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
116
117	/*
118	 * set the current reservation to zero so we know to steal the basic
119	 * transaction overhead reservation from the first transaction commit.
120	 */
121	tic->t_curr_res = 0;
122	return tic;
123}
124
125/*
126 * After the first stage of log recovery is done, we know where the head and
127 * tail of the log are. We need this log initialisation done before we can
128 * initialise the first CIL checkpoint context.
129 *
130 * Here we allocate a log ticket to track space usage during a CIL push.  This
131 * ticket is passed to xlog_write() directly so that we don't slowly leak log
132 * space by failing to account for space used by log headers and additional
133 * region headers for split regions.
134 */
135void
136xlog_cil_init_post_recovery(
137	struct log	*log)
138{
139	if (!log->l_cilp)
140		return;
141
142	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
143	log->l_cilp->xc_ctx->sequence = 1;
144	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
145								log->l_curr_block);
146}
147
148/*
149 * Insert the log item into the CIL and calculate the difference in space
150 * consumed by the item. Add the space to the checkpoint ticket and calculate
151 * if the change requires additional log metadata. If it does, take that space
152 * as well. Remove the amount of space we addded to the checkpoint ticket from
153 * the current transaction ticket so that the accounting works out correctly.
154 *
155 * If this is the first time the item is being placed into the CIL in this
156 * context, pin it so it can't be written to disk until the CIL is flushed to
157 * the iclog and the iclog written to disk.
158 */
159static void
160xlog_cil_insert(
161	struct log		*log,
162	struct xlog_ticket	*ticket,
163	struct xfs_log_item	*item,
164	struct xfs_log_vec	*lv)
165{
166	struct xfs_cil		*cil = log->l_cilp;
167	struct xfs_log_vec	*old = lv->lv_item->li_lv;
168	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
169	int			len;
170	int			diff_iovecs;
171	int			iclog_space;
172
173	if (old) {
174		/* existing lv on log item, space used is a delta */
175		ASSERT(!list_empty(&item->li_cil));
176		ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
177
178		len = lv->lv_buf_len - old->lv_buf_len;
179		diff_iovecs = lv->lv_niovecs - old->lv_niovecs;
180		kmem_free(old->lv_buf);
181		kmem_free(old);
182	} else {
183		/* new lv, must pin the log item */
184		ASSERT(!lv->lv_item->li_lv);
185		ASSERT(list_empty(&item->li_cil));
186
187		len = lv->lv_buf_len;
188		diff_iovecs = lv->lv_niovecs;
189		IOP_PIN(lv->lv_item);
190
191	}
192	len += diff_iovecs * sizeof(xlog_op_header_t);
193
194	/* attach new log vector to log item */
195	lv->lv_item->li_lv = lv;
196
197	spin_lock(&cil->xc_cil_lock);
198	list_move_tail(&item->li_cil, &cil->xc_cil);
199	ctx->nvecs += diff_iovecs;
200
201	/*
202	 * If this is the first time the item is being committed to the CIL,
203	 * store the sequence number on the log item so we can tell
204	 * in future commits whether this is the first checkpoint the item is
205	 * being committed into.
206	 */
207	if (!item->li_seq)
208		item->li_seq = ctx->sequence;
209
210	/*
211	 * Now transfer enough transaction reservation to the context ticket
212	 * for the checkpoint. The context ticket is special - the unit
213	 * reservation has to grow as well as the current reservation as we
214	 * steal from tickets so we can correctly determine the space used
215	 * during the transaction commit.
216	 */
217	if (ctx->ticket->t_curr_res == 0) {
218		/* first commit in checkpoint, steal the header reservation */
219		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
220		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
221		ticket->t_curr_res -= ctx->ticket->t_unit_res;
222	}
223
224	/* do we need space for more log record headers? */
225	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
226	if (len > 0 && (ctx->space_used / iclog_space !=
227				(ctx->space_used + len) / iclog_space)) {
228		int hdrs;
229
230		hdrs = (len + iclog_space - 1) / iclog_space;
231		/* need to take into account split region headers, too */
232		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
233		ctx->ticket->t_unit_res += hdrs;
234		ctx->ticket->t_curr_res += hdrs;
235		ticket->t_curr_res -= hdrs;
236		ASSERT(ticket->t_curr_res >= len);
237	}
238	ticket->t_curr_res -= len;
239	ctx->space_used += len;
240
241	spin_unlock(&cil->xc_cil_lock);
242}
243
244/*
245 * Format log item into a flat buffers
246 *
247 * For delayed logging, we need to hold a formatted buffer containing all the
248 * changes on the log item. This enables us to relog the item in memory and
249 * write it out asynchronously without needing to relock the object that was
250 * modified at the time it gets written into the iclog.
251 *
252 * This function builds a vector for the changes in each log item in the
253 * transaction. It then works out the length of the buffer needed for each log
254 * item, allocates them and formats the vector for the item into the buffer.
255 * The buffer is then attached to the log item are then inserted into the
256 * Committed Item List for tracking until the next checkpoint is written out.
257 *
258 * We don't set up region headers during this process; we simply copy the
259 * regions into the flat buffer. We can do this because we still have to do a
260 * formatting step to write the regions into the iclog buffer.  Writing the
261 * ophdrs during the iclog write means that we can support splitting large
262 * regions across iclog boundares without needing a change in the format of the
263 * item/region encapsulation.
264 *
265 * Hence what we need to do now is change the rewrite the vector array to point
266 * to the copied region inside the buffer we just allocated. This allows us to
267 * format the regions into the iclog as though they are being formatted
268 * directly out of the objects themselves.
269 */
270static void
271xlog_cil_format_items(
272	struct log		*log,
273	struct xfs_log_vec	*log_vector)
274{
275	struct xfs_log_vec *lv;
276
277	ASSERT(log_vector);
278	for (lv = log_vector; lv; lv = lv->lv_next) {
279		void	*ptr;
280		int	index;
281		int	len = 0;
282
283		/* build the vector array and calculate it's length */
284		IOP_FORMAT(lv->lv_item, lv->lv_iovecp);
285		for (index = 0; index < lv->lv_niovecs; index++)
286			len += lv->lv_iovecp[index].i_len;
287
288		lv->lv_buf_len = len;
289		lv->lv_buf = kmem_zalloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS);
290		ptr = lv->lv_buf;
291
292		for (index = 0; index < lv->lv_niovecs; index++) {
293			struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
294
295			memcpy(ptr, vec->i_addr, vec->i_len);
296			vec->i_addr = ptr;
297			ptr += vec->i_len;
298		}
299		ASSERT(ptr == lv->lv_buf + lv->lv_buf_len);
300	}
301}
302
303static void
304xlog_cil_insert_items(
305	struct log		*log,
306	struct xfs_log_vec	*log_vector,
307	struct xlog_ticket	*ticket,
308	xfs_lsn_t		*start_lsn)
309{
310	struct xfs_log_vec *lv;
311
312	if (start_lsn)
313		*start_lsn = log->l_cilp->xc_ctx->sequence;
314
315	ASSERT(log_vector);
316	for (lv = log_vector; lv; lv = lv->lv_next)
317		xlog_cil_insert(log, ticket, lv->lv_item, lv);
318}
319
320static void
321xlog_cil_free_logvec(
322	struct xfs_log_vec	*log_vector)
323{
324	struct xfs_log_vec	*lv;
325
326	for (lv = log_vector; lv; ) {
327		struct xfs_log_vec *next = lv->lv_next;
328		kmem_free(lv->lv_buf);
329		kmem_free(lv);
330		lv = next;
331	}
332}
333
334/*
335 * Mark all items committed and clear busy extents. We free the log vector
336 * chains in a separate pass so that we unpin the log items as quickly as
337 * possible.
338 */
339static void
340xlog_cil_committed(
341	void	*args,
342	int	abort)
343{
344	struct xfs_cil_ctx	*ctx = args;
345	struct xfs_log_vec	*lv;
346	int			abortflag = abort ? XFS_LI_ABORTED : 0;
347	struct xfs_busy_extent	*busyp, *n;
348
349	/* unpin all the log items */
350	for (lv = ctx->lv_chain; lv; lv = lv->lv_next ) {
351		xfs_trans_item_committed(lv->lv_item, ctx->start_lsn,
352							abortflag);
353	}
354
355	list_for_each_entry_safe(busyp, n, &ctx->busy_extents, list)
356		xfs_alloc_busy_clear(ctx->cil->xc_log->l_mp, busyp);
357
358	spin_lock(&ctx->cil->xc_cil_lock);
359	list_del(&ctx->committing);
360	spin_unlock(&ctx->cil->xc_cil_lock);
361
362	xlog_cil_free_logvec(ctx->lv_chain);
363	kmem_free(ctx);
364}
365
366/*
367 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
368 * is a background flush and so we can chose to ignore it. Otherwise, if the
369 * current sequence is the same as @push_seq we need to do a flush. If
370 * @push_seq is less than the current sequence, then it has already been
371 * flushed and we don't need to do anything - the caller will wait for it to
372 * complete if necessary.
373 *
374 * @push_seq is a value rather than a flag because that allows us to do an
375 * unlocked check of the sequence number for a match. Hence we can allows log
376 * forces to run racily and not issue pushes for the same sequence twice. If we
377 * get a race between multiple pushes for the same sequence they will block on
378 * the first one and then abort, hence avoiding needless pushes.
379 */
380STATIC int
381xlog_cil_push(
382	struct log		*log,
383	xfs_lsn_t		push_seq)
384{
385	struct xfs_cil		*cil = log->l_cilp;
386	struct xfs_log_vec	*lv;
387	struct xfs_cil_ctx	*ctx;
388	struct xfs_cil_ctx	*new_ctx;
389	struct xlog_in_core	*commit_iclog;
390	struct xlog_ticket	*tic;
391	int			num_lv;
392	int			num_iovecs;
393	int			len;
394	int			error = 0;
395	struct xfs_trans_header thdr;
396	struct xfs_log_iovec	lhdr;
397	struct xfs_log_vec	lvhdr = { NULL };
398	xfs_lsn_t		commit_lsn;
399
400	if (!cil)
401		return 0;
402
403	ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence);
404
405	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
406	new_ctx->ticket = xlog_cil_ticket_alloc(log);
407
408	/*
409	 * Lock out transaction commit, but don't block for background pushes
410	 * unless we are well over the CIL space limit. See the definition of
411	 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic
412	 * used here.
413	 */
414	if (!down_write_trylock(&cil->xc_ctx_lock)) {
415		if (!push_seq &&
416		    cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log))
417			goto out_free_ticket;
418		down_write(&cil->xc_ctx_lock);
419	}
420	ctx = cil->xc_ctx;
421
422	/* check if we've anything to push */
423	if (list_empty(&cil->xc_cil))
424		goto out_skip;
425
426	/* check for spurious background flush */
427	if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
428		goto out_skip;
429
430	/* check for a previously pushed seqeunce */
431	if (push_seq && push_seq < cil->xc_ctx->sequence)
432		goto out_skip;
433
434	/*
435	 * pull all the log vectors off the items in the CIL, and
436	 * remove the items from the CIL. We don't need the CIL lock
437	 * here because it's only needed on the transaction commit
438	 * side which is currently locked out by the flush lock.
439	 */
440	lv = NULL;
441	num_lv = 0;
442	num_iovecs = 0;
443	len = 0;
444	while (!list_empty(&cil->xc_cil)) {
445		struct xfs_log_item	*item;
446		int			i;
447
448		item = list_first_entry(&cil->xc_cil,
449					struct xfs_log_item, li_cil);
450		list_del_init(&item->li_cil);
451		if (!ctx->lv_chain)
452			ctx->lv_chain = item->li_lv;
453		else
454			lv->lv_next = item->li_lv;
455		lv = item->li_lv;
456		item->li_lv = NULL;
457
458		num_lv++;
459		num_iovecs += lv->lv_niovecs;
460		for (i = 0; i < lv->lv_niovecs; i++)
461			len += lv->lv_iovecp[i].i_len;
462	}
463
464	/*
465	 * initialise the new context and attach it to the CIL. Then attach
466	 * the current context to the CIL committing lsit so it can be found
467	 * during log forces to extract the commit lsn of the sequence that
468	 * needs to be forced.
469	 */
470	INIT_LIST_HEAD(&new_ctx->committing);
471	INIT_LIST_HEAD(&new_ctx->busy_extents);
472	new_ctx->sequence = ctx->sequence + 1;
473	new_ctx->cil = cil;
474	cil->xc_ctx = new_ctx;
475
476	/*
477	 * mirror the new sequence into the cil structure so that we can do
478	 * unlocked checks against the current sequence in log forces without
479	 * risking deferencing a freed context pointer.
480	 */
481	cil->xc_current_sequence = new_ctx->sequence;
482
483	/*
484	 * The switch is now done, so we can drop the context lock and move out
485	 * of a shared context. We can't just go straight to the commit record,
486	 * though - we need to synchronise with previous and future commits so
487	 * that the commit records are correctly ordered in the log to ensure
488	 * that we process items during log IO completion in the correct order.
489	 *
490	 * For example, if we get an EFI in one checkpoint and the EFD in the
491	 * next (e.g. due to log forces), we do not want the checkpoint with
492	 * the EFD to be committed before the checkpoint with the EFI.  Hence
493	 * we must strictly order the commit records of the checkpoints so
494	 * that: a) the checkpoint callbacks are attached to the iclogs in the
495	 * correct order; and b) the checkpoints are replayed in correct order
496	 * in log recovery.
497	 *
498	 * Hence we need to add this context to the committing context list so
499	 * that higher sequences will wait for us to write out a commit record
500	 * before they do.
501	 */
502	spin_lock(&cil->xc_cil_lock);
503	list_add(&ctx->committing, &cil->xc_committing);
504	spin_unlock(&cil->xc_cil_lock);
505	up_write(&cil->xc_ctx_lock);
506
507	/*
508	 * Build a checkpoint transaction header and write it to the log to
509	 * begin the transaction. We need to account for the space used by the
510	 * transaction header here as it is not accounted for in xlog_write().
511	 *
512	 * The LSN we need to pass to the log items on transaction commit is
513	 * the LSN reported by the first log vector write. If we use the commit
514	 * record lsn then we can move the tail beyond the grant write head.
515	 */
516	tic = ctx->ticket;
517	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
518	thdr.th_type = XFS_TRANS_CHECKPOINT;
519	thdr.th_tid = tic->t_tid;
520	thdr.th_num_items = num_iovecs;
521	lhdr.i_addr = &thdr;
522	lhdr.i_len = sizeof(xfs_trans_header_t);
523	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
524	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
525
526	lvhdr.lv_niovecs = 1;
527	lvhdr.lv_iovecp = &lhdr;
528	lvhdr.lv_next = ctx->lv_chain;
529
530	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
531	if (error)
532		goto out_abort;
533
534	/*
535	 * now that we've written the checkpoint into the log, strictly
536	 * order the commit records so replay will get them in the right order.
537	 */
538restart:
539	spin_lock(&cil->xc_cil_lock);
540	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
541		/*
542		 * Higher sequences will wait for this one so skip them.
543		 * Don't wait for own own sequence, either.
544		 */
545		if (new_ctx->sequence >= ctx->sequence)
546			continue;
547		if (!new_ctx->commit_lsn) {
548			/*
549			 * It is still being pushed! Wait for the push to
550			 * complete, then start again from the beginning.
551			 */
552			sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
553			goto restart;
554		}
555	}
556	spin_unlock(&cil->xc_cil_lock);
557
558	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
559	if (error || commit_lsn == -1)
560		goto out_abort;
561
562	/* attach all the transactions w/ busy extents to iclog */
563	ctx->log_cb.cb_func = xlog_cil_committed;
564	ctx->log_cb.cb_arg = ctx;
565	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
566	if (error)
567		goto out_abort;
568
569	/*
570	 * now the checkpoint commit is complete and we've attached the
571	 * callbacks to the iclog we can assign the commit LSN to the context
572	 * and wake up anyone who is waiting for the commit to complete.
573	 */
574	spin_lock(&cil->xc_cil_lock);
575	ctx->commit_lsn = commit_lsn;
576	sv_broadcast(&cil->xc_commit_wait);
577	spin_unlock(&cil->xc_cil_lock);
578
579	/* release the hounds! */
580	return xfs_log_release_iclog(log->l_mp, commit_iclog);
581
582out_skip:
583	up_write(&cil->xc_ctx_lock);
584out_free_ticket:
585	xfs_log_ticket_put(new_ctx->ticket);
586	kmem_free(new_ctx);
587	return 0;
588
589out_abort:
590	xlog_cil_committed(ctx, XFS_LI_ABORTED);
591	return XFS_ERROR(EIO);
592}
593
594/*
595 * Commit a transaction with the given vector to the Committed Item List.
596 *
597 * To do this, we need to format the item, pin it in memory if required and
598 * account for the space used by the transaction. Once we have done that we
599 * need to release the unused reservation for the transaction, attach the
600 * transaction to the checkpoint context so we carry the busy extents through
601 * to checkpoint completion, and then unlock all the items in the transaction.
602 *
603 * For more specific information about the order of operations in
604 * xfs_log_commit_cil() please refer to the comments in
605 * xfs_trans_commit_iclog().
606 *
607 * Called with the context lock already held in read mode to lock out
608 * background commit, returns without it held once background commits are
609 * allowed again.
610 */
611int
612xfs_log_commit_cil(
613	struct xfs_mount	*mp,
614	struct xfs_trans	*tp,
615	struct xfs_log_vec	*log_vector,
616	xfs_lsn_t		*commit_lsn,
617	int			flags)
618{
619	struct log		*log = mp->m_log;
620	int			log_flags = 0;
621	int			push = 0;
622
623	if (flags & XFS_TRANS_RELEASE_LOG_RES)
624		log_flags = XFS_LOG_REL_PERM_RESERV;
625
626	if (XLOG_FORCED_SHUTDOWN(log)) {
627		xlog_cil_free_logvec(log_vector);
628		return XFS_ERROR(EIO);
629	}
630
631	/*
632	 * do all the hard work of formatting items (including memory
633	 * allocation) outside the CIL context lock. This prevents stalling CIL
634	 * pushes when we are low on memory and a transaction commit spends a
635	 * lot of time in memory reclaim.
636	 */
637	xlog_cil_format_items(log, log_vector);
638
639	/* lock out background commit */
640	down_read(&log->l_cilp->xc_ctx_lock);
641	xlog_cil_insert_items(log, log_vector, tp->t_ticket, commit_lsn);
642
643	/* check we didn't blow the reservation */
644	if (tp->t_ticket->t_curr_res < 0)
645		xlog_print_tic_res(log->l_mp, tp->t_ticket);
646
647	/* attach the transaction to the CIL if it has any busy extents */
648	if (!list_empty(&tp->t_busy)) {
649		spin_lock(&log->l_cilp->xc_cil_lock);
650		list_splice_init(&tp->t_busy,
651					&log->l_cilp->xc_ctx->busy_extents);
652		spin_unlock(&log->l_cilp->xc_cil_lock);
653	}
654
655	tp->t_commit_lsn = *commit_lsn;
656	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
657	xfs_trans_unreserve_and_mod_sb(tp);
658
659	/*
660	 * Once all the items of the transaction have been copied to the CIL,
661	 * the items can be unlocked and freed.
662	 *
663	 * This needs to be done before we drop the CIL context lock because we
664	 * have to update state in the log items and unlock them before they go
665	 * to disk. If we don't, then the CIL checkpoint can race with us and
666	 * we can run checkpoint completion before we've updated and unlocked
667	 * the log items. This affects (at least) processing of stale buffers,
668	 * inodes and EFIs.
669	 */
670	xfs_trans_free_items(tp, *commit_lsn, 0);
671
672	/* check for background commit before unlock */
673	if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
674		push = 1;
675
676	up_read(&log->l_cilp->xc_ctx_lock);
677
678	/*
679	 * We need to push CIL every so often so we don't cache more than we
680	 * can fit in the log. The limit really is that a checkpoint can't be
681	 * more than half the log (the current checkpoint is not allowed to
682	 * overwrite the previous checkpoint), but commit latency and memory
683	 * usage limit this to a smaller size in most cases.
684	 */
685	if (push)
686		xlog_cil_push(log, 0);
687	return 0;
688}
689
690/*
691 * Conditionally push the CIL based on the sequence passed in.
692 *
693 * We only need to push if we haven't already pushed the sequence
694 * number given. Hence the only time we will trigger a push here is
695 * if the push sequence is the same as the current context.
696 *
697 * We return the current commit lsn to allow the callers to determine if a
698 * iclog flush is necessary following this call.
699 *
700 * XXX: Initially, just push the CIL unconditionally and return whatever
701 * commit lsn is there. It'll be empty, so this is broken for now.
702 */
703xfs_lsn_t
704xlog_cil_force_lsn(
705	struct log	*log,
706	xfs_lsn_t	sequence)
707{
708	struct xfs_cil		*cil = log->l_cilp;
709	struct xfs_cil_ctx	*ctx;
710	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
711
712	ASSERT(sequence <= cil->xc_current_sequence);
713
714	/*
715	 * check to see if we need to force out the current context.
716	 * xlog_cil_push() handles racing pushes for the same sequence,
717	 * so no need to deal with it here.
718	 */
719	if (sequence == cil->xc_current_sequence)
720		xlog_cil_push(log, sequence);
721
722	/*
723	 * See if we can find a previous sequence still committing.
724	 * We need to wait for all previous sequence commits to complete
725	 * before allowing the force of push_seq to go ahead. Hence block
726	 * on commits for those as well.
727	 */
728restart:
729	spin_lock(&cil->xc_cil_lock);
730	list_for_each_entry(ctx, &cil->xc_committing, committing) {
731		if (ctx->sequence > sequence)
732			continue;
733		if (!ctx->commit_lsn) {
734			/*
735			 * It is still being pushed! Wait for the push to
736			 * complete, then start again from the beginning.
737			 */
738			sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
739			goto restart;
740		}
741		if (ctx->sequence != sequence)
742			continue;
743		/* found it! */
744		commit_lsn = ctx->commit_lsn;
745	}
746	spin_unlock(&cil->xc_cil_lock);
747	return commit_lsn;
748}
749
750/*
751 * Check if the current log item was first committed in this sequence.
752 * We can't rely on just the log item being in the CIL, we have to check
753 * the recorded commit sequence number.
754 *
755 * Note: for this to be used in a non-racy manner, it has to be called with
756 * CIL flushing locked out. As a result, it should only be used during the
757 * transaction commit process when deciding what to format into the item.
758 */
759bool
760xfs_log_item_in_current_chkpt(
761	struct xfs_log_item *lip)
762{
763	struct xfs_cil_ctx *ctx;
764
765	if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG))
766		return false;
767	if (list_empty(&lip->li_cil))
768		return false;
769
770	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
771
772	/*
773	 * li_seq is written on the first commit of a log item to record the
774	 * first checkpoint it is written to. Hence if it is different to the
775	 * current sequence, we're in a new checkpoint.
776	 */
777	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
778		return false;
779	return true;
780}
781