sched.h revision 221af7f87b97431e3ee21ce4b0e77d5411cf1549
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42#define SCHED_RESET_ON_FORK     0x40000000
43
44#ifdef __KERNEL__
45
46struct sched_param {
47	int sched_priority;
48};
49
50#include <asm/param.h>	/* for HZ */
51
52#include <linux/capability.h>
53#include <linux/threads.h>
54#include <linux/kernel.h>
55#include <linux/types.h>
56#include <linux/timex.h>
57#include <linux/jiffies.h>
58#include <linux/rbtree.h>
59#include <linux/thread_info.h>
60#include <linux/cpumask.h>
61#include <linux/errno.h>
62#include <linux/nodemask.h>
63#include <linux/mm_types.h>
64
65#include <asm/system.h>
66#include <asm/page.h>
67#include <asm/ptrace.h>
68#include <asm/cputime.h>
69
70#include <linux/smp.h>
71#include <linux/sem.h>
72#include <linux/signal.h>
73#include <linux/path.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/kobject.h>
92#include <linux/latencytop.h>
93#include <linux/cred.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio;
101struct fs_struct;
102struct bts_context;
103struct perf_event_context;
104
105/*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111/*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 *    a load-average precision of 10 bits integer + 11 bits fractional
116 *  - if you want to count load-averages more often, you need more
117 *    precision, or rounding will get you. With 2-second counting freq,
118 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119 *    11 bit fractions.
120 */
121extern unsigned long avenrun[];		/* Load averages */
122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124#define FSHIFT		11		/* nr of bits of precision */
125#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
126#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
127#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
128#define EXP_5		2014		/* 1/exp(5sec/5min) */
129#define EXP_15		2037		/* 1/exp(5sec/15min) */
130
131#define CALC_LOAD(load,exp,n) \
132	load *= exp; \
133	load += n*(FIXED_1-exp); \
134	load >>= FSHIFT;
135
136extern unsigned long total_forks;
137extern int nr_threads;
138DECLARE_PER_CPU(unsigned long, process_counts);
139extern int nr_processes(void);
140extern unsigned long nr_running(void);
141extern unsigned long nr_uninterruptible(void);
142extern unsigned long nr_iowait(void);
143extern unsigned long nr_iowait_cpu(void);
144extern unsigned long this_cpu_load(void);
145
146
147extern void calc_global_load(void);
148
149extern unsigned long get_parent_ip(unsigned long addr);
150
151struct seq_file;
152struct cfs_rq;
153struct task_group;
154#ifdef CONFIG_SCHED_DEBUG
155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156extern void proc_sched_set_task(struct task_struct *p);
157extern void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159#else
160static inline void
161proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162{
163}
164static inline void proc_sched_set_task(struct task_struct *p)
165{
166}
167static inline void
168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169{
170}
171#endif
172
173/*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183#define TASK_RUNNING		0
184#define TASK_INTERRUPTIBLE	1
185#define TASK_UNINTERRUPTIBLE	2
186#define __TASK_STOPPED		4
187#define __TASK_TRACED		8
188/* in tsk->exit_state */
189#define EXIT_ZOMBIE		16
190#define EXIT_DEAD		32
191/* in tsk->state again */
192#define TASK_DEAD		64
193#define TASK_WAKEKILL		128
194#define TASK_WAKING		256
195#define TASK_STATE_MAX		512
196
197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199extern char ___assert_task_state[1 - 2*!!(
200		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202/* Convenience macros for the sake of set_task_state */
203#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
205#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
206
207/* Convenience macros for the sake of wake_up */
208#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211/* get_task_state() */
212#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
213				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214				 __TASK_TRACED)
215
216#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
217#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
218#define task_is_stopped_or_traced(task)	\
219			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220#define task_contributes_to_load(task)	\
221				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222				 (task->flags & PF_FREEZING) == 0)
223
224#define __set_task_state(tsk, state_value)		\
225	do { (tsk)->state = (state_value); } while (0)
226#define set_task_state(tsk, state_value)		\
227	set_mb((tsk)->state, (state_value))
228
229/*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 *	set_current_state(TASK_UNINTERRUPTIBLE);
235 *	if (do_i_need_to_sleep())
236 *		schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240#define __set_current_state(state_value)			\
241	do { current->state = (state_value); } while (0)
242#define set_current_state(state_value)		\
243	set_mb(current->state, (state_value))
244
245/* Task command name length */
246#define TASK_COMM_LEN 16
247
248#include <linux/spinlock.h>
249
250/*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256extern rwlock_t tasklist_lock;
257extern spinlock_t mmlist_lock;
258
259struct task_struct;
260
261extern void sched_init(void);
262extern void sched_init_smp(void);
263extern asmlinkage void schedule_tail(struct task_struct *prev);
264extern void init_idle(struct task_struct *idle, int cpu);
265extern void init_idle_bootup_task(struct task_struct *idle);
266
267extern int runqueue_is_locked(int cpu);
268extern void task_rq_unlock_wait(struct task_struct *p);
269
270extern cpumask_var_t nohz_cpu_mask;
271#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272extern int select_nohz_load_balancer(int cpu);
273extern int get_nohz_load_balancer(void);
274#else
275static inline int select_nohz_load_balancer(int cpu)
276{
277	return 0;
278}
279#endif
280
281/*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284extern void show_state_filter(unsigned long state_filter);
285
286static inline void show_state(void)
287{
288	show_state_filter(0);
289}
290
291extern void show_regs(struct pt_regs *);
292
293/*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300void io_schedule(void);
301long io_schedule_timeout(long timeout);
302
303extern void cpu_init (void);
304extern void trap_init(void);
305extern void update_process_times(int user);
306extern void scheduler_tick(void);
307
308extern void sched_show_task(struct task_struct *p);
309
310#ifdef CONFIG_DETECT_SOFTLOCKUP
311extern void softlockup_tick(void);
312extern void touch_softlockup_watchdog(void);
313extern void touch_all_softlockup_watchdogs(void);
314extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
315				    void __user *buffer,
316				    size_t *lenp, loff_t *ppos);
317extern unsigned int  softlockup_panic;
318extern int softlockup_thresh;
319#else
320static inline void softlockup_tick(void)
321{
322}
323static inline void touch_softlockup_watchdog(void)
324{
325}
326static inline void touch_all_softlockup_watchdogs(void)
327{
328}
329#endif
330
331#ifdef CONFIG_DETECT_HUNG_TASK
332extern unsigned int  sysctl_hung_task_panic;
333extern unsigned long sysctl_hung_task_check_count;
334extern unsigned long sysctl_hung_task_timeout_secs;
335extern unsigned long sysctl_hung_task_warnings;
336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337					 void __user *buffer,
338					 size_t *lenp, loff_t *ppos);
339#endif
340
341/* Attach to any functions which should be ignored in wchan output. */
342#define __sched		__attribute__((__section__(".sched.text")))
343
344/* Linker adds these: start and end of __sched functions */
345extern char __sched_text_start[], __sched_text_end[];
346
347/* Is this address in the __sched functions? */
348extern int in_sched_functions(unsigned long addr);
349
350#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
351extern signed long schedule_timeout(signed long timeout);
352extern signed long schedule_timeout_interruptible(signed long timeout);
353extern signed long schedule_timeout_killable(signed long timeout);
354extern signed long schedule_timeout_uninterruptible(signed long timeout);
355asmlinkage void schedule(void);
356extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358struct nsproxy;
359struct user_namespace;
360
361/*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373#define MAPCOUNT_ELF_CORE_MARGIN	(5)
374#define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376extern int sysctl_max_map_count;
377
378#include <linux/aio.h>
379
380#ifdef CONFIG_MMU
381extern void arch_pick_mmap_layout(struct mm_struct *mm);
382extern unsigned long
383arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384		       unsigned long, unsigned long);
385extern unsigned long
386arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387			  unsigned long len, unsigned long pgoff,
388			  unsigned long flags);
389extern void arch_unmap_area(struct mm_struct *, unsigned long);
390extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391#else
392static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393#endif
394
395#if USE_SPLIT_PTLOCKS
396/*
397 * The mm counters are not protected by its page_table_lock,
398 * so must be incremented atomically.
399 */
400#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
401#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
402#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
403#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
404#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
405
406#else  /* !USE_SPLIT_PTLOCKS */
407/*
408 * The mm counters are protected by its page_table_lock,
409 * so can be incremented directly.
410 */
411#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
412#define get_mm_counter(mm, member) ((mm)->_##member)
413#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
414#define inc_mm_counter(mm, member) (mm)->_##member++
415#define dec_mm_counter(mm, member) (mm)->_##member--
416
417#endif /* !USE_SPLIT_PTLOCKS */
418
419#define get_mm_rss(mm)					\
420	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
421#define update_hiwater_rss(mm)	do {			\
422	unsigned long _rss = get_mm_rss(mm);		\
423	if ((mm)->hiwater_rss < _rss)			\
424		(mm)->hiwater_rss = _rss;		\
425} while (0)
426#define update_hiwater_vm(mm)	do {			\
427	if ((mm)->hiwater_vm < (mm)->total_vm)		\
428		(mm)->hiwater_vm = (mm)->total_vm;	\
429} while (0)
430
431static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
432{
433	return max(mm->hiwater_rss, get_mm_rss(mm));
434}
435
436static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
437					 struct mm_struct *mm)
438{
439	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
440
441	if (*maxrss < hiwater_rss)
442		*maxrss = hiwater_rss;
443}
444
445static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
446{
447	return max(mm->hiwater_vm, mm->total_vm);
448}
449
450extern void set_dumpable(struct mm_struct *mm, int value);
451extern int get_dumpable(struct mm_struct *mm);
452
453/* mm flags */
454/* dumpable bits */
455#define MMF_DUMPABLE      0  /* core dump is permitted */
456#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
457
458#define MMF_DUMPABLE_BITS 2
459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461/* coredump filter bits */
462#define MMF_DUMP_ANON_PRIVATE	2
463#define MMF_DUMP_ANON_SHARED	3
464#define MMF_DUMP_MAPPED_PRIVATE	4
465#define MMF_DUMP_MAPPED_SHARED	5
466#define MMF_DUMP_ELF_HEADERS	6
467#define MMF_DUMP_HUGETLB_PRIVATE 7
468#define MMF_DUMP_HUGETLB_SHARED  8
469
470#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
471#define MMF_DUMP_FILTER_BITS	7
472#define MMF_DUMP_FILTER_MASK \
473	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
474#define MMF_DUMP_FILTER_DEFAULT \
475	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
476	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
477
478#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
479# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
480#else
481# define MMF_DUMP_MASK_DEFAULT_ELF	0
482#endif
483					/* leave room for more dump flags */
484#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
485
486#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
487
488struct sighand_struct {
489	atomic_t		count;
490	struct k_sigaction	action[_NSIG];
491	spinlock_t		siglock;
492	wait_queue_head_t	signalfd_wqh;
493};
494
495struct pacct_struct {
496	int			ac_flag;
497	long			ac_exitcode;
498	unsigned long		ac_mem;
499	cputime_t		ac_utime, ac_stime;
500	unsigned long		ac_minflt, ac_majflt;
501};
502
503struct cpu_itimer {
504	cputime_t expires;
505	cputime_t incr;
506	u32 error;
507	u32 incr_error;
508};
509
510/**
511 * struct task_cputime - collected CPU time counts
512 * @utime:		time spent in user mode, in &cputime_t units
513 * @stime:		time spent in kernel mode, in &cputime_t units
514 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
515 *
516 * This structure groups together three kinds of CPU time that are
517 * tracked for threads and thread groups.  Most things considering
518 * CPU time want to group these counts together and treat all three
519 * of them in parallel.
520 */
521struct task_cputime {
522	cputime_t utime;
523	cputime_t stime;
524	unsigned long long sum_exec_runtime;
525};
526/* Alternate field names when used to cache expirations. */
527#define prof_exp	stime
528#define virt_exp	utime
529#define sched_exp	sum_exec_runtime
530
531#define INIT_CPUTIME	\
532	(struct task_cputime) {					\
533		.utime = cputime_zero,				\
534		.stime = cputime_zero,				\
535		.sum_exec_runtime = 0,				\
536	}
537
538/*
539 * Disable preemption until the scheduler is running.
540 * Reset by start_kernel()->sched_init()->init_idle().
541 *
542 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
543 * before the scheduler is active -- see should_resched().
544 */
545#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
546
547/**
548 * struct thread_group_cputimer - thread group interval timer counts
549 * @cputime:		thread group interval timers.
550 * @running:		non-zero when there are timers running and
551 * 			@cputime receives updates.
552 * @lock:		lock for fields in this struct.
553 *
554 * This structure contains the version of task_cputime, above, that is
555 * used for thread group CPU timer calculations.
556 */
557struct thread_group_cputimer {
558	struct task_cputime cputime;
559	int running;
560	spinlock_t lock;
561};
562
563/*
564 * NOTE! "signal_struct" does not have it's own
565 * locking, because a shared signal_struct always
566 * implies a shared sighand_struct, so locking
567 * sighand_struct is always a proper superset of
568 * the locking of signal_struct.
569 */
570struct signal_struct {
571	atomic_t		count;
572	atomic_t		live;
573
574	wait_queue_head_t	wait_chldexit;	/* for wait4() */
575
576	/* current thread group signal load-balancing target: */
577	struct task_struct	*curr_target;
578
579	/* shared signal handling: */
580	struct sigpending	shared_pending;
581
582	/* thread group exit support */
583	int			group_exit_code;
584	/* overloaded:
585	 * - notify group_exit_task when ->count is equal to notify_count
586	 * - everyone except group_exit_task is stopped during signal delivery
587	 *   of fatal signals, group_exit_task processes the signal.
588	 */
589	int			notify_count;
590	struct task_struct	*group_exit_task;
591
592	/* thread group stop support, overloads group_exit_code too */
593	int			group_stop_count;
594	unsigned int		flags; /* see SIGNAL_* flags below */
595
596	/* POSIX.1b Interval Timers */
597	struct list_head posix_timers;
598
599	/* ITIMER_REAL timer for the process */
600	struct hrtimer real_timer;
601	struct pid *leader_pid;
602	ktime_t it_real_incr;
603
604	/*
605	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
606	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
607	 * values are defined to 0 and 1 respectively
608	 */
609	struct cpu_itimer it[2];
610
611	/*
612	 * Thread group totals for process CPU timers.
613	 * See thread_group_cputimer(), et al, for details.
614	 */
615	struct thread_group_cputimer cputimer;
616
617	/* Earliest-expiration cache. */
618	struct task_cputime cputime_expires;
619
620	struct list_head cpu_timers[3];
621
622	struct pid *tty_old_pgrp;
623
624	/* boolean value for session group leader */
625	int leader;
626
627	struct tty_struct *tty; /* NULL if no tty */
628
629	/*
630	 * Cumulative resource counters for dead threads in the group,
631	 * and for reaped dead child processes forked by this group.
632	 * Live threads maintain their own counters and add to these
633	 * in __exit_signal, except for the group leader.
634	 */
635	cputime_t utime, stime, cutime, cstime;
636	cputime_t gtime;
637	cputime_t cgtime;
638#ifndef CONFIG_VIRT_CPU_ACCOUNTING
639	cputime_t prev_utime, prev_stime;
640#endif
641	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
642	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
643	unsigned long inblock, oublock, cinblock, coublock;
644	unsigned long maxrss, cmaxrss;
645	struct task_io_accounting ioac;
646
647	/*
648	 * Cumulative ns of schedule CPU time fo dead threads in the
649	 * group, not including a zombie group leader, (This only differs
650	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
651	 * other than jiffies.)
652	 */
653	unsigned long long sum_sched_runtime;
654
655	/*
656	 * We don't bother to synchronize most readers of this at all,
657	 * because there is no reader checking a limit that actually needs
658	 * to get both rlim_cur and rlim_max atomically, and either one
659	 * alone is a single word that can safely be read normally.
660	 * getrlimit/setrlimit use task_lock(current->group_leader) to
661	 * protect this instead of the siglock, because they really
662	 * have no need to disable irqs.
663	 */
664	struct rlimit rlim[RLIM_NLIMITS];
665
666#ifdef CONFIG_BSD_PROCESS_ACCT
667	struct pacct_struct pacct;	/* per-process accounting information */
668#endif
669#ifdef CONFIG_TASKSTATS
670	struct taskstats *stats;
671#endif
672#ifdef CONFIG_AUDIT
673	unsigned audit_tty;
674	struct tty_audit_buf *tty_audit_buf;
675#endif
676
677	int oom_adj;	/* OOM kill score adjustment (bit shift) */
678};
679
680/* Context switch must be unlocked if interrupts are to be enabled */
681#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
682# define __ARCH_WANT_UNLOCKED_CTXSW
683#endif
684
685/*
686 * Bits in flags field of signal_struct.
687 */
688#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
689#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
690#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
691#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
692/*
693 * Pending notifications to parent.
694 */
695#define SIGNAL_CLD_STOPPED	0x00000010
696#define SIGNAL_CLD_CONTINUED	0x00000020
697#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
698
699#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
700
701/* If true, all threads except ->group_exit_task have pending SIGKILL */
702static inline int signal_group_exit(const struct signal_struct *sig)
703{
704	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
705		(sig->group_exit_task != NULL);
706}
707
708/*
709 * Some day this will be a full-fledged user tracking system..
710 */
711struct user_struct {
712	atomic_t __count;	/* reference count */
713	atomic_t processes;	/* How many processes does this user have? */
714	atomic_t files;		/* How many open files does this user have? */
715	atomic_t sigpending;	/* How many pending signals does this user have? */
716#ifdef CONFIG_INOTIFY_USER
717	atomic_t inotify_watches; /* How many inotify watches does this user have? */
718	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
719#endif
720#ifdef CONFIG_EPOLL
721	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
722#endif
723#ifdef CONFIG_POSIX_MQUEUE
724	/* protected by mq_lock	*/
725	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
726#endif
727	unsigned long locked_shm; /* How many pages of mlocked shm ? */
728
729#ifdef CONFIG_KEYS
730	struct key *uid_keyring;	/* UID specific keyring */
731	struct key *session_keyring;	/* UID's default session keyring */
732#endif
733
734	/* Hash table maintenance information */
735	struct hlist_node uidhash_node;
736	uid_t uid;
737	struct user_namespace *user_ns;
738
739#ifdef CONFIG_USER_SCHED
740	struct task_group *tg;
741#ifdef CONFIG_SYSFS
742	struct kobject kobj;
743	struct delayed_work work;
744#endif
745#endif
746
747#ifdef CONFIG_PERF_EVENTS
748	atomic_long_t locked_vm;
749#endif
750};
751
752extern int uids_sysfs_init(void);
753
754extern struct user_struct *find_user(uid_t);
755
756extern struct user_struct root_user;
757#define INIT_USER (&root_user)
758
759
760struct backing_dev_info;
761struct reclaim_state;
762
763#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
764struct sched_info {
765	/* cumulative counters */
766	unsigned long pcount;	      /* # of times run on this cpu */
767	unsigned long long run_delay; /* time spent waiting on a runqueue */
768
769	/* timestamps */
770	unsigned long long last_arrival,/* when we last ran on a cpu */
771			   last_queued;	/* when we were last queued to run */
772#ifdef CONFIG_SCHEDSTATS
773	/* BKL stats */
774	unsigned int bkl_count;
775#endif
776};
777#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
778
779#ifdef CONFIG_TASK_DELAY_ACCT
780struct task_delay_info {
781	spinlock_t	lock;
782	unsigned int	flags;	/* Private per-task flags */
783
784	/* For each stat XXX, add following, aligned appropriately
785	 *
786	 * struct timespec XXX_start, XXX_end;
787	 * u64 XXX_delay;
788	 * u32 XXX_count;
789	 *
790	 * Atomicity of updates to XXX_delay, XXX_count protected by
791	 * single lock above (split into XXX_lock if contention is an issue).
792	 */
793
794	/*
795	 * XXX_count is incremented on every XXX operation, the delay
796	 * associated with the operation is added to XXX_delay.
797	 * XXX_delay contains the accumulated delay time in nanoseconds.
798	 */
799	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
800	u64 blkio_delay;	/* wait for sync block io completion */
801	u64 swapin_delay;	/* wait for swapin block io completion */
802	u32 blkio_count;	/* total count of the number of sync block */
803				/* io operations performed */
804	u32 swapin_count;	/* total count of the number of swapin block */
805				/* io operations performed */
806
807	struct timespec freepages_start, freepages_end;
808	u64 freepages_delay;	/* wait for memory reclaim */
809	u32 freepages_count;	/* total count of memory reclaim */
810};
811#endif	/* CONFIG_TASK_DELAY_ACCT */
812
813static inline int sched_info_on(void)
814{
815#ifdef CONFIG_SCHEDSTATS
816	return 1;
817#elif defined(CONFIG_TASK_DELAY_ACCT)
818	extern int delayacct_on;
819	return delayacct_on;
820#else
821	return 0;
822#endif
823}
824
825enum cpu_idle_type {
826	CPU_IDLE,
827	CPU_NOT_IDLE,
828	CPU_NEWLY_IDLE,
829	CPU_MAX_IDLE_TYPES
830};
831
832/*
833 * sched-domains (multiprocessor balancing) declarations:
834 */
835
836/*
837 * Increase resolution of nice-level calculations:
838 */
839#define SCHED_LOAD_SHIFT	10
840#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
841
842#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
843
844#ifdef CONFIG_SMP
845#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
846#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
847#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
848#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
849#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
850#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
851#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
852#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
853#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
854#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
855#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
856
857#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
858
859enum powersavings_balance_level {
860	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
861	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
862					 * first for long running threads
863					 */
864	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
865					 * cpu package for power savings
866					 */
867	MAX_POWERSAVINGS_BALANCE_LEVELS
868};
869
870extern int sched_mc_power_savings, sched_smt_power_savings;
871
872static inline int sd_balance_for_mc_power(void)
873{
874	if (sched_smt_power_savings)
875		return SD_POWERSAVINGS_BALANCE;
876
877	return SD_PREFER_SIBLING;
878}
879
880static inline int sd_balance_for_package_power(void)
881{
882	if (sched_mc_power_savings | sched_smt_power_savings)
883		return SD_POWERSAVINGS_BALANCE;
884
885	return SD_PREFER_SIBLING;
886}
887
888/*
889 * Optimise SD flags for power savings:
890 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
891 * Keep default SD flags if sched_{smt,mc}_power_saving=0
892 */
893
894static inline int sd_power_saving_flags(void)
895{
896	if (sched_mc_power_savings | sched_smt_power_savings)
897		return SD_BALANCE_NEWIDLE;
898
899	return 0;
900}
901
902struct sched_group {
903	struct sched_group *next;	/* Must be a circular list */
904
905	/*
906	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
907	 * single CPU.
908	 */
909	unsigned int cpu_power;
910
911	/*
912	 * The CPUs this group covers.
913	 *
914	 * NOTE: this field is variable length. (Allocated dynamically
915	 * by attaching extra space to the end of the structure,
916	 * depending on how many CPUs the kernel has booted up with)
917	 *
918	 * It is also be embedded into static data structures at build
919	 * time. (See 'struct static_sched_group' in kernel/sched.c)
920	 */
921	unsigned long cpumask[0];
922};
923
924static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
925{
926	return to_cpumask(sg->cpumask);
927}
928
929enum sched_domain_level {
930	SD_LV_NONE = 0,
931	SD_LV_SIBLING,
932	SD_LV_MC,
933	SD_LV_CPU,
934	SD_LV_NODE,
935	SD_LV_ALLNODES,
936	SD_LV_MAX
937};
938
939struct sched_domain_attr {
940	int relax_domain_level;
941};
942
943#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
944	.relax_domain_level = -1,			\
945}
946
947struct sched_domain {
948	/* These fields must be setup */
949	struct sched_domain *parent;	/* top domain must be null terminated */
950	struct sched_domain *child;	/* bottom domain must be null terminated */
951	struct sched_group *groups;	/* the balancing groups of the domain */
952	unsigned long min_interval;	/* Minimum balance interval ms */
953	unsigned long max_interval;	/* Maximum balance interval ms */
954	unsigned int busy_factor;	/* less balancing by factor if busy */
955	unsigned int imbalance_pct;	/* No balance until over watermark */
956	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
957	unsigned int busy_idx;
958	unsigned int idle_idx;
959	unsigned int newidle_idx;
960	unsigned int wake_idx;
961	unsigned int forkexec_idx;
962	unsigned int smt_gain;
963	int flags;			/* See SD_* */
964	enum sched_domain_level level;
965
966	/* Runtime fields. */
967	unsigned long last_balance;	/* init to jiffies. units in jiffies */
968	unsigned int balance_interval;	/* initialise to 1. units in ms. */
969	unsigned int nr_balance_failed; /* initialise to 0 */
970
971	u64 last_update;
972
973#ifdef CONFIG_SCHEDSTATS
974	/* load_balance() stats */
975	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
976	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
977	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
978	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
979	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
980	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
981	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
982	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
983
984	/* Active load balancing */
985	unsigned int alb_count;
986	unsigned int alb_failed;
987	unsigned int alb_pushed;
988
989	/* SD_BALANCE_EXEC stats */
990	unsigned int sbe_count;
991	unsigned int sbe_balanced;
992	unsigned int sbe_pushed;
993
994	/* SD_BALANCE_FORK stats */
995	unsigned int sbf_count;
996	unsigned int sbf_balanced;
997	unsigned int sbf_pushed;
998
999	/* try_to_wake_up() stats */
1000	unsigned int ttwu_wake_remote;
1001	unsigned int ttwu_move_affine;
1002	unsigned int ttwu_move_balance;
1003#endif
1004#ifdef CONFIG_SCHED_DEBUG
1005	char *name;
1006#endif
1007
1008	/*
1009	 * Span of all CPUs in this domain.
1010	 *
1011	 * NOTE: this field is variable length. (Allocated dynamically
1012	 * by attaching extra space to the end of the structure,
1013	 * depending on how many CPUs the kernel has booted up with)
1014	 *
1015	 * It is also be embedded into static data structures at build
1016	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1017	 */
1018	unsigned long span[0];
1019};
1020
1021static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1022{
1023	return to_cpumask(sd->span);
1024}
1025
1026extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1027				    struct sched_domain_attr *dattr_new);
1028
1029/* Allocate an array of sched domains, for partition_sched_domains(). */
1030cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1031void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1032
1033/* Test a flag in parent sched domain */
1034static inline int test_sd_parent(struct sched_domain *sd, int flag)
1035{
1036	if (sd->parent && (sd->parent->flags & flag))
1037		return 1;
1038
1039	return 0;
1040}
1041
1042unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1043unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1044
1045#else /* CONFIG_SMP */
1046
1047struct sched_domain_attr;
1048
1049static inline void
1050partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1051			struct sched_domain_attr *dattr_new)
1052{
1053}
1054#endif	/* !CONFIG_SMP */
1055
1056
1057struct io_context;			/* See blkdev.h */
1058
1059
1060#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1061extern void prefetch_stack(struct task_struct *t);
1062#else
1063static inline void prefetch_stack(struct task_struct *t) { }
1064#endif
1065
1066struct audit_context;		/* See audit.c */
1067struct mempolicy;
1068struct pipe_inode_info;
1069struct uts_namespace;
1070
1071struct rq;
1072struct sched_domain;
1073
1074/*
1075 * wake flags
1076 */
1077#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1078#define WF_FORK		0x02		/* child wakeup after fork */
1079
1080struct sched_class {
1081	const struct sched_class *next;
1082
1083	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1084	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1085	void (*yield_task) (struct rq *rq);
1086
1087	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1088
1089	struct task_struct * (*pick_next_task) (struct rq *rq);
1090	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1091
1092#ifdef CONFIG_SMP
1093	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1094
1095	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1096			struct rq *busiest, unsigned long max_load_move,
1097			struct sched_domain *sd, enum cpu_idle_type idle,
1098			int *all_pinned, int *this_best_prio);
1099
1100	int (*move_one_task) (struct rq *this_rq, int this_cpu,
1101			      struct rq *busiest, struct sched_domain *sd,
1102			      enum cpu_idle_type idle);
1103	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1104	void (*post_schedule) (struct rq *this_rq);
1105	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1106	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1107
1108	void (*set_cpus_allowed)(struct task_struct *p,
1109				 const struct cpumask *newmask);
1110
1111	void (*rq_online)(struct rq *rq);
1112	void (*rq_offline)(struct rq *rq);
1113#endif
1114
1115	void (*set_curr_task) (struct rq *rq);
1116	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1117	void (*task_fork) (struct task_struct *p);
1118
1119	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1120			       int running);
1121	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1122			     int running);
1123	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1124			     int oldprio, int running);
1125
1126	unsigned int (*get_rr_interval) (struct rq *rq,
1127					 struct task_struct *task);
1128
1129#ifdef CONFIG_FAIR_GROUP_SCHED
1130	void (*moved_group) (struct task_struct *p, int on_rq);
1131#endif
1132};
1133
1134struct load_weight {
1135	unsigned long weight, inv_weight;
1136};
1137
1138/*
1139 * CFS stats for a schedulable entity (task, task-group etc)
1140 *
1141 * Current field usage histogram:
1142 *
1143 *     4 se->block_start
1144 *     4 se->run_node
1145 *     4 se->sleep_start
1146 *     6 se->load.weight
1147 */
1148struct sched_entity {
1149	struct load_weight	load;		/* for load-balancing */
1150	struct rb_node		run_node;
1151	struct list_head	group_node;
1152	unsigned int		on_rq;
1153
1154	u64			exec_start;
1155	u64			sum_exec_runtime;
1156	u64			vruntime;
1157	u64			prev_sum_exec_runtime;
1158
1159	u64			last_wakeup;
1160	u64			avg_overlap;
1161
1162	u64			nr_migrations;
1163
1164	u64			start_runtime;
1165	u64			avg_wakeup;
1166
1167#ifdef CONFIG_SCHEDSTATS
1168	u64			wait_start;
1169	u64			wait_max;
1170	u64			wait_count;
1171	u64			wait_sum;
1172	u64			iowait_count;
1173	u64			iowait_sum;
1174
1175	u64			sleep_start;
1176	u64			sleep_max;
1177	s64			sum_sleep_runtime;
1178
1179	u64			block_start;
1180	u64			block_max;
1181	u64			exec_max;
1182	u64			slice_max;
1183
1184	u64			nr_migrations_cold;
1185	u64			nr_failed_migrations_affine;
1186	u64			nr_failed_migrations_running;
1187	u64			nr_failed_migrations_hot;
1188	u64			nr_forced_migrations;
1189
1190	u64			nr_wakeups;
1191	u64			nr_wakeups_sync;
1192	u64			nr_wakeups_migrate;
1193	u64			nr_wakeups_local;
1194	u64			nr_wakeups_remote;
1195	u64			nr_wakeups_affine;
1196	u64			nr_wakeups_affine_attempts;
1197	u64			nr_wakeups_passive;
1198	u64			nr_wakeups_idle;
1199#endif
1200
1201#ifdef CONFIG_FAIR_GROUP_SCHED
1202	struct sched_entity	*parent;
1203	/* rq on which this entity is (to be) queued: */
1204	struct cfs_rq		*cfs_rq;
1205	/* rq "owned" by this entity/group: */
1206	struct cfs_rq		*my_q;
1207#endif
1208};
1209
1210struct sched_rt_entity {
1211	struct list_head run_list;
1212	unsigned long timeout;
1213	unsigned int time_slice;
1214	int nr_cpus_allowed;
1215
1216	struct sched_rt_entity *back;
1217#ifdef CONFIG_RT_GROUP_SCHED
1218	struct sched_rt_entity	*parent;
1219	/* rq on which this entity is (to be) queued: */
1220	struct rt_rq		*rt_rq;
1221	/* rq "owned" by this entity/group: */
1222	struct rt_rq		*my_q;
1223#endif
1224};
1225
1226struct rcu_node;
1227
1228struct task_struct {
1229	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1230	void *stack;
1231	atomic_t usage;
1232	unsigned int flags;	/* per process flags, defined below */
1233	unsigned int ptrace;
1234
1235	int lock_depth;		/* BKL lock depth */
1236
1237#ifdef CONFIG_SMP
1238#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1239	int oncpu;
1240#endif
1241#endif
1242
1243	int prio, static_prio, normal_prio;
1244	unsigned int rt_priority;
1245	const struct sched_class *sched_class;
1246	struct sched_entity se;
1247	struct sched_rt_entity rt;
1248
1249#ifdef CONFIG_PREEMPT_NOTIFIERS
1250	/* list of struct preempt_notifier: */
1251	struct hlist_head preempt_notifiers;
1252#endif
1253
1254	/*
1255	 * fpu_counter contains the number of consecutive context switches
1256	 * that the FPU is used. If this is over a threshold, the lazy fpu
1257	 * saving becomes unlazy to save the trap. This is an unsigned char
1258	 * so that after 256 times the counter wraps and the behavior turns
1259	 * lazy again; this to deal with bursty apps that only use FPU for
1260	 * a short time
1261	 */
1262	unsigned char fpu_counter;
1263#ifdef CONFIG_BLK_DEV_IO_TRACE
1264	unsigned int btrace_seq;
1265#endif
1266
1267	unsigned int policy;
1268	cpumask_t cpus_allowed;
1269
1270#ifdef CONFIG_TREE_PREEMPT_RCU
1271	int rcu_read_lock_nesting;
1272	char rcu_read_unlock_special;
1273	struct rcu_node *rcu_blocked_node;
1274	struct list_head rcu_node_entry;
1275#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1276
1277#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1278	struct sched_info sched_info;
1279#endif
1280
1281	struct list_head tasks;
1282	struct plist_node pushable_tasks;
1283
1284	struct mm_struct *mm, *active_mm;
1285
1286/* task state */
1287	int exit_state;
1288	int exit_code, exit_signal;
1289	int pdeath_signal;  /*  The signal sent when the parent dies  */
1290	/* ??? */
1291	unsigned int personality;
1292	unsigned did_exec:1;
1293	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1294				 * execve */
1295	unsigned in_iowait:1;
1296
1297
1298	/* Revert to default priority/policy when forking */
1299	unsigned sched_reset_on_fork:1;
1300
1301	pid_t pid;
1302	pid_t tgid;
1303
1304#ifdef CONFIG_CC_STACKPROTECTOR
1305	/* Canary value for the -fstack-protector gcc feature */
1306	unsigned long stack_canary;
1307#endif
1308
1309	/*
1310	 * pointers to (original) parent process, youngest child, younger sibling,
1311	 * older sibling, respectively.  (p->father can be replaced with
1312	 * p->real_parent->pid)
1313	 */
1314	struct task_struct *real_parent; /* real parent process */
1315	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1316	/*
1317	 * children/sibling forms the list of my natural children
1318	 */
1319	struct list_head children;	/* list of my children */
1320	struct list_head sibling;	/* linkage in my parent's children list */
1321	struct task_struct *group_leader;	/* threadgroup leader */
1322
1323	/*
1324	 * ptraced is the list of tasks this task is using ptrace on.
1325	 * This includes both natural children and PTRACE_ATTACH targets.
1326	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1327	 */
1328	struct list_head ptraced;
1329	struct list_head ptrace_entry;
1330
1331	/*
1332	 * This is the tracer handle for the ptrace BTS extension.
1333	 * This field actually belongs to the ptracer task.
1334	 */
1335	struct bts_context *bts;
1336
1337	/* PID/PID hash table linkage. */
1338	struct pid_link pids[PIDTYPE_MAX];
1339	struct list_head thread_group;
1340
1341	struct completion *vfork_done;		/* for vfork() */
1342	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1343	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1344
1345	cputime_t utime, stime, utimescaled, stimescaled;
1346	cputime_t gtime;
1347#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1348	cputime_t prev_utime, prev_stime;
1349#endif
1350	unsigned long nvcsw, nivcsw; /* context switch counts */
1351	struct timespec start_time; 		/* monotonic time */
1352	struct timespec real_start_time;	/* boot based time */
1353/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1354	unsigned long min_flt, maj_flt;
1355
1356	struct task_cputime cputime_expires;
1357	struct list_head cpu_timers[3];
1358
1359/* process credentials */
1360	const struct cred *real_cred;	/* objective and real subjective task
1361					 * credentials (COW) */
1362	const struct cred *cred;	/* effective (overridable) subjective task
1363					 * credentials (COW) */
1364	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1365					 * credential calculations
1366					 * (notably. ptrace) */
1367	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1368
1369	char comm[TASK_COMM_LEN]; /* executable name excluding path
1370				     - access with [gs]et_task_comm (which lock
1371				       it with task_lock())
1372				     - initialized normally by setup_new_exec */
1373/* file system info */
1374	int link_count, total_link_count;
1375#ifdef CONFIG_SYSVIPC
1376/* ipc stuff */
1377	struct sysv_sem sysvsem;
1378#endif
1379#ifdef CONFIG_DETECT_HUNG_TASK
1380/* hung task detection */
1381	unsigned long last_switch_count;
1382#endif
1383/* CPU-specific state of this task */
1384	struct thread_struct thread;
1385/* filesystem information */
1386	struct fs_struct *fs;
1387/* open file information */
1388	struct files_struct *files;
1389/* namespaces */
1390	struct nsproxy *nsproxy;
1391/* signal handlers */
1392	struct signal_struct *signal;
1393	struct sighand_struct *sighand;
1394
1395	sigset_t blocked, real_blocked;
1396	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1397	struct sigpending pending;
1398
1399	unsigned long sas_ss_sp;
1400	size_t sas_ss_size;
1401	int (*notifier)(void *priv);
1402	void *notifier_data;
1403	sigset_t *notifier_mask;
1404	struct audit_context *audit_context;
1405#ifdef CONFIG_AUDITSYSCALL
1406	uid_t loginuid;
1407	unsigned int sessionid;
1408#endif
1409	seccomp_t seccomp;
1410
1411/* Thread group tracking */
1412   	u32 parent_exec_id;
1413   	u32 self_exec_id;
1414/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1415 * mempolicy */
1416	spinlock_t alloc_lock;
1417
1418#ifdef CONFIG_GENERIC_HARDIRQS
1419	/* IRQ handler threads */
1420	struct irqaction *irqaction;
1421#endif
1422
1423	/* Protection of the PI data structures: */
1424	raw_spinlock_t pi_lock;
1425
1426#ifdef CONFIG_RT_MUTEXES
1427	/* PI waiters blocked on a rt_mutex held by this task */
1428	struct plist_head pi_waiters;
1429	/* Deadlock detection and priority inheritance handling */
1430	struct rt_mutex_waiter *pi_blocked_on;
1431#endif
1432
1433#ifdef CONFIG_DEBUG_MUTEXES
1434	/* mutex deadlock detection */
1435	struct mutex_waiter *blocked_on;
1436#endif
1437#ifdef CONFIG_TRACE_IRQFLAGS
1438	unsigned int irq_events;
1439	unsigned long hardirq_enable_ip;
1440	unsigned long hardirq_disable_ip;
1441	unsigned int hardirq_enable_event;
1442	unsigned int hardirq_disable_event;
1443	int hardirqs_enabled;
1444	int hardirq_context;
1445	unsigned long softirq_disable_ip;
1446	unsigned long softirq_enable_ip;
1447	unsigned int softirq_disable_event;
1448	unsigned int softirq_enable_event;
1449	int softirqs_enabled;
1450	int softirq_context;
1451#endif
1452#ifdef CONFIG_LOCKDEP
1453# define MAX_LOCK_DEPTH 48UL
1454	u64 curr_chain_key;
1455	int lockdep_depth;
1456	unsigned int lockdep_recursion;
1457	struct held_lock held_locks[MAX_LOCK_DEPTH];
1458	gfp_t lockdep_reclaim_gfp;
1459#endif
1460
1461/* journalling filesystem info */
1462	void *journal_info;
1463
1464/* stacked block device info */
1465	struct bio *bio_list, **bio_tail;
1466
1467/* VM state */
1468	struct reclaim_state *reclaim_state;
1469
1470	struct backing_dev_info *backing_dev_info;
1471
1472	struct io_context *io_context;
1473
1474	unsigned long ptrace_message;
1475	siginfo_t *last_siginfo; /* For ptrace use.  */
1476	struct task_io_accounting ioac;
1477#if defined(CONFIG_TASK_XACCT)
1478	u64 acct_rss_mem1;	/* accumulated rss usage */
1479	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1480	cputime_t acct_timexpd;	/* stime + utime since last update */
1481#endif
1482#ifdef CONFIG_CPUSETS
1483	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1484	int cpuset_mem_spread_rotor;
1485#endif
1486#ifdef CONFIG_CGROUPS
1487	/* Control Group info protected by css_set_lock */
1488	struct css_set *cgroups;
1489	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1490	struct list_head cg_list;
1491#endif
1492#ifdef CONFIG_FUTEX
1493	struct robust_list_head __user *robust_list;
1494#ifdef CONFIG_COMPAT
1495	struct compat_robust_list_head __user *compat_robust_list;
1496#endif
1497	struct list_head pi_state_list;
1498	struct futex_pi_state *pi_state_cache;
1499#endif
1500#ifdef CONFIG_PERF_EVENTS
1501	struct perf_event_context *perf_event_ctxp;
1502	struct mutex perf_event_mutex;
1503	struct list_head perf_event_list;
1504#endif
1505#ifdef CONFIG_NUMA
1506	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1507	short il_next;
1508#endif
1509	atomic_t fs_excl;	/* holding fs exclusive resources */
1510	struct rcu_head rcu;
1511
1512	/*
1513	 * cache last used pipe for splice
1514	 */
1515	struct pipe_inode_info *splice_pipe;
1516#ifdef	CONFIG_TASK_DELAY_ACCT
1517	struct task_delay_info *delays;
1518#endif
1519#ifdef CONFIG_FAULT_INJECTION
1520	int make_it_fail;
1521#endif
1522	struct prop_local_single dirties;
1523#ifdef CONFIG_LATENCYTOP
1524	int latency_record_count;
1525	struct latency_record latency_record[LT_SAVECOUNT];
1526#endif
1527	/*
1528	 * time slack values; these are used to round up poll() and
1529	 * select() etc timeout values. These are in nanoseconds.
1530	 */
1531	unsigned long timer_slack_ns;
1532	unsigned long default_timer_slack_ns;
1533
1534	struct list_head	*scm_work_list;
1535#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1536	/* Index of current stored adress in ret_stack */
1537	int curr_ret_stack;
1538	/* Stack of return addresses for return function tracing */
1539	struct ftrace_ret_stack	*ret_stack;
1540	/* time stamp for last schedule */
1541	unsigned long long ftrace_timestamp;
1542	/*
1543	 * Number of functions that haven't been traced
1544	 * because of depth overrun.
1545	 */
1546	atomic_t trace_overrun;
1547	/* Pause for the tracing */
1548	atomic_t tracing_graph_pause;
1549#endif
1550#ifdef CONFIG_TRACING
1551	/* state flags for use by tracers */
1552	unsigned long trace;
1553	/* bitmask of trace recursion */
1554	unsigned long trace_recursion;
1555#endif /* CONFIG_TRACING */
1556	unsigned long stack_start;
1557#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1558	struct memcg_batch_info {
1559		int do_batch;	/* incremented when batch uncharge started */
1560		struct mem_cgroup *memcg; /* target memcg of uncharge */
1561		unsigned long bytes; 		/* uncharged usage */
1562		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1563	} memcg_batch;
1564#endif
1565};
1566
1567/* Future-safe accessor for struct task_struct's cpus_allowed. */
1568#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1569
1570/*
1571 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1572 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1573 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1574 * values are inverted: lower p->prio value means higher priority.
1575 *
1576 * The MAX_USER_RT_PRIO value allows the actual maximum
1577 * RT priority to be separate from the value exported to
1578 * user-space.  This allows kernel threads to set their
1579 * priority to a value higher than any user task. Note:
1580 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1581 */
1582
1583#define MAX_USER_RT_PRIO	100
1584#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1585
1586#define MAX_PRIO		(MAX_RT_PRIO + 40)
1587#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1588
1589static inline int rt_prio(int prio)
1590{
1591	if (unlikely(prio < MAX_RT_PRIO))
1592		return 1;
1593	return 0;
1594}
1595
1596static inline int rt_task(struct task_struct *p)
1597{
1598	return rt_prio(p->prio);
1599}
1600
1601static inline struct pid *task_pid(struct task_struct *task)
1602{
1603	return task->pids[PIDTYPE_PID].pid;
1604}
1605
1606static inline struct pid *task_tgid(struct task_struct *task)
1607{
1608	return task->group_leader->pids[PIDTYPE_PID].pid;
1609}
1610
1611/*
1612 * Without tasklist or rcu lock it is not safe to dereference
1613 * the result of task_pgrp/task_session even if task == current,
1614 * we can race with another thread doing sys_setsid/sys_setpgid.
1615 */
1616static inline struct pid *task_pgrp(struct task_struct *task)
1617{
1618	return task->group_leader->pids[PIDTYPE_PGID].pid;
1619}
1620
1621static inline struct pid *task_session(struct task_struct *task)
1622{
1623	return task->group_leader->pids[PIDTYPE_SID].pid;
1624}
1625
1626struct pid_namespace;
1627
1628/*
1629 * the helpers to get the task's different pids as they are seen
1630 * from various namespaces
1631 *
1632 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1633 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1634 *                     current.
1635 * task_xid_nr_ns()  : id seen from the ns specified;
1636 *
1637 * set_task_vxid()   : assigns a virtual id to a task;
1638 *
1639 * see also pid_nr() etc in include/linux/pid.h
1640 */
1641pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1642			struct pid_namespace *ns);
1643
1644static inline pid_t task_pid_nr(struct task_struct *tsk)
1645{
1646	return tsk->pid;
1647}
1648
1649static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1650					struct pid_namespace *ns)
1651{
1652	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1653}
1654
1655static inline pid_t task_pid_vnr(struct task_struct *tsk)
1656{
1657	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1658}
1659
1660
1661static inline pid_t task_tgid_nr(struct task_struct *tsk)
1662{
1663	return tsk->tgid;
1664}
1665
1666pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1667
1668static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1669{
1670	return pid_vnr(task_tgid(tsk));
1671}
1672
1673
1674static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1675					struct pid_namespace *ns)
1676{
1677	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1678}
1679
1680static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1681{
1682	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1683}
1684
1685
1686static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1687					struct pid_namespace *ns)
1688{
1689	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1690}
1691
1692static inline pid_t task_session_vnr(struct task_struct *tsk)
1693{
1694	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1695}
1696
1697/* obsolete, do not use */
1698static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1699{
1700	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1701}
1702
1703/**
1704 * pid_alive - check that a task structure is not stale
1705 * @p: Task structure to be checked.
1706 *
1707 * Test if a process is not yet dead (at most zombie state)
1708 * If pid_alive fails, then pointers within the task structure
1709 * can be stale and must not be dereferenced.
1710 */
1711static inline int pid_alive(struct task_struct *p)
1712{
1713	return p->pids[PIDTYPE_PID].pid != NULL;
1714}
1715
1716/**
1717 * is_global_init - check if a task structure is init
1718 * @tsk: Task structure to be checked.
1719 *
1720 * Check if a task structure is the first user space task the kernel created.
1721 */
1722static inline int is_global_init(struct task_struct *tsk)
1723{
1724	return tsk->pid == 1;
1725}
1726
1727/*
1728 * is_container_init:
1729 * check whether in the task is init in its own pid namespace.
1730 */
1731extern int is_container_init(struct task_struct *tsk);
1732
1733extern struct pid *cad_pid;
1734
1735extern void free_task(struct task_struct *tsk);
1736#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1737
1738extern void __put_task_struct(struct task_struct *t);
1739
1740static inline void put_task_struct(struct task_struct *t)
1741{
1742	if (atomic_dec_and_test(&t->usage))
1743		__put_task_struct(t);
1744}
1745
1746extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1747extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1748
1749/*
1750 * Per process flags
1751 */
1752#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1753					/* Not implemented yet, only for 486*/
1754#define PF_STARTING	0x00000002	/* being created */
1755#define PF_EXITING	0x00000004	/* getting shut down */
1756#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1757#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1758#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1759#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1760#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1761#define PF_DUMPCORE	0x00000200	/* dumped core */
1762#define PF_SIGNALED	0x00000400	/* killed by a signal */
1763#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1764#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1765#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1766#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1767#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1768#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1769#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1770#define PF_KSWAPD	0x00040000	/* I am kswapd */
1771#define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1772#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1773#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1774#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1775#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1776#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1777#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1778#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1779#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1780#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1781#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1782#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1783#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1784
1785/*
1786 * Only the _current_ task can read/write to tsk->flags, but other
1787 * tasks can access tsk->flags in readonly mode for example
1788 * with tsk_used_math (like during threaded core dumping).
1789 * There is however an exception to this rule during ptrace
1790 * or during fork: the ptracer task is allowed to write to the
1791 * child->flags of its traced child (same goes for fork, the parent
1792 * can write to the child->flags), because we're guaranteed the
1793 * child is not running and in turn not changing child->flags
1794 * at the same time the parent does it.
1795 */
1796#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1797#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1798#define clear_used_math() clear_stopped_child_used_math(current)
1799#define set_used_math() set_stopped_child_used_math(current)
1800#define conditional_stopped_child_used_math(condition, child) \
1801	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1802#define conditional_used_math(condition) \
1803	conditional_stopped_child_used_math(condition, current)
1804#define copy_to_stopped_child_used_math(child) \
1805	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1806/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1807#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1808#define used_math() tsk_used_math(current)
1809
1810#ifdef CONFIG_TREE_PREEMPT_RCU
1811
1812#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1813#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1814
1815static inline void rcu_copy_process(struct task_struct *p)
1816{
1817	p->rcu_read_lock_nesting = 0;
1818	p->rcu_read_unlock_special = 0;
1819	p->rcu_blocked_node = NULL;
1820	INIT_LIST_HEAD(&p->rcu_node_entry);
1821}
1822
1823#else
1824
1825static inline void rcu_copy_process(struct task_struct *p)
1826{
1827}
1828
1829#endif
1830
1831#ifdef CONFIG_SMP
1832extern int set_cpus_allowed_ptr(struct task_struct *p,
1833				const struct cpumask *new_mask);
1834#else
1835static inline int set_cpus_allowed_ptr(struct task_struct *p,
1836				       const struct cpumask *new_mask)
1837{
1838	if (!cpumask_test_cpu(0, new_mask))
1839		return -EINVAL;
1840	return 0;
1841}
1842#endif
1843
1844#ifndef CONFIG_CPUMASK_OFFSTACK
1845static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1846{
1847	return set_cpus_allowed_ptr(p, &new_mask);
1848}
1849#endif
1850
1851/*
1852 * Architectures can set this to 1 if they have specified
1853 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1854 * but then during bootup it turns out that sched_clock()
1855 * is reliable after all:
1856 */
1857#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1858extern int sched_clock_stable;
1859#endif
1860
1861/* ftrace calls sched_clock() directly */
1862extern unsigned long long notrace sched_clock(void);
1863
1864extern void sched_clock_init(void);
1865extern u64 sched_clock_cpu(int cpu);
1866
1867#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1868static inline void sched_clock_tick(void)
1869{
1870}
1871
1872static inline void sched_clock_idle_sleep_event(void)
1873{
1874}
1875
1876static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1877{
1878}
1879#else
1880extern void sched_clock_tick(void);
1881extern void sched_clock_idle_sleep_event(void);
1882extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1883#endif
1884
1885/*
1886 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1887 * clock constructed from sched_clock():
1888 */
1889extern unsigned long long cpu_clock(int cpu);
1890
1891extern unsigned long long
1892task_sched_runtime(struct task_struct *task);
1893extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1894
1895/* sched_exec is called by processes performing an exec */
1896#ifdef CONFIG_SMP
1897extern void sched_exec(void);
1898#else
1899#define sched_exec()   {}
1900#endif
1901
1902extern void sched_clock_idle_sleep_event(void);
1903extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1904
1905#ifdef CONFIG_HOTPLUG_CPU
1906extern void idle_task_exit(void);
1907#else
1908static inline void idle_task_exit(void) {}
1909#endif
1910
1911extern void sched_idle_next(void);
1912
1913#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1914extern void wake_up_idle_cpu(int cpu);
1915#else
1916static inline void wake_up_idle_cpu(int cpu) { }
1917#endif
1918
1919extern unsigned int sysctl_sched_latency;
1920extern unsigned int sysctl_sched_min_granularity;
1921extern unsigned int sysctl_sched_wakeup_granularity;
1922extern unsigned int sysctl_sched_shares_ratelimit;
1923extern unsigned int sysctl_sched_shares_thresh;
1924extern unsigned int sysctl_sched_child_runs_first;
1925
1926enum sched_tunable_scaling {
1927	SCHED_TUNABLESCALING_NONE,
1928	SCHED_TUNABLESCALING_LOG,
1929	SCHED_TUNABLESCALING_LINEAR,
1930	SCHED_TUNABLESCALING_END,
1931};
1932extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1933
1934#ifdef CONFIG_SCHED_DEBUG
1935extern unsigned int sysctl_sched_migration_cost;
1936extern unsigned int sysctl_sched_nr_migrate;
1937extern unsigned int sysctl_sched_time_avg;
1938extern unsigned int sysctl_timer_migration;
1939
1940int sched_proc_update_handler(struct ctl_table *table, int write,
1941		void __user *buffer, size_t *length,
1942		loff_t *ppos);
1943#endif
1944#ifdef CONFIG_SCHED_DEBUG
1945static inline unsigned int get_sysctl_timer_migration(void)
1946{
1947	return sysctl_timer_migration;
1948}
1949#else
1950static inline unsigned int get_sysctl_timer_migration(void)
1951{
1952	return 1;
1953}
1954#endif
1955extern unsigned int sysctl_sched_rt_period;
1956extern int sysctl_sched_rt_runtime;
1957
1958int sched_rt_handler(struct ctl_table *table, int write,
1959		void __user *buffer, size_t *lenp,
1960		loff_t *ppos);
1961
1962extern unsigned int sysctl_sched_compat_yield;
1963
1964#ifdef CONFIG_RT_MUTEXES
1965extern int rt_mutex_getprio(struct task_struct *p);
1966extern void rt_mutex_setprio(struct task_struct *p, int prio);
1967extern void rt_mutex_adjust_pi(struct task_struct *p);
1968#else
1969static inline int rt_mutex_getprio(struct task_struct *p)
1970{
1971	return p->normal_prio;
1972}
1973# define rt_mutex_adjust_pi(p)		do { } while (0)
1974#endif
1975
1976extern void set_user_nice(struct task_struct *p, long nice);
1977extern int task_prio(const struct task_struct *p);
1978extern int task_nice(const struct task_struct *p);
1979extern int can_nice(const struct task_struct *p, const int nice);
1980extern int task_curr(const struct task_struct *p);
1981extern int idle_cpu(int cpu);
1982extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1983extern int sched_setscheduler_nocheck(struct task_struct *, int,
1984				      struct sched_param *);
1985extern struct task_struct *idle_task(int cpu);
1986extern struct task_struct *curr_task(int cpu);
1987extern void set_curr_task(int cpu, struct task_struct *p);
1988
1989void yield(void);
1990
1991/*
1992 * The default (Linux) execution domain.
1993 */
1994extern struct exec_domain	default_exec_domain;
1995
1996union thread_union {
1997	struct thread_info thread_info;
1998	unsigned long stack[THREAD_SIZE/sizeof(long)];
1999};
2000
2001#ifndef __HAVE_ARCH_KSTACK_END
2002static inline int kstack_end(void *addr)
2003{
2004	/* Reliable end of stack detection:
2005	 * Some APM bios versions misalign the stack
2006	 */
2007	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2008}
2009#endif
2010
2011extern union thread_union init_thread_union;
2012extern struct task_struct init_task;
2013
2014extern struct   mm_struct init_mm;
2015
2016extern struct pid_namespace init_pid_ns;
2017
2018/*
2019 * find a task by one of its numerical ids
2020 *
2021 * find_task_by_pid_ns():
2022 *      finds a task by its pid in the specified namespace
2023 * find_task_by_vpid():
2024 *      finds a task by its virtual pid
2025 *
2026 * see also find_vpid() etc in include/linux/pid.h
2027 */
2028
2029extern struct task_struct *find_task_by_vpid(pid_t nr);
2030extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2031		struct pid_namespace *ns);
2032
2033extern void __set_special_pids(struct pid *pid);
2034
2035/* per-UID process charging. */
2036extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2037static inline struct user_struct *get_uid(struct user_struct *u)
2038{
2039	atomic_inc(&u->__count);
2040	return u;
2041}
2042extern void free_uid(struct user_struct *);
2043extern void release_uids(struct user_namespace *ns);
2044
2045#include <asm/current.h>
2046
2047extern void do_timer(unsigned long ticks);
2048
2049extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2050extern int wake_up_process(struct task_struct *tsk);
2051extern void wake_up_new_task(struct task_struct *tsk,
2052				unsigned long clone_flags);
2053#ifdef CONFIG_SMP
2054 extern void kick_process(struct task_struct *tsk);
2055#else
2056 static inline void kick_process(struct task_struct *tsk) { }
2057#endif
2058extern void sched_fork(struct task_struct *p, int clone_flags);
2059extern void sched_dead(struct task_struct *p);
2060
2061extern void proc_caches_init(void);
2062extern void flush_signals(struct task_struct *);
2063extern void __flush_signals(struct task_struct *);
2064extern void ignore_signals(struct task_struct *);
2065extern void flush_signal_handlers(struct task_struct *, int force_default);
2066extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2067
2068static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2069{
2070	unsigned long flags;
2071	int ret;
2072
2073	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2074	ret = dequeue_signal(tsk, mask, info);
2075	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2076
2077	return ret;
2078}
2079
2080extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2081			      sigset_t *mask);
2082extern void unblock_all_signals(void);
2083extern void release_task(struct task_struct * p);
2084extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2085extern int force_sigsegv(int, struct task_struct *);
2086extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2087extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2088extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2089extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2090extern int kill_pgrp(struct pid *pid, int sig, int priv);
2091extern int kill_pid(struct pid *pid, int sig, int priv);
2092extern int kill_proc_info(int, struct siginfo *, pid_t);
2093extern int do_notify_parent(struct task_struct *, int);
2094extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2095extern void force_sig(int, struct task_struct *);
2096extern int send_sig(int, struct task_struct *, int);
2097extern void zap_other_threads(struct task_struct *p);
2098extern struct sigqueue *sigqueue_alloc(void);
2099extern void sigqueue_free(struct sigqueue *);
2100extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2101extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2102extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2103
2104static inline int kill_cad_pid(int sig, int priv)
2105{
2106	return kill_pid(cad_pid, sig, priv);
2107}
2108
2109/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2110#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2111#define SEND_SIG_PRIV	((struct siginfo *) 1)
2112#define SEND_SIG_FORCED	((struct siginfo *) 2)
2113
2114/*
2115 * True if we are on the alternate signal stack.
2116 */
2117static inline int on_sig_stack(unsigned long sp)
2118{
2119#ifdef CONFIG_STACK_GROWSUP
2120	return sp >= current->sas_ss_sp &&
2121		sp - current->sas_ss_sp < current->sas_ss_size;
2122#else
2123	return sp > current->sas_ss_sp &&
2124		sp - current->sas_ss_sp <= current->sas_ss_size;
2125#endif
2126}
2127
2128static inline int sas_ss_flags(unsigned long sp)
2129{
2130	return (current->sas_ss_size == 0 ? SS_DISABLE
2131		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2132}
2133
2134/*
2135 * Routines for handling mm_structs
2136 */
2137extern struct mm_struct * mm_alloc(void);
2138
2139/* mmdrop drops the mm and the page tables */
2140extern void __mmdrop(struct mm_struct *);
2141static inline void mmdrop(struct mm_struct * mm)
2142{
2143	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2144		__mmdrop(mm);
2145}
2146
2147/* mmput gets rid of the mappings and all user-space */
2148extern void mmput(struct mm_struct *);
2149/* Grab a reference to a task's mm, if it is not already going away */
2150extern struct mm_struct *get_task_mm(struct task_struct *task);
2151/* Remove the current tasks stale references to the old mm_struct */
2152extern void mm_release(struct task_struct *, struct mm_struct *);
2153/* Allocate a new mm structure and copy contents from tsk->mm */
2154extern struct mm_struct *dup_mm(struct task_struct *tsk);
2155
2156extern int copy_thread(unsigned long, unsigned long, unsigned long,
2157			struct task_struct *, struct pt_regs *);
2158extern void flush_thread(void);
2159extern void exit_thread(void);
2160
2161extern void exit_files(struct task_struct *);
2162extern void __cleanup_signal(struct signal_struct *);
2163extern void __cleanup_sighand(struct sighand_struct *);
2164
2165extern void exit_itimers(struct signal_struct *);
2166extern void flush_itimer_signals(void);
2167
2168extern NORET_TYPE void do_group_exit(int);
2169
2170extern void daemonize(const char *, ...);
2171extern int allow_signal(int);
2172extern int disallow_signal(int);
2173
2174extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2175extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2176struct task_struct *fork_idle(int);
2177
2178extern void set_task_comm(struct task_struct *tsk, char *from);
2179extern char *get_task_comm(char *to, struct task_struct *tsk);
2180
2181#ifdef CONFIG_SMP
2182extern void wait_task_context_switch(struct task_struct *p);
2183extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2184#else
2185static inline void wait_task_context_switch(struct task_struct *p) {}
2186static inline unsigned long wait_task_inactive(struct task_struct *p,
2187					       long match_state)
2188{
2189	return 1;
2190}
2191#endif
2192
2193#define next_task(p) \
2194	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2195
2196#define for_each_process(p) \
2197	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2198
2199extern bool current_is_single_threaded(void);
2200
2201/*
2202 * Careful: do_each_thread/while_each_thread is a double loop so
2203 *          'break' will not work as expected - use goto instead.
2204 */
2205#define do_each_thread(g, t) \
2206	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2207
2208#define while_each_thread(g, t) \
2209	while ((t = next_thread(t)) != g)
2210
2211/* de_thread depends on thread_group_leader not being a pid based check */
2212#define thread_group_leader(p)	(p == p->group_leader)
2213
2214/* Do to the insanities of de_thread it is possible for a process
2215 * to have the pid of the thread group leader without actually being
2216 * the thread group leader.  For iteration through the pids in proc
2217 * all we care about is that we have a task with the appropriate
2218 * pid, we don't actually care if we have the right task.
2219 */
2220static inline int has_group_leader_pid(struct task_struct *p)
2221{
2222	return p->pid == p->tgid;
2223}
2224
2225static inline
2226int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2227{
2228	return p1->tgid == p2->tgid;
2229}
2230
2231static inline struct task_struct *next_thread(const struct task_struct *p)
2232{
2233	return list_entry_rcu(p->thread_group.next,
2234			      struct task_struct, thread_group);
2235}
2236
2237static inline int thread_group_empty(struct task_struct *p)
2238{
2239	return list_empty(&p->thread_group);
2240}
2241
2242#define delay_group_leader(p) \
2243		(thread_group_leader(p) && !thread_group_empty(p))
2244
2245static inline int task_detached(struct task_struct *p)
2246{
2247	return p->exit_signal == -1;
2248}
2249
2250/*
2251 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2252 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2253 * pins the final release of task.io_context.  Also protects ->cpuset and
2254 * ->cgroup.subsys[].
2255 *
2256 * Nests both inside and outside of read_lock(&tasklist_lock).
2257 * It must not be nested with write_lock_irq(&tasklist_lock),
2258 * neither inside nor outside.
2259 */
2260static inline void task_lock(struct task_struct *p)
2261{
2262	spin_lock(&p->alloc_lock);
2263}
2264
2265static inline void task_unlock(struct task_struct *p)
2266{
2267	spin_unlock(&p->alloc_lock);
2268}
2269
2270extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2271							unsigned long *flags);
2272
2273static inline void unlock_task_sighand(struct task_struct *tsk,
2274						unsigned long *flags)
2275{
2276	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2277}
2278
2279#ifndef __HAVE_THREAD_FUNCTIONS
2280
2281#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2282#define task_stack_page(task)	((task)->stack)
2283
2284static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2285{
2286	*task_thread_info(p) = *task_thread_info(org);
2287	task_thread_info(p)->task = p;
2288}
2289
2290static inline unsigned long *end_of_stack(struct task_struct *p)
2291{
2292	return (unsigned long *)(task_thread_info(p) + 1);
2293}
2294
2295#endif
2296
2297static inline int object_is_on_stack(void *obj)
2298{
2299	void *stack = task_stack_page(current);
2300
2301	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2302}
2303
2304extern void thread_info_cache_init(void);
2305
2306#ifdef CONFIG_DEBUG_STACK_USAGE
2307static inline unsigned long stack_not_used(struct task_struct *p)
2308{
2309	unsigned long *n = end_of_stack(p);
2310
2311	do { 	/* Skip over canary */
2312		n++;
2313	} while (!*n);
2314
2315	return (unsigned long)n - (unsigned long)end_of_stack(p);
2316}
2317#endif
2318
2319/* set thread flags in other task's structures
2320 * - see asm/thread_info.h for TIF_xxxx flags available
2321 */
2322static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2323{
2324	set_ti_thread_flag(task_thread_info(tsk), flag);
2325}
2326
2327static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2328{
2329	clear_ti_thread_flag(task_thread_info(tsk), flag);
2330}
2331
2332static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333{
2334	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2335}
2336
2337static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2343{
2344	return test_ti_thread_flag(task_thread_info(tsk), flag);
2345}
2346
2347static inline void set_tsk_need_resched(struct task_struct *tsk)
2348{
2349	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2350}
2351
2352static inline void clear_tsk_need_resched(struct task_struct *tsk)
2353{
2354	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355}
2356
2357static inline int test_tsk_need_resched(struct task_struct *tsk)
2358{
2359	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2360}
2361
2362static inline int restart_syscall(void)
2363{
2364	set_tsk_thread_flag(current, TIF_SIGPENDING);
2365	return -ERESTARTNOINTR;
2366}
2367
2368static inline int signal_pending(struct task_struct *p)
2369{
2370	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2371}
2372
2373static inline int __fatal_signal_pending(struct task_struct *p)
2374{
2375	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2376}
2377
2378static inline int fatal_signal_pending(struct task_struct *p)
2379{
2380	return signal_pending(p) && __fatal_signal_pending(p);
2381}
2382
2383static inline int signal_pending_state(long state, struct task_struct *p)
2384{
2385	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2386		return 0;
2387	if (!signal_pending(p))
2388		return 0;
2389
2390	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2391}
2392
2393static inline int need_resched(void)
2394{
2395	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2396}
2397
2398/*
2399 * cond_resched() and cond_resched_lock(): latency reduction via
2400 * explicit rescheduling in places that are safe. The return
2401 * value indicates whether a reschedule was done in fact.
2402 * cond_resched_lock() will drop the spinlock before scheduling,
2403 * cond_resched_softirq() will enable bhs before scheduling.
2404 */
2405extern int _cond_resched(void);
2406
2407#define cond_resched() ({			\
2408	__might_sleep(__FILE__, __LINE__, 0);	\
2409	_cond_resched();			\
2410})
2411
2412extern int __cond_resched_lock(spinlock_t *lock);
2413
2414#ifdef CONFIG_PREEMPT
2415#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2416#else
2417#define PREEMPT_LOCK_OFFSET	0
2418#endif
2419
2420#define cond_resched_lock(lock) ({				\
2421	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2422	__cond_resched_lock(lock);				\
2423})
2424
2425extern int __cond_resched_softirq(void);
2426
2427#define cond_resched_softirq() ({				\
2428	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2429	__cond_resched_softirq();				\
2430})
2431
2432/*
2433 * Does a critical section need to be broken due to another
2434 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2435 * but a general need for low latency)
2436 */
2437static inline int spin_needbreak(spinlock_t *lock)
2438{
2439#ifdef CONFIG_PREEMPT
2440	return spin_is_contended(lock);
2441#else
2442	return 0;
2443#endif
2444}
2445
2446/*
2447 * Thread group CPU time accounting.
2448 */
2449void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2450void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2451
2452static inline void thread_group_cputime_init(struct signal_struct *sig)
2453{
2454	sig->cputimer.cputime = INIT_CPUTIME;
2455	spin_lock_init(&sig->cputimer.lock);
2456	sig->cputimer.running = 0;
2457}
2458
2459static inline void thread_group_cputime_free(struct signal_struct *sig)
2460{
2461}
2462
2463/*
2464 * Reevaluate whether the task has signals pending delivery.
2465 * Wake the task if so.
2466 * This is required every time the blocked sigset_t changes.
2467 * callers must hold sighand->siglock.
2468 */
2469extern void recalc_sigpending_and_wake(struct task_struct *t);
2470extern void recalc_sigpending(void);
2471
2472extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2473
2474/*
2475 * Wrappers for p->thread_info->cpu access. No-op on UP.
2476 */
2477#ifdef CONFIG_SMP
2478
2479static inline unsigned int task_cpu(const struct task_struct *p)
2480{
2481	return task_thread_info(p)->cpu;
2482}
2483
2484extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2485
2486#else
2487
2488static inline unsigned int task_cpu(const struct task_struct *p)
2489{
2490	return 0;
2491}
2492
2493static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2494{
2495}
2496
2497#endif /* CONFIG_SMP */
2498
2499#ifdef CONFIG_TRACING
2500extern void
2501__trace_special(void *__tr, void *__data,
2502		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2503#else
2504static inline void
2505__trace_special(void *__tr, void *__data,
2506		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2507{
2508}
2509#endif
2510
2511extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2512extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2513
2514extern void normalize_rt_tasks(void);
2515
2516#ifdef CONFIG_GROUP_SCHED
2517
2518extern struct task_group init_task_group;
2519#ifdef CONFIG_USER_SCHED
2520extern struct task_group root_task_group;
2521extern void set_tg_uid(struct user_struct *user);
2522#endif
2523
2524extern struct task_group *sched_create_group(struct task_group *parent);
2525extern void sched_destroy_group(struct task_group *tg);
2526extern void sched_move_task(struct task_struct *tsk);
2527#ifdef CONFIG_FAIR_GROUP_SCHED
2528extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2529extern unsigned long sched_group_shares(struct task_group *tg);
2530#endif
2531#ifdef CONFIG_RT_GROUP_SCHED
2532extern int sched_group_set_rt_runtime(struct task_group *tg,
2533				      long rt_runtime_us);
2534extern long sched_group_rt_runtime(struct task_group *tg);
2535extern int sched_group_set_rt_period(struct task_group *tg,
2536				      long rt_period_us);
2537extern long sched_group_rt_period(struct task_group *tg);
2538extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2539#endif
2540#endif
2541
2542extern int task_can_switch_user(struct user_struct *up,
2543					struct task_struct *tsk);
2544
2545#ifdef CONFIG_TASK_XACCT
2546static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2547{
2548	tsk->ioac.rchar += amt;
2549}
2550
2551static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2552{
2553	tsk->ioac.wchar += amt;
2554}
2555
2556static inline void inc_syscr(struct task_struct *tsk)
2557{
2558	tsk->ioac.syscr++;
2559}
2560
2561static inline void inc_syscw(struct task_struct *tsk)
2562{
2563	tsk->ioac.syscw++;
2564}
2565#else
2566static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2567{
2568}
2569
2570static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2571{
2572}
2573
2574static inline void inc_syscr(struct task_struct *tsk)
2575{
2576}
2577
2578static inline void inc_syscw(struct task_struct *tsk)
2579{
2580}
2581#endif
2582
2583#ifndef TASK_SIZE_OF
2584#define TASK_SIZE_OF(tsk)	TASK_SIZE
2585#endif
2586
2587/*
2588 * Call the function if the target task is executing on a CPU right now:
2589 */
2590extern void task_oncpu_function_call(struct task_struct *p,
2591				     void (*func) (void *info), void *info);
2592
2593
2594#ifdef CONFIG_MM_OWNER
2595extern void mm_update_next_owner(struct mm_struct *mm);
2596extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2597#else
2598static inline void mm_update_next_owner(struct mm_struct *mm)
2599{
2600}
2601
2602static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2603{
2604}
2605#endif /* CONFIG_MM_OWNER */
2606
2607static inline unsigned long task_rlimit(const struct task_struct *tsk,
2608		unsigned int limit)
2609{
2610	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2611}
2612
2613static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2614		unsigned int limit)
2615{
2616	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2617}
2618
2619static inline unsigned long rlimit(unsigned int limit)
2620{
2621	return task_rlimit(current, limit);
2622}
2623
2624static inline unsigned long rlimit_max(unsigned int limit)
2625{
2626	return task_rlimit_max(current, limit);
2627}
2628
2629#endif /* __KERNEL__ */
2630
2631#endif
2632