sched.h revision 09faef11df8c559a23e2405d123cb2683733a79a
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42#define SCHED_RESET_ON_FORK     0x40000000
43
44#ifdef __KERNEL__
45
46struct sched_param {
47	int sched_priority;
48};
49
50#include <asm/param.h>	/* for HZ */
51
52#include <linux/capability.h>
53#include <linux/threads.h>
54#include <linux/kernel.h>
55#include <linux/types.h>
56#include <linux/timex.h>
57#include <linux/jiffies.h>
58#include <linux/rbtree.h>
59#include <linux/thread_info.h>
60#include <linux/cpumask.h>
61#include <linux/errno.h>
62#include <linux/nodemask.h>
63#include <linux/mm_types.h>
64
65#include <asm/system.h>
66#include <asm/page.h>
67#include <asm/ptrace.h>
68#include <asm/cputime.h>
69
70#include <linux/smp.h>
71#include <linux/sem.h>
72#include <linux/signal.h>
73#include <linux/path.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/kobject.h>
92#include <linux/latencytop.h>
93#include <linux/cred.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio_list;
101struct fs_struct;
102struct perf_event_context;
103
104/*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110/*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 *    a load-average precision of 10 bits integer + 11 bits fractional
115 *  - if you want to count load-averages more often, you need more
116 *    precision, or rounding will get you. With 2-second counting freq,
117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
118 *    11 bit fractions.
119 */
120extern unsigned long avenrun[];		/* Load averages */
121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123#define FSHIFT		11		/* nr of bits of precision */
124#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
125#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
126#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
127#define EXP_5		2014		/* 1/exp(5sec/5min) */
128#define EXP_15		2037		/* 1/exp(5sec/15min) */
129
130#define CALC_LOAD(load,exp,n) \
131	load *= exp; \
132	load += n*(FIXED_1-exp); \
133	load >>= FSHIFT;
134
135extern unsigned long total_forks;
136extern int nr_threads;
137DECLARE_PER_CPU(unsigned long, process_counts);
138extern int nr_processes(void);
139extern unsigned long nr_running(void);
140extern unsigned long nr_uninterruptible(void);
141extern unsigned long nr_iowait(void);
142extern unsigned long nr_iowait_cpu(void);
143extern unsigned long this_cpu_load(void);
144
145
146extern void calc_global_load(void);
147
148extern unsigned long get_parent_ip(unsigned long addr);
149
150struct seq_file;
151struct cfs_rq;
152struct task_group;
153#ifdef CONFIG_SCHED_DEBUG
154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155extern void proc_sched_set_task(struct task_struct *p);
156extern void
157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158#else
159static inline void
160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161{
162}
163static inline void proc_sched_set_task(struct task_struct *p)
164{
165}
166static inline void
167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168{
169}
170#endif
171
172/*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182#define TASK_RUNNING		0
183#define TASK_INTERRUPTIBLE	1
184#define TASK_UNINTERRUPTIBLE	2
185#define __TASK_STOPPED		4
186#define __TASK_TRACED		8
187/* in tsk->exit_state */
188#define EXIT_ZOMBIE		16
189#define EXIT_DEAD		32
190/* in tsk->state again */
191#define TASK_DEAD		64
192#define TASK_WAKEKILL		128
193#define TASK_WAKING		256
194#define TASK_STATE_MAX		512
195
196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198extern char ___assert_task_state[1 - 2*!!(
199		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201/* Convenience macros for the sake of set_task_state */
202#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
204#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
205
206/* Convenience macros for the sake of wake_up */
207#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210/* get_task_state() */
211#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
212				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213				 __TASK_TRACED)
214
215#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
216#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
217#define task_is_stopped_or_traced(task)	\
218			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219#define task_contributes_to_load(task)	\
220				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221				 (task->flags & PF_FREEZING) == 0)
222
223#define __set_task_state(tsk, state_value)		\
224	do { (tsk)->state = (state_value); } while (0)
225#define set_task_state(tsk, state_value)		\
226	set_mb((tsk)->state, (state_value))
227
228/*
229 * set_current_state() includes a barrier so that the write of current->state
230 * is correctly serialised wrt the caller's subsequent test of whether to
231 * actually sleep:
232 *
233 *	set_current_state(TASK_UNINTERRUPTIBLE);
234 *	if (do_i_need_to_sleep())
235 *		schedule();
236 *
237 * If the caller does not need such serialisation then use __set_current_state()
238 */
239#define __set_current_state(state_value)			\
240	do { current->state = (state_value); } while (0)
241#define set_current_state(state_value)		\
242	set_mb(current->state, (state_value))
243
244/* Task command name length */
245#define TASK_COMM_LEN 16
246
247#include <linux/spinlock.h>
248
249/*
250 * This serializes "schedule()" and also protects
251 * the run-queue from deletions/modifications (but
252 * _adding_ to the beginning of the run-queue has
253 * a separate lock).
254 */
255extern rwlock_t tasklist_lock;
256extern spinlock_t mmlist_lock;
257
258struct task_struct;
259
260#ifdef CONFIG_PROVE_RCU
261extern int lockdep_tasklist_lock_is_held(void);
262#endif /* #ifdef CONFIG_PROVE_RCU */
263
264extern void sched_init(void);
265extern void sched_init_smp(void);
266extern asmlinkage void schedule_tail(struct task_struct *prev);
267extern void init_idle(struct task_struct *idle, int cpu);
268extern void init_idle_bootup_task(struct task_struct *idle);
269
270extern int runqueue_is_locked(int cpu);
271extern void task_rq_unlock_wait(struct task_struct *p);
272
273extern cpumask_var_t nohz_cpu_mask;
274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275extern int select_nohz_load_balancer(int cpu);
276extern int get_nohz_load_balancer(void);
277extern int nohz_ratelimit(int cpu);
278#else
279static inline int select_nohz_load_balancer(int cpu)
280{
281	return 0;
282}
283
284static inline int nohz_ratelimit(int cpu)
285{
286	return 0;
287}
288#endif
289
290/*
291 * Only dump TASK_* tasks. (0 for all tasks)
292 */
293extern void show_state_filter(unsigned long state_filter);
294
295static inline void show_state(void)
296{
297	show_state_filter(0);
298}
299
300extern void show_regs(struct pt_regs *);
301
302/*
303 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
304 * task), SP is the stack pointer of the first frame that should be shown in the back
305 * trace (or NULL if the entire call-chain of the task should be shown).
306 */
307extern void show_stack(struct task_struct *task, unsigned long *sp);
308
309void io_schedule(void);
310long io_schedule_timeout(long timeout);
311
312extern void cpu_init (void);
313extern void trap_init(void);
314extern void update_process_times(int user);
315extern void scheduler_tick(void);
316
317extern void sched_show_task(struct task_struct *p);
318
319#ifdef CONFIG_DETECT_SOFTLOCKUP
320extern void softlockup_tick(void);
321extern void touch_softlockup_watchdog(void);
322extern void touch_softlockup_watchdog_sync(void);
323extern void touch_all_softlockup_watchdogs(void);
324extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
325				    void __user *buffer,
326				    size_t *lenp, loff_t *ppos);
327extern unsigned int  softlockup_panic;
328extern int softlockup_thresh;
329#else
330static inline void softlockup_tick(void)
331{
332}
333static inline void touch_softlockup_watchdog(void)
334{
335}
336static inline void touch_softlockup_watchdog_sync(void)
337{
338}
339static inline void touch_all_softlockup_watchdogs(void)
340{
341}
342#endif
343
344#ifdef CONFIG_DETECT_HUNG_TASK
345extern unsigned int  sysctl_hung_task_panic;
346extern unsigned long sysctl_hung_task_check_count;
347extern unsigned long sysctl_hung_task_timeout_secs;
348extern unsigned long sysctl_hung_task_warnings;
349extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
350					 void __user *buffer,
351					 size_t *lenp, loff_t *ppos);
352#endif
353
354/* Attach to any functions which should be ignored in wchan output. */
355#define __sched		__attribute__((__section__(".sched.text")))
356
357/* Linker adds these: start and end of __sched functions */
358extern char __sched_text_start[], __sched_text_end[];
359
360/* Is this address in the __sched functions? */
361extern int in_sched_functions(unsigned long addr);
362
363#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
364extern signed long schedule_timeout(signed long timeout);
365extern signed long schedule_timeout_interruptible(signed long timeout);
366extern signed long schedule_timeout_killable(signed long timeout);
367extern signed long schedule_timeout_uninterruptible(signed long timeout);
368asmlinkage void schedule(void);
369extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
370
371struct nsproxy;
372struct user_namespace;
373
374/*
375 * Default maximum number of active map areas, this limits the number of vmas
376 * per mm struct. Users can overwrite this number by sysctl but there is a
377 * problem.
378 *
379 * When a program's coredump is generated as ELF format, a section is created
380 * per a vma. In ELF, the number of sections is represented in unsigned short.
381 * This means the number of sections should be smaller than 65535 at coredump.
382 * Because the kernel adds some informative sections to a image of program at
383 * generating coredump, we need some margin. The number of extra sections is
384 * 1-3 now and depends on arch. We use "5" as safe margin, here.
385 */
386#define MAPCOUNT_ELF_CORE_MARGIN	(5)
387#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
388
389extern int sysctl_max_map_count;
390
391#include <linux/aio.h>
392
393#ifdef CONFIG_MMU
394extern void arch_pick_mmap_layout(struct mm_struct *mm);
395extern unsigned long
396arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
397		       unsigned long, unsigned long);
398extern unsigned long
399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
400			  unsigned long len, unsigned long pgoff,
401			  unsigned long flags);
402extern void arch_unmap_area(struct mm_struct *, unsigned long);
403extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
404#else
405static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
406#endif
407
408
409extern void set_dumpable(struct mm_struct *mm, int value);
410extern int get_dumpable(struct mm_struct *mm);
411
412/* mm flags */
413/* dumpable bits */
414#define MMF_DUMPABLE      0  /* core dump is permitted */
415#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
416
417#define MMF_DUMPABLE_BITS 2
418#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
419
420/* coredump filter bits */
421#define MMF_DUMP_ANON_PRIVATE	2
422#define MMF_DUMP_ANON_SHARED	3
423#define MMF_DUMP_MAPPED_PRIVATE	4
424#define MMF_DUMP_MAPPED_SHARED	5
425#define MMF_DUMP_ELF_HEADERS	6
426#define MMF_DUMP_HUGETLB_PRIVATE 7
427#define MMF_DUMP_HUGETLB_SHARED  8
428
429#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
430#define MMF_DUMP_FILTER_BITS	7
431#define MMF_DUMP_FILTER_MASK \
432	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
433#define MMF_DUMP_FILTER_DEFAULT \
434	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
435	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
436
437#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
438# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
439#else
440# define MMF_DUMP_MASK_DEFAULT_ELF	0
441#endif
442					/* leave room for more dump flags */
443#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
444
445#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
446
447struct sighand_struct {
448	atomic_t		count;
449	struct k_sigaction	action[_NSIG];
450	spinlock_t		siglock;
451	wait_queue_head_t	signalfd_wqh;
452};
453
454struct pacct_struct {
455	int			ac_flag;
456	long			ac_exitcode;
457	unsigned long		ac_mem;
458	cputime_t		ac_utime, ac_stime;
459	unsigned long		ac_minflt, ac_majflt;
460};
461
462struct cpu_itimer {
463	cputime_t expires;
464	cputime_t incr;
465	u32 error;
466	u32 incr_error;
467};
468
469/**
470 * struct task_cputime - collected CPU time counts
471 * @utime:		time spent in user mode, in &cputime_t units
472 * @stime:		time spent in kernel mode, in &cputime_t units
473 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
474 *
475 * This structure groups together three kinds of CPU time that are
476 * tracked for threads and thread groups.  Most things considering
477 * CPU time want to group these counts together and treat all three
478 * of them in parallel.
479 */
480struct task_cputime {
481	cputime_t utime;
482	cputime_t stime;
483	unsigned long long sum_exec_runtime;
484};
485/* Alternate field names when used to cache expirations. */
486#define prof_exp	stime
487#define virt_exp	utime
488#define sched_exp	sum_exec_runtime
489
490#define INIT_CPUTIME	\
491	(struct task_cputime) {					\
492		.utime = cputime_zero,				\
493		.stime = cputime_zero,				\
494		.sum_exec_runtime = 0,				\
495	}
496
497/*
498 * Disable preemption until the scheduler is running.
499 * Reset by start_kernel()->sched_init()->init_idle().
500 *
501 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
502 * before the scheduler is active -- see should_resched().
503 */
504#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
505
506/**
507 * struct thread_group_cputimer - thread group interval timer counts
508 * @cputime:		thread group interval timers.
509 * @running:		non-zero when there are timers running and
510 * 			@cputime receives updates.
511 * @lock:		lock for fields in this struct.
512 *
513 * This structure contains the version of task_cputime, above, that is
514 * used for thread group CPU timer calculations.
515 */
516struct thread_group_cputimer {
517	struct task_cputime cputime;
518	int running;
519	spinlock_t lock;
520};
521
522/*
523 * NOTE! "signal_struct" does not have it's own
524 * locking, because a shared signal_struct always
525 * implies a shared sighand_struct, so locking
526 * sighand_struct is always a proper superset of
527 * the locking of signal_struct.
528 */
529struct signal_struct {
530	atomic_t		count;
531	atomic_t		live;
532
533	wait_queue_head_t	wait_chldexit;	/* for wait4() */
534
535	/* current thread group signal load-balancing target: */
536	struct task_struct	*curr_target;
537
538	/* shared signal handling: */
539	struct sigpending	shared_pending;
540
541	/* thread group exit support */
542	int			group_exit_code;
543	/* overloaded:
544	 * - notify group_exit_task when ->count is equal to notify_count
545	 * - everyone except group_exit_task is stopped during signal delivery
546	 *   of fatal signals, group_exit_task processes the signal.
547	 */
548	int			notify_count;
549	struct task_struct	*group_exit_task;
550
551	/* thread group stop support, overloads group_exit_code too */
552	int			group_stop_count;
553	unsigned int		flags; /* see SIGNAL_* flags below */
554
555	/* POSIX.1b Interval Timers */
556	struct list_head posix_timers;
557
558	/* ITIMER_REAL timer for the process */
559	struct hrtimer real_timer;
560	struct pid *leader_pid;
561	ktime_t it_real_incr;
562
563	/*
564	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566	 * values are defined to 0 and 1 respectively
567	 */
568	struct cpu_itimer it[2];
569
570	/*
571	 * Thread group totals for process CPU timers.
572	 * See thread_group_cputimer(), et al, for details.
573	 */
574	struct thread_group_cputimer cputimer;
575
576	/* Earliest-expiration cache. */
577	struct task_cputime cputime_expires;
578
579	struct list_head cpu_timers[3];
580
581	struct pid *tty_old_pgrp;
582
583	/* boolean value for session group leader */
584	int leader;
585
586	struct tty_struct *tty; /* NULL if no tty */
587
588	/*
589	 * Cumulative resource counters for dead threads in the group,
590	 * and for reaped dead child processes forked by this group.
591	 * Live threads maintain their own counters and add to these
592	 * in __exit_signal, except for the group leader.
593	 */
594	cputime_t utime, stime, cutime, cstime;
595	cputime_t gtime;
596	cputime_t cgtime;
597#ifndef CONFIG_VIRT_CPU_ACCOUNTING
598	cputime_t prev_utime, prev_stime;
599#endif
600	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602	unsigned long inblock, oublock, cinblock, coublock;
603	unsigned long maxrss, cmaxrss;
604	struct task_io_accounting ioac;
605
606	/*
607	 * Cumulative ns of schedule CPU time fo dead threads in the
608	 * group, not including a zombie group leader, (This only differs
609	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610	 * other than jiffies.)
611	 */
612	unsigned long long sum_sched_runtime;
613
614	/*
615	 * We don't bother to synchronize most readers of this at all,
616	 * because there is no reader checking a limit that actually needs
617	 * to get both rlim_cur and rlim_max atomically, and either one
618	 * alone is a single word that can safely be read normally.
619	 * getrlimit/setrlimit use task_lock(current->group_leader) to
620	 * protect this instead of the siglock, because they really
621	 * have no need to disable irqs.
622	 */
623	struct rlimit rlim[RLIM_NLIMITS];
624
625#ifdef CONFIG_BSD_PROCESS_ACCT
626	struct pacct_struct pacct;	/* per-process accounting information */
627#endif
628#ifdef CONFIG_TASKSTATS
629	struct taskstats *stats;
630#endif
631#ifdef CONFIG_AUDIT
632	unsigned audit_tty;
633	struct tty_audit_buf *tty_audit_buf;
634#endif
635
636	int oom_adj;	/* OOM kill score adjustment (bit shift) */
637};
638
639/* Context switch must be unlocked if interrupts are to be enabled */
640#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641# define __ARCH_WANT_UNLOCKED_CTXSW
642#endif
643
644/*
645 * Bits in flags field of signal_struct.
646 */
647#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
648#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
649#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
650#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
651/*
652 * Pending notifications to parent.
653 */
654#define SIGNAL_CLD_STOPPED	0x00000010
655#define SIGNAL_CLD_CONTINUED	0x00000020
656#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
657
658#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
659
660/* If true, all threads except ->group_exit_task have pending SIGKILL */
661static inline int signal_group_exit(const struct signal_struct *sig)
662{
663	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
664		(sig->group_exit_task != NULL);
665}
666
667/*
668 * Some day this will be a full-fledged user tracking system..
669 */
670struct user_struct {
671	atomic_t __count;	/* reference count */
672	atomic_t processes;	/* How many processes does this user have? */
673	atomic_t files;		/* How many open files does this user have? */
674	atomic_t sigpending;	/* How many pending signals does this user have? */
675#ifdef CONFIG_INOTIFY_USER
676	atomic_t inotify_watches; /* How many inotify watches does this user have? */
677	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
678#endif
679#ifdef CONFIG_EPOLL
680	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
681#endif
682#ifdef CONFIG_POSIX_MQUEUE
683	/* protected by mq_lock	*/
684	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
685#endif
686	unsigned long locked_shm; /* How many pages of mlocked shm ? */
687
688#ifdef CONFIG_KEYS
689	struct key *uid_keyring;	/* UID specific keyring */
690	struct key *session_keyring;	/* UID's default session keyring */
691#endif
692
693	/* Hash table maintenance information */
694	struct hlist_node uidhash_node;
695	uid_t uid;
696	struct user_namespace *user_ns;
697
698#ifdef CONFIG_PERF_EVENTS
699	atomic_long_t locked_vm;
700#endif
701};
702
703extern int uids_sysfs_init(void);
704
705extern struct user_struct *find_user(uid_t);
706
707extern struct user_struct root_user;
708#define INIT_USER (&root_user)
709
710
711struct backing_dev_info;
712struct reclaim_state;
713
714#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715struct sched_info {
716	/* cumulative counters */
717	unsigned long pcount;	      /* # of times run on this cpu */
718	unsigned long long run_delay; /* time spent waiting on a runqueue */
719
720	/* timestamps */
721	unsigned long long last_arrival,/* when we last ran on a cpu */
722			   last_queued;	/* when we were last queued to run */
723#ifdef CONFIG_SCHEDSTATS
724	/* BKL stats */
725	unsigned int bkl_count;
726#endif
727};
728#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
729
730#ifdef CONFIG_TASK_DELAY_ACCT
731struct task_delay_info {
732	spinlock_t	lock;
733	unsigned int	flags;	/* Private per-task flags */
734
735	/* For each stat XXX, add following, aligned appropriately
736	 *
737	 * struct timespec XXX_start, XXX_end;
738	 * u64 XXX_delay;
739	 * u32 XXX_count;
740	 *
741	 * Atomicity of updates to XXX_delay, XXX_count protected by
742	 * single lock above (split into XXX_lock if contention is an issue).
743	 */
744
745	/*
746	 * XXX_count is incremented on every XXX operation, the delay
747	 * associated with the operation is added to XXX_delay.
748	 * XXX_delay contains the accumulated delay time in nanoseconds.
749	 */
750	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
751	u64 blkio_delay;	/* wait for sync block io completion */
752	u64 swapin_delay;	/* wait for swapin block io completion */
753	u32 blkio_count;	/* total count of the number of sync block */
754				/* io operations performed */
755	u32 swapin_count;	/* total count of the number of swapin block */
756				/* io operations performed */
757
758	struct timespec freepages_start, freepages_end;
759	u64 freepages_delay;	/* wait for memory reclaim */
760	u32 freepages_count;	/* total count of memory reclaim */
761};
762#endif	/* CONFIG_TASK_DELAY_ACCT */
763
764static inline int sched_info_on(void)
765{
766#ifdef CONFIG_SCHEDSTATS
767	return 1;
768#elif defined(CONFIG_TASK_DELAY_ACCT)
769	extern int delayacct_on;
770	return delayacct_on;
771#else
772	return 0;
773#endif
774}
775
776enum cpu_idle_type {
777	CPU_IDLE,
778	CPU_NOT_IDLE,
779	CPU_NEWLY_IDLE,
780	CPU_MAX_IDLE_TYPES
781};
782
783/*
784 * sched-domains (multiprocessor balancing) declarations:
785 */
786
787/*
788 * Increase resolution of nice-level calculations:
789 */
790#define SCHED_LOAD_SHIFT	10
791#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
792
793#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
794
795#ifdef CONFIG_SMP
796#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
797#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
798#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
799#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
800#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
801#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
802#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
803#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
804#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
805#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
806#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
807
808#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
809
810enum powersavings_balance_level {
811	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
812	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
813					 * first for long running threads
814					 */
815	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
816					 * cpu package for power savings
817					 */
818	MAX_POWERSAVINGS_BALANCE_LEVELS
819};
820
821extern int sched_mc_power_savings, sched_smt_power_savings;
822
823static inline int sd_balance_for_mc_power(void)
824{
825	if (sched_smt_power_savings)
826		return SD_POWERSAVINGS_BALANCE;
827
828	if (!sched_mc_power_savings)
829		return SD_PREFER_SIBLING;
830
831	return 0;
832}
833
834static inline int sd_balance_for_package_power(void)
835{
836	if (sched_mc_power_savings | sched_smt_power_savings)
837		return SD_POWERSAVINGS_BALANCE;
838
839	return SD_PREFER_SIBLING;
840}
841
842/*
843 * Optimise SD flags for power savings:
844 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
845 * Keep default SD flags if sched_{smt,mc}_power_saving=0
846 */
847
848static inline int sd_power_saving_flags(void)
849{
850	if (sched_mc_power_savings | sched_smt_power_savings)
851		return SD_BALANCE_NEWIDLE;
852
853	return 0;
854}
855
856struct sched_group {
857	struct sched_group *next;	/* Must be a circular list */
858
859	/*
860	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
861	 * single CPU.
862	 */
863	unsigned int cpu_power;
864
865	/*
866	 * The CPUs this group covers.
867	 *
868	 * NOTE: this field is variable length. (Allocated dynamically
869	 * by attaching extra space to the end of the structure,
870	 * depending on how many CPUs the kernel has booted up with)
871	 *
872	 * It is also be embedded into static data structures at build
873	 * time. (See 'struct static_sched_group' in kernel/sched.c)
874	 */
875	unsigned long cpumask[0];
876};
877
878static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
879{
880	return to_cpumask(sg->cpumask);
881}
882
883enum sched_domain_level {
884	SD_LV_NONE = 0,
885	SD_LV_SIBLING,
886	SD_LV_MC,
887	SD_LV_CPU,
888	SD_LV_NODE,
889	SD_LV_ALLNODES,
890	SD_LV_MAX
891};
892
893struct sched_domain_attr {
894	int relax_domain_level;
895};
896
897#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
898	.relax_domain_level = -1,			\
899}
900
901struct sched_domain {
902	/* These fields must be setup */
903	struct sched_domain *parent;	/* top domain must be null terminated */
904	struct sched_domain *child;	/* bottom domain must be null terminated */
905	struct sched_group *groups;	/* the balancing groups of the domain */
906	unsigned long min_interval;	/* Minimum balance interval ms */
907	unsigned long max_interval;	/* Maximum balance interval ms */
908	unsigned int busy_factor;	/* less balancing by factor if busy */
909	unsigned int imbalance_pct;	/* No balance until over watermark */
910	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
911	unsigned int busy_idx;
912	unsigned int idle_idx;
913	unsigned int newidle_idx;
914	unsigned int wake_idx;
915	unsigned int forkexec_idx;
916	unsigned int smt_gain;
917	int flags;			/* See SD_* */
918	enum sched_domain_level level;
919
920	/* Runtime fields. */
921	unsigned long last_balance;	/* init to jiffies. units in jiffies */
922	unsigned int balance_interval;	/* initialise to 1. units in ms. */
923	unsigned int nr_balance_failed; /* initialise to 0 */
924
925	u64 last_update;
926
927#ifdef CONFIG_SCHEDSTATS
928	/* load_balance() stats */
929	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
930	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
931	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
932	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
933	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
934	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
935	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
936	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
937
938	/* Active load balancing */
939	unsigned int alb_count;
940	unsigned int alb_failed;
941	unsigned int alb_pushed;
942
943	/* SD_BALANCE_EXEC stats */
944	unsigned int sbe_count;
945	unsigned int sbe_balanced;
946	unsigned int sbe_pushed;
947
948	/* SD_BALANCE_FORK stats */
949	unsigned int sbf_count;
950	unsigned int sbf_balanced;
951	unsigned int sbf_pushed;
952
953	/* try_to_wake_up() stats */
954	unsigned int ttwu_wake_remote;
955	unsigned int ttwu_move_affine;
956	unsigned int ttwu_move_balance;
957#endif
958#ifdef CONFIG_SCHED_DEBUG
959	char *name;
960#endif
961
962	unsigned int span_weight;
963	/*
964	 * Span of all CPUs in this domain.
965	 *
966	 * NOTE: this field is variable length. (Allocated dynamically
967	 * by attaching extra space to the end of the structure,
968	 * depending on how many CPUs the kernel has booted up with)
969	 *
970	 * It is also be embedded into static data structures at build
971	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
972	 */
973	unsigned long span[0];
974};
975
976static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977{
978	return to_cpumask(sd->span);
979}
980
981extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982				    struct sched_domain_attr *dattr_new);
983
984/* Allocate an array of sched domains, for partition_sched_domains(). */
985cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
986void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987
988/* Test a flag in parent sched domain */
989static inline int test_sd_parent(struct sched_domain *sd, int flag)
990{
991	if (sd->parent && (sd->parent->flags & flag))
992		return 1;
993
994	return 0;
995}
996
997unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
998unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999
1000#else /* CONFIG_SMP */
1001
1002struct sched_domain_attr;
1003
1004static inline void
1005partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1006			struct sched_domain_attr *dattr_new)
1007{
1008}
1009#endif	/* !CONFIG_SMP */
1010
1011
1012struct io_context;			/* See blkdev.h */
1013
1014
1015#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016extern void prefetch_stack(struct task_struct *t);
1017#else
1018static inline void prefetch_stack(struct task_struct *t) { }
1019#endif
1020
1021struct audit_context;		/* See audit.c */
1022struct mempolicy;
1023struct pipe_inode_info;
1024struct uts_namespace;
1025
1026struct rq;
1027struct sched_domain;
1028
1029/*
1030 * wake flags
1031 */
1032#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1033#define WF_FORK		0x02		/* child wakeup after fork */
1034
1035#define ENQUEUE_WAKEUP		1
1036#define ENQUEUE_WAKING		2
1037#define ENQUEUE_HEAD		4
1038
1039#define DEQUEUE_SLEEP		1
1040
1041struct sched_class {
1042	const struct sched_class *next;
1043
1044	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046	void (*yield_task) (struct rq *rq);
1047
1048	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049
1050	struct task_struct * (*pick_next_task) (struct rq *rq);
1051	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052
1053#ifdef CONFIG_SMP
1054	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1055			       int sd_flag, int flags);
1056
1057	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058	void (*post_schedule) (struct rq *this_rq);
1059	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1060	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061
1062	void (*set_cpus_allowed)(struct task_struct *p,
1063				 const struct cpumask *newmask);
1064
1065	void (*rq_online)(struct rq *rq);
1066	void (*rq_offline)(struct rq *rq);
1067#endif
1068
1069	void (*set_curr_task) (struct rq *rq);
1070	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071	void (*task_fork) (struct task_struct *p);
1072
1073	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1074			       int running);
1075	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1076			     int running);
1077	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1078			     int oldprio, int running);
1079
1080	unsigned int (*get_rr_interval) (struct rq *rq,
1081					 struct task_struct *task);
1082
1083#ifdef CONFIG_FAIR_GROUP_SCHED
1084	void (*moved_group) (struct task_struct *p, int on_rq);
1085#endif
1086};
1087
1088struct load_weight {
1089	unsigned long weight, inv_weight;
1090};
1091
1092#ifdef CONFIG_SCHEDSTATS
1093struct sched_statistics {
1094	u64			wait_start;
1095	u64			wait_max;
1096	u64			wait_count;
1097	u64			wait_sum;
1098	u64			iowait_count;
1099	u64			iowait_sum;
1100
1101	u64			sleep_start;
1102	u64			sleep_max;
1103	s64			sum_sleep_runtime;
1104
1105	u64			block_start;
1106	u64			block_max;
1107	u64			exec_max;
1108	u64			slice_max;
1109
1110	u64			nr_migrations_cold;
1111	u64			nr_failed_migrations_affine;
1112	u64			nr_failed_migrations_running;
1113	u64			nr_failed_migrations_hot;
1114	u64			nr_forced_migrations;
1115
1116	u64			nr_wakeups;
1117	u64			nr_wakeups_sync;
1118	u64			nr_wakeups_migrate;
1119	u64			nr_wakeups_local;
1120	u64			nr_wakeups_remote;
1121	u64			nr_wakeups_affine;
1122	u64			nr_wakeups_affine_attempts;
1123	u64			nr_wakeups_passive;
1124	u64			nr_wakeups_idle;
1125};
1126#endif
1127
1128struct sched_entity {
1129	struct load_weight	load;		/* for load-balancing */
1130	struct rb_node		run_node;
1131	struct list_head	group_node;
1132	unsigned int		on_rq;
1133
1134	u64			exec_start;
1135	u64			sum_exec_runtime;
1136	u64			vruntime;
1137	u64			prev_sum_exec_runtime;
1138
1139	u64			nr_migrations;
1140
1141#ifdef CONFIG_SCHEDSTATS
1142	struct sched_statistics statistics;
1143#endif
1144
1145#ifdef CONFIG_FAIR_GROUP_SCHED
1146	struct sched_entity	*parent;
1147	/* rq on which this entity is (to be) queued: */
1148	struct cfs_rq		*cfs_rq;
1149	/* rq "owned" by this entity/group: */
1150	struct cfs_rq		*my_q;
1151#endif
1152};
1153
1154struct sched_rt_entity {
1155	struct list_head run_list;
1156	unsigned long timeout;
1157	unsigned int time_slice;
1158	int nr_cpus_allowed;
1159
1160	struct sched_rt_entity *back;
1161#ifdef CONFIG_RT_GROUP_SCHED
1162	struct sched_rt_entity	*parent;
1163	/* rq on which this entity is (to be) queued: */
1164	struct rt_rq		*rt_rq;
1165	/* rq "owned" by this entity/group: */
1166	struct rt_rq		*my_q;
1167#endif
1168};
1169
1170struct rcu_node;
1171
1172struct task_struct {
1173	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1174	void *stack;
1175	atomic_t usage;
1176	unsigned int flags;	/* per process flags, defined below */
1177	unsigned int ptrace;
1178
1179	int lock_depth;		/* BKL lock depth */
1180
1181#ifdef CONFIG_SMP
1182#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1183	int oncpu;
1184#endif
1185#endif
1186
1187	int prio, static_prio, normal_prio;
1188	unsigned int rt_priority;
1189	const struct sched_class *sched_class;
1190	struct sched_entity se;
1191	struct sched_rt_entity rt;
1192
1193#ifdef CONFIG_PREEMPT_NOTIFIERS
1194	/* list of struct preempt_notifier: */
1195	struct hlist_head preempt_notifiers;
1196#endif
1197
1198	/*
1199	 * fpu_counter contains the number of consecutive context switches
1200	 * that the FPU is used. If this is over a threshold, the lazy fpu
1201	 * saving becomes unlazy to save the trap. This is an unsigned char
1202	 * so that after 256 times the counter wraps and the behavior turns
1203	 * lazy again; this to deal with bursty apps that only use FPU for
1204	 * a short time
1205	 */
1206	unsigned char fpu_counter;
1207#ifdef CONFIG_BLK_DEV_IO_TRACE
1208	unsigned int btrace_seq;
1209#endif
1210
1211	unsigned int policy;
1212	cpumask_t cpus_allowed;
1213
1214#ifdef CONFIG_TREE_PREEMPT_RCU
1215	int rcu_read_lock_nesting;
1216	char rcu_read_unlock_special;
1217	struct rcu_node *rcu_blocked_node;
1218	struct list_head rcu_node_entry;
1219#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1220
1221#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1222	struct sched_info sched_info;
1223#endif
1224
1225	struct list_head tasks;
1226	struct plist_node pushable_tasks;
1227
1228	struct mm_struct *mm, *active_mm;
1229#if defined(SPLIT_RSS_COUNTING)
1230	struct task_rss_stat	rss_stat;
1231#endif
1232/* task state */
1233	int exit_state;
1234	int exit_code, exit_signal;
1235	int pdeath_signal;  /*  The signal sent when the parent dies  */
1236	/* ??? */
1237	unsigned int personality;
1238	unsigned did_exec:1;
1239	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1240				 * execve */
1241	unsigned in_iowait:1;
1242
1243
1244	/* Revert to default priority/policy when forking */
1245	unsigned sched_reset_on_fork:1;
1246
1247	pid_t pid;
1248	pid_t tgid;
1249
1250#ifdef CONFIG_CC_STACKPROTECTOR
1251	/* Canary value for the -fstack-protector gcc feature */
1252	unsigned long stack_canary;
1253#endif
1254
1255	/*
1256	 * pointers to (original) parent process, youngest child, younger sibling,
1257	 * older sibling, respectively.  (p->father can be replaced with
1258	 * p->real_parent->pid)
1259	 */
1260	struct task_struct *real_parent; /* real parent process */
1261	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1262	/*
1263	 * children/sibling forms the list of my natural children
1264	 */
1265	struct list_head children;	/* list of my children */
1266	struct list_head sibling;	/* linkage in my parent's children list */
1267	struct task_struct *group_leader;	/* threadgroup leader */
1268
1269	/*
1270	 * ptraced is the list of tasks this task is using ptrace on.
1271	 * This includes both natural children and PTRACE_ATTACH targets.
1272	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1273	 */
1274	struct list_head ptraced;
1275	struct list_head ptrace_entry;
1276
1277	/* PID/PID hash table linkage. */
1278	struct pid_link pids[PIDTYPE_MAX];
1279	struct list_head thread_group;
1280
1281	struct completion *vfork_done;		/* for vfork() */
1282	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1283	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1284
1285	cputime_t utime, stime, utimescaled, stimescaled;
1286	cputime_t gtime;
1287#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1288	cputime_t prev_utime, prev_stime;
1289#endif
1290	unsigned long nvcsw, nivcsw; /* context switch counts */
1291	struct timespec start_time; 		/* monotonic time */
1292	struct timespec real_start_time;	/* boot based time */
1293/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1294	unsigned long min_flt, maj_flt;
1295
1296	struct task_cputime cputime_expires;
1297	struct list_head cpu_timers[3];
1298
1299/* process credentials */
1300	const struct cred *real_cred;	/* objective and real subjective task
1301					 * credentials (COW) */
1302	const struct cred *cred;	/* effective (overridable) subjective task
1303					 * credentials (COW) */
1304	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1305					 * credential calculations
1306					 * (notably. ptrace) */
1307	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1308
1309	char comm[TASK_COMM_LEN]; /* executable name excluding path
1310				     - access with [gs]et_task_comm (which lock
1311				       it with task_lock())
1312				     - initialized normally by setup_new_exec */
1313/* file system info */
1314	int link_count, total_link_count;
1315#ifdef CONFIG_SYSVIPC
1316/* ipc stuff */
1317	struct sysv_sem sysvsem;
1318#endif
1319#ifdef CONFIG_DETECT_HUNG_TASK
1320/* hung task detection */
1321	unsigned long last_switch_count;
1322#endif
1323/* CPU-specific state of this task */
1324	struct thread_struct thread;
1325/* filesystem information */
1326	struct fs_struct *fs;
1327/* open file information */
1328	struct files_struct *files;
1329/* namespaces */
1330	struct nsproxy *nsproxy;
1331/* signal handlers */
1332	struct signal_struct *signal;
1333	struct sighand_struct *sighand;
1334
1335	sigset_t blocked, real_blocked;
1336	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1337	struct sigpending pending;
1338
1339	unsigned long sas_ss_sp;
1340	size_t sas_ss_size;
1341	int (*notifier)(void *priv);
1342	void *notifier_data;
1343	sigset_t *notifier_mask;
1344	struct audit_context *audit_context;
1345#ifdef CONFIG_AUDITSYSCALL
1346	uid_t loginuid;
1347	unsigned int sessionid;
1348#endif
1349	seccomp_t seccomp;
1350
1351/* Thread group tracking */
1352   	u32 parent_exec_id;
1353   	u32 self_exec_id;
1354/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1355 * mempolicy */
1356	spinlock_t alloc_lock;
1357
1358#ifdef CONFIG_GENERIC_HARDIRQS
1359	/* IRQ handler threads */
1360	struct irqaction *irqaction;
1361#endif
1362
1363	/* Protection of the PI data structures: */
1364	raw_spinlock_t pi_lock;
1365
1366#ifdef CONFIG_RT_MUTEXES
1367	/* PI waiters blocked on a rt_mutex held by this task */
1368	struct plist_head pi_waiters;
1369	/* Deadlock detection and priority inheritance handling */
1370	struct rt_mutex_waiter *pi_blocked_on;
1371#endif
1372
1373#ifdef CONFIG_DEBUG_MUTEXES
1374	/* mutex deadlock detection */
1375	struct mutex_waiter *blocked_on;
1376#endif
1377#ifdef CONFIG_TRACE_IRQFLAGS
1378	unsigned int irq_events;
1379	unsigned long hardirq_enable_ip;
1380	unsigned long hardirq_disable_ip;
1381	unsigned int hardirq_enable_event;
1382	unsigned int hardirq_disable_event;
1383	int hardirqs_enabled;
1384	int hardirq_context;
1385	unsigned long softirq_disable_ip;
1386	unsigned long softirq_enable_ip;
1387	unsigned int softirq_disable_event;
1388	unsigned int softirq_enable_event;
1389	int softirqs_enabled;
1390	int softirq_context;
1391#endif
1392#ifdef CONFIG_LOCKDEP
1393# define MAX_LOCK_DEPTH 48UL
1394	u64 curr_chain_key;
1395	int lockdep_depth;
1396	unsigned int lockdep_recursion;
1397	struct held_lock held_locks[MAX_LOCK_DEPTH];
1398	gfp_t lockdep_reclaim_gfp;
1399#endif
1400
1401/* journalling filesystem info */
1402	void *journal_info;
1403
1404/* stacked block device info */
1405	struct bio_list *bio_list;
1406
1407/* VM state */
1408	struct reclaim_state *reclaim_state;
1409
1410	struct backing_dev_info *backing_dev_info;
1411
1412	struct io_context *io_context;
1413
1414	unsigned long ptrace_message;
1415	siginfo_t *last_siginfo; /* For ptrace use.  */
1416	struct task_io_accounting ioac;
1417#if defined(CONFIG_TASK_XACCT)
1418	u64 acct_rss_mem1;	/* accumulated rss usage */
1419	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1420	cputime_t acct_timexpd;	/* stime + utime since last update */
1421#endif
1422#ifdef CONFIG_CPUSETS
1423	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1424	int mems_allowed_change_disable;
1425	int cpuset_mem_spread_rotor;
1426	int cpuset_slab_spread_rotor;
1427#endif
1428#ifdef CONFIG_CGROUPS
1429	/* Control Group info protected by css_set_lock */
1430	struct css_set *cgroups;
1431	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1432	struct list_head cg_list;
1433#endif
1434#ifdef CONFIG_FUTEX
1435	struct robust_list_head __user *robust_list;
1436#ifdef CONFIG_COMPAT
1437	struct compat_robust_list_head __user *compat_robust_list;
1438#endif
1439	struct list_head pi_state_list;
1440	struct futex_pi_state *pi_state_cache;
1441#endif
1442#ifdef CONFIG_PERF_EVENTS
1443	struct perf_event_context *perf_event_ctxp;
1444	struct mutex perf_event_mutex;
1445	struct list_head perf_event_list;
1446#endif
1447#ifdef CONFIG_NUMA
1448	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1449	short il_next;
1450#endif
1451	atomic_t fs_excl;	/* holding fs exclusive resources */
1452	struct rcu_head rcu;
1453
1454	/*
1455	 * cache last used pipe for splice
1456	 */
1457	struct pipe_inode_info *splice_pipe;
1458#ifdef	CONFIG_TASK_DELAY_ACCT
1459	struct task_delay_info *delays;
1460#endif
1461#ifdef CONFIG_FAULT_INJECTION
1462	int make_it_fail;
1463#endif
1464	struct prop_local_single dirties;
1465#ifdef CONFIG_LATENCYTOP
1466	int latency_record_count;
1467	struct latency_record latency_record[LT_SAVECOUNT];
1468#endif
1469	/*
1470	 * time slack values; these are used to round up poll() and
1471	 * select() etc timeout values. These are in nanoseconds.
1472	 */
1473	unsigned long timer_slack_ns;
1474	unsigned long default_timer_slack_ns;
1475
1476	struct list_head	*scm_work_list;
1477#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1478	/* Index of current stored address in ret_stack */
1479	int curr_ret_stack;
1480	/* Stack of return addresses for return function tracing */
1481	struct ftrace_ret_stack	*ret_stack;
1482	/* time stamp for last schedule */
1483	unsigned long long ftrace_timestamp;
1484	/*
1485	 * Number of functions that haven't been traced
1486	 * because of depth overrun.
1487	 */
1488	atomic_t trace_overrun;
1489	/* Pause for the tracing */
1490	atomic_t tracing_graph_pause;
1491#endif
1492#ifdef CONFIG_TRACING
1493	/* state flags for use by tracers */
1494	unsigned long trace;
1495	/* bitmask of trace recursion */
1496	unsigned long trace_recursion;
1497#endif /* CONFIG_TRACING */
1498#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1499	struct memcg_batch_info {
1500		int do_batch;	/* incremented when batch uncharge started */
1501		struct mem_cgroup *memcg; /* target memcg of uncharge */
1502		unsigned long bytes; 		/* uncharged usage */
1503		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1504	} memcg_batch;
1505#endif
1506};
1507
1508/* Future-safe accessor for struct task_struct's cpus_allowed. */
1509#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1510
1511/*
1512 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1513 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1514 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1515 * values are inverted: lower p->prio value means higher priority.
1516 *
1517 * The MAX_USER_RT_PRIO value allows the actual maximum
1518 * RT priority to be separate from the value exported to
1519 * user-space.  This allows kernel threads to set their
1520 * priority to a value higher than any user task. Note:
1521 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1522 */
1523
1524#define MAX_USER_RT_PRIO	100
1525#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1526
1527#define MAX_PRIO		(MAX_RT_PRIO + 40)
1528#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1529
1530static inline int rt_prio(int prio)
1531{
1532	if (unlikely(prio < MAX_RT_PRIO))
1533		return 1;
1534	return 0;
1535}
1536
1537static inline int rt_task(struct task_struct *p)
1538{
1539	return rt_prio(p->prio);
1540}
1541
1542static inline struct pid *task_pid(struct task_struct *task)
1543{
1544	return task->pids[PIDTYPE_PID].pid;
1545}
1546
1547static inline struct pid *task_tgid(struct task_struct *task)
1548{
1549	return task->group_leader->pids[PIDTYPE_PID].pid;
1550}
1551
1552/*
1553 * Without tasklist or rcu lock it is not safe to dereference
1554 * the result of task_pgrp/task_session even if task == current,
1555 * we can race with another thread doing sys_setsid/sys_setpgid.
1556 */
1557static inline struct pid *task_pgrp(struct task_struct *task)
1558{
1559	return task->group_leader->pids[PIDTYPE_PGID].pid;
1560}
1561
1562static inline struct pid *task_session(struct task_struct *task)
1563{
1564	return task->group_leader->pids[PIDTYPE_SID].pid;
1565}
1566
1567struct pid_namespace;
1568
1569/*
1570 * the helpers to get the task's different pids as they are seen
1571 * from various namespaces
1572 *
1573 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1574 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1575 *                     current.
1576 * task_xid_nr_ns()  : id seen from the ns specified;
1577 *
1578 * set_task_vxid()   : assigns a virtual id to a task;
1579 *
1580 * see also pid_nr() etc in include/linux/pid.h
1581 */
1582pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1583			struct pid_namespace *ns);
1584
1585static inline pid_t task_pid_nr(struct task_struct *tsk)
1586{
1587	return tsk->pid;
1588}
1589
1590static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1591					struct pid_namespace *ns)
1592{
1593	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1594}
1595
1596static inline pid_t task_pid_vnr(struct task_struct *tsk)
1597{
1598	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1599}
1600
1601
1602static inline pid_t task_tgid_nr(struct task_struct *tsk)
1603{
1604	return tsk->tgid;
1605}
1606
1607pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1608
1609static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1610{
1611	return pid_vnr(task_tgid(tsk));
1612}
1613
1614
1615static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1616					struct pid_namespace *ns)
1617{
1618	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1619}
1620
1621static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1622{
1623	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1624}
1625
1626
1627static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1628					struct pid_namespace *ns)
1629{
1630	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1631}
1632
1633static inline pid_t task_session_vnr(struct task_struct *tsk)
1634{
1635	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1636}
1637
1638/* obsolete, do not use */
1639static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1640{
1641	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1642}
1643
1644/**
1645 * pid_alive - check that a task structure is not stale
1646 * @p: Task structure to be checked.
1647 *
1648 * Test if a process is not yet dead (at most zombie state)
1649 * If pid_alive fails, then pointers within the task structure
1650 * can be stale and must not be dereferenced.
1651 */
1652static inline int pid_alive(struct task_struct *p)
1653{
1654	return p->pids[PIDTYPE_PID].pid != NULL;
1655}
1656
1657/**
1658 * is_global_init - check if a task structure is init
1659 * @tsk: Task structure to be checked.
1660 *
1661 * Check if a task structure is the first user space task the kernel created.
1662 */
1663static inline int is_global_init(struct task_struct *tsk)
1664{
1665	return tsk->pid == 1;
1666}
1667
1668/*
1669 * is_container_init:
1670 * check whether in the task is init in its own pid namespace.
1671 */
1672extern int is_container_init(struct task_struct *tsk);
1673
1674extern struct pid *cad_pid;
1675
1676extern void free_task(struct task_struct *tsk);
1677#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1678
1679extern void __put_task_struct(struct task_struct *t);
1680
1681static inline void put_task_struct(struct task_struct *t)
1682{
1683	if (atomic_dec_and_test(&t->usage))
1684		__put_task_struct(t);
1685}
1686
1687extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1688extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689
1690/*
1691 * Per process flags
1692 */
1693#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1694					/* Not implemented yet, only for 486*/
1695#define PF_STARTING	0x00000002	/* being created */
1696#define PF_EXITING	0x00000004	/* getting shut down */
1697#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1698#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1699#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1700#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1701#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1702#define PF_DUMPCORE	0x00000200	/* dumped core */
1703#define PF_SIGNALED	0x00000400	/* killed by a signal */
1704#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1705#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1706#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1707#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1708#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1709#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1710#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1711#define PF_KSWAPD	0x00040000	/* I am kswapd */
1712#define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1713#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1714#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1715#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1716#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1717#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1718#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1719#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1720#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1721#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1722#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1723#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1724#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1725
1726/*
1727 * Only the _current_ task can read/write to tsk->flags, but other
1728 * tasks can access tsk->flags in readonly mode for example
1729 * with tsk_used_math (like during threaded core dumping).
1730 * There is however an exception to this rule during ptrace
1731 * or during fork: the ptracer task is allowed to write to the
1732 * child->flags of its traced child (same goes for fork, the parent
1733 * can write to the child->flags), because we're guaranteed the
1734 * child is not running and in turn not changing child->flags
1735 * at the same time the parent does it.
1736 */
1737#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1738#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1739#define clear_used_math() clear_stopped_child_used_math(current)
1740#define set_used_math() set_stopped_child_used_math(current)
1741#define conditional_stopped_child_used_math(condition, child) \
1742	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1743#define conditional_used_math(condition) \
1744	conditional_stopped_child_used_math(condition, current)
1745#define copy_to_stopped_child_used_math(child) \
1746	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1747/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1748#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1749#define used_math() tsk_used_math(current)
1750
1751#ifdef CONFIG_TREE_PREEMPT_RCU
1752
1753#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1754#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1755
1756static inline void rcu_copy_process(struct task_struct *p)
1757{
1758	p->rcu_read_lock_nesting = 0;
1759	p->rcu_read_unlock_special = 0;
1760	p->rcu_blocked_node = NULL;
1761	INIT_LIST_HEAD(&p->rcu_node_entry);
1762}
1763
1764#else
1765
1766static inline void rcu_copy_process(struct task_struct *p)
1767{
1768}
1769
1770#endif
1771
1772#ifdef CONFIG_SMP
1773extern int set_cpus_allowed_ptr(struct task_struct *p,
1774				const struct cpumask *new_mask);
1775#else
1776static inline int set_cpus_allowed_ptr(struct task_struct *p,
1777				       const struct cpumask *new_mask)
1778{
1779	if (!cpumask_test_cpu(0, new_mask))
1780		return -EINVAL;
1781	return 0;
1782}
1783#endif
1784
1785#ifndef CONFIG_CPUMASK_OFFSTACK
1786static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1787{
1788	return set_cpus_allowed_ptr(p, &new_mask);
1789}
1790#endif
1791
1792/*
1793 * Architectures can set this to 1 if they have specified
1794 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1795 * but then during bootup it turns out that sched_clock()
1796 * is reliable after all:
1797 */
1798#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1799extern int sched_clock_stable;
1800#endif
1801
1802/* ftrace calls sched_clock() directly */
1803extern unsigned long long notrace sched_clock(void);
1804
1805extern void sched_clock_init(void);
1806extern u64 sched_clock_cpu(int cpu);
1807
1808#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1809static inline void sched_clock_tick(void)
1810{
1811}
1812
1813static inline void sched_clock_idle_sleep_event(void)
1814{
1815}
1816
1817static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1818{
1819}
1820#else
1821extern void sched_clock_tick(void);
1822extern void sched_clock_idle_sleep_event(void);
1823extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1824#endif
1825
1826/*
1827 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1828 * clock constructed from sched_clock():
1829 */
1830extern unsigned long long cpu_clock(int cpu);
1831
1832extern unsigned long long
1833task_sched_runtime(struct task_struct *task);
1834extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1835
1836/* sched_exec is called by processes performing an exec */
1837#ifdef CONFIG_SMP
1838extern void sched_exec(void);
1839#else
1840#define sched_exec()   {}
1841#endif
1842
1843extern void sched_clock_idle_sleep_event(void);
1844extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845
1846#ifdef CONFIG_HOTPLUG_CPU
1847extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1848extern void idle_task_exit(void);
1849#else
1850static inline void idle_task_exit(void) {}
1851#endif
1852
1853extern void sched_idle_next(void);
1854
1855#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1856extern void wake_up_idle_cpu(int cpu);
1857#else
1858static inline void wake_up_idle_cpu(int cpu) { }
1859#endif
1860
1861extern unsigned int sysctl_sched_latency;
1862extern unsigned int sysctl_sched_min_granularity;
1863extern unsigned int sysctl_sched_wakeup_granularity;
1864extern unsigned int sysctl_sched_shares_ratelimit;
1865extern unsigned int sysctl_sched_shares_thresh;
1866extern unsigned int sysctl_sched_child_runs_first;
1867
1868enum sched_tunable_scaling {
1869	SCHED_TUNABLESCALING_NONE,
1870	SCHED_TUNABLESCALING_LOG,
1871	SCHED_TUNABLESCALING_LINEAR,
1872	SCHED_TUNABLESCALING_END,
1873};
1874extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1875
1876#ifdef CONFIG_SCHED_DEBUG
1877extern unsigned int sysctl_sched_migration_cost;
1878extern unsigned int sysctl_sched_nr_migrate;
1879extern unsigned int sysctl_sched_time_avg;
1880extern unsigned int sysctl_timer_migration;
1881
1882int sched_proc_update_handler(struct ctl_table *table, int write,
1883		void __user *buffer, size_t *length,
1884		loff_t *ppos);
1885#endif
1886#ifdef CONFIG_SCHED_DEBUG
1887static inline unsigned int get_sysctl_timer_migration(void)
1888{
1889	return sysctl_timer_migration;
1890}
1891#else
1892static inline unsigned int get_sysctl_timer_migration(void)
1893{
1894	return 1;
1895}
1896#endif
1897extern unsigned int sysctl_sched_rt_period;
1898extern int sysctl_sched_rt_runtime;
1899
1900int sched_rt_handler(struct ctl_table *table, int write,
1901		void __user *buffer, size_t *lenp,
1902		loff_t *ppos);
1903
1904extern unsigned int sysctl_sched_compat_yield;
1905
1906#ifdef CONFIG_RT_MUTEXES
1907extern int rt_mutex_getprio(struct task_struct *p);
1908extern void rt_mutex_setprio(struct task_struct *p, int prio);
1909extern void rt_mutex_adjust_pi(struct task_struct *p);
1910#else
1911static inline int rt_mutex_getprio(struct task_struct *p)
1912{
1913	return p->normal_prio;
1914}
1915# define rt_mutex_adjust_pi(p)		do { } while (0)
1916#endif
1917
1918extern void set_user_nice(struct task_struct *p, long nice);
1919extern int task_prio(const struct task_struct *p);
1920extern int task_nice(const struct task_struct *p);
1921extern int can_nice(const struct task_struct *p, const int nice);
1922extern int task_curr(const struct task_struct *p);
1923extern int idle_cpu(int cpu);
1924extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1925extern int sched_setscheduler_nocheck(struct task_struct *, int,
1926				      struct sched_param *);
1927extern struct task_struct *idle_task(int cpu);
1928extern struct task_struct *curr_task(int cpu);
1929extern void set_curr_task(int cpu, struct task_struct *p);
1930
1931void yield(void);
1932
1933/*
1934 * The default (Linux) execution domain.
1935 */
1936extern struct exec_domain	default_exec_domain;
1937
1938union thread_union {
1939	struct thread_info thread_info;
1940	unsigned long stack[THREAD_SIZE/sizeof(long)];
1941};
1942
1943#ifndef __HAVE_ARCH_KSTACK_END
1944static inline int kstack_end(void *addr)
1945{
1946	/* Reliable end of stack detection:
1947	 * Some APM bios versions misalign the stack
1948	 */
1949	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1950}
1951#endif
1952
1953extern union thread_union init_thread_union;
1954extern struct task_struct init_task;
1955
1956extern struct   mm_struct init_mm;
1957
1958extern struct pid_namespace init_pid_ns;
1959
1960/*
1961 * find a task by one of its numerical ids
1962 *
1963 * find_task_by_pid_ns():
1964 *      finds a task by its pid in the specified namespace
1965 * find_task_by_vpid():
1966 *      finds a task by its virtual pid
1967 *
1968 * see also find_vpid() etc in include/linux/pid.h
1969 */
1970
1971extern struct task_struct *find_task_by_vpid(pid_t nr);
1972extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1973		struct pid_namespace *ns);
1974
1975extern void __set_special_pids(struct pid *pid);
1976
1977/* per-UID process charging. */
1978extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1979static inline struct user_struct *get_uid(struct user_struct *u)
1980{
1981	atomic_inc(&u->__count);
1982	return u;
1983}
1984extern void free_uid(struct user_struct *);
1985extern void release_uids(struct user_namespace *ns);
1986
1987#include <asm/current.h>
1988
1989extern void do_timer(unsigned long ticks);
1990
1991extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1992extern int wake_up_process(struct task_struct *tsk);
1993extern void wake_up_new_task(struct task_struct *tsk,
1994				unsigned long clone_flags);
1995#ifdef CONFIG_SMP
1996 extern void kick_process(struct task_struct *tsk);
1997#else
1998 static inline void kick_process(struct task_struct *tsk) { }
1999#endif
2000extern void sched_fork(struct task_struct *p, int clone_flags);
2001extern void sched_dead(struct task_struct *p);
2002
2003extern void proc_caches_init(void);
2004extern void flush_signals(struct task_struct *);
2005extern void __flush_signals(struct task_struct *);
2006extern void ignore_signals(struct task_struct *);
2007extern void flush_signal_handlers(struct task_struct *, int force_default);
2008extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2009
2010static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2011{
2012	unsigned long flags;
2013	int ret;
2014
2015	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2016	ret = dequeue_signal(tsk, mask, info);
2017	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2018
2019	return ret;
2020}
2021
2022extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2023			      sigset_t *mask);
2024extern void unblock_all_signals(void);
2025extern void release_task(struct task_struct * p);
2026extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2027extern int force_sigsegv(int, struct task_struct *);
2028extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2029extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2030extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2031extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2032extern int kill_pgrp(struct pid *pid, int sig, int priv);
2033extern int kill_pid(struct pid *pid, int sig, int priv);
2034extern int kill_proc_info(int, struct siginfo *, pid_t);
2035extern int do_notify_parent(struct task_struct *, int);
2036extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2037extern void force_sig(int, struct task_struct *);
2038extern int send_sig(int, struct task_struct *, int);
2039extern int zap_other_threads(struct task_struct *p);
2040extern struct sigqueue *sigqueue_alloc(void);
2041extern void sigqueue_free(struct sigqueue *);
2042extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2043extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2044extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2045
2046static inline int kill_cad_pid(int sig, int priv)
2047{
2048	return kill_pid(cad_pid, sig, priv);
2049}
2050
2051/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2052#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2053#define SEND_SIG_PRIV	((struct siginfo *) 1)
2054#define SEND_SIG_FORCED	((struct siginfo *) 2)
2055
2056/*
2057 * True if we are on the alternate signal stack.
2058 */
2059static inline int on_sig_stack(unsigned long sp)
2060{
2061#ifdef CONFIG_STACK_GROWSUP
2062	return sp >= current->sas_ss_sp &&
2063		sp - current->sas_ss_sp < current->sas_ss_size;
2064#else
2065	return sp > current->sas_ss_sp &&
2066		sp - current->sas_ss_sp <= current->sas_ss_size;
2067#endif
2068}
2069
2070static inline int sas_ss_flags(unsigned long sp)
2071{
2072	return (current->sas_ss_size == 0 ? SS_DISABLE
2073		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2074}
2075
2076/*
2077 * Routines for handling mm_structs
2078 */
2079extern struct mm_struct * mm_alloc(void);
2080
2081/* mmdrop drops the mm and the page tables */
2082extern void __mmdrop(struct mm_struct *);
2083static inline void mmdrop(struct mm_struct * mm)
2084{
2085	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2086		__mmdrop(mm);
2087}
2088
2089/* mmput gets rid of the mappings and all user-space */
2090extern void mmput(struct mm_struct *);
2091/* Grab a reference to a task's mm, if it is not already going away */
2092extern struct mm_struct *get_task_mm(struct task_struct *task);
2093/* Remove the current tasks stale references to the old mm_struct */
2094extern void mm_release(struct task_struct *, struct mm_struct *);
2095/* Allocate a new mm structure and copy contents from tsk->mm */
2096extern struct mm_struct *dup_mm(struct task_struct *tsk);
2097
2098extern int copy_thread(unsigned long, unsigned long, unsigned long,
2099			struct task_struct *, struct pt_regs *);
2100extern void flush_thread(void);
2101extern void exit_thread(void);
2102
2103extern void exit_files(struct task_struct *);
2104extern void __cleanup_signal(struct signal_struct *);
2105extern void __cleanup_sighand(struct sighand_struct *);
2106
2107extern void exit_itimers(struct signal_struct *);
2108extern void flush_itimer_signals(void);
2109
2110extern NORET_TYPE void do_group_exit(int);
2111
2112extern void daemonize(const char *, ...);
2113extern int allow_signal(int);
2114extern int disallow_signal(int);
2115
2116extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2117extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2118struct task_struct *fork_idle(int);
2119
2120extern void set_task_comm(struct task_struct *tsk, char *from);
2121extern char *get_task_comm(char *to, struct task_struct *tsk);
2122
2123#ifdef CONFIG_SMP
2124extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2125#else
2126static inline unsigned long wait_task_inactive(struct task_struct *p,
2127					       long match_state)
2128{
2129	return 1;
2130}
2131#endif
2132
2133#define next_task(p) \
2134	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2135
2136#define for_each_process(p) \
2137	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2138
2139extern bool current_is_single_threaded(void);
2140
2141/*
2142 * Careful: do_each_thread/while_each_thread is a double loop so
2143 *          'break' will not work as expected - use goto instead.
2144 */
2145#define do_each_thread(g, t) \
2146	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2147
2148#define while_each_thread(g, t) \
2149	while ((t = next_thread(t)) != g)
2150
2151/* de_thread depends on thread_group_leader not being a pid based check */
2152#define thread_group_leader(p)	(p == p->group_leader)
2153
2154/* Do to the insanities of de_thread it is possible for a process
2155 * to have the pid of the thread group leader without actually being
2156 * the thread group leader.  For iteration through the pids in proc
2157 * all we care about is that we have a task with the appropriate
2158 * pid, we don't actually care if we have the right task.
2159 */
2160static inline int has_group_leader_pid(struct task_struct *p)
2161{
2162	return p->pid == p->tgid;
2163}
2164
2165static inline
2166int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2167{
2168	return p1->tgid == p2->tgid;
2169}
2170
2171static inline struct task_struct *next_thread(const struct task_struct *p)
2172{
2173	return list_entry_rcu(p->thread_group.next,
2174			      struct task_struct, thread_group);
2175}
2176
2177static inline int thread_group_empty(struct task_struct *p)
2178{
2179	return list_empty(&p->thread_group);
2180}
2181
2182#define delay_group_leader(p) \
2183		(thread_group_leader(p) && !thread_group_empty(p))
2184
2185static inline int task_detached(struct task_struct *p)
2186{
2187	return p->exit_signal == -1;
2188}
2189
2190/*
2191 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2192 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2193 * pins the final release of task.io_context.  Also protects ->cpuset and
2194 * ->cgroup.subsys[].
2195 *
2196 * Nests both inside and outside of read_lock(&tasklist_lock).
2197 * It must not be nested with write_lock_irq(&tasklist_lock),
2198 * neither inside nor outside.
2199 */
2200static inline void task_lock(struct task_struct *p)
2201{
2202	spin_lock(&p->alloc_lock);
2203}
2204
2205static inline void task_unlock(struct task_struct *p)
2206{
2207	spin_unlock(&p->alloc_lock);
2208}
2209
2210extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2211							unsigned long *flags);
2212
2213static inline void unlock_task_sighand(struct task_struct *tsk,
2214						unsigned long *flags)
2215{
2216	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2217}
2218
2219#ifndef __HAVE_THREAD_FUNCTIONS
2220
2221#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2222#define task_stack_page(task)	((task)->stack)
2223
2224static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2225{
2226	*task_thread_info(p) = *task_thread_info(org);
2227	task_thread_info(p)->task = p;
2228}
2229
2230static inline unsigned long *end_of_stack(struct task_struct *p)
2231{
2232	return (unsigned long *)(task_thread_info(p) + 1);
2233}
2234
2235#endif
2236
2237static inline int object_is_on_stack(void *obj)
2238{
2239	void *stack = task_stack_page(current);
2240
2241	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2242}
2243
2244extern void thread_info_cache_init(void);
2245
2246#ifdef CONFIG_DEBUG_STACK_USAGE
2247static inline unsigned long stack_not_used(struct task_struct *p)
2248{
2249	unsigned long *n = end_of_stack(p);
2250
2251	do { 	/* Skip over canary */
2252		n++;
2253	} while (!*n);
2254
2255	return (unsigned long)n - (unsigned long)end_of_stack(p);
2256}
2257#endif
2258
2259/* set thread flags in other task's structures
2260 * - see asm/thread_info.h for TIF_xxxx flags available
2261 */
2262static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2263{
2264	set_ti_thread_flag(task_thread_info(tsk), flag);
2265}
2266
2267static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2268{
2269	clear_ti_thread_flag(task_thread_info(tsk), flag);
2270}
2271
2272static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2273{
2274	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2275}
2276
2277static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2278{
2279	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2280}
2281
2282static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2283{
2284	return test_ti_thread_flag(task_thread_info(tsk), flag);
2285}
2286
2287static inline void set_tsk_need_resched(struct task_struct *tsk)
2288{
2289	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2290}
2291
2292static inline void clear_tsk_need_resched(struct task_struct *tsk)
2293{
2294	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2295}
2296
2297static inline int test_tsk_need_resched(struct task_struct *tsk)
2298{
2299	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2300}
2301
2302static inline int restart_syscall(void)
2303{
2304	set_tsk_thread_flag(current, TIF_SIGPENDING);
2305	return -ERESTARTNOINTR;
2306}
2307
2308static inline int signal_pending(struct task_struct *p)
2309{
2310	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2311}
2312
2313static inline int __fatal_signal_pending(struct task_struct *p)
2314{
2315	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2316}
2317
2318static inline int fatal_signal_pending(struct task_struct *p)
2319{
2320	return signal_pending(p) && __fatal_signal_pending(p);
2321}
2322
2323static inline int signal_pending_state(long state, struct task_struct *p)
2324{
2325	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2326		return 0;
2327	if (!signal_pending(p))
2328		return 0;
2329
2330	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2331}
2332
2333static inline int need_resched(void)
2334{
2335	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2336}
2337
2338/*
2339 * cond_resched() and cond_resched_lock(): latency reduction via
2340 * explicit rescheduling in places that are safe. The return
2341 * value indicates whether a reschedule was done in fact.
2342 * cond_resched_lock() will drop the spinlock before scheduling,
2343 * cond_resched_softirq() will enable bhs before scheduling.
2344 */
2345extern int _cond_resched(void);
2346
2347#define cond_resched() ({			\
2348	__might_sleep(__FILE__, __LINE__, 0);	\
2349	_cond_resched();			\
2350})
2351
2352extern int __cond_resched_lock(spinlock_t *lock);
2353
2354#ifdef CONFIG_PREEMPT
2355#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2356#else
2357#define PREEMPT_LOCK_OFFSET	0
2358#endif
2359
2360#define cond_resched_lock(lock) ({				\
2361	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2362	__cond_resched_lock(lock);				\
2363})
2364
2365extern int __cond_resched_softirq(void);
2366
2367#define cond_resched_softirq() ({				\
2368	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2369	__cond_resched_softirq();				\
2370})
2371
2372/*
2373 * Does a critical section need to be broken due to another
2374 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2375 * but a general need for low latency)
2376 */
2377static inline int spin_needbreak(spinlock_t *lock)
2378{
2379#ifdef CONFIG_PREEMPT
2380	return spin_is_contended(lock);
2381#else
2382	return 0;
2383#endif
2384}
2385
2386/*
2387 * Thread group CPU time accounting.
2388 */
2389void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2390void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2391
2392static inline void thread_group_cputime_init(struct signal_struct *sig)
2393{
2394	spin_lock_init(&sig->cputimer.lock);
2395}
2396
2397static inline void thread_group_cputime_free(struct signal_struct *sig)
2398{
2399}
2400
2401/*
2402 * Reevaluate whether the task has signals pending delivery.
2403 * Wake the task if so.
2404 * This is required every time the blocked sigset_t changes.
2405 * callers must hold sighand->siglock.
2406 */
2407extern void recalc_sigpending_and_wake(struct task_struct *t);
2408extern void recalc_sigpending(void);
2409
2410extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2411
2412/*
2413 * Wrappers for p->thread_info->cpu access. No-op on UP.
2414 */
2415#ifdef CONFIG_SMP
2416
2417static inline unsigned int task_cpu(const struct task_struct *p)
2418{
2419	return task_thread_info(p)->cpu;
2420}
2421
2422extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2423
2424#else
2425
2426static inline unsigned int task_cpu(const struct task_struct *p)
2427{
2428	return 0;
2429}
2430
2431static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2432{
2433}
2434
2435#endif /* CONFIG_SMP */
2436
2437#ifdef CONFIG_TRACING
2438extern void
2439__trace_special(void *__tr, void *__data,
2440		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2441#else
2442static inline void
2443__trace_special(void *__tr, void *__data,
2444		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2445{
2446}
2447#endif
2448
2449extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2450extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2451
2452extern void normalize_rt_tasks(void);
2453
2454#ifdef CONFIG_CGROUP_SCHED
2455
2456extern struct task_group init_task_group;
2457
2458extern struct task_group *sched_create_group(struct task_group *parent);
2459extern void sched_destroy_group(struct task_group *tg);
2460extern void sched_move_task(struct task_struct *tsk);
2461#ifdef CONFIG_FAIR_GROUP_SCHED
2462extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2463extern unsigned long sched_group_shares(struct task_group *tg);
2464#endif
2465#ifdef CONFIG_RT_GROUP_SCHED
2466extern int sched_group_set_rt_runtime(struct task_group *tg,
2467				      long rt_runtime_us);
2468extern long sched_group_rt_runtime(struct task_group *tg);
2469extern int sched_group_set_rt_period(struct task_group *tg,
2470				      long rt_period_us);
2471extern long sched_group_rt_period(struct task_group *tg);
2472extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2473#endif
2474#endif
2475
2476extern int task_can_switch_user(struct user_struct *up,
2477					struct task_struct *tsk);
2478
2479#ifdef CONFIG_TASK_XACCT
2480static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2481{
2482	tsk->ioac.rchar += amt;
2483}
2484
2485static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2486{
2487	tsk->ioac.wchar += amt;
2488}
2489
2490static inline void inc_syscr(struct task_struct *tsk)
2491{
2492	tsk->ioac.syscr++;
2493}
2494
2495static inline void inc_syscw(struct task_struct *tsk)
2496{
2497	tsk->ioac.syscw++;
2498}
2499#else
2500static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2501{
2502}
2503
2504static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2505{
2506}
2507
2508static inline void inc_syscr(struct task_struct *tsk)
2509{
2510}
2511
2512static inline void inc_syscw(struct task_struct *tsk)
2513{
2514}
2515#endif
2516
2517#ifndef TASK_SIZE_OF
2518#define TASK_SIZE_OF(tsk)	TASK_SIZE
2519#endif
2520
2521/*
2522 * Call the function if the target task is executing on a CPU right now:
2523 */
2524extern void task_oncpu_function_call(struct task_struct *p,
2525				     void (*func) (void *info), void *info);
2526
2527
2528#ifdef CONFIG_MM_OWNER
2529extern void mm_update_next_owner(struct mm_struct *mm);
2530extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2531#else
2532static inline void mm_update_next_owner(struct mm_struct *mm)
2533{
2534}
2535
2536static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2537{
2538}
2539#endif /* CONFIG_MM_OWNER */
2540
2541static inline unsigned long task_rlimit(const struct task_struct *tsk,
2542		unsigned int limit)
2543{
2544	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2545}
2546
2547static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2548		unsigned int limit)
2549{
2550	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2551}
2552
2553static inline unsigned long rlimit(unsigned int limit)
2554{
2555	return task_rlimit(current, limit);
2556}
2557
2558static inline unsigned long rlimit_max(unsigned int limit)
2559{
2560	return task_rlimit_max(current, limit);
2561}
2562
2563#endif /* __KERNEL__ */
2564
2565#endif
2566