sched.h revision 0326f5a94ddea33fa331b2519f4172f4fb387baa
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25   and is now available for re-use. */
26#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
27#define CLONE_NEWIPC		0x08000000	/* New ipcs */
28#define CLONE_NEWUSER		0x10000000	/* New user namespace */
29#define CLONE_NEWPID		0x20000000	/* New pid namespace */
30#define CLONE_NEWNET		0x40000000	/* New network namespace */
31#define CLONE_IO		0x80000000	/* Clone io context */
32
33/*
34 * Scheduling policies
35 */
36#define SCHED_NORMAL		0
37#define SCHED_FIFO		1
38#define SCHED_RR		2
39#define SCHED_BATCH		3
40/* SCHED_ISO: reserved but not implemented yet */
41#define SCHED_IDLE		5
42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43#define SCHED_RESET_ON_FORK     0x40000000
44
45#ifdef __KERNEL__
46
47struct sched_param {
48	int sched_priority;
49};
50
51#include <asm/param.h>	/* for HZ */
52
53#include <linux/capability.h>
54#include <linux/threads.h>
55#include <linux/kernel.h>
56#include <linux/types.h>
57#include <linux/timex.h>
58#include <linux/jiffies.h>
59#include <linux/rbtree.h>
60#include <linux/thread_info.h>
61#include <linux/cpumask.h>
62#include <linux/errno.h>
63#include <linux/nodemask.h>
64#include <linux/mm_types.h>
65
66#include <asm/system.h>
67#include <asm/page.h>
68#include <asm/ptrace.h>
69#include <asm/cputime.h>
70
71#include <linux/smp.h>
72#include <linux/sem.h>
73#include <linux/signal.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/latencytop.h>
92#include <linux/cred.h>
93#include <linux/llist.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio_list;
101struct fs_struct;
102struct perf_event_context;
103struct blk_plug;
104
105/*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111/*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 *    a load-average precision of 10 bits integer + 11 bits fractional
116 *  - if you want to count load-averages more often, you need more
117 *    precision, or rounding will get you. With 2-second counting freq,
118 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119 *    11 bit fractions.
120 */
121extern unsigned long avenrun[];		/* Load averages */
122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124#define FSHIFT		11		/* nr of bits of precision */
125#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
126#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
127#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
128#define EXP_5		2014		/* 1/exp(5sec/5min) */
129#define EXP_15		2037		/* 1/exp(5sec/15min) */
130
131#define CALC_LOAD(load,exp,n) \
132	load *= exp; \
133	load += n*(FIXED_1-exp); \
134	load >>= FSHIFT;
135
136extern unsigned long total_forks;
137extern int nr_threads;
138DECLARE_PER_CPU(unsigned long, process_counts);
139extern int nr_processes(void);
140extern unsigned long nr_running(void);
141extern unsigned long nr_uninterruptible(void);
142extern unsigned long nr_iowait(void);
143extern unsigned long nr_iowait_cpu(int cpu);
144extern unsigned long this_cpu_load(void);
145
146
147extern void calc_global_load(unsigned long ticks);
148
149extern unsigned long get_parent_ip(unsigned long addr);
150
151struct seq_file;
152struct cfs_rq;
153struct task_group;
154#ifdef CONFIG_SCHED_DEBUG
155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156extern void proc_sched_set_task(struct task_struct *p);
157extern void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159#else
160static inline void
161proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162{
163}
164static inline void proc_sched_set_task(struct task_struct *p)
165{
166}
167static inline void
168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169{
170}
171#endif
172
173/*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183#define TASK_RUNNING		0
184#define TASK_INTERRUPTIBLE	1
185#define TASK_UNINTERRUPTIBLE	2
186#define __TASK_STOPPED		4
187#define __TASK_TRACED		8
188/* in tsk->exit_state */
189#define EXIT_ZOMBIE		16
190#define EXIT_DEAD		32
191/* in tsk->state again */
192#define TASK_DEAD		64
193#define TASK_WAKEKILL		128
194#define TASK_WAKING		256
195#define TASK_STATE_MAX		512
196
197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199extern char ___assert_task_state[1 - 2*!!(
200		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202/* Convenience macros for the sake of set_task_state */
203#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
205#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
206
207/* Convenience macros for the sake of wake_up */
208#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211/* get_task_state() */
212#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
213				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214				 __TASK_TRACED)
215
216#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
217#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
218#define task_is_dead(task)	((task)->exit_state != 0)
219#define task_is_stopped_or_traced(task)	\
220			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221#define task_contributes_to_load(task)	\
222				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223				 (task->flags & PF_FROZEN) == 0)
224
225#define __set_task_state(tsk, state_value)		\
226	do { (tsk)->state = (state_value); } while (0)
227#define set_task_state(tsk, state_value)		\
228	set_mb((tsk)->state, (state_value))
229
230/*
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
233 * actually sleep:
234 *
235 *	set_current_state(TASK_UNINTERRUPTIBLE);
236 *	if (do_i_need_to_sleep())
237 *		schedule();
238 *
239 * If the caller does not need such serialisation then use __set_current_state()
240 */
241#define __set_current_state(state_value)			\
242	do { current->state = (state_value); } while (0)
243#define set_current_state(state_value)		\
244	set_mb(current->state, (state_value))
245
246/* Task command name length */
247#define TASK_COMM_LEN 16
248
249#include <linux/spinlock.h>
250
251/*
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
255 * a separate lock).
256 */
257extern rwlock_t tasklist_lock;
258extern spinlock_t mmlist_lock;
259
260struct task_struct;
261
262#ifdef CONFIG_PROVE_RCU
263extern int lockdep_tasklist_lock_is_held(void);
264#endif /* #ifdef CONFIG_PROVE_RCU */
265
266extern void sched_init(void);
267extern void sched_init_smp(void);
268extern asmlinkage void schedule_tail(struct task_struct *prev);
269extern void init_idle(struct task_struct *idle, int cpu);
270extern void init_idle_bootup_task(struct task_struct *idle);
271
272extern int runqueue_is_locked(int cpu);
273
274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275extern void select_nohz_load_balancer(int stop_tick);
276extern void set_cpu_sd_state_idle(void);
277extern int get_nohz_timer_target(void);
278#else
279static inline void select_nohz_load_balancer(int stop_tick) { }
280static inline void set_cpu_sd_state_idle(void) { }
281#endif
282
283/*
284 * Only dump TASK_* tasks. (0 for all tasks)
285 */
286extern void show_state_filter(unsigned long state_filter);
287
288static inline void show_state(void)
289{
290	show_state_filter(0);
291}
292
293extern void show_regs(struct pt_regs *);
294
295/*
296 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297 * task), SP is the stack pointer of the first frame that should be shown in the back
298 * trace (or NULL if the entire call-chain of the task should be shown).
299 */
300extern void show_stack(struct task_struct *task, unsigned long *sp);
301
302void io_schedule(void);
303long io_schedule_timeout(long timeout);
304
305extern void cpu_init (void);
306extern void trap_init(void);
307extern void update_process_times(int user);
308extern void scheduler_tick(void);
309
310extern void sched_show_task(struct task_struct *p);
311
312#ifdef CONFIG_LOCKUP_DETECTOR
313extern void touch_softlockup_watchdog(void);
314extern void touch_softlockup_watchdog_sync(void);
315extern void touch_all_softlockup_watchdogs(void);
316extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
317				  void __user *buffer,
318				  size_t *lenp, loff_t *ppos);
319extern unsigned int  softlockup_panic;
320void lockup_detector_init(void);
321#else
322static inline void touch_softlockup_watchdog(void)
323{
324}
325static inline void touch_softlockup_watchdog_sync(void)
326{
327}
328static inline void touch_all_softlockup_watchdogs(void)
329{
330}
331static inline void lockup_detector_init(void)
332{
333}
334#endif
335
336#ifdef CONFIG_DETECT_HUNG_TASK
337extern unsigned int  sysctl_hung_task_panic;
338extern unsigned long sysctl_hung_task_check_count;
339extern unsigned long sysctl_hung_task_timeout_secs;
340extern unsigned long sysctl_hung_task_warnings;
341extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
342					 void __user *buffer,
343					 size_t *lenp, loff_t *ppos);
344#else
345/* Avoid need for ifdefs elsewhere in the code */
346enum { sysctl_hung_task_timeout_secs = 0 };
347#endif
348
349/* Attach to any functions which should be ignored in wchan output. */
350#define __sched		__attribute__((__section__(".sched.text")))
351
352/* Linker adds these: start and end of __sched functions */
353extern char __sched_text_start[], __sched_text_end[];
354
355/* Is this address in the __sched functions? */
356extern int in_sched_functions(unsigned long addr);
357
358#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
359extern signed long schedule_timeout(signed long timeout);
360extern signed long schedule_timeout_interruptible(signed long timeout);
361extern signed long schedule_timeout_killable(signed long timeout);
362extern signed long schedule_timeout_uninterruptible(signed long timeout);
363asmlinkage void schedule(void);
364extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
365
366struct nsproxy;
367struct user_namespace;
368
369/*
370 * Default maximum number of active map areas, this limits the number of vmas
371 * per mm struct. Users can overwrite this number by sysctl but there is a
372 * problem.
373 *
374 * When a program's coredump is generated as ELF format, a section is created
375 * per a vma. In ELF, the number of sections is represented in unsigned short.
376 * This means the number of sections should be smaller than 65535 at coredump.
377 * Because the kernel adds some informative sections to a image of program at
378 * generating coredump, we need some margin. The number of extra sections is
379 * 1-3 now and depends on arch. We use "5" as safe margin, here.
380 */
381#define MAPCOUNT_ELF_CORE_MARGIN	(5)
382#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
383
384extern int sysctl_max_map_count;
385
386#include <linux/aio.h>
387
388#ifdef CONFIG_MMU
389extern void arch_pick_mmap_layout(struct mm_struct *mm);
390extern unsigned long
391arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
392		       unsigned long, unsigned long);
393extern unsigned long
394arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
395			  unsigned long len, unsigned long pgoff,
396			  unsigned long flags);
397extern void arch_unmap_area(struct mm_struct *, unsigned long);
398extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
399#else
400static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
401#endif
402
403
404extern void set_dumpable(struct mm_struct *mm, int value);
405extern int get_dumpable(struct mm_struct *mm);
406
407/* mm flags */
408/* dumpable bits */
409#define MMF_DUMPABLE      0  /* core dump is permitted */
410#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
411
412#define MMF_DUMPABLE_BITS 2
413#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
414
415/* coredump filter bits */
416#define MMF_DUMP_ANON_PRIVATE	2
417#define MMF_DUMP_ANON_SHARED	3
418#define MMF_DUMP_MAPPED_PRIVATE	4
419#define MMF_DUMP_MAPPED_SHARED	5
420#define MMF_DUMP_ELF_HEADERS	6
421#define MMF_DUMP_HUGETLB_PRIVATE 7
422#define MMF_DUMP_HUGETLB_SHARED  8
423
424#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
425#define MMF_DUMP_FILTER_BITS	7
426#define MMF_DUMP_FILTER_MASK \
427	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428#define MMF_DUMP_FILTER_DEFAULT \
429	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
430	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431
432#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
434#else
435# define MMF_DUMP_MASK_DEFAULT_ELF	0
436#endif
437					/* leave room for more dump flags */
438#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
439#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
440
441#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
442
443struct sighand_struct {
444	atomic_t		count;
445	struct k_sigaction	action[_NSIG];
446	spinlock_t		siglock;
447	wait_queue_head_t	signalfd_wqh;
448};
449
450struct pacct_struct {
451	int			ac_flag;
452	long			ac_exitcode;
453	unsigned long		ac_mem;
454	cputime_t		ac_utime, ac_stime;
455	unsigned long		ac_minflt, ac_majflt;
456};
457
458struct cpu_itimer {
459	cputime_t expires;
460	cputime_t incr;
461	u32 error;
462	u32 incr_error;
463};
464
465/**
466 * struct task_cputime - collected CPU time counts
467 * @utime:		time spent in user mode, in &cputime_t units
468 * @stime:		time spent in kernel mode, in &cputime_t units
469 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
470 *
471 * This structure groups together three kinds of CPU time that are
472 * tracked for threads and thread groups.  Most things considering
473 * CPU time want to group these counts together and treat all three
474 * of them in parallel.
475 */
476struct task_cputime {
477	cputime_t utime;
478	cputime_t stime;
479	unsigned long long sum_exec_runtime;
480};
481/* Alternate field names when used to cache expirations. */
482#define prof_exp	stime
483#define virt_exp	utime
484#define sched_exp	sum_exec_runtime
485
486#define INIT_CPUTIME	\
487	(struct task_cputime) {					\
488		.utime = 0,					\
489		.stime = 0,					\
490		.sum_exec_runtime = 0,				\
491	}
492
493/*
494 * Disable preemption until the scheduler is running.
495 * Reset by start_kernel()->sched_init()->init_idle().
496 *
497 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
498 * before the scheduler is active -- see should_resched().
499 */
500#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
501
502/**
503 * struct thread_group_cputimer - thread group interval timer counts
504 * @cputime:		thread group interval timers.
505 * @running:		non-zero when there are timers running and
506 * 			@cputime receives updates.
507 * @lock:		lock for fields in this struct.
508 *
509 * This structure contains the version of task_cputime, above, that is
510 * used for thread group CPU timer calculations.
511 */
512struct thread_group_cputimer {
513	struct task_cputime cputime;
514	int running;
515	raw_spinlock_t lock;
516};
517
518#include <linux/rwsem.h>
519struct autogroup;
520
521/*
522 * NOTE! "signal_struct" does not have its own
523 * locking, because a shared signal_struct always
524 * implies a shared sighand_struct, so locking
525 * sighand_struct is always a proper superset of
526 * the locking of signal_struct.
527 */
528struct signal_struct {
529	atomic_t		sigcnt;
530	atomic_t		live;
531	int			nr_threads;
532
533	wait_queue_head_t	wait_chldexit;	/* for wait4() */
534
535	/* current thread group signal load-balancing target: */
536	struct task_struct	*curr_target;
537
538	/* shared signal handling: */
539	struct sigpending	shared_pending;
540
541	/* thread group exit support */
542	int			group_exit_code;
543	/* overloaded:
544	 * - notify group_exit_task when ->count is equal to notify_count
545	 * - everyone except group_exit_task is stopped during signal delivery
546	 *   of fatal signals, group_exit_task processes the signal.
547	 */
548	int			notify_count;
549	struct task_struct	*group_exit_task;
550
551	/* thread group stop support, overloads group_exit_code too */
552	int			group_stop_count;
553	unsigned int		flags; /* see SIGNAL_* flags below */
554
555	/* POSIX.1b Interval Timers */
556	struct list_head posix_timers;
557
558	/* ITIMER_REAL timer for the process */
559	struct hrtimer real_timer;
560	struct pid *leader_pid;
561	ktime_t it_real_incr;
562
563	/*
564	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566	 * values are defined to 0 and 1 respectively
567	 */
568	struct cpu_itimer it[2];
569
570	/*
571	 * Thread group totals for process CPU timers.
572	 * See thread_group_cputimer(), et al, for details.
573	 */
574	struct thread_group_cputimer cputimer;
575
576	/* Earliest-expiration cache. */
577	struct task_cputime cputime_expires;
578
579	struct list_head cpu_timers[3];
580
581	struct pid *tty_old_pgrp;
582
583	/* boolean value for session group leader */
584	int leader;
585
586	struct tty_struct *tty; /* NULL if no tty */
587
588#ifdef CONFIG_SCHED_AUTOGROUP
589	struct autogroup *autogroup;
590#endif
591	/*
592	 * Cumulative resource counters for dead threads in the group,
593	 * and for reaped dead child processes forked by this group.
594	 * Live threads maintain their own counters and add to these
595	 * in __exit_signal, except for the group leader.
596	 */
597	cputime_t utime, stime, cutime, cstime;
598	cputime_t gtime;
599	cputime_t cgtime;
600#ifndef CONFIG_VIRT_CPU_ACCOUNTING
601	cputime_t prev_utime, prev_stime;
602#endif
603	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
604	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
605	unsigned long inblock, oublock, cinblock, coublock;
606	unsigned long maxrss, cmaxrss;
607	struct task_io_accounting ioac;
608
609	/*
610	 * Cumulative ns of schedule CPU time fo dead threads in the
611	 * group, not including a zombie group leader, (This only differs
612	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
613	 * other than jiffies.)
614	 */
615	unsigned long long sum_sched_runtime;
616
617	/*
618	 * We don't bother to synchronize most readers of this at all,
619	 * because there is no reader checking a limit that actually needs
620	 * to get both rlim_cur and rlim_max atomically, and either one
621	 * alone is a single word that can safely be read normally.
622	 * getrlimit/setrlimit use task_lock(current->group_leader) to
623	 * protect this instead of the siglock, because they really
624	 * have no need to disable irqs.
625	 */
626	struct rlimit rlim[RLIM_NLIMITS];
627
628#ifdef CONFIG_BSD_PROCESS_ACCT
629	struct pacct_struct pacct;	/* per-process accounting information */
630#endif
631#ifdef CONFIG_TASKSTATS
632	struct taskstats *stats;
633#endif
634#ifdef CONFIG_AUDIT
635	unsigned audit_tty;
636	struct tty_audit_buf *tty_audit_buf;
637#endif
638#ifdef CONFIG_CGROUPS
639	/*
640	 * group_rwsem prevents new tasks from entering the threadgroup and
641	 * member tasks from exiting,a more specifically, setting of
642	 * PF_EXITING.  fork and exit paths are protected with this rwsem
643	 * using threadgroup_change_begin/end().  Users which require
644	 * threadgroup to remain stable should use threadgroup_[un]lock()
645	 * which also takes care of exec path.  Currently, cgroup is the
646	 * only user.
647	 */
648	struct rw_semaphore group_rwsem;
649#endif
650
651	int oom_adj;		/* OOM kill score adjustment (bit shift) */
652	int oom_score_adj;	/* OOM kill score adjustment */
653	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
654				 * Only settable by CAP_SYS_RESOURCE. */
655
656	struct mutex cred_guard_mutex;	/* guard against foreign influences on
657					 * credential calculations
658					 * (notably. ptrace) */
659};
660
661/* Context switch must be unlocked if interrupts are to be enabled */
662#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
663# define __ARCH_WANT_UNLOCKED_CTXSW
664#endif
665
666/*
667 * Bits in flags field of signal_struct.
668 */
669#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
670#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
671#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
672/*
673 * Pending notifications to parent.
674 */
675#define SIGNAL_CLD_STOPPED	0x00000010
676#define SIGNAL_CLD_CONTINUED	0x00000020
677#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
678
679#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
680
681/* If true, all threads except ->group_exit_task have pending SIGKILL */
682static inline int signal_group_exit(const struct signal_struct *sig)
683{
684	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
685		(sig->group_exit_task != NULL);
686}
687
688/*
689 * Some day this will be a full-fledged user tracking system..
690 */
691struct user_struct {
692	atomic_t __count;	/* reference count */
693	atomic_t processes;	/* How many processes does this user have? */
694	atomic_t files;		/* How many open files does this user have? */
695	atomic_t sigpending;	/* How many pending signals does this user have? */
696#ifdef CONFIG_INOTIFY_USER
697	atomic_t inotify_watches; /* How many inotify watches does this user have? */
698	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
699#endif
700#ifdef CONFIG_FANOTIFY
701	atomic_t fanotify_listeners;
702#endif
703#ifdef CONFIG_EPOLL
704	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
705#endif
706#ifdef CONFIG_POSIX_MQUEUE
707	/* protected by mq_lock	*/
708	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
709#endif
710	unsigned long locked_shm; /* How many pages of mlocked shm ? */
711
712#ifdef CONFIG_KEYS
713	struct key *uid_keyring;	/* UID specific keyring */
714	struct key *session_keyring;	/* UID's default session keyring */
715#endif
716
717	/* Hash table maintenance information */
718	struct hlist_node uidhash_node;
719	uid_t uid;
720	struct user_namespace *user_ns;
721
722#ifdef CONFIG_PERF_EVENTS
723	atomic_long_t locked_vm;
724#endif
725};
726
727extern int uids_sysfs_init(void);
728
729extern struct user_struct *find_user(uid_t);
730
731extern struct user_struct root_user;
732#define INIT_USER (&root_user)
733
734
735struct backing_dev_info;
736struct reclaim_state;
737
738#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
739struct sched_info {
740	/* cumulative counters */
741	unsigned long pcount;	      /* # of times run on this cpu */
742	unsigned long long run_delay; /* time spent waiting on a runqueue */
743
744	/* timestamps */
745	unsigned long long last_arrival,/* when we last ran on a cpu */
746			   last_queued;	/* when we were last queued to run */
747};
748#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
749
750#ifdef CONFIG_TASK_DELAY_ACCT
751struct task_delay_info {
752	spinlock_t	lock;
753	unsigned int	flags;	/* Private per-task flags */
754
755	/* For each stat XXX, add following, aligned appropriately
756	 *
757	 * struct timespec XXX_start, XXX_end;
758	 * u64 XXX_delay;
759	 * u32 XXX_count;
760	 *
761	 * Atomicity of updates to XXX_delay, XXX_count protected by
762	 * single lock above (split into XXX_lock if contention is an issue).
763	 */
764
765	/*
766	 * XXX_count is incremented on every XXX operation, the delay
767	 * associated with the operation is added to XXX_delay.
768	 * XXX_delay contains the accumulated delay time in nanoseconds.
769	 */
770	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
771	u64 blkio_delay;	/* wait for sync block io completion */
772	u64 swapin_delay;	/* wait for swapin block io completion */
773	u32 blkio_count;	/* total count of the number of sync block */
774				/* io operations performed */
775	u32 swapin_count;	/* total count of the number of swapin block */
776				/* io operations performed */
777
778	struct timespec freepages_start, freepages_end;
779	u64 freepages_delay;	/* wait for memory reclaim */
780	u32 freepages_count;	/* total count of memory reclaim */
781};
782#endif	/* CONFIG_TASK_DELAY_ACCT */
783
784static inline int sched_info_on(void)
785{
786#ifdef CONFIG_SCHEDSTATS
787	return 1;
788#elif defined(CONFIG_TASK_DELAY_ACCT)
789	extern int delayacct_on;
790	return delayacct_on;
791#else
792	return 0;
793#endif
794}
795
796enum cpu_idle_type {
797	CPU_IDLE,
798	CPU_NOT_IDLE,
799	CPU_NEWLY_IDLE,
800	CPU_MAX_IDLE_TYPES
801};
802
803/*
804 * Increase resolution of nice-level calculations for 64-bit architectures.
805 * The extra resolution improves shares distribution and load balancing of
806 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
807 * hierarchies, especially on larger systems. This is not a user-visible change
808 * and does not change the user-interface for setting shares/weights.
809 *
810 * We increase resolution only if we have enough bits to allow this increased
811 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
812 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
813 * increased costs.
814 */
815#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
816# define SCHED_LOAD_RESOLUTION	10
817# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
818# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
819#else
820# define SCHED_LOAD_RESOLUTION	0
821# define scale_load(w)		(w)
822# define scale_load_down(w)	(w)
823#endif
824
825#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
826#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
827
828/*
829 * Increase resolution of cpu_power calculations
830 */
831#define SCHED_POWER_SHIFT	10
832#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
833
834/*
835 * sched-domains (multiprocessor balancing) declarations:
836 */
837#ifdef CONFIG_SMP
838#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
839#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
840#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
841#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
842#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
843#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
844#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
845#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
846#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
847#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
848#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
849#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
850#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
851#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
852
853enum powersavings_balance_level {
854	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
855	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
856					 * first for long running threads
857					 */
858	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
859					 * cpu package for power savings
860					 */
861	MAX_POWERSAVINGS_BALANCE_LEVELS
862};
863
864extern int sched_mc_power_savings, sched_smt_power_savings;
865
866static inline int sd_balance_for_mc_power(void)
867{
868	if (sched_smt_power_savings)
869		return SD_POWERSAVINGS_BALANCE;
870
871	if (!sched_mc_power_savings)
872		return SD_PREFER_SIBLING;
873
874	return 0;
875}
876
877static inline int sd_balance_for_package_power(void)
878{
879	if (sched_mc_power_savings | sched_smt_power_savings)
880		return SD_POWERSAVINGS_BALANCE;
881
882	return SD_PREFER_SIBLING;
883}
884
885extern int __weak arch_sd_sibiling_asym_packing(void);
886
887/*
888 * Optimise SD flags for power savings:
889 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
890 * Keep default SD flags if sched_{smt,mc}_power_saving=0
891 */
892
893static inline int sd_power_saving_flags(void)
894{
895	if (sched_mc_power_savings | sched_smt_power_savings)
896		return SD_BALANCE_NEWIDLE;
897
898	return 0;
899}
900
901struct sched_group_power {
902	atomic_t ref;
903	/*
904	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
905	 * single CPU.
906	 */
907	unsigned int power, power_orig;
908	/*
909	 * Number of busy cpus in this group.
910	 */
911	atomic_t nr_busy_cpus;
912};
913
914struct sched_group {
915	struct sched_group *next;	/* Must be a circular list */
916	atomic_t ref;
917
918	unsigned int group_weight;
919	struct sched_group_power *sgp;
920
921	/*
922	 * The CPUs this group covers.
923	 *
924	 * NOTE: this field is variable length. (Allocated dynamically
925	 * by attaching extra space to the end of the structure,
926	 * depending on how many CPUs the kernel has booted up with)
927	 */
928	unsigned long cpumask[0];
929};
930
931static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
932{
933	return to_cpumask(sg->cpumask);
934}
935
936/**
937 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
938 * @group: The group whose first cpu is to be returned.
939 */
940static inline unsigned int group_first_cpu(struct sched_group *group)
941{
942	return cpumask_first(sched_group_cpus(group));
943}
944
945struct sched_domain_attr {
946	int relax_domain_level;
947};
948
949#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
950	.relax_domain_level = -1,			\
951}
952
953extern int sched_domain_level_max;
954
955struct sched_domain {
956	/* These fields must be setup */
957	struct sched_domain *parent;	/* top domain must be null terminated */
958	struct sched_domain *child;	/* bottom domain must be null terminated */
959	struct sched_group *groups;	/* the balancing groups of the domain */
960	unsigned long min_interval;	/* Minimum balance interval ms */
961	unsigned long max_interval;	/* Maximum balance interval ms */
962	unsigned int busy_factor;	/* less balancing by factor if busy */
963	unsigned int imbalance_pct;	/* No balance until over watermark */
964	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
965	unsigned int busy_idx;
966	unsigned int idle_idx;
967	unsigned int newidle_idx;
968	unsigned int wake_idx;
969	unsigned int forkexec_idx;
970	unsigned int smt_gain;
971	int flags;			/* See SD_* */
972	int level;
973
974	/* Runtime fields. */
975	unsigned long last_balance;	/* init to jiffies. units in jiffies */
976	unsigned int balance_interval;	/* initialise to 1. units in ms. */
977	unsigned int nr_balance_failed; /* initialise to 0 */
978
979	u64 last_update;
980
981#ifdef CONFIG_SCHEDSTATS
982	/* load_balance() stats */
983	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
984	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
985	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
986	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
987	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
988	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
989	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
990	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
991
992	/* Active load balancing */
993	unsigned int alb_count;
994	unsigned int alb_failed;
995	unsigned int alb_pushed;
996
997	/* SD_BALANCE_EXEC stats */
998	unsigned int sbe_count;
999	unsigned int sbe_balanced;
1000	unsigned int sbe_pushed;
1001
1002	/* SD_BALANCE_FORK stats */
1003	unsigned int sbf_count;
1004	unsigned int sbf_balanced;
1005	unsigned int sbf_pushed;
1006
1007	/* try_to_wake_up() stats */
1008	unsigned int ttwu_wake_remote;
1009	unsigned int ttwu_move_affine;
1010	unsigned int ttwu_move_balance;
1011#endif
1012#ifdef CONFIG_SCHED_DEBUG
1013	char *name;
1014#endif
1015	union {
1016		void *private;		/* used during construction */
1017		struct rcu_head rcu;	/* used during destruction */
1018	};
1019
1020	unsigned int span_weight;
1021	/*
1022	 * Span of all CPUs in this domain.
1023	 *
1024	 * NOTE: this field is variable length. (Allocated dynamically
1025	 * by attaching extra space to the end of the structure,
1026	 * depending on how many CPUs the kernel has booted up with)
1027	 */
1028	unsigned long span[0];
1029};
1030
1031static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1032{
1033	return to_cpumask(sd->span);
1034}
1035
1036extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1037				    struct sched_domain_attr *dattr_new);
1038
1039/* Allocate an array of sched domains, for partition_sched_domains(). */
1040cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1041void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1042
1043/* Test a flag in parent sched domain */
1044static inline int test_sd_parent(struct sched_domain *sd, int flag)
1045{
1046	if (sd->parent && (sd->parent->flags & flag))
1047		return 1;
1048
1049	return 0;
1050}
1051
1052unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1053unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1054
1055#else /* CONFIG_SMP */
1056
1057struct sched_domain_attr;
1058
1059static inline void
1060partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1061			struct sched_domain_attr *dattr_new)
1062{
1063}
1064#endif	/* !CONFIG_SMP */
1065
1066
1067struct io_context;			/* See blkdev.h */
1068
1069
1070#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1071extern void prefetch_stack(struct task_struct *t);
1072#else
1073static inline void prefetch_stack(struct task_struct *t) { }
1074#endif
1075
1076struct audit_context;		/* See audit.c */
1077struct mempolicy;
1078struct pipe_inode_info;
1079struct uts_namespace;
1080
1081struct rq;
1082struct sched_domain;
1083
1084/*
1085 * wake flags
1086 */
1087#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1088#define WF_FORK		0x02		/* child wakeup after fork */
1089#define WF_MIGRATED	0x04		/* internal use, task got migrated */
1090
1091#define ENQUEUE_WAKEUP		1
1092#define ENQUEUE_HEAD		2
1093#ifdef CONFIG_SMP
1094#define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1095#else
1096#define ENQUEUE_WAKING		0
1097#endif
1098
1099#define DEQUEUE_SLEEP		1
1100
1101struct sched_class {
1102	const struct sched_class *next;
1103
1104	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1105	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1106	void (*yield_task) (struct rq *rq);
1107	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1108
1109	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1110
1111	struct task_struct * (*pick_next_task) (struct rq *rq);
1112	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1113
1114#ifdef CONFIG_SMP
1115	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1116
1117	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1118	void (*post_schedule) (struct rq *this_rq);
1119	void (*task_waking) (struct task_struct *task);
1120	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1121
1122	void (*set_cpus_allowed)(struct task_struct *p,
1123				 const struct cpumask *newmask);
1124
1125	void (*rq_online)(struct rq *rq);
1126	void (*rq_offline)(struct rq *rq);
1127#endif
1128
1129	void (*set_curr_task) (struct rq *rq);
1130	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1131	void (*task_fork) (struct task_struct *p);
1132
1133	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1134	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1135	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1136			     int oldprio);
1137
1138	unsigned int (*get_rr_interval) (struct rq *rq,
1139					 struct task_struct *task);
1140
1141#ifdef CONFIG_FAIR_GROUP_SCHED
1142	void (*task_move_group) (struct task_struct *p, int on_rq);
1143#endif
1144};
1145
1146struct load_weight {
1147	unsigned long weight, inv_weight;
1148};
1149
1150#ifdef CONFIG_SCHEDSTATS
1151struct sched_statistics {
1152	u64			wait_start;
1153	u64			wait_max;
1154	u64			wait_count;
1155	u64			wait_sum;
1156	u64			iowait_count;
1157	u64			iowait_sum;
1158
1159	u64			sleep_start;
1160	u64			sleep_max;
1161	s64			sum_sleep_runtime;
1162
1163	u64			block_start;
1164	u64			block_max;
1165	u64			exec_max;
1166	u64			slice_max;
1167
1168	u64			nr_migrations_cold;
1169	u64			nr_failed_migrations_affine;
1170	u64			nr_failed_migrations_running;
1171	u64			nr_failed_migrations_hot;
1172	u64			nr_forced_migrations;
1173
1174	u64			nr_wakeups;
1175	u64			nr_wakeups_sync;
1176	u64			nr_wakeups_migrate;
1177	u64			nr_wakeups_local;
1178	u64			nr_wakeups_remote;
1179	u64			nr_wakeups_affine;
1180	u64			nr_wakeups_affine_attempts;
1181	u64			nr_wakeups_passive;
1182	u64			nr_wakeups_idle;
1183};
1184#endif
1185
1186struct sched_entity {
1187	struct load_weight	load;		/* for load-balancing */
1188	struct rb_node		run_node;
1189	struct list_head	group_node;
1190	unsigned int		on_rq;
1191
1192	u64			exec_start;
1193	u64			sum_exec_runtime;
1194	u64			vruntime;
1195	u64			prev_sum_exec_runtime;
1196
1197	u64			nr_migrations;
1198
1199#ifdef CONFIG_SCHEDSTATS
1200	struct sched_statistics statistics;
1201#endif
1202
1203#ifdef CONFIG_FAIR_GROUP_SCHED
1204	struct sched_entity	*parent;
1205	/* rq on which this entity is (to be) queued: */
1206	struct cfs_rq		*cfs_rq;
1207	/* rq "owned" by this entity/group: */
1208	struct cfs_rq		*my_q;
1209#endif
1210};
1211
1212struct sched_rt_entity {
1213	struct list_head run_list;
1214	unsigned long timeout;
1215	unsigned int time_slice;
1216	int nr_cpus_allowed;
1217
1218	struct sched_rt_entity *back;
1219#ifdef CONFIG_RT_GROUP_SCHED
1220	struct sched_rt_entity	*parent;
1221	/* rq on which this entity is (to be) queued: */
1222	struct rt_rq		*rt_rq;
1223	/* rq "owned" by this entity/group: */
1224	struct rt_rq		*my_q;
1225#endif
1226};
1227
1228struct rcu_node;
1229
1230enum perf_event_task_context {
1231	perf_invalid_context = -1,
1232	perf_hw_context = 0,
1233	perf_sw_context,
1234	perf_nr_task_contexts,
1235};
1236
1237struct task_struct {
1238	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1239	void *stack;
1240	atomic_t usage;
1241	unsigned int flags;	/* per process flags, defined below */
1242	unsigned int ptrace;
1243
1244#ifdef CONFIG_SMP
1245	struct llist_node wake_entry;
1246	int on_cpu;
1247#endif
1248	int on_rq;
1249
1250	int prio, static_prio, normal_prio;
1251	unsigned int rt_priority;
1252	const struct sched_class *sched_class;
1253	struct sched_entity se;
1254	struct sched_rt_entity rt;
1255
1256#ifdef CONFIG_PREEMPT_NOTIFIERS
1257	/* list of struct preempt_notifier: */
1258	struct hlist_head preempt_notifiers;
1259#endif
1260
1261	/*
1262	 * fpu_counter contains the number of consecutive context switches
1263	 * that the FPU is used. If this is over a threshold, the lazy fpu
1264	 * saving becomes unlazy to save the trap. This is an unsigned char
1265	 * so that after 256 times the counter wraps and the behavior turns
1266	 * lazy again; this to deal with bursty apps that only use FPU for
1267	 * a short time
1268	 */
1269	unsigned char fpu_counter;
1270#ifdef CONFIG_BLK_DEV_IO_TRACE
1271	unsigned int btrace_seq;
1272#endif
1273
1274	unsigned int policy;
1275	cpumask_t cpus_allowed;
1276
1277#ifdef CONFIG_PREEMPT_RCU
1278	int rcu_read_lock_nesting;
1279	char rcu_read_unlock_special;
1280	struct list_head rcu_node_entry;
1281#endif /* #ifdef CONFIG_PREEMPT_RCU */
1282#ifdef CONFIG_TREE_PREEMPT_RCU
1283	struct rcu_node *rcu_blocked_node;
1284#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1285#ifdef CONFIG_RCU_BOOST
1286	struct rt_mutex *rcu_boost_mutex;
1287#endif /* #ifdef CONFIG_RCU_BOOST */
1288
1289#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1290	struct sched_info sched_info;
1291#endif
1292
1293	struct list_head tasks;
1294#ifdef CONFIG_SMP
1295	struct plist_node pushable_tasks;
1296#endif
1297
1298	struct mm_struct *mm, *active_mm;
1299#ifdef CONFIG_COMPAT_BRK
1300	unsigned brk_randomized:1;
1301#endif
1302#if defined(SPLIT_RSS_COUNTING)
1303	struct task_rss_stat	rss_stat;
1304#endif
1305/* task state */
1306	int exit_state;
1307	int exit_code, exit_signal;
1308	int pdeath_signal;  /*  The signal sent when the parent dies  */
1309	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1310	/* ??? */
1311	unsigned int personality;
1312	unsigned did_exec:1;
1313	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1314				 * execve */
1315	unsigned in_iowait:1;
1316
1317
1318	/* Revert to default priority/policy when forking */
1319	unsigned sched_reset_on_fork:1;
1320	unsigned sched_contributes_to_load:1;
1321
1322	pid_t pid;
1323	pid_t tgid;
1324
1325#ifdef CONFIG_CC_STACKPROTECTOR
1326	/* Canary value for the -fstack-protector gcc feature */
1327	unsigned long stack_canary;
1328#endif
1329
1330	/*
1331	 * pointers to (original) parent process, youngest child, younger sibling,
1332	 * older sibling, respectively.  (p->father can be replaced with
1333	 * p->real_parent->pid)
1334	 */
1335	struct task_struct __rcu *real_parent; /* real parent process */
1336	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1337	/*
1338	 * children/sibling forms the list of my natural children
1339	 */
1340	struct list_head children;	/* list of my children */
1341	struct list_head sibling;	/* linkage in my parent's children list */
1342	struct task_struct *group_leader;	/* threadgroup leader */
1343
1344	/*
1345	 * ptraced is the list of tasks this task is using ptrace on.
1346	 * This includes both natural children and PTRACE_ATTACH targets.
1347	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1348	 */
1349	struct list_head ptraced;
1350	struct list_head ptrace_entry;
1351
1352	/* PID/PID hash table linkage. */
1353	struct pid_link pids[PIDTYPE_MAX];
1354	struct list_head thread_group;
1355
1356	struct completion *vfork_done;		/* for vfork() */
1357	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1358	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1359
1360	cputime_t utime, stime, utimescaled, stimescaled;
1361	cputime_t gtime;
1362#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1363	cputime_t prev_utime, prev_stime;
1364#endif
1365	unsigned long nvcsw, nivcsw; /* context switch counts */
1366	struct timespec start_time; 		/* monotonic time */
1367	struct timespec real_start_time;	/* boot based time */
1368/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1369	unsigned long min_flt, maj_flt;
1370
1371	struct task_cputime cputime_expires;
1372	struct list_head cpu_timers[3];
1373
1374/* process credentials */
1375	const struct cred __rcu *real_cred; /* objective and real subjective task
1376					 * credentials (COW) */
1377	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1378					 * credentials (COW) */
1379	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1380
1381	char comm[TASK_COMM_LEN]; /* executable name excluding path
1382				     - access with [gs]et_task_comm (which lock
1383				       it with task_lock())
1384				     - initialized normally by setup_new_exec */
1385/* file system info */
1386	int link_count, total_link_count;
1387#ifdef CONFIG_SYSVIPC
1388/* ipc stuff */
1389	struct sysv_sem sysvsem;
1390#endif
1391#ifdef CONFIG_DETECT_HUNG_TASK
1392/* hung task detection */
1393	unsigned long last_switch_count;
1394#endif
1395/* CPU-specific state of this task */
1396	struct thread_struct thread;
1397/* filesystem information */
1398	struct fs_struct *fs;
1399/* open file information */
1400	struct files_struct *files;
1401/* namespaces */
1402	struct nsproxy *nsproxy;
1403/* signal handlers */
1404	struct signal_struct *signal;
1405	struct sighand_struct *sighand;
1406
1407	sigset_t blocked, real_blocked;
1408	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1409	struct sigpending pending;
1410
1411	unsigned long sas_ss_sp;
1412	size_t sas_ss_size;
1413	int (*notifier)(void *priv);
1414	void *notifier_data;
1415	sigset_t *notifier_mask;
1416	struct audit_context *audit_context;
1417#ifdef CONFIG_AUDITSYSCALL
1418	uid_t loginuid;
1419	unsigned int sessionid;
1420#endif
1421	seccomp_t seccomp;
1422
1423/* Thread group tracking */
1424   	u32 parent_exec_id;
1425   	u32 self_exec_id;
1426/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1427 * mempolicy */
1428	spinlock_t alloc_lock;
1429
1430#ifdef CONFIG_GENERIC_HARDIRQS
1431	/* IRQ handler threads */
1432	struct irqaction *irqaction;
1433#endif
1434
1435	/* Protection of the PI data structures: */
1436	raw_spinlock_t pi_lock;
1437
1438#ifdef CONFIG_RT_MUTEXES
1439	/* PI waiters blocked on a rt_mutex held by this task */
1440	struct plist_head pi_waiters;
1441	/* Deadlock detection and priority inheritance handling */
1442	struct rt_mutex_waiter *pi_blocked_on;
1443#endif
1444
1445#ifdef CONFIG_DEBUG_MUTEXES
1446	/* mutex deadlock detection */
1447	struct mutex_waiter *blocked_on;
1448#endif
1449#ifdef CONFIG_TRACE_IRQFLAGS
1450	unsigned int irq_events;
1451	unsigned long hardirq_enable_ip;
1452	unsigned long hardirq_disable_ip;
1453	unsigned int hardirq_enable_event;
1454	unsigned int hardirq_disable_event;
1455	int hardirqs_enabled;
1456	int hardirq_context;
1457	unsigned long softirq_disable_ip;
1458	unsigned long softirq_enable_ip;
1459	unsigned int softirq_disable_event;
1460	unsigned int softirq_enable_event;
1461	int softirqs_enabled;
1462	int softirq_context;
1463#endif
1464#ifdef CONFIG_LOCKDEP
1465# define MAX_LOCK_DEPTH 48UL
1466	u64 curr_chain_key;
1467	int lockdep_depth;
1468	unsigned int lockdep_recursion;
1469	struct held_lock held_locks[MAX_LOCK_DEPTH];
1470	gfp_t lockdep_reclaim_gfp;
1471#endif
1472
1473/* journalling filesystem info */
1474	void *journal_info;
1475
1476/* stacked block device info */
1477	struct bio_list *bio_list;
1478
1479#ifdef CONFIG_BLOCK
1480/* stack plugging */
1481	struct blk_plug *plug;
1482#endif
1483
1484/* VM state */
1485	struct reclaim_state *reclaim_state;
1486
1487	struct backing_dev_info *backing_dev_info;
1488
1489	struct io_context *io_context;
1490
1491	unsigned long ptrace_message;
1492	siginfo_t *last_siginfo; /* For ptrace use.  */
1493	struct task_io_accounting ioac;
1494#if defined(CONFIG_TASK_XACCT)
1495	u64 acct_rss_mem1;	/* accumulated rss usage */
1496	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1497	cputime_t acct_timexpd;	/* stime + utime since last update */
1498#endif
1499#ifdef CONFIG_CPUSETS
1500	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1501	int mems_allowed_change_disable;
1502	int cpuset_mem_spread_rotor;
1503	int cpuset_slab_spread_rotor;
1504#endif
1505#ifdef CONFIG_CGROUPS
1506	/* Control Group info protected by css_set_lock */
1507	struct css_set __rcu *cgroups;
1508	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1509	struct list_head cg_list;
1510#endif
1511#ifdef CONFIG_FUTEX
1512	struct robust_list_head __user *robust_list;
1513#ifdef CONFIG_COMPAT
1514	struct compat_robust_list_head __user *compat_robust_list;
1515#endif
1516	struct list_head pi_state_list;
1517	struct futex_pi_state *pi_state_cache;
1518#endif
1519#ifdef CONFIG_PERF_EVENTS
1520	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1521	struct mutex perf_event_mutex;
1522	struct list_head perf_event_list;
1523#endif
1524#ifdef CONFIG_NUMA
1525	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1526	short il_next;
1527	short pref_node_fork;
1528#endif
1529	struct rcu_head rcu;
1530
1531	/*
1532	 * cache last used pipe for splice
1533	 */
1534	struct pipe_inode_info *splice_pipe;
1535#ifdef	CONFIG_TASK_DELAY_ACCT
1536	struct task_delay_info *delays;
1537#endif
1538#ifdef CONFIG_FAULT_INJECTION
1539	int make_it_fail;
1540#endif
1541	/*
1542	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1543	 * balance_dirty_pages() for some dirty throttling pause
1544	 */
1545	int nr_dirtied;
1546	int nr_dirtied_pause;
1547	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1548
1549#ifdef CONFIG_LATENCYTOP
1550	int latency_record_count;
1551	struct latency_record latency_record[LT_SAVECOUNT];
1552#endif
1553	/*
1554	 * time slack values; these are used to round up poll() and
1555	 * select() etc timeout values. These are in nanoseconds.
1556	 */
1557	unsigned long timer_slack_ns;
1558	unsigned long default_timer_slack_ns;
1559
1560	struct list_head	*scm_work_list;
1561#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1562	/* Index of current stored address in ret_stack */
1563	int curr_ret_stack;
1564	/* Stack of return addresses for return function tracing */
1565	struct ftrace_ret_stack	*ret_stack;
1566	/* time stamp for last schedule */
1567	unsigned long long ftrace_timestamp;
1568	/*
1569	 * Number of functions that haven't been traced
1570	 * because of depth overrun.
1571	 */
1572	atomic_t trace_overrun;
1573	/* Pause for the tracing */
1574	atomic_t tracing_graph_pause;
1575#endif
1576#ifdef CONFIG_TRACING
1577	/* state flags for use by tracers */
1578	unsigned long trace;
1579	/* bitmask and counter of trace recursion */
1580	unsigned long trace_recursion;
1581#endif /* CONFIG_TRACING */
1582#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1583	struct memcg_batch_info {
1584		int do_batch;	/* incremented when batch uncharge started */
1585		struct mem_cgroup *memcg; /* target memcg of uncharge */
1586		unsigned long nr_pages;	/* uncharged usage */
1587		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1588	} memcg_batch;
1589#endif
1590#ifdef CONFIG_HAVE_HW_BREAKPOINT
1591	atomic_t ptrace_bp_refcnt;
1592#endif
1593#ifdef CONFIG_UPROBES
1594	struct uprobe_task *utask;
1595	int uprobe_srcu_id;
1596#endif
1597};
1598
1599/* Future-safe accessor for struct task_struct's cpus_allowed. */
1600#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1601
1602/*
1603 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1604 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1605 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1606 * values are inverted: lower p->prio value means higher priority.
1607 *
1608 * The MAX_USER_RT_PRIO value allows the actual maximum
1609 * RT priority to be separate from the value exported to
1610 * user-space.  This allows kernel threads to set their
1611 * priority to a value higher than any user task. Note:
1612 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1613 */
1614
1615#define MAX_USER_RT_PRIO	100
1616#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1617
1618#define MAX_PRIO		(MAX_RT_PRIO + 40)
1619#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1620
1621static inline int rt_prio(int prio)
1622{
1623	if (unlikely(prio < MAX_RT_PRIO))
1624		return 1;
1625	return 0;
1626}
1627
1628static inline int rt_task(struct task_struct *p)
1629{
1630	return rt_prio(p->prio);
1631}
1632
1633static inline struct pid *task_pid(struct task_struct *task)
1634{
1635	return task->pids[PIDTYPE_PID].pid;
1636}
1637
1638static inline struct pid *task_tgid(struct task_struct *task)
1639{
1640	return task->group_leader->pids[PIDTYPE_PID].pid;
1641}
1642
1643/*
1644 * Without tasklist or rcu lock it is not safe to dereference
1645 * the result of task_pgrp/task_session even if task == current,
1646 * we can race with another thread doing sys_setsid/sys_setpgid.
1647 */
1648static inline struct pid *task_pgrp(struct task_struct *task)
1649{
1650	return task->group_leader->pids[PIDTYPE_PGID].pid;
1651}
1652
1653static inline struct pid *task_session(struct task_struct *task)
1654{
1655	return task->group_leader->pids[PIDTYPE_SID].pid;
1656}
1657
1658struct pid_namespace;
1659
1660/*
1661 * the helpers to get the task's different pids as they are seen
1662 * from various namespaces
1663 *
1664 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1665 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1666 *                     current.
1667 * task_xid_nr_ns()  : id seen from the ns specified;
1668 *
1669 * set_task_vxid()   : assigns a virtual id to a task;
1670 *
1671 * see also pid_nr() etc in include/linux/pid.h
1672 */
1673pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1674			struct pid_namespace *ns);
1675
1676static inline pid_t task_pid_nr(struct task_struct *tsk)
1677{
1678	return tsk->pid;
1679}
1680
1681static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1682					struct pid_namespace *ns)
1683{
1684	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1685}
1686
1687static inline pid_t task_pid_vnr(struct task_struct *tsk)
1688{
1689	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1690}
1691
1692
1693static inline pid_t task_tgid_nr(struct task_struct *tsk)
1694{
1695	return tsk->tgid;
1696}
1697
1698pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1699
1700static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1701{
1702	return pid_vnr(task_tgid(tsk));
1703}
1704
1705
1706static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1707					struct pid_namespace *ns)
1708{
1709	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1710}
1711
1712static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1713{
1714	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1715}
1716
1717
1718static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1719					struct pid_namespace *ns)
1720{
1721	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1722}
1723
1724static inline pid_t task_session_vnr(struct task_struct *tsk)
1725{
1726	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1727}
1728
1729/* obsolete, do not use */
1730static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1731{
1732	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1733}
1734
1735/**
1736 * pid_alive - check that a task structure is not stale
1737 * @p: Task structure to be checked.
1738 *
1739 * Test if a process is not yet dead (at most zombie state)
1740 * If pid_alive fails, then pointers within the task structure
1741 * can be stale and must not be dereferenced.
1742 */
1743static inline int pid_alive(struct task_struct *p)
1744{
1745	return p->pids[PIDTYPE_PID].pid != NULL;
1746}
1747
1748/**
1749 * is_global_init - check if a task structure is init
1750 * @tsk: Task structure to be checked.
1751 *
1752 * Check if a task structure is the first user space task the kernel created.
1753 */
1754static inline int is_global_init(struct task_struct *tsk)
1755{
1756	return tsk->pid == 1;
1757}
1758
1759/*
1760 * is_container_init:
1761 * check whether in the task is init in its own pid namespace.
1762 */
1763extern int is_container_init(struct task_struct *tsk);
1764
1765extern struct pid *cad_pid;
1766
1767extern void free_task(struct task_struct *tsk);
1768#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1769
1770extern void __put_task_struct(struct task_struct *t);
1771
1772static inline void put_task_struct(struct task_struct *t)
1773{
1774	if (atomic_dec_and_test(&t->usage))
1775		__put_task_struct(t);
1776}
1777
1778extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1779extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1780
1781/*
1782 * Per process flags
1783 */
1784#define PF_STARTING	0x00000002	/* being created */
1785#define PF_EXITING	0x00000004	/* getting shut down */
1786#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1787#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1788#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1789#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1790#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1791#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1792#define PF_DUMPCORE	0x00000200	/* dumped core */
1793#define PF_SIGNALED	0x00000400	/* killed by a signal */
1794#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1795#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1796#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1797#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1798#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1799#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1800#define PF_KSWAPD	0x00040000	/* I am kswapd */
1801#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1802#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1803#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1804#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1805#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1806#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1807#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1808#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1809#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1810#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1811#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1812
1813/*
1814 * Only the _current_ task can read/write to tsk->flags, but other
1815 * tasks can access tsk->flags in readonly mode for example
1816 * with tsk_used_math (like during threaded core dumping).
1817 * There is however an exception to this rule during ptrace
1818 * or during fork: the ptracer task is allowed to write to the
1819 * child->flags of its traced child (same goes for fork, the parent
1820 * can write to the child->flags), because we're guaranteed the
1821 * child is not running and in turn not changing child->flags
1822 * at the same time the parent does it.
1823 */
1824#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1825#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1826#define clear_used_math() clear_stopped_child_used_math(current)
1827#define set_used_math() set_stopped_child_used_math(current)
1828#define conditional_stopped_child_used_math(condition, child) \
1829	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1830#define conditional_used_math(condition) \
1831	conditional_stopped_child_used_math(condition, current)
1832#define copy_to_stopped_child_used_math(child) \
1833	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1834/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1835#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1836#define used_math() tsk_used_math(current)
1837
1838/*
1839 * task->jobctl flags
1840 */
1841#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1842
1843#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1844#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1845#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1846#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1847#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1848#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1849#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1850
1851#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1852#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1853#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1854#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1855#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1856#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1857#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1858
1859#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1860#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1861
1862extern bool task_set_jobctl_pending(struct task_struct *task,
1863				    unsigned int mask);
1864extern void task_clear_jobctl_trapping(struct task_struct *task);
1865extern void task_clear_jobctl_pending(struct task_struct *task,
1866				      unsigned int mask);
1867
1868#ifdef CONFIG_PREEMPT_RCU
1869
1870#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1871#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1872#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1873
1874static inline void rcu_copy_process(struct task_struct *p)
1875{
1876	p->rcu_read_lock_nesting = 0;
1877	p->rcu_read_unlock_special = 0;
1878#ifdef CONFIG_TREE_PREEMPT_RCU
1879	p->rcu_blocked_node = NULL;
1880#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1881#ifdef CONFIG_RCU_BOOST
1882	p->rcu_boost_mutex = NULL;
1883#endif /* #ifdef CONFIG_RCU_BOOST */
1884	INIT_LIST_HEAD(&p->rcu_node_entry);
1885}
1886
1887#else
1888
1889static inline void rcu_copy_process(struct task_struct *p)
1890{
1891}
1892
1893#endif
1894
1895#ifdef CONFIG_SMP
1896extern void do_set_cpus_allowed(struct task_struct *p,
1897			       const struct cpumask *new_mask);
1898
1899extern int set_cpus_allowed_ptr(struct task_struct *p,
1900				const struct cpumask *new_mask);
1901#else
1902static inline void do_set_cpus_allowed(struct task_struct *p,
1903				      const struct cpumask *new_mask)
1904{
1905}
1906static inline int set_cpus_allowed_ptr(struct task_struct *p,
1907				       const struct cpumask *new_mask)
1908{
1909	if (!cpumask_test_cpu(0, new_mask))
1910		return -EINVAL;
1911	return 0;
1912}
1913#endif
1914
1915#ifndef CONFIG_CPUMASK_OFFSTACK
1916static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1917{
1918	return set_cpus_allowed_ptr(p, &new_mask);
1919}
1920#endif
1921
1922/*
1923 * Do not use outside of architecture code which knows its limitations.
1924 *
1925 * sched_clock() has no promise of monotonicity or bounded drift between
1926 * CPUs, use (which you should not) requires disabling IRQs.
1927 *
1928 * Please use one of the three interfaces below.
1929 */
1930extern unsigned long long notrace sched_clock(void);
1931/*
1932 * See the comment in kernel/sched_clock.c
1933 */
1934extern u64 cpu_clock(int cpu);
1935extern u64 local_clock(void);
1936extern u64 sched_clock_cpu(int cpu);
1937
1938
1939extern void sched_clock_init(void);
1940
1941#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1942static inline void sched_clock_tick(void)
1943{
1944}
1945
1946static inline void sched_clock_idle_sleep_event(void)
1947{
1948}
1949
1950static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1951{
1952}
1953#else
1954/*
1955 * Architectures can set this to 1 if they have specified
1956 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1957 * but then during bootup it turns out that sched_clock()
1958 * is reliable after all:
1959 */
1960extern int sched_clock_stable;
1961
1962extern void sched_clock_tick(void);
1963extern void sched_clock_idle_sleep_event(void);
1964extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1965#endif
1966
1967#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1968/*
1969 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1970 * The reason for this explicit opt-in is not to have perf penalty with
1971 * slow sched_clocks.
1972 */
1973extern void enable_sched_clock_irqtime(void);
1974extern void disable_sched_clock_irqtime(void);
1975#else
1976static inline void enable_sched_clock_irqtime(void) {}
1977static inline void disable_sched_clock_irqtime(void) {}
1978#endif
1979
1980extern unsigned long long
1981task_sched_runtime(struct task_struct *task);
1982
1983/* sched_exec is called by processes performing an exec */
1984#ifdef CONFIG_SMP
1985extern void sched_exec(void);
1986#else
1987#define sched_exec()   {}
1988#endif
1989
1990extern void sched_clock_idle_sleep_event(void);
1991extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1992
1993#ifdef CONFIG_HOTPLUG_CPU
1994extern void idle_task_exit(void);
1995#else
1996static inline void idle_task_exit(void) {}
1997#endif
1998
1999#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2000extern void wake_up_idle_cpu(int cpu);
2001#else
2002static inline void wake_up_idle_cpu(int cpu) { }
2003#endif
2004
2005extern unsigned int sysctl_sched_latency;
2006extern unsigned int sysctl_sched_min_granularity;
2007extern unsigned int sysctl_sched_wakeup_granularity;
2008extern unsigned int sysctl_sched_child_runs_first;
2009
2010enum sched_tunable_scaling {
2011	SCHED_TUNABLESCALING_NONE,
2012	SCHED_TUNABLESCALING_LOG,
2013	SCHED_TUNABLESCALING_LINEAR,
2014	SCHED_TUNABLESCALING_END,
2015};
2016extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2017
2018#ifdef CONFIG_SCHED_DEBUG
2019extern unsigned int sysctl_sched_migration_cost;
2020extern unsigned int sysctl_sched_nr_migrate;
2021extern unsigned int sysctl_sched_time_avg;
2022extern unsigned int sysctl_timer_migration;
2023extern unsigned int sysctl_sched_shares_window;
2024
2025int sched_proc_update_handler(struct ctl_table *table, int write,
2026		void __user *buffer, size_t *length,
2027		loff_t *ppos);
2028#endif
2029#ifdef CONFIG_SCHED_DEBUG
2030static inline unsigned int get_sysctl_timer_migration(void)
2031{
2032	return sysctl_timer_migration;
2033}
2034#else
2035static inline unsigned int get_sysctl_timer_migration(void)
2036{
2037	return 1;
2038}
2039#endif
2040extern unsigned int sysctl_sched_rt_period;
2041extern int sysctl_sched_rt_runtime;
2042
2043int sched_rt_handler(struct ctl_table *table, int write,
2044		void __user *buffer, size_t *lenp,
2045		loff_t *ppos);
2046
2047#ifdef CONFIG_SCHED_AUTOGROUP
2048extern unsigned int sysctl_sched_autogroup_enabled;
2049
2050extern void sched_autogroup_create_attach(struct task_struct *p);
2051extern void sched_autogroup_detach(struct task_struct *p);
2052extern void sched_autogroup_fork(struct signal_struct *sig);
2053extern void sched_autogroup_exit(struct signal_struct *sig);
2054#ifdef CONFIG_PROC_FS
2055extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2056extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2057#endif
2058#else
2059static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2060static inline void sched_autogroup_detach(struct task_struct *p) { }
2061static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2062static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2063#endif
2064
2065#ifdef CONFIG_CFS_BANDWIDTH
2066extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2067#endif
2068
2069#ifdef CONFIG_RT_MUTEXES
2070extern int rt_mutex_getprio(struct task_struct *p);
2071extern void rt_mutex_setprio(struct task_struct *p, int prio);
2072extern void rt_mutex_adjust_pi(struct task_struct *p);
2073#else
2074static inline int rt_mutex_getprio(struct task_struct *p)
2075{
2076	return p->normal_prio;
2077}
2078# define rt_mutex_adjust_pi(p)		do { } while (0)
2079#endif
2080
2081extern bool yield_to(struct task_struct *p, bool preempt);
2082extern void set_user_nice(struct task_struct *p, long nice);
2083extern int task_prio(const struct task_struct *p);
2084extern int task_nice(const struct task_struct *p);
2085extern int can_nice(const struct task_struct *p, const int nice);
2086extern int task_curr(const struct task_struct *p);
2087extern int idle_cpu(int cpu);
2088extern int sched_setscheduler(struct task_struct *, int,
2089			      const struct sched_param *);
2090extern int sched_setscheduler_nocheck(struct task_struct *, int,
2091				      const struct sched_param *);
2092extern struct task_struct *idle_task(int cpu);
2093/**
2094 * is_idle_task - is the specified task an idle task?
2095 * @p: the task in question.
2096 */
2097static inline bool is_idle_task(const struct task_struct *p)
2098{
2099	return p->pid == 0;
2100}
2101extern struct task_struct *curr_task(int cpu);
2102extern void set_curr_task(int cpu, struct task_struct *p);
2103
2104void yield(void);
2105
2106/*
2107 * The default (Linux) execution domain.
2108 */
2109extern struct exec_domain	default_exec_domain;
2110
2111union thread_union {
2112	struct thread_info thread_info;
2113	unsigned long stack[THREAD_SIZE/sizeof(long)];
2114};
2115
2116#ifndef __HAVE_ARCH_KSTACK_END
2117static inline int kstack_end(void *addr)
2118{
2119	/* Reliable end of stack detection:
2120	 * Some APM bios versions misalign the stack
2121	 */
2122	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2123}
2124#endif
2125
2126extern union thread_union init_thread_union;
2127extern struct task_struct init_task;
2128
2129extern struct   mm_struct init_mm;
2130
2131extern struct pid_namespace init_pid_ns;
2132
2133/*
2134 * find a task by one of its numerical ids
2135 *
2136 * find_task_by_pid_ns():
2137 *      finds a task by its pid in the specified namespace
2138 * find_task_by_vpid():
2139 *      finds a task by its virtual pid
2140 *
2141 * see also find_vpid() etc in include/linux/pid.h
2142 */
2143
2144extern struct task_struct *find_task_by_vpid(pid_t nr);
2145extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2146		struct pid_namespace *ns);
2147
2148extern void __set_special_pids(struct pid *pid);
2149
2150/* per-UID process charging. */
2151extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2152static inline struct user_struct *get_uid(struct user_struct *u)
2153{
2154	atomic_inc(&u->__count);
2155	return u;
2156}
2157extern void free_uid(struct user_struct *);
2158extern void release_uids(struct user_namespace *ns);
2159
2160#include <asm/current.h>
2161
2162extern void xtime_update(unsigned long ticks);
2163
2164extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2165extern int wake_up_process(struct task_struct *tsk);
2166extern void wake_up_new_task(struct task_struct *tsk);
2167#ifdef CONFIG_SMP
2168 extern void kick_process(struct task_struct *tsk);
2169#else
2170 static inline void kick_process(struct task_struct *tsk) { }
2171#endif
2172extern void sched_fork(struct task_struct *p);
2173extern void sched_dead(struct task_struct *p);
2174
2175extern void proc_caches_init(void);
2176extern void flush_signals(struct task_struct *);
2177extern void __flush_signals(struct task_struct *);
2178extern void ignore_signals(struct task_struct *);
2179extern void flush_signal_handlers(struct task_struct *, int force_default);
2180extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2181
2182static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2183{
2184	unsigned long flags;
2185	int ret;
2186
2187	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2188	ret = dequeue_signal(tsk, mask, info);
2189	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2190
2191	return ret;
2192}
2193
2194extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2195			      sigset_t *mask);
2196extern void unblock_all_signals(void);
2197extern void release_task(struct task_struct * p);
2198extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2199extern int force_sigsegv(int, struct task_struct *);
2200extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2201extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2202extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2203extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2204				const struct cred *, u32);
2205extern int kill_pgrp(struct pid *pid, int sig, int priv);
2206extern int kill_pid(struct pid *pid, int sig, int priv);
2207extern int kill_proc_info(int, struct siginfo *, pid_t);
2208extern __must_check bool do_notify_parent(struct task_struct *, int);
2209extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2210extern void force_sig(int, struct task_struct *);
2211extern int send_sig(int, struct task_struct *, int);
2212extern int zap_other_threads(struct task_struct *p);
2213extern struct sigqueue *sigqueue_alloc(void);
2214extern void sigqueue_free(struct sigqueue *);
2215extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2216extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2217extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2218
2219static inline int kill_cad_pid(int sig, int priv)
2220{
2221	return kill_pid(cad_pid, sig, priv);
2222}
2223
2224/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2225#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2226#define SEND_SIG_PRIV	((struct siginfo *) 1)
2227#define SEND_SIG_FORCED	((struct siginfo *) 2)
2228
2229/*
2230 * True if we are on the alternate signal stack.
2231 */
2232static inline int on_sig_stack(unsigned long sp)
2233{
2234#ifdef CONFIG_STACK_GROWSUP
2235	return sp >= current->sas_ss_sp &&
2236		sp - current->sas_ss_sp < current->sas_ss_size;
2237#else
2238	return sp > current->sas_ss_sp &&
2239		sp - current->sas_ss_sp <= current->sas_ss_size;
2240#endif
2241}
2242
2243static inline int sas_ss_flags(unsigned long sp)
2244{
2245	return (current->sas_ss_size == 0 ? SS_DISABLE
2246		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2247}
2248
2249/*
2250 * Routines for handling mm_structs
2251 */
2252extern struct mm_struct * mm_alloc(void);
2253
2254/* mmdrop drops the mm and the page tables */
2255extern void __mmdrop(struct mm_struct *);
2256static inline void mmdrop(struct mm_struct * mm)
2257{
2258	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2259		__mmdrop(mm);
2260}
2261
2262/* mmput gets rid of the mappings and all user-space */
2263extern void mmput(struct mm_struct *);
2264/* Grab a reference to a task's mm, if it is not already going away */
2265extern struct mm_struct *get_task_mm(struct task_struct *task);
2266/*
2267 * Grab a reference to a task's mm, if it is not already going away
2268 * and ptrace_may_access with the mode parameter passed to it
2269 * succeeds.
2270 */
2271extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2272/* Remove the current tasks stale references to the old mm_struct */
2273extern void mm_release(struct task_struct *, struct mm_struct *);
2274/* Allocate a new mm structure and copy contents from tsk->mm */
2275extern struct mm_struct *dup_mm(struct task_struct *tsk);
2276
2277extern int copy_thread(unsigned long, unsigned long, unsigned long,
2278			struct task_struct *, struct pt_regs *);
2279extern void flush_thread(void);
2280extern void exit_thread(void);
2281
2282extern void exit_files(struct task_struct *);
2283extern void __cleanup_sighand(struct sighand_struct *);
2284
2285extern void exit_itimers(struct signal_struct *);
2286extern void flush_itimer_signals(void);
2287
2288extern void do_group_exit(int);
2289
2290extern void daemonize(const char *, ...);
2291extern int allow_signal(int);
2292extern int disallow_signal(int);
2293
2294extern int do_execve(const char *,
2295		     const char __user * const __user *,
2296		     const char __user * const __user *, struct pt_regs *);
2297extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2298struct task_struct *fork_idle(int);
2299
2300extern void set_task_comm(struct task_struct *tsk, char *from);
2301extern char *get_task_comm(char *to, struct task_struct *tsk);
2302
2303#ifdef CONFIG_SMP
2304void scheduler_ipi(void);
2305extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2306#else
2307static inline void scheduler_ipi(void) { }
2308static inline unsigned long wait_task_inactive(struct task_struct *p,
2309					       long match_state)
2310{
2311	return 1;
2312}
2313#endif
2314
2315#define next_task(p) \
2316	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2317
2318#define for_each_process(p) \
2319	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2320
2321extern bool current_is_single_threaded(void);
2322
2323/*
2324 * Careful: do_each_thread/while_each_thread is a double loop so
2325 *          'break' will not work as expected - use goto instead.
2326 */
2327#define do_each_thread(g, t) \
2328	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2329
2330#define while_each_thread(g, t) \
2331	while ((t = next_thread(t)) != g)
2332
2333static inline int get_nr_threads(struct task_struct *tsk)
2334{
2335	return tsk->signal->nr_threads;
2336}
2337
2338static inline bool thread_group_leader(struct task_struct *p)
2339{
2340	return p->exit_signal >= 0;
2341}
2342
2343/* Do to the insanities of de_thread it is possible for a process
2344 * to have the pid of the thread group leader without actually being
2345 * the thread group leader.  For iteration through the pids in proc
2346 * all we care about is that we have a task with the appropriate
2347 * pid, we don't actually care if we have the right task.
2348 */
2349static inline int has_group_leader_pid(struct task_struct *p)
2350{
2351	return p->pid == p->tgid;
2352}
2353
2354static inline
2355int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2356{
2357	return p1->tgid == p2->tgid;
2358}
2359
2360static inline struct task_struct *next_thread(const struct task_struct *p)
2361{
2362	return list_entry_rcu(p->thread_group.next,
2363			      struct task_struct, thread_group);
2364}
2365
2366static inline int thread_group_empty(struct task_struct *p)
2367{
2368	return list_empty(&p->thread_group);
2369}
2370
2371#define delay_group_leader(p) \
2372		(thread_group_leader(p) && !thread_group_empty(p))
2373
2374/*
2375 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2376 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2377 * pins the final release of task.io_context.  Also protects ->cpuset and
2378 * ->cgroup.subsys[].
2379 *
2380 * Nests both inside and outside of read_lock(&tasklist_lock).
2381 * It must not be nested with write_lock_irq(&tasklist_lock),
2382 * neither inside nor outside.
2383 */
2384static inline void task_lock(struct task_struct *p)
2385{
2386	spin_lock(&p->alloc_lock);
2387}
2388
2389static inline void task_unlock(struct task_struct *p)
2390{
2391	spin_unlock(&p->alloc_lock);
2392}
2393
2394extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2395							unsigned long *flags);
2396
2397#define lock_task_sighand(tsk, flags)					\
2398({	struct sighand_struct *__ss;					\
2399	__cond_lock(&(tsk)->sighand->siglock,				\
2400		    (__ss = __lock_task_sighand(tsk, flags)));		\
2401	__ss;								\
2402})									\
2403
2404static inline void unlock_task_sighand(struct task_struct *tsk,
2405						unsigned long *flags)
2406{
2407	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2408}
2409
2410#ifdef CONFIG_CGROUPS
2411static inline void threadgroup_change_begin(struct task_struct *tsk)
2412{
2413	down_read(&tsk->signal->group_rwsem);
2414}
2415static inline void threadgroup_change_end(struct task_struct *tsk)
2416{
2417	up_read(&tsk->signal->group_rwsem);
2418}
2419
2420/**
2421 * threadgroup_lock - lock threadgroup
2422 * @tsk: member task of the threadgroup to lock
2423 *
2424 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2425 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2426 * perform exec.  This is useful for cases where the threadgroup needs to
2427 * stay stable across blockable operations.
2428 *
2429 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2430 * synchronization.  While held, no new task will be added to threadgroup
2431 * and no existing live task will have its PF_EXITING set.
2432 *
2433 * During exec, a task goes and puts its thread group through unusual
2434 * changes.  After de-threading, exclusive access is assumed to resources
2435 * which are usually shared by tasks in the same group - e.g. sighand may
2436 * be replaced with a new one.  Also, the exec'ing task takes over group
2437 * leader role including its pid.  Exclude these changes while locked by
2438 * grabbing cred_guard_mutex which is used to synchronize exec path.
2439 */
2440static inline void threadgroup_lock(struct task_struct *tsk)
2441{
2442	/*
2443	 * exec uses exit for de-threading nesting group_rwsem inside
2444	 * cred_guard_mutex. Grab cred_guard_mutex first.
2445	 */
2446	mutex_lock(&tsk->signal->cred_guard_mutex);
2447	down_write(&tsk->signal->group_rwsem);
2448}
2449
2450/**
2451 * threadgroup_unlock - unlock threadgroup
2452 * @tsk: member task of the threadgroup to unlock
2453 *
2454 * Reverse threadgroup_lock().
2455 */
2456static inline void threadgroup_unlock(struct task_struct *tsk)
2457{
2458	up_write(&tsk->signal->group_rwsem);
2459	mutex_unlock(&tsk->signal->cred_guard_mutex);
2460}
2461#else
2462static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2463static inline void threadgroup_change_end(struct task_struct *tsk) {}
2464static inline void threadgroup_lock(struct task_struct *tsk) {}
2465static inline void threadgroup_unlock(struct task_struct *tsk) {}
2466#endif
2467
2468#ifndef __HAVE_THREAD_FUNCTIONS
2469
2470#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2471#define task_stack_page(task)	((task)->stack)
2472
2473static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2474{
2475	*task_thread_info(p) = *task_thread_info(org);
2476	task_thread_info(p)->task = p;
2477}
2478
2479static inline unsigned long *end_of_stack(struct task_struct *p)
2480{
2481	return (unsigned long *)(task_thread_info(p) + 1);
2482}
2483
2484#endif
2485
2486static inline int object_is_on_stack(void *obj)
2487{
2488	void *stack = task_stack_page(current);
2489
2490	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2491}
2492
2493extern void thread_info_cache_init(void);
2494
2495#ifdef CONFIG_DEBUG_STACK_USAGE
2496static inline unsigned long stack_not_used(struct task_struct *p)
2497{
2498	unsigned long *n = end_of_stack(p);
2499
2500	do { 	/* Skip over canary */
2501		n++;
2502	} while (!*n);
2503
2504	return (unsigned long)n - (unsigned long)end_of_stack(p);
2505}
2506#endif
2507
2508/* set thread flags in other task's structures
2509 * - see asm/thread_info.h for TIF_xxxx flags available
2510 */
2511static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2512{
2513	set_ti_thread_flag(task_thread_info(tsk), flag);
2514}
2515
2516static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2517{
2518	clear_ti_thread_flag(task_thread_info(tsk), flag);
2519}
2520
2521static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2522{
2523	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2524}
2525
2526static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2527{
2528	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2529}
2530
2531static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2532{
2533	return test_ti_thread_flag(task_thread_info(tsk), flag);
2534}
2535
2536static inline void set_tsk_need_resched(struct task_struct *tsk)
2537{
2538	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2539}
2540
2541static inline void clear_tsk_need_resched(struct task_struct *tsk)
2542{
2543	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2544}
2545
2546static inline int test_tsk_need_resched(struct task_struct *tsk)
2547{
2548	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2549}
2550
2551static inline int restart_syscall(void)
2552{
2553	set_tsk_thread_flag(current, TIF_SIGPENDING);
2554	return -ERESTARTNOINTR;
2555}
2556
2557static inline int signal_pending(struct task_struct *p)
2558{
2559	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2560}
2561
2562static inline int __fatal_signal_pending(struct task_struct *p)
2563{
2564	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2565}
2566
2567static inline int fatal_signal_pending(struct task_struct *p)
2568{
2569	return signal_pending(p) && __fatal_signal_pending(p);
2570}
2571
2572static inline int signal_pending_state(long state, struct task_struct *p)
2573{
2574	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2575		return 0;
2576	if (!signal_pending(p))
2577		return 0;
2578
2579	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2580}
2581
2582static inline int need_resched(void)
2583{
2584	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2585}
2586
2587/*
2588 * cond_resched() and cond_resched_lock(): latency reduction via
2589 * explicit rescheduling in places that are safe. The return
2590 * value indicates whether a reschedule was done in fact.
2591 * cond_resched_lock() will drop the spinlock before scheduling,
2592 * cond_resched_softirq() will enable bhs before scheduling.
2593 */
2594extern int _cond_resched(void);
2595
2596#define cond_resched() ({			\
2597	__might_sleep(__FILE__, __LINE__, 0);	\
2598	_cond_resched();			\
2599})
2600
2601extern int __cond_resched_lock(spinlock_t *lock);
2602
2603#ifdef CONFIG_PREEMPT_COUNT
2604#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2605#else
2606#define PREEMPT_LOCK_OFFSET	0
2607#endif
2608
2609#define cond_resched_lock(lock) ({				\
2610	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2611	__cond_resched_lock(lock);				\
2612})
2613
2614extern int __cond_resched_softirq(void);
2615
2616#define cond_resched_softirq() ({					\
2617	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2618	__cond_resched_softirq();					\
2619})
2620
2621/*
2622 * Does a critical section need to be broken due to another
2623 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2624 * but a general need for low latency)
2625 */
2626static inline int spin_needbreak(spinlock_t *lock)
2627{
2628#ifdef CONFIG_PREEMPT
2629	return spin_is_contended(lock);
2630#else
2631	return 0;
2632#endif
2633}
2634
2635/*
2636 * Thread group CPU time accounting.
2637 */
2638void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2639void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2640
2641static inline void thread_group_cputime_init(struct signal_struct *sig)
2642{
2643	raw_spin_lock_init(&sig->cputimer.lock);
2644}
2645
2646/*
2647 * Reevaluate whether the task has signals pending delivery.
2648 * Wake the task if so.
2649 * This is required every time the blocked sigset_t changes.
2650 * callers must hold sighand->siglock.
2651 */
2652extern void recalc_sigpending_and_wake(struct task_struct *t);
2653extern void recalc_sigpending(void);
2654
2655extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2656
2657/*
2658 * Wrappers for p->thread_info->cpu access. No-op on UP.
2659 */
2660#ifdef CONFIG_SMP
2661
2662static inline unsigned int task_cpu(const struct task_struct *p)
2663{
2664	return task_thread_info(p)->cpu;
2665}
2666
2667extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2668
2669#else
2670
2671static inline unsigned int task_cpu(const struct task_struct *p)
2672{
2673	return 0;
2674}
2675
2676static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2677{
2678}
2679
2680#endif /* CONFIG_SMP */
2681
2682extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2683extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2684
2685extern void normalize_rt_tasks(void);
2686
2687#ifdef CONFIG_CGROUP_SCHED
2688
2689extern struct task_group root_task_group;
2690
2691extern struct task_group *sched_create_group(struct task_group *parent);
2692extern void sched_destroy_group(struct task_group *tg);
2693extern void sched_move_task(struct task_struct *tsk);
2694#ifdef CONFIG_FAIR_GROUP_SCHED
2695extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2696extern unsigned long sched_group_shares(struct task_group *tg);
2697#endif
2698#ifdef CONFIG_RT_GROUP_SCHED
2699extern int sched_group_set_rt_runtime(struct task_group *tg,
2700				      long rt_runtime_us);
2701extern long sched_group_rt_runtime(struct task_group *tg);
2702extern int sched_group_set_rt_period(struct task_group *tg,
2703				      long rt_period_us);
2704extern long sched_group_rt_period(struct task_group *tg);
2705extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2706#endif
2707#endif
2708
2709extern int task_can_switch_user(struct user_struct *up,
2710					struct task_struct *tsk);
2711
2712#ifdef CONFIG_TASK_XACCT
2713static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2714{
2715	tsk->ioac.rchar += amt;
2716}
2717
2718static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2719{
2720	tsk->ioac.wchar += amt;
2721}
2722
2723static inline void inc_syscr(struct task_struct *tsk)
2724{
2725	tsk->ioac.syscr++;
2726}
2727
2728static inline void inc_syscw(struct task_struct *tsk)
2729{
2730	tsk->ioac.syscw++;
2731}
2732#else
2733static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2734{
2735}
2736
2737static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2738{
2739}
2740
2741static inline void inc_syscr(struct task_struct *tsk)
2742{
2743}
2744
2745static inline void inc_syscw(struct task_struct *tsk)
2746{
2747}
2748#endif
2749
2750#ifndef TASK_SIZE_OF
2751#define TASK_SIZE_OF(tsk)	TASK_SIZE
2752#endif
2753
2754#ifdef CONFIG_MM_OWNER
2755extern void mm_update_next_owner(struct mm_struct *mm);
2756extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2757#else
2758static inline void mm_update_next_owner(struct mm_struct *mm)
2759{
2760}
2761
2762static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2763{
2764}
2765#endif /* CONFIG_MM_OWNER */
2766
2767static inline unsigned long task_rlimit(const struct task_struct *tsk,
2768		unsigned int limit)
2769{
2770	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2771}
2772
2773static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2774		unsigned int limit)
2775{
2776	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2777}
2778
2779static inline unsigned long rlimit(unsigned int limit)
2780{
2781	return task_rlimit(current, limit);
2782}
2783
2784static inline unsigned long rlimit_max(unsigned int limit)
2785{
2786	return task_rlimit_max(current, limit);
2787}
2788
2789#endif /* __KERNEL__ */
2790
2791#endif
2792