xfs_log_cil.c revision bde7cff67c39227c6ad503394e19e58debdbc5e3
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_log_format.h"
21#include "xfs_shared.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_mount.h"
26#include "xfs_error.h"
27#include "xfs_alloc.h"
28#include "xfs_extent_busy.h"
29#include "xfs_discard.h"
30#include "xfs_trans.h"
31#include "xfs_trans_priv.h"
32#include "xfs_log.h"
33#include "xfs_log_priv.h"
34
35/*
36 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37 * recover, so we don't allow failure here. Also, we allocate in a context that
38 * we don't want to be issuing transactions from, so we need to tell the
39 * allocation code this as well.
40 *
41 * We don't reserve any space for the ticket - we are going to steal whatever
42 * space we require from transactions as they commit. To ensure we reserve all
43 * the space required, we need to set the current reservation of the ticket to
44 * zero so that we know to steal the initial transaction overhead from the
45 * first transaction commit.
46 */
47static struct xlog_ticket *
48xlog_cil_ticket_alloc(
49	struct xlog	*log)
50{
51	struct xlog_ticket *tic;
52
53	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54				KM_SLEEP|KM_NOFS);
55	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56
57	/*
58	 * set the current reservation to zero so we know to steal the basic
59	 * transaction overhead reservation from the first transaction commit.
60	 */
61	tic->t_curr_res = 0;
62	return tic;
63}
64
65/*
66 * After the first stage of log recovery is done, we know where the head and
67 * tail of the log are. We need this log initialisation done before we can
68 * initialise the first CIL checkpoint context.
69 *
70 * Here we allocate a log ticket to track space usage during a CIL push.  This
71 * ticket is passed to xlog_write() directly so that we don't slowly leak log
72 * space by failing to account for space used by log headers and additional
73 * region headers for split regions.
74 */
75void
76xlog_cil_init_post_recovery(
77	struct xlog	*log)
78{
79	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80	log->l_cilp->xc_ctx->sequence = 1;
81	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
82								log->l_curr_block);
83}
84
85/*
86 * Prepare the log item for insertion into the CIL. Calculate the difference in
87 * log space and vectors it will consume, and if it is a new item pin it as
88 * well.
89 */
90STATIC void
91xfs_cil_prepare_item(
92	struct xlog		*log,
93	struct xfs_log_vec	*lv,
94	struct xfs_log_vec	*old_lv,
95	int			*diff_len,
96	int			*diff_iovecs)
97{
98	/* Account for the new LV being passed in */
99	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
100		*diff_len += lv->lv_buf_len;
101		*diff_iovecs += lv->lv_niovecs;
102	}
103
104	/*
105	 * If there is no old LV, this is the first time we've seen the item in
106	 * this CIL context and so we need to pin it. If we are replacing the
107	 * old_lv, then remove the space it accounts for and free it.
108	 */
109	if (!old_lv)
110		lv->lv_item->li_ops->iop_pin(lv->lv_item);
111	else if (old_lv != lv) {
112		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
113
114		*diff_len -= old_lv->lv_buf_len;
115		*diff_iovecs -= old_lv->lv_niovecs;
116		kmem_free(old_lv);
117	}
118
119	/* attach new log vector to log item */
120	lv->lv_item->li_lv = lv;
121
122	/*
123	 * If this is the first time the item is being committed to the
124	 * CIL, store the sequence number on the log item so we can
125	 * tell in future commits whether this is the first checkpoint
126	 * the item is being committed into.
127	 */
128	if (!lv->lv_item->li_seq)
129		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
130}
131
132/*
133 * Format log item into a flat buffers
134 *
135 * For delayed logging, we need to hold a formatted buffer containing all the
136 * changes on the log item. This enables us to relog the item in memory and
137 * write it out asynchronously without needing to relock the object that was
138 * modified at the time it gets written into the iclog.
139 *
140 * This function builds a vector for the changes in each log item in the
141 * transaction. It then works out the length of the buffer needed for each log
142 * item, allocates them and formats the vector for the item into the buffer.
143 * The buffer is then attached to the log item are then inserted into the
144 * Committed Item List for tracking until the next checkpoint is written out.
145 *
146 * We don't set up region headers during this process; we simply copy the
147 * regions into the flat buffer. We can do this because we still have to do a
148 * formatting step to write the regions into the iclog buffer.  Writing the
149 * ophdrs during the iclog write means that we can support splitting large
150 * regions across iclog boundares without needing a change in the format of the
151 * item/region encapsulation.
152 *
153 * Hence what we need to do now is change the rewrite the vector array to point
154 * to the copied region inside the buffer we just allocated. This allows us to
155 * format the regions into the iclog as though they are being formatted
156 * directly out of the objects themselves.
157 */
158static void
159xlog_cil_insert_format_items(
160	struct xlog		*log,
161	struct xfs_trans	*tp,
162	int			*diff_len,
163	int			*diff_iovecs)
164{
165	struct xfs_log_item_desc *lidp;
166
167
168	/* Bail out if we didn't find a log item.  */
169	if (list_empty(&tp->t_items)) {
170		ASSERT(0);
171		return;
172	}
173
174	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
175		struct xfs_log_item *lip = lidp->lid_item;
176		struct xfs_log_vec *lv;
177		struct xfs_log_vec *old_lv;
178		int	niovecs = 0;
179		int	nbytes = 0;
180		int	buf_size;
181		bool	ordered = false;
182
183		/* Skip items which aren't dirty in this transaction. */
184		if (!(lidp->lid_flags & XFS_LID_DIRTY))
185			continue;
186
187		/* get number of vecs and size of data to be stored */
188		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
189
190		/* Skip items that do not have any vectors for writing */
191		if (!niovecs)
192			continue;
193
194		/*
195		 * Ordered items need to be tracked but we do not wish to write
196		 * them. We need a logvec to track the object, but we do not
197		 * need an iovec or buffer to be allocated for copying data.
198		 */
199		if (niovecs == XFS_LOG_VEC_ORDERED) {
200			ordered = true;
201			niovecs = 0;
202			nbytes = 0;
203		}
204
205		/*
206		 * We 64-bit align the length of each iovec so that the start
207		 * of the next one is naturally aligned.  We'll need to
208		 * account for that slack space here.
209		 */
210		nbytes += niovecs * sizeof(uint64_t);
211
212		/* grab the old item if it exists for reservation accounting */
213		old_lv = lip->li_lv;
214
215		/* calc buffer size */
216		buf_size = sizeof(struct xfs_log_vec) + nbytes +
217				niovecs * sizeof(struct xfs_log_iovec);
218
219		/* compare to existing item size */
220		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
221			/* same or smaller, optimise common overwrite case */
222			lv = lip->li_lv;
223			lv->lv_next = NULL;
224
225			if (ordered)
226				goto insert;
227
228			/*
229			 * set the item up as though it is a new insertion so
230			 * that the space reservation accounting is correct.
231			 */
232			*diff_iovecs -= lv->lv_niovecs;
233			*diff_len -= lv->lv_buf_len;
234		} else {
235			/* allocate new data chunk */
236			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
237			lv->lv_item = lip;
238			lv->lv_size = buf_size;
239			if (ordered) {
240				/* track as an ordered logvec */
241				ASSERT(lip->li_lv == NULL);
242				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
243				goto insert;
244			}
245			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
246		}
247
248		/* Ensure the lv is set up according to ->iop_size */
249		lv->lv_niovecs = niovecs;
250
251		/* The allocated data region lies beyond the iovec region */
252		lv->lv_buf_len = 0;
253		lv->lv_buf = (char *)lv + buf_size - nbytes;
254		lip->li_ops->iop_format(lip, lv);
255insert:
256		ASSERT(lv->lv_buf_len <= nbytes);
257		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
258	}
259}
260
261/*
262 * Insert the log items into the CIL and calculate the difference in space
263 * consumed by the item. Add the space to the checkpoint ticket and calculate
264 * if the change requires additional log metadata. If it does, take that space
265 * as well. Remove the amount of space we added to the checkpoint ticket from
266 * the current transaction ticket so that the accounting works out correctly.
267 */
268static void
269xlog_cil_insert_items(
270	struct xlog		*log,
271	struct xfs_trans	*tp)
272{
273	struct xfs_cil		*cil = log->l_cilp;
274	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
275	struct xfs_log_item_desc *lidp;
276	int			len = 0;
277	int			diff_iovecs = 0;
278	int			iclog_space;
279
280	ASSERT(tp);
281
282	/*
283	 * We can do this safely because the context can't checkpoint until we
284	 * are done so it doesn't matter exactly how we update the CIL.
285	 */
286	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
287
288	/*
289	 * Now (re-)position everything modified at the tail of the CIL.
290	 * We do this here so we only need to take the CIL lock once during
291	 * the transaction commit.
292	 */
293	spin_lock(&cil->xc_cil_lock);
294	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
295		struct xfs_log_item	*lip = lidp->lid_item;
296
297		/* Skip items which aren't dirty in this transaction. */
298		if (!(lidp->lid_flags & XFS_LID_DIRTY))
299			continue;
300
301		list_move_tail(&lip->li_cil, &cil->xc_cil);
302	}
303
304	/* account for space used by new iovec headers  */
305	len += diff_iovecs * sizeof(xlog_op_header_t);
306	ctx->nvecs += diff_iovecs;
307
308	/* attach the transaction to the CIL if it has any busy extents */
309	if (!list_empty(&tp->t_busy))
310		list_splice_init(&tp->t_busy, &ctx->busy_extents);
311
312	/*
313	 * Now transfer enough transaction reservation to the context ticket
314	 * for the checkpoint. The context ticket is special - the unit
315	 * reservation has to grow as well as the current reservation as we
316	 * steal from tickets so we can correctly determine the space used
317	 * during the transaction commit.
318	 */
319	if (ctx->ticket->t_curr_res == 0) {
320		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
321		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
322	}
323
324	/* do we need space for more log record headers? */
325	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
326	if (len > 0 && (ctx->space_used / iclog_space !=
327				(ctx->space_used + len) / iclog_space)) {
328		int hdrs;
329
330		hdrs = (len + iclog_space - 1) / iclog_space;
331		/* need to take into account split region headers, too */
332		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
333		ctx->ticket->t_unit_res += hdrs;
334		ctx->ticket->t_curr_res += hdrs;
335		tp->t_ticket->t_curr_res -= hdrs;
336		ASSERT(tp->t_ticket->t_curr_res >= len);
337	}
338	tp->t_ticket->t_curr_res -= len;
339	ctx->space_used += len;
340
341	spin_unlock(&cil->xc_cil_lock);
342}
343
344static void
345xlog_cil_free_logvec(
346	struct xfs_log_vec	*log_vector)
347{
348	struct xfs_log_vec	*lv;
349
350	for (lv = log_vector; lv; ) {
351		struct xfs_log_vec *next = lv->lv_next;
352		kmem_free(lv);
353		lv = next;
354	}
355}
356
357/*
358 * Mark all items committed and clear busy extents. We free the log vector
359 * chains in a separate pass so that we unpin the log items as quickly as
360 * possible.
361 */
362static void
363xlog_cil_committed(
364	void	*args,
365	int	abort)
366{
367	struct xfs_cil_ctx	*ctx = args;
368	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
369
370	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
371					ctx->start_lsn, abort);
372
373	xfs_extent_busy_sort(&ctx->busy_extents);
374	xfs_extent_busy_clear(mp, &ctx->busy_extents,
375			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
376
377	spin_lock(&ctx->cil->xc_push_lock);
378	list_del(&ctx->committing);
379	spin_unlock(&ctx->cil->xc_push_lock);
380
381	xlog_cil_free_logvec(ctx->lv_chain);
382
383	if (!list_empty(&ctx->busy_extents)) {
384		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
385
386		xfs_discard_extents(mp, &ctx->busy_extents);
387		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
388	}
389
390	kmem_free(ctx);
391}
392
393/*
394 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
395 * is a background flush and so we can chose to ignore it. Otherwise, if the
396 * current sequence is the same as @push_seq we need to do a flush. If
397 * @push_seq is less than the current sequence, then it has already been
398 * flushed and we don't need to do anything - the caller will wait for it to
399 * complete if necessary.
400 *
401 * @push_seq is a value rather than a flag because that allows us to do an
402 * unlocked check of the sequence number for a match. Hence we can allows log
403 * forces to run racily and not issue pushes for the same sequence twice. If we
404 * get a race between multiple pushes for the same sequence they will block on
405 * the first one and then abort, hence avoiding needless pushes.
406 */
407STATIC int
408xlog_cil_push(
409	struct xlog		*log)
410{
411	struct xfs_cil		*cil = log->l_cilp;
412	struct xfs_log_vec	*lv;
413	struct xfs_cil_ctx	*ctx;
414	struct xfs_cil_ctx	*new_ctx;
415	struct xlog_in_core	*commit_iclog;
416	struct xlog_ticket	*tic;
417	int			num_iovecs;
418	int			error = 0;
419	struct xfs_trans_header thdr;
420	struct xfs_log_iovec	lhdr;
421	struct xfs_log_vec	lvhdr = { NULL };
422	xfs_lsn_t		commit_lsn;
423	xfs_lsn_t		push_seq;
424
425	if (!cil)
426		return 0;
427
428	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
429	new_ctx->ticket = xlog_cil_ticket_alloc(log);
430
431	down_write(&cil->xc_ctx_lock);
432	ctx = cil->xc_ctx;
433
434	spin_lock(&cil->xc_push_lock);
435	push_seq = cil->xc_push_seq;
436	ASSERT(push_seq <= ctx->sequence);
437
438	/*
439	 * Check if we've anything to push. If there is nothing, then we don't
440	 * move on to a new sequence number and so we have to be able to push
441	 * this sequence again later.
442	 */
443	if (list_empty(&cil->xc_cil)) {
444		cil->xc_push_seq = 0;
445		spin_unlock(&cil->xc_push_lock);
446		goto out_skip;
447	}
448	spin_unlock(&cil->xc_push_lock);
449
450
451	/* check for a previously pushed seqeunce */
452	if (push_seq < cil->xc_ctx->sequence)
453		goto out_skip;
454
455	/*
456	 * pull all the log vectors off the items in the CIL, and
457	 * remove the items from the CIL. We don't need the CIL lock
458	 * here because it's only needed on the transaction commit
459	 * side which is currently locked out by the flush lock.
460	 */
461	lv = NULL;
462	num_iovecs = 0;
463	while (!list_empty(&cil->xc_cil)) {
464		struct xfs_log_item	*item;
465
466		item = list_first_entry(&cil->xc_cil,
467					struct xfs_log_item, li_cil);
468		list_del_init(&item->li_cil);
469		if (!ctx->lv_chain)
470			ctx->lv_chain = item->li_lv;
471		else
472			lv->lv_next = item->li_lv;
473		lv = item->li_lv;
474		item->li_lv = NULL;
475		num_iovecs += lv->lv_niovecs;
476	}
477
478	/*
479	 * initialise the new context and attach it to the CIL. Then attach
480	 * the current context to the CIL committing lsit so it can be found
481	 * during log forces to extract the commit lsn of the sequence that
482	 * needs to be forced.
483	 */
484	INIT_LIST_HEAD(&new_ctx->committing);
485	INIT_LIST_HEAD(&new_ctx->busy_extents);
486	new_ctx->sequence = ctx->sequence + 1;
487	new_ctx->cil = cil;
488	cil->xc_ctx = new_ctx;
489
490	/*
491	 * mirror the new sequence into the cil structure so that we can do
492	 * unlocked checks against the current sequence in log forces without
493	 * risking deferencing a freed context pointer.
494	 */
495	cil->xc_current_sequence = new_ctx->sequence;
496
497	/*
498	 * The switch is now done, so we can drop the context lock and move out
499	 * of a shared context. We can't just go straight to the commit record,
500	 * though - we need to synchronise with previous and future commits so
501	 * that the commit records are correctly ordered in the log to ensure
502	 * that we process items during log IO completion in the correct order.
503	 *
504	 * For example, if we get an EFI in one checkpoint and the EFD in the
505	 * next (e.g. due to log forces), we do not want the checkpoint with
506	 * the EFD to be committed before the checkpoint with the EFI.  Hence
507	 * we must strictly order the commit records of the checkpoints so
508	 * that: a) the checkpoint callbacks are attached to the iclogs in the
509	 * correct order; and b) the checkpoints are replayed in correct order
510	 * in log recovery.
511	 *
512	 * Hence we need to add this context to the committing context list so
513	 * that higher sequences will wait for us to write out a commit record
514	 * before they do.
515	 */
516	spin_lock(&cil->xc_push_lock);
517	list_add(&ctx->committing, &cil->xc_committing);
518	spin_unlock(&cil->xc_push_lock);
519	up_write(&cil->xc_ctx_lock);
520
521	/*
522	 * Build a checkpoint transaction header and write it to the log to
523	 * begin the transaction. We need to account for the space used by the
524	 * transaction header here as it is not accounted for in xlog_write().
525	 *
526	 * The LSN we need to pass to the log items on transaction commit is
527	 * the LSN reported by the first log vector write. If we use the commit
528	 * record lsn then we can move the tail beyond the grant write head.
529	 */
530	tic = ctx->ticket;
531	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
532	thdr.th_type = XFS_TRANS_CHECKPOINT;
533	thdr.th_tid = tic->t_tid;
534	thdr.th_num_items = num_iovecs;
535	lhdr.i_addr = &thdr;
536	lhdr.i_len = sizeof(xfs_trans_header_t);
537	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
538	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
539
540	lvhdr.lv_niovecs = 1;
541	lvhdr.lv_iovecp = &lhdr;
542	lvhdr.lv_next = ctx->lv_chain;
543
544	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
545	if (error)
546		goto out_abort_free_ticket;
547
548	/*
549	 * now that we've written the checkpoint into the log, strictly
550	 * order the commit records so replay will get them in the right order.
551	 */
552restart:
553	spin_lock(&cil->xc_push_lock);
554	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
555		/*
556		 * Higher sequences will wait for this one so skip them.
557		 * Don't wait for own own sequence, either.
558		 */
559		if (new_ctx->sequence >= ctx->sequence)
560			continue;
561		if (!new_ctx->commit_lsn) {
562			/*
563			 * It is still being pushed! Wait for the push to
564			 * complete, then start again from the beginning.
565			 */
566			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
567			goto restart;
568		}
569	}
570	spin_unlock(&cil->xc_push_lock);
571
572	/* xfs_log_done always frees the ticket on error. */
573	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
574	if (commit_lsn == -1)
575		goto out_abort;
576
577	/* attach all the transactions w/ busy extents to iclog */
578	ctx->log_cb.cb_func = xlog_cil_committed;
579	ctx->log_cb.cb_arg = ctx;
580	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
581	if (error)
582		goto out_abort;
583
584	/*
585	 * now the checkpoint commit is complete and we've attached the
586	 * callbacks to the iclog we can assign the commit LSN to the context
587	 * and wake up anyone who is waiting for the commit to complete.
588	 */
589	spin_lock(&cil->xc_push_lock);
590	ctx->commit_lsn = commit_lsn;
591	wake_up_all(&cil->xc_commit_wait);
592	spin_unlock(&cil->xc_push_lock);
593
594	/* release the hounds! */
595	return xfs_log_release_iclog(log->l_mp, commit_iclog);
596
597out_skip:
598	up_write(&cil->xc_ctx_lock);
599	xfs_log_ticket_put(new_ctx->ticket);
600	kmem_free(new_ctx);
601	return 0;
602
603out_abort_free_ticket:
604	xfs_log_ticket_put(tic);
605out_abort:
606	xlog_cil_committed(ctx, XFS_LI_ABORTED);
607	return XFS_ERROR(EIO);
608}
609
610static void
611xlog_cil_push_work(
612	struct work_struct	*work)
613{
614	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
615							xc_push_work);
616	xlog_cil_push(cil->xc_log);
617}
618
619/*
620 * We need to push CIL every so often so we don't cache more than we can fit in
621 * the log. The limit really is that a checkpoint can't be more than half the
622 * log (the current checkpoint is not allowed to overwrite the previous
623 * checkpoint), but commit latency and memory usage limit this to a smaller
624 * size.
625 */
626static void
627xlog_cil_push_background(
628	struct xlog	*log)
629{
630	struct xfs_cil	*cil = log->l_cilp;
631
632	/*
633	 * The cil won't be empty because we are called while holding the
634	 * context lock so whatever we added to the CIL will still be there
635	 */
636	ASSERT(!list_empty(&cil->xc_cil));
637
638	/*
639	 * don't do a background push if we haven't used up all the
640	 * space available yet.
641	 */
642	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
643		return;
644
645	spin_lock(&cil->xc_push_lock);
646	if (cil->xc_push_seq < cil->xc_current_sequence) {
647		cil->xc_push_seq = cil->xc_current_sequence;
648		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
649	}
650	spin_unlock(&cil->xc_push_lock);
651
652}
653
654static void
655xlog_cil_push_foreground(
656	struct xlog	*log,
657	xfs_lsn_t	push_seq)
658{
659	struct xfs_cil	*cil = log->l_cilp;
660
661	if (!cil)
662		return;
663
664	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
665
666	/* start on any pending background push to minimise wait time on it */
667	flush_work(&cil->xc_push_work);
668
669	/*
670	 * If the CIL is empty or we've already pushed the sequence then
671	 * there's no work we need to do.
672	 */
673	spin_lock(&cil->xc_push_lock);
674	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
675		spin_unlock(&cil->xc_push_lock);
676		return;
677	}
678
679	cil->xc_push_seq = push_seq;
680	spin_unlock(&cil->xc_push_lock);
681
682	/* do the push now */
683	xlog_cil_push(log);
684}
685
686bool
687xlog_cil_empty(
688	struct xlog	*log)
689{
690	struct xfs_cil	*cil = log->l_cilp;
691	bool		empty = false;
692
693	spin_lock(&cil->xc_push_lock);
694	if (list_empty(&cil->xc_cil))
695		empty = true;
696	spin_unlock(&cil->xc_push_lock);
697	return empty;
698}
699
700/*
701 * Commit a transaction with the given vector to the Committed Item List.
702 *
703 * To do this, we need to format the item, pin it in memory if required and
704 * account for the space used by the transaction. Once we have done that we
705 * need to release the unused reservation for the transaction, attach the
706 * transaction to the checkpoint context so we carry the busy extents through
707 * to checkpoint completion, and then unlock all the items in the transaction.
708 *
709 * Called with the context lock already held in read mode to lock out
710 * background commit, returns without it held once background commits are
711 * allowed again.
712 */
713int
714xfs_log_commit_cil(
715	struct xfs_mount	*mp,
716	struct xfs_trans	*tp,
717	xfs_lsn_t		*commit_lsn,
718	int			flags)
719{
720	struct xlog		*log = mp->m_log;
721	struct xfs_cil		*cil = log->l_cilp;
722	int			log_flags = 0;
723
724	if (flags & XFS_TRANS_RELEASE_LOG_RES)
725		log_flags = XFS_LOG_REL_PERM_RESERV;
726
727	/* lock out background commit */
728	down_read(&cil->xc_ctx_lock);
729
730	xlog_cil_insert_items(log, tp);
731
732	/* check we didn't blow the reservation */
733	if (tp->t_ticket->t_curr_res < 0)
734		xlog_print_tic_res(mp, tp->t_ticket);
735
736	tp->t_commit_lsn = cil->xc_ctx->sequence;
737	if (commit_lsn)
738		*commit_lsn = tp->t_commit_lsn;
739
740	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
741	xfs_trans_unreserve_and_mod_sb(tp);
742
743	/*
744	 * Once all the items of the transaction have been copied to the CIL,
745	 * the items can be unlocked and freed.
746	 *
747	 * This needs to be done before we drop the CIL context lock because we
748	 * have to update state in the log items and unlock them before they go
749	 * to disk. If we don't, then the CIL checkpoint can race with us and
750	 * we can run checkpoint completion before we've updated and unlocked
751	 * the log items. This affects (at least) processing of stale buffers,
752	 * inodes and EFIs.
753	 */
754	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
755
756	xlog_cil_push_background(log);
757
758	up_read(&cil->xc_ctx_lock);
759	return 0;
760}
761
762/*
763 * Conditionally push the CIL based on the sequence passed in.
764 *
765 * We only need to push if we haven't already pushed the sequence
766 * number given. Hence the only time we will trigger a push here is
767 * if the push sequence is the same as the current context.
768 *
769 * We return the current commit lsn to allow the callers to determine if a
770 * iclog flush is necessary following this call.
771 */
772xfs_lsn_t
773xlog_cil_force_lsn(
774	struct xlog	*log,
775	xfs_lsn_t	sequence)
776{
777	struct xfs_cil		*cil = log->l_cilp;
778	struct xfs_cil_ctx	*ctx;
779	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
780
781	ASSERT(sequence <= cil->xc_current_sequence);
782
783	/*
784	 * check to see if we need to force out the current context.
785	 * xlog_cil_push() handles racing pushes for the same sequence,
786	 * so no need to deal with it here.
787	 */
788	xlog_cil_push_foreground(log, sequence);
789
790	/*
791	 * See if we can find a previous sequence still committing.
792	 * We need to wait for all previous sequence commits to complete
793	 * before allowing the force of push_seq to go ahead. Hence block
794	 * on commits for those as well.
795	 */
796restart:
797	spin_lock(&cil->xc_push_lock);
798	list_for_each_entry(ctx, &cil->xc_committing, committing) {
799		if (ctx->sequence > sequence)
800			continue;
801		if (!ctx->commit_lsn) {
802			/*
803			 * It is still being pushed! Wait for the push to
804			 * complete, then start again from the beginning.
805			 */
806			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
807			goto restart;
808		}
809		if (ctx->sequence != sequence)
810			continue;
811		/* found it! */
812		commit_lsn = ctx->commit_lsn;
813	}
814	spin_unlock(&cil->xc_push_lock);
815	return commit_lsn;
816}
817
818/*
819 * Check if the current log item was first committed in this sequence.
820 * We can't rely on just the log item being in the CIL, we have to check
821 * the recorded commit sequence number.
822 *
823 * Note: for this to be used in a non-racy manner, it has to be called with
824 * CIL flushing locked out. As a result, it should only be used during the
825 * transaction commit process when deciding what to format into the item.
826 */
827bool
828xfs_log_item_in_current_chkpt(
829	struct xfs_log_item *lip)
830{
831	struct xfs_cil_ctx *ctx;
832
833	if (list_empty(&lip->li_cil))
834		return false;
835
836	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
837
838	/*
839	 * li_seq is written on the first commit of a log item to record the
840	 * first checkpoint it is written to. Hence if it is different to the
841	 * current sequence, we're in a new checkpoint.
842	 */
843	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
844		return false;
845	return true;
846}
847
848/*
849 * Perform initial CIL structure initialisation.
850 */
851int
852xlog_cil_init(
853	struct xlog	*log)
854{
855	struct xfs_cil	*cil;
856	struct xfs_cil_ctx *ctx;
857
858	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
859	if (!cil)
860		return ENOMEM;
861
862	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
863	if (!ctx) {
864		kmem_free(cil);
865		return ENOMEM;
866	}
867
868	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
869	INIT_LIST_HEAD(&cil->xc_cil);
870	INIT_LIST_HEAD(&cil->xc_committing);
871	spin_lock_init(&cil->xc_cil_lock);
872	spin_lock_init(&cil->xc_push_lock);
873	init_rwsem(&cil->xc_ctx_lock);
874	init_waitqueue_head(&cil->xc_commit_wait);
875
876	INIT_LIST_HEAD(&ctx->committing);
877	INIT_LIST_HEAD(&ctx->busy_extents);
878	ctx->sequence = 1;
879	ctx->cil = cil;
880	cil->xc_ctx = ctx;
881	cil->xc_current_sequence = ctx->sequence;
882
883	cil->xc_log = log;
884	log->l_cilp = cil;
885	return 0;
886}
887
888void
889xlog_cil_destroy(
890	struct xlog	*log)
891{
892	if (log->l_cilp->xc_ctx) {
893		if (log->l_cilp->xc_ctx->ticket)
894			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
895		kmem_free(log->l_cilp->xc_ctx);
896	}
897
898	ASSERT(list_empty(&log->l_cilp->xc_cil));
899	kmem_free(log->l_cilp);
900}
901
902