sched.h revision 246bb0b1deb29726990620d8b5e55ca29f331362
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45	int sched_priority;
46};
47
48#include <asm/param.h>	/* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/page.h>
65#include <asm/ptrace.h>
66#include <asm/cputime.h>
67
68#include <linux/smp.h>
69#include <linux/sem.h>
70#include <linux/signal.h>
71#include <linux/fs_struct.h>
72#include <linux/compiler.h>
73#include <linux/completion.h>
74#include <linux/pid.h>
75#include <linux/percpu.h>
76#include <linux/topology.h>
77#include <linux/proportions.h>
78#include <linux/seccomp.h>
79#include <linux/rcupdate.h>
80#include <linux/rtmutex.h>
81
82#include <linux/time.h>
83#include <linux/param.h>
84#include <linux/resource.h>
85#include <linux/timer.h>
86#include <linux/hrtimer.h>
87#include <linux/task_io_accounting.h>
88#include <linux/kobject.h>
89#include <linux/latencytop.h>
90
91#include <asm/processor.h>
92
93struct mem_cgroup;
94struct exec_domain;
95struct futex_pi_state;
96struct robust_list_head;
97struct bio;
98
99/*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105/*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 *    a load-average precision of 10 bits integer + 11 bits fractional
110 *  - if you want to count load-averages more often, you need more
111 *    precision, or rounding will get you. With 2-second counting freq,
112 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
113 *    11 bit fractions.
114 */
115extern unsigned long avenrun[];		/* Load averages */
116
117#define FSHIFT		11		/* nr of bits of precision */
118#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
119#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
120#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
121#define EXP_5		2014		/* 1/exp(5sec/5min) */
122#define EXP_15		2037		/* 1/exp(5sec/15min) */
123
124#define CALC_LOAD(load,exp,n) \
125	load *= exp; \
126	load += n*(FIXED_1-exp); \
127	load >>= FSHIFT;
128
129extern unsigned long total_forks;
130extern int nr_threads;
131DECLARE_PER_CPU(unsigned long, process_counts);
132extern int nr_processes(void);
133extern unsigned long nr_running(void);
134extern unsigned long nr_uninterruptible(void);
135extern unsigned long nr_active(void);
136extern unsigned long nr_iowait(void);
137
138struct seq_file;
139struct cfs_rq;
140struct task_group;
141#ifdef CONFIG_SCHED_DEBUG
142extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143extern void proc_sched_set_task(struct task_struct *p);
144extern void
145print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146#else
147static inline void
148proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149{
150}
151static inline void proc_sched_set_task(struct task_struct *p)
152{
153}
154static inline void
155print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156{
157}
158#endif
159
160extern unsigned long long time_sync_thresh;
161
162/*
163 * Task state bitmask. NOTE! These bits are also
164 * encoded in fs/proc/array.c: get_task_state().
165 *
166 * We have two separate sets of flags: task->state
167 * is about runnability, while task->exit_state are
168 * about the task exiting. Confusing, but this way
169 * modifying one set can't modify the other one by
170 * mistake.
171 */
172#define TASK_RUNNING		0
173#define TASK_INTERRUPTIBLE	1
174#define TASK_UNINTERRUPTIBLE	2
175#define __TASK_STOPPED		4
176#define __TASK_TRACED		8
177/* in tsk->exit_state */
178#define EXIT_ZOMBIE		16
179#define EXIT_DEAD		32
180/* in tsk->state again */
181#define TASK_DEAD		64
182#define TASK_WAKEKILL		128
183
184/* Convenience macros for the sake of set_task_state */
185#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
186#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
187#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
188
189/* Convenience macros for the sake of wake_up */
190#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
191#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
192
193/* get_task_state() */
194#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
195				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
196				 __TASK_TRACED)
197
198#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
199#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
200#define task_is_stopped_or_traced(task)	\
201			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
202#define task_contributes_to_load(task)	\
203				((task->state & TASK_UNINTERRUPTIBLE) != 0)
204
205#define __set_task_state(tsk, state_value)		\
206	do { (tsk)->state = (state_value); } while (0)
207#define set_task_state(tsk, state_value)		\
208	set_mb((tsk)->state, (state_value))
209
210/*
211 * set_current_state() includes a barrier so that the write of current->state
212 * is correctly serialised wrt the caller's subsequent test of whether to
213 * actually sleep:
214 *
215 *	set_current_state(TASK_UNINTERRUPTIBLE);
216 *	if (do_i_need_to_sleep())
217 *		schedule();
218 *
219 * If the caller does not need such serialisation then use __set_current_state()
220 */
221#define __set_current_state(state_value)			\
222	do { current->state = (state_value); } while (0)
223#define set_current_state(state_value)		\
224	set_mb(current->state, (state_value))
225
226/* Task command name length */
227#define TASK_COMM_LEN 16
228
229#include <linux/spinlock.h>
230
231/*
232 * This serializes "schedule()" and also protects
233 * the run-queue from deletions/modifications (but
234 * _adding_ to the beginning of the run-queue has
235 * a separate lock).
236 */
237extern rwlock_t tasklist_lock;
238extern spinlock_t mmlist_lock;
239
240struct task_struct;
241
242extern void sched_init(void);
243extern void sched_init_smp(void);
244extern asmlinkage void schedule_tail(struct task_struct *prev);
245extern void init_idle(struct task_struct *idle, int cpu);
246extern void init_idle_bootup_task(struct task_struct *idle);
247
248extern int runqueue_is_locked(void);
249
250extern cpumask_t nohz_cpu_mask;
251#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
252extern int select_nohz_load_balancer(int cpu);
253#else
254static inline int select_nohz_load_balancer(int cpu)
255{
256	return 0;
257}
258#endif
259
260extern unsigned long rt_needs_cpu(int cpu);
261
262/*
263 * Only dump TASK_* tasks. (0 for all tasks)
264 */
265extern void show_state_filter(unsigned long state_filter);
266
267static inline void show_state(void)
268{
269	show_state_filter(0);
270}
271
272extern void show_regs(struct pt_regs *);
273
274/*
275 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276 * task), SP is the stack pointer of the first frame that should be shown in the back
277 * trace (or NULL if the entire call-chain of the task should be shown).
278 */
279extern void show_stack(struct task_struct *task, unsigned long *sp);
280
281void io_schedule(void);
282long io_schedule_timeout(long timeout);
283
284extern void cpu_init (void);
285extern void trap_init(void);
286extern void account_process_tick(struct task_struct *task, int user);
287extern void update_process_times(int user);
288extern void scheduler_tick(void);
289extern void hrtick_resched(void);
290
291extern void sched_show_task(struct task_struct *p);
292
293#ifdef CONFIG_DETECT_SOFTLOCKUP
294extern void softlockup_tick(void);
295extern void spawn_softlockup_task(void);
296extern void touch_softlockup_watchdog(void);
297extern void touch_all_softlockup_watchdogs(void);
298extern unsigned int  softlockup_panic;
299extern unsigned long sysctl_hung_task_check_count;
300extern unsigned long sysctl_hung_task_timeout_secs;
301extern unsigned long sysctl_hung_task_warnings;
302extern int softlockup_thresh;
303#else
304static inline void softlockup_tick(void)
305{
306}
307static inline void spawn_softlockup_task(void)
308{
309}
310static inline void touch_softlockup_watchdog(void)
311{
312}
313static inline void touch_all_softlockup_watchdogs(void)
314{
315}
316#endif
317
318
319/* Attach to any functions which should be ignored in wchan output. */
320#define __sched		__attribute__((__section__(".sched.text")))
321
322/* Linker adds these: start and end of __sched functions */
323extern char __sched_text_start[], __sched_text_end[];
324
325/* Is this address in the __sched functions? */
326extern int in_sched_functions(unsigned long addr);
327
328#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
329extern signed long schedule_timeout(signed long timeout);
330extern signed long schedule_timeout_interruptible(signed long timeout);
331extern signed long schedule_timeout_killable(signed long timeout);
332extern signed long schedule_timeout_uninterruptible(signed long timeout);
333asmlinkage void schedule(void);
334
335struct nsproxy;
336struct user_namespace;
337
338/* Maximum number of active map areas.. This is a random (large) number */
339#define DEFAULT_MAX_MAP_COUNT	65536
340
341extern int sysctl_max_map_count;
342
343#include <linux/aio.h>
344
345extern unsigned long
346arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347		       unsigned long, unsigned long);
348extern unsigned long
349arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350			  unsigned long len, unsigned long pgoff,
351			  unsigned long flags);
352extern void arch_unmap_area(struct mm_struct *, unsigned long);
353extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
356/*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
367/*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372#define get_mm_counter(mm, member) ((mm)->_##member)
373#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374#define inc_mm_counter(mm, member) (mm)->_##member++
375#define dec_mm_counter(mm, member) (mm)->_##member--
376
377#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
378
379#define get_mm_rss(mm)					\
380	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381#define update_hiwater_rss(mm)	do {			\
382	unsigned long _rss = get_mm_rss(mm);		\
383	if ((mm)->hiwater_rss < _rss)			\
384		(mm)->hiwater_rss = _rss;		\
385} while (0)
386#define update_hiwater_vm(mm)	do {			\
387	if ((mm)->hiwater_vm < (mm)->total_vm)		\
388		(mm)->hiwater_vm = (mm)->total_vm;	\
389} while (0)
390
391extern void set_dumpable(struct mm_struct *mm, int value);
392extern int get_dumpable(struct mm_struct *mm);
393
394/* mm flags */
395/* dumpable bits */
396#define MMF_DUMPABLE      0  /* core dump is permitted */
397#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
398#define MMF_DUMPABLE_BITS 2
399
400/* coredump filter bits */
401#define MMF_DUMP_ANON_PRIVATE	2
402#define MMF_DUMP_ANON_SHARED	3
403#define MMF_DUMP_MAPPED_PRIVATE	4
404#define MMF_DUMP_MAPPED_SHARED	5
405#define MMF_DUMP_ELF_HEADERS	6
406#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
407#define MMF_DUMP_FILTER_BITS	5
408#define MMF_DUMP_FILTER_MASK \
409	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410#define MMF_DUMP_FILTER_DEFAULT \
411	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED))
412
413struct sighand_struct {
414	atomic_t		count;
415	struct k_sigaction	action[_NSIG];
416	spinlock_t		siglock;
417	wait_queue_head_t	signalfd_wqh;
418};
419
420struct pacct_struct {
421	int			ac_flag;
422	long			ac_exitcode;
423	unsigned long		ac_mem;
424	cputime_t		ac_utime, ac_stime;
425	unsigned long		ac_minflt, ac_majflt;
426};
427
428/*
429 * NOTE! "signal_struct" does not have it's own
430 * locking, because a shared signal_struct always
431 * implies a shared sighand_struct, so locking
432 * sighand_struct is always a proper superset of
433 * the locking of signal_struct.
434 */
435struct signal_struct {
436	atomic_t		count;
437	atomic_t		live;
438
439	wait_queue_head_t	wait_chldexit;	/* for wait4() */
440
441	/* current thread group signal load-balancing target: */
442	struct task_struct	*curr_target;
443
444	/* shared signal handling: */
445	struct sigpending	shared_pending;
446
447	/* thread group exit support */
448	int			group_exit_code;
449	/* overloaded:
450	 * - notify group_exit_task when ->count is equal to notify_count
451	 * - everyone except group_exit_task is stopped during signal delivery
452	 *   of fatal signals, group_exit_task processes the signal.
453	 */
454	struct task_struct	*group_exit_task;
455	int			notify_count;
456
457	/* thread group stop support, overloads group_exit_code too */
458	int			group_stop_count;
459	unsigned int		flags; /* see SIGNAL_* flags below */
460
461	/* POSIX.1b Interval Timers */
462	struct list_head posix_timers;
463
464	/* ITIMER_REAL timer for the process */
465	struct hrtimer real_timer;
466	struct pid *leader_pid;
467	ktime_t it_real_incr;
468
469	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
470	cputime_t it_prof_expires, it_virt_expires;
471	cputime_t it_prof_incr, it_virt_incr;
472
473	/* job control IDs */
474
475	/*
476	 * pgrp and session fields are deprecated.
477	 * use the task_session_Xnr and task_pgrp_Xnr routines below
478	 */
479
480	union {
481		pid_t pgrp __deprecated;
482		pid_t __pgrp;
483	};
484
485	struct pid *tty_old_pgrp;
486
487	union {
488		pid_t session __deprecated;
489		pid_t __session;
490	};
491
492	/* boolean value for session group leader */
493	int leader;
494
495	struct tty_struct *tty; /* NULL if no tty */
496
497	/*
498	 * Cumulative resource counters for dead threads in the group,
499	 * and for reaped dead child processes forked by this group.
500	 * Live threads maintain their own counters and add to these
501	 * in __exit_signal, except for the group leader.
502	 */
503	cputime_t utime, stime, cutime, cstime;
504	cputime_t gtime;
505	cputime_t cgtime;
506	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
507	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
508	unsigned long inblock, oublock, cinblock, coublock;
509
510	/*
511	 * Cumulative ns of scheduled CPU time for dead threads in the
512	 * group, not including a zombie group leader.  (This only differs
513	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
514	 * other than jiffies.)
515	 */
516	unsigned long long sum_sched_runtime;
517
518	/*
519	 * We don't bother to synchronize most readers of this at all,
520	 * because there is no reader checking a limit that actually needs
521	 * to get both rlim_cur and rlim_max atomically, and either one
522	 * alone is a single word that can safely be read normally.
523	 * getrlimit/setrlimit use task_lock(current->group_leader) to
524	 * protect this instead of the siglock, because they really
525	 * have no need to disable irqs.
526	 */
527	struct rlimit rlim[RLIM_NLIMITS];
528
529	struct list_head cpu_timers[3];
530
531	/* keep the process-shared keyrings here so that they do the right
532	 * thing in threads created with CLONE_THREAD */
533#ifdef CONFIG_KEYS
534	struct key *session_keyring;	/* keyring inherited over fork */
535	struct key *process_keyring;	/* keyring private to this process */
536#endif
537#ifdef CONFIG_BSD_PROCESS_ACCT
538	struct pacct_struct pacct;	/* per-process accounting information */
539#endif
540#ifdef CONFIG_TASKSTATS
541	struct taskstats *stats;
542#endif
543#ifdef CONFIG_AUDIT
544	unsigned audit_tty;
545	struct tty_audit_buf *tty_audit_buf;
546#endif
547};
548
549/* Context switch must be unlocked if interrupts are to be enabled */
550#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551# define __ARCH_WANT_UNLOCKED_CTXSW
552#endif
553
554/*
555 * Bits in flags field of signal_struct.
556 */
557#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
558#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
559#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
560#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
561/*
562 * Pending notifications to parent.
563 */
564#define SIGNAL_CLD_STOPPED	0x00000010
565#define SIGNAL_CLD_CONTINUED	0x00000020
566#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
567
568#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
569
570/* If true, all threads except ->group_exit_task have pending SIGKILL */
571static inline int signal_group_exit(const struct signal_struct *sig)
572{
573	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
574		(sig->group_exit_task != NULL);
575}
576
577/*
578 * Some day this will be a full-fledged user tracking system..
579 */
580struct user_struct {
581	atomic_t __count;	/* reference count */
582	atomic_t processes;	/* How many processes does this user have? */
583	atomic_t files;		/* How many open files does this user have? */
584	atomic_t sigpending;	/* How many pending signals does this user have? */
585#ifdef CONFIG_INOTIFY_USER
586	atomic_t inotify_watches; /* How many inotify watches does this user have? */
587	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
588#endif
589#ifdef CONFIG_POSIX_MQUEUE
590	/* protected by mq_lock	*/
591	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
592#endif
593	unsigned long locked_shm; /* How many pages of mlocked shm ? */
594
595#ifdef CONFIG_KEYS
596	struct key *uid_keyring;	/* UID specific keyring */
597	struct key *session_keyring;	/* UID's default session keyring */
598#endif
599
600	/* Hash table maintenance information */
601	struct hlist_node uidhash_node;
602	uid_t uid;
603
604#ifdef CONFIG_USER_SCHED
605	struct task_group *tg;
606#ifdef CONFIG_SYSFS
607	struct kobject kobj;
608	struct work_struct work;
609#endif
610#endif
611};
612
613extern int uids_sysfs_init(void);
614
615extern struct user_struct *find_user(uid_t);
616
617extern struct user_struct root_user;
618#define INIT_USER (&root_user)
619
620struct backing_dev_info;
621struct reclaim_state;
622
623#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
624struct sched_info {
625	/* cumulative counters */
626	unsigned long pcount;	      /* # of times run on this cpu */
627	unsigned long long cpu_time,  /* time spent on the cpu */
628			   run_delay; /* time spent waiting on a runqueue */
629
630	/* timestamps */
631	unsigned long long last_arrival,/* when we last ran on a cpu */
632			   last_queued;	/* when we were last queued to run */
633#ifdef CONFIG_SCHEDSTATS
634	/* BKL stats */
635	unsigned int bkl_count;
636#endif
637};
638#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
639
640#ifdef CONFIG_SCHEDSTATS
641extern const struct file_operations proc_schedstat_operations;
642#endif /* CONFIG_SCHEDSTATS */
643
644#ifdef CONFIG_TASK_DELAY_ACCT
645struct task_delay_info {
646	spinlock_t	lock;
647	unsigned int	flags;	/* Private per-task flags */
648
649	/* For each stat XXX, add following, aligned appropriately
650	 *
651	 * struct timespec XXX_start, XXX_end;
652	 * u64 XXX_delay;
653	 * u32 XXX_count;
654	 *
655	 * Atomicity of updates to XXX_delay, XXX_count protected by
656	 * single lock above (split into XXX_lock if contention is an issue).
657	 */
658
659	/*
660	 * XXX_count is incremented on every XXX operation, the delay
661	 * associated with the operation is added to XXX_delay.
662	 * XXX_delay contains the accumulated delay time in nanoseconds.
663	 */
664	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
665	u64 blkio_delay;	/* wait for sync block io completion */
666	u64 swapin_delay;	/* wait for swapin block io completion */
667	u32 blkio_count;	/* total count of the number of sync block */
668				/* io operations performed */
669	u32 swapin_count;	/* total count of the number of swapin block */
670				/* io operations performed */
671};
672#endif	/* CONFIG_TASK_DELAY_ACCT */
673
674static inline int sched_info_on(void)
675{
676#ifdef CONFIG_SCHEDSTATS
677	return 1;
678#elif defined(CONFIG_TASK_DELAY_ACCT)
679	extern int delayacct_on;
680	return delayacct_on;
681#else
682	return 0;
683#endif
684}
685
686enum cpu_idle_type {
687	CPU_IDLE,
688	CPU_NOT_IDLE,
689	CPU_NEWLY_IDLE,
690	CPU_MAX_IDLE_TYPES
691};
692
693/*
694 * sched-domains (multiprocessor balancing) declarations:
695 */
696
697/*
698 * Increase resolution of nice-level calculations:
699 */
700#define SCHED_LOAD_SHIFT	10
701#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
702
703#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
704
705#ifdef CONFIG_SMP
706#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
707#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
708#define SD_BALANCE_EXEC		4	/* Balance on exec */
709#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
710#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
711#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
712#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
713#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
714#define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
715#define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
716#define SD_SERIALIZE		1024	/* Only a single load balancing instance */
717#define SD_WAKE_IDLE_FAR	2048	/* Gain latency sacrificing cache hit */
718
719#define BALANCE_FOR_MC_POWER	\
720	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
721
722#define BALANCE_FOR_PKG_POWER	\
723	((sched_mc_power_savings || sched_smt_power_savings) ?	\
724	 SD_POWERSAVINGS_BALANCE : 0)
725
726#define test_sd_parent(sd, flag)	((sd->parent &&		\
727					 (sd->parent->flags & flag)) ? 1 : 0)
728
729
730struct sched_group {
731	struct sched_group *next;	/* Must be a circular list */
732	cpumask_t cpumask;
733
734	/*
735	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
736	 * single CPU. This is read only (except for setup, hotplug CPU).
737	 * Note : Never change cpu_power without recompute its reciprocal
738	 */
739	unsigned int __cpu_power;
740	/*
741	 * reciprocal value of cpu_power to avoid expensive divides
742	 * (see include/linux/reciprocal_div.h)
743	 */
744	u32 reciprocal_cpu_power;
745};
746
747enum sched_domain_level {
748	SD_LV_NONE = 0,
749	SD_LV_SIBLING,
750	SD_LV_MC,
751	SD_LV_CPU,
752	SD_LV_NODE,
753	SD_LV_ALLNODES,
754	SD_LV_MAX
755};
756
757struct sched_domain_attr {
758	int relax_domain_level;
759};
760
761#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
762	.relax_domain_level = -1,			\
763}
764
765struct sched_domain {
766	/* These fields must be setup */
767	struct sched_domain *parent;	/* top domain must be null terminated */
768	struct sched_domain *child;	/* bottom domain must be null terminated */
769	struct sched_group *groups;	/* the balancing groups of the domain */
770	cpumask_t span;			/* span of all CPUs in this domain */
771	unsigned long min_interval;	/* Minimum balance interval ms */
772	unsigned long max_interval;	/* Maximum balance interval ms */
773	unsigned int busy_factor;	/* less balancing by factor if busy */
774	unsigned int imbalance_pct;	/* No balance until over watermark */
775	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
776	unsigned int busy_idx;
777	unsigned int idle_idx;
778	unsigned int newidle_idx;
779	unsigned int wake_idx;
780	unsigned int forkexec_idx;
781	int flags;			/* See SD_* */
782	enum sched_domain_level level;
783
784	/* Runtime fields. */
785	unsigned long last_balance;	/* init to jiffies. units in jiffies */
786	unsigned int balance_interval;	/* initialise to 1. units in ms. */
787	unsigned int nr_balance_failed; /* initialise to 0 */
788
789	u64 last_update;
790
791#ifdef CONFIG_SCHEDSTATS
792	/* load_balance() stats */
793	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
794	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
795	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
796	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
797	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
798	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
799	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
800	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
801
802	/* Active load balancing */
803	unsigned int alb_count;
804	unsigned int alb_failed;
805	unsigned int alb_pushed;
806
807	/* SD_BALANCE_EXEC stats */
808	unsigned int sbe_count;
809	unsigned int sbe_balanced;
810	unsigned int sbe_pushed;
811
812	/* SD_BALANCE_FORK stats */
813	unsigned int sbf_count;
814	unsigned int sbf_balanced;
815	unsigned int sbf_pushed;
816
817	/* try_to_wake_up() stats */
818	unsigned int ttwu_wake_remote;
819	unsigned int ttwu_move_affine;
820	unsigned int ttwu_move_balance;
821#endif
822};
823
824extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
825				    struct sched_domain_attr *dattr_new);
826extern int arch_reinit_sched_domains(void);
827
828#else /* CONFIG_SMP */
829
830struct sched_domain_attr;
831
832static inline void
833partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
834			struct sched_domain_attr *dattr_new)
835{
836}
837#endif	/* !CONFIG_SMP */
838
839struct io_context;			/* See blkdev.h */
840#define NGROUPS_SMALL		32
841#define NGROUPS_PER_BLOCK	((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
842struct group_info {
843	int ngroups;
844	atomic_t usage;
845	gid_t small_block[NGROUPS_SMALL];
846	int nblocks;
847	gid_t *blocks[0];
848};
849
850/*
851 * get_group_info() must be called with the owning task locked (via task_lock())
852 * when task != current.  The reason being that the vast majority of callers are
853 * looking at current->group_info, which can not be changed except by the
854 * current task.  Changing current->group_info requires the task lock, too.
855 */
856#define get_group_info(group_info) do { \
857	atomic_inc(&(group_info)->usage); \
858} while (0)
859
860#define put_group_info(group_info) do { \
861	if (atomic_dec_and_test(&(group_info)->usage)) \
862		groups_free(group_info); \
863} while (0)
864
865extern struct group_info *groups_alloc(int gidsetsize);
866extern void groups_free(struct group_info *group_info);
867extern int set_current_groups(struct group_info *group_info);
868extern int groups_search(struct group_info *group_info, gid_t grp);
869/* access the groups "array" with this macro */
870#define GROUP_AT(gi, i) \
871    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
872
873#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
874extern void prefetch_stack(struct task_struct *t);
875#else
876static inline void prefetch_stack(struct task_struct *t) { }
877#endif
878
879struct audit_context;		/* See audit.c */
880struct mempolicy;
881struct pipe_inode_info;
882struct uts_namespace;
883
884struct rq;
885struct sched_domain;
886
887struct sched_class {
888	const struct sched_class *next;
889
890	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
891	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
892	void (*yield_task) (struct rq *rq);
893	int  (*select_task_rq)(struct task_struct *p, int sync);
894
895	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
896
897	struct task_struct * (*pick_next_task) (struct rq *rq);
898	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
899
900#ifdef CONFIG_SMP
901	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
902			struct rq *busiest, unsigned long max_load_move,
903			struct sched_domain *sd, enum cpu_idle_type idle,
904			int *all_pinned, int *this_best_prio);
905
906	int (*move_one_task) (struct rq *this_rq, int this_cpu,
907			      struct rq *busiest, struct sched_domain *sd,
908			      enum cpu_idle_type idle);
909	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
910	void (*post_schedule) (struct rq *this_rq);
911	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
912#endif
913
914	void (*set_curr_task) (struct rq *rq);
915	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
916	void (*task_new) (struct rq *rq, struct task_struct *p);
917	void (*set_cpus_allowed)(struct task_struct *p,
918				 const cpumask_t *newmask);
919
920	void (*rq_online)(struct rq *rq);
921	void (*rq_offline)(struct rq *rq);
922
923	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
924			       int running);
925	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
926			     int running);
927	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
928			     int oldprio, int running);
929
930#ifdef CONFIG_FAIR_GROUP_SCHED
931	void (*moved_group) (struct task_struct *p);
932#endif
933};
934
935struct load_weight {
936	unsigned long weight, inv_weight;
937};
938
939/*
940 * CFS stats for a schedulable entity (task, task-group etc)
941 *
942 * Current field usage histogram:
943 *
944 *     4 se->block_start
945 *     4 se->run_node
946 *     4 se->sleep_start
947 *     6 se->load.weight
948 */
949struct sched_entity {
950	struct load_weight	load;		/* for load-balancing */
951	struct rb_node		run_node;
952	struct list_head	group_node;
953	unsigned int		on_rq;
954
955	u64			exec_start;
956	u64			sum_exec_runtime;
957	u64			vruntime;
958	u64			prev_sum_exec_runtime;
959
960	u64			last_wakeup;
961	u64			avg_overlap;
962
963#ifdef CONFIG_SCHEDSTATS
964	u64			wait_start;
965	u64			wait_max;
966	u64			wait_count;
967	u64			wait_sum;
968
969	u64			sleep_start;
970	u64			sleep_max;
971	s64			sum_sleep_runtime;
972
973	u64			block_start;
974	u64			block_max;
975	u64			exec_max;
976	u64			slice_max;
977
978	u64			nr_migrations;
979	u64			nr_migrations_cold;
980	u64			nr_failed_migrations_affine;
981	u64			nr_failed_migrations_running;
982	u64			nr_failed_migrations_hot;
983	u64			nr_forced_migrations;
984	u64			nr_forced2_migrations;
985
986	u64			nr_wakeups;
987	u64			nr_wakeups_sync;
988	u64			nr_wakeups_migrate;
989	u64			nr_wakeups_local;
990	u64			nr_wakeups_remote;
991	u64			nr_wakeups_affine;
992	u64			nr_wakeups_affine_attempts;
993	u64			nr_wakeups_passive;
994	u64			nr_wakeups_idle;
995#endif
996
997#ifdef CONFIG_FAIR_GROUP_SCHED
998	struct sched_entity	*parent;
999	/* rq on which this entity is (to be) queued: */
1000	struct cfs_rq		*cfs_rq;
1001	/* rq "owned" by this entity/group: */
1002	struct cfs_rq		*my_q;
1003#endif
1004};
1005
1006struct sched_rt_entity {
1007	struct list_head run_list;
1008	unsigned int time_slice;
1009	unsigned long timeout;
1010	int nr_cpus_allowed;
1011
1012	struct sched_rt_entity *back;
1013#ifdef CONFIG_RT_GROUP_SCHED
1014	struct sched_rt_entity	*parent;
1015	/* rq on which this entity is (to be) queued: */
1016	struct rt_rq		*rt_rq;
1017	/* rq "owned" by this entity/group: */
1018	struct rt_rq		*my_q;
1019#endif
1020};
1021
1022struct task_struct {
1023	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1024	void *stack;
1025	atomic_t usage;
1026	unsigned int flags;	/* per process flags, defined below */
1027	unsigned int ptrace;
1028
1029	int lock_depth;		/* BKL lock depth */
1030
1031#ifdef CONFIG_SMP
1032#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1033	int oncpu;
1034#endif
1035#endif
1036
1037	int prio, static_prio, normal_prio;
1038	unsigned int rt_priority;
1039	const struct sched_class *sched_class;
1040	struct sched_entity se;
1041	struct sched_rt_entity rt;
1042
1043#ifdef CONFIG_PREEMPT_NOTIFIERS
1044	/* list of struct preempt_notifier: */
1045	struct hlist_head preempt_notifiers;
1046#endif
1047
1048	/*
1049	 * fpu_counter contains the number of consecutive context switches
1050	 * that the FPU is used. If this is over a threshold, the lazy fpu
1051	 * saving becomes unlazy to save the trap. This is an unsigned char
1052	 * so that after 256 times the counter wraps and the behavior turns
1053	 * lazy again; this to deal with bursty apps that only use FPU for
1054	 * a short time
1055	 */
1056	unsigned char fpu_counter;
1057	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1058#ifdef CONFIG_BLK_DEV_IO_TRACE
1059	unsigned int btrace_seq;
1060#endif
1061
1062	unsigned int policy;
1063	cpumask_t cpus_allowed;
1064
1065#ifdef CONFIG_PREEMPT_RCU
1066	int rcu_read_lock_nesting;
1067	int rcu_flipctr_idx;
1068#endif /* #ifdef CONFIG_PREEMPT_RCU */
1069
1070#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1071	struct sched_info sched_info;
1072#endif
1073
1074	struct list_head tasks;
1075
1076	struct mm_struct *mm, *active_mm;
1077
1078/* task state */
1079	struct linux_binfmt *binfmt;
1080	int exit_state;
1081	int exit_code, exit_signal;
1082	int pdeath_signal;  /*  The signal sent when the parent dies  */
1083	/* ??? */
1084	unsigned int personality;
1085	unsigned did_exec:1;
1086	pid_t pid;
1087	pid_t tgid;
1088
1089#ifdef CONFIG_CC_STACKPROTECTOR
1090	/* Canary value for the -fstack-protector gcc feature */
1091	unsigned long stack_canary;
1092#endif
1093	/*
1094	 * pointers to (original) parent process, youngest child, younger sibling,
1095	 * older sibling, respectively.  (p->father can be replaced with
1096	 * p->real_parent->pid)
1097	 */
1098	struct task_struct *real_parent; /* real parent process */
1099	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1100	/*
1101	 * children/sibling forms the list of my natural children
1102	 */
1103	struct list_head children;	/* list of my children */
1104	struct list_head sibling;	/* linkage in my parent's children list */
1105	struct task_struct *group_leader;	/* threadgroup leader */
1106
1107	/*
1108	 * ptraced is the list of tasks this task is using ptrace on.
1109	 * This includes both natural children and PTRACE_ATTACH targets.
1110	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1111	 */
1112	struct list_head ptraced;
1113	struct list_head ptrace_entry;
1114
1115	/* PID/PID hash table linkage. */
1116	struct pid_link pids[PIDTYPE_MAX];
1117	struct list_head thread_group;
1118
1119	struct completion *vfork_done;		/* for vfork() */
1120	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1121	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1122
1123	cputime_t utime, stime, utimescaled, stimescaled;
1124	cputime_t gtime;
1125	cputime_t prev_utime, prev_stime;
1126	unsigned long nvcsw, nivcsw; /* context switch counts */
1127	struct timespec start_time; 		/* monotonic time */
1128	struct timespec real_start_time;	/* boot based time */
1129/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1130	unsigned long min_flt, maj_flt;
1131
1132  	cputime_t it_prof_expires, it_virt_expires;
1133	unsigned long long it_sched_expires;
1134	struct list_head cpu_timers[3];
1135
1136/* process credentials */
1137	uid_t uid,euid,suid,fsuid;
1138	gid_t gid,egid,sgid,fsgid;
1139	struct group_info *group_info;
1140	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1141	struct user_struct *user;
1142	unsigned securebits;
1143#ifdef CONFIG_KEYS
1144	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1145	struct key *request_key_auth;	/* assumed request_key authority */
1146	struct key *thread_keyring;	/* keyring private to this thread */
1147#endif
1148	char comm[TASK_COMM_LEN]; /* executable name excluding path
1149				     - access with [gs]et_task_comm (which lock
1150				       it with task_lock())
1151				     - initialized normally by flush_old_exec */
1152/* file system info */
1153	int link_count, total_link_count;
1154#ifdef CONFIG_SYSVIPC
1155/* ipc stuff */
1156	struct sysv_sem sysvsem;
1157#endif
1158#ifdef CONFIG_DETECT_SOFTLOCKUP
1159/* hung task detection */
1160	unsigned long last_switch_timestamp;
1161	unsigned long last_switch_count;
1162#endif
1163/* CPU-specific state of this task */
1164	struct thread_struct thread;
1165/* filesystem information */
1166	struct fs_struct *fs;
1167/* open file information */
1168	struct files_struct *files;
1169/* namespaces */
1170	struct nsproxy *nsproxy;
1171/* signal handlers */
1172	struct signal_struct *signal;
1173	struct sighand_struct *sighand;
1174
1175	sigset_t blocked, real_blocked;
1176	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1177	struct sigpending pending;
1178
1179	unsigned long sas_ss_sp;
1180	size_t sas_ss_size;
1181	int (*notifier)(void *priv);
1182	void *notifier_data;
1183	sigset_t *notifier_mask;
1184#ifdef CONFIG_SECURITY
1185	void *security;
1186#endif
1187	struct audit_context *audit_context;
1188#ifdef CONFIG_AUDITSYSCALL
1189	uid_t loginuid;
1190	unsigned int sessionid;
1191#endif
1192	seccomp_t seccomp;
1193
1194/* Thread group tracking */
1195   	u32 parent_exec_id;
1196   	u32 self_exec_id;
1197/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1198	spinlock_t alloc_lock;
1199
1200	/* Protection of the PI data structures: */
1201	spinlock_t pi_lock;
1202
1203#ifdef CONFIG_RT_MUTEXES
1204	/* PI waiters blocked on a rt_mutex held by this task */
1205	struct plist_head pi_waiters;
1206	/* Deadlock detection and priority inheritance handling */
1207	struct rt_mutex_waiter *pi_blocked_on;
1208#endif
1209
1210#ifdef CONFIG_DEBUG_MUTEXES
1211	/* mutex deadlock detection */
1212	struct mutex_waiter *blocked_on;
1213#endif
1214#ifdef CONFIG_TRACE_IRQFLAGS
1215	unsigned int irq_events;
1216	int hardirqs_enabled;
1217	unsigned long hardirq_enable_ip;
1218	unsigned int hardirq_enable_event;
1219	unsigned long hardirq_disable_ip;
1220	unsigned int hardirq_disable_event;
1221	int softirqs_enabled;
1222	unsigned long softirq_disable_ip;
1223	unsigned int softirq_disable_event;
1224	unsigned long softirq_enable_ip;
1225	unsigned int softirq_enable_event;
1226	int hardirq_context;
1227	int softirq_context;
1228#endif
1229#ifdef CONFIG_LOCKDEP
1230# define MAX_LOCK_DEPTH 48UL
1231	u64 curr_chain_key;
1232	int lockdep_depth;
1233	unsigned int lockdep_recursion;
1234	struct held_lock held_locks[MAX_LOCK_DEPTH];
1235#endif
1236
1237/* journalling filesystem info */
1238	void *journal_info;
1239
1240/* stacked block device info */
1241	struct bio *bio_list, **bio_tail;
1242
1243/* VM state */
1244	struct reclaim_state *reclaim_state;
1245
1246	struct backing_dev_info *backing_dev_info;
1247
1248	struct io_context *io_context;
1249
1250	unsigned long ptrace_message;
1251	siginfo_t *last_siginfo; /* For ptrace use.  */
1252#ifdef CONFIG_TASK_XACCT
1253/* i/o counters(bytes read/written, #syscalls */
1254	u64 rchar, wchar, syscr, syscw;
1255#endif
1256	struct task_io_accounting ioac;
1257#if defined(CONFIG_TASK_XACCT)
1258	u64 acct_rss_mem1;	/* accumulated rss usage */
1259	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1260	cputime_t acct_stimexpd;/* stime since last update */
1261#endif
1262#ifdef CONFIG_CPUSETS
1263	nodemask_t mems_allowed;
1264	int cpuset_mems_generation;
1265	int cpuset_mem_spread_rotor;
1266#endif
1267#ifdef CONFIG_CGROUPS
1268	/* Control Group info protected by css_set_lock */
1269	struct css_set *cgroups;
1270	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1271	struct list_head cg_list;
1272#endif
1273#ifdef CONFIG_FUTEX
1274	struct robust_list_head __user *robust_list;
1275#ifdef CONFIG_COMPAT
1276	struct compat_robust_list_head __user *compat_robust_list;
1277#endif
1278	struct list_head pi_state_list;
1279	struct futex_pi_state *pi_state_cache;
1280#endif
1281#ifdef CONFIG_NUMA
1282	struct mempolicy *mempolicy;
1283	short il_next;
1284#endif
1285	atomic_t fs_excl;	/* holding fs exclusive resources */
1286	struct rcu_head rcu;
1287
1288	/*
1289	 * cache last used pipe for splice
1290	 */
1291	struct pipe_inode_info *splice_pipe;
1292#ifdef	CONFIG_TASK_DELAY_ACCT
1293	struct task_delay_info *delays;
1294#endif
1295#ifdef CONFIG_FAULT_INJECTION
1296	int make_it_fail;
1297#endif
1298	struct prop_local_single dirties;
1299#ifdef CONFIG_LATENCYTOP
1300	int latency_record_count;
1301	struct latency_record latency_record[LT_SAVECOUNT];
1302#endif
1303};
1304
1305/*
1306 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1307 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1308 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1309 * values are inverted: lower p->prio value means higher priority.
1310 *
1311 * The MAX_USER_RT_PRIO value allows the actual maximum
1312 * RT priority to be separate from the value exported to
1313 * user-space.  This allows kernel threads to set their
1314 * priority to a value higher than any user task. Note:
1315 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1316 */
1317
1318#define MAX_USER_RT_PRIO	100
1319#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1320
1321#define MAX_PRIO		(MAX_RT_PRIO + 40)
1322#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1323
1324static inline int rt_prio(int prio)
1325{
1326	if (unlikely(prio < MAX_RT_PRIO))
1327		return 1;
1328	return 0;
1329}
1330
1331static inline int rt_task(struct task_struct *p)
1332{
1333	return rt_prio(p->prio);
1334}
1335
1336static inline void set_task_session(struct task_struct *tsk, pid_t session)
1337{
1338	tsk->signal->__session = session;
1339}
1340
1341static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1342{
1343	tsk->signal->__pgrp = pgrp;
1344}
1345
1346static inline struct pid *task_pid(struct task_struct *task)
1347{
1348	return task->pids[PIDTYPE_PID].pid;
1349}
1350
1351static inline struct pid *task_tgid(struct task_struct *task)
1352{
1353	return task->group_leader->pids[PIDTYPE_PID].pid;
1354}
1355
1356static inline struct pid *task_pgrp(struct task_struct *task)
1357{
1358	return task->group_leader->pids[PIDTYPE_PGID].pid;
1359}
1360
1361static inline struct pid *task_session(struct task_struct *task)
1362{
1363	return task->group_leader->pids[PIDTYPE_SID].pid;
1364}
1365
1366struct pid_namespace;
1367
1368/*
1369 * the helpers to get the task's different pids as they are seen
1370 * from various namespaces
1371 *
1372 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1373 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1374 *                     current.
1375 * task_xid_nr_ns()  : id seen from the ns specified;
1376 *
1377 * set_task_vxid()   : assigns a virtual id to a task;
1378 *
1379 * see also pid_nr() etc in include/linux/pid.h
1380 */
1381
1382static inline pid_t task_pid_nr(struct task_struct *tsk)
1383{
1384	return tsk->pid;
1385}
1386
1387pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1388
1389static inline pid_t task_pid_vnr(struct task_struct *tsk)
1390{
1391	return pid_vnr(task_pid(tsk));
1392}
1393
1394
1395static inline pid_t task_tgid_nr(struct task_struct *tsk)
1396{
1397	return tsk->tgid;
1398}
1399
1400pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1401
1402static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1403{
1404	return pid_vnr(task_tgid(tsk));
1405}
1406
1407
1408static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1409{
1410	return tsk->signal->__pgrp;
1411}
1412
1413pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1414
1415static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1416{
1417	return pid_vnr(task_pgrp(tsk));
1418}
1419
1420
1421static inline pid_t task_session_nr(struct task_struct *tsk)
1422{
1423	return tsk->signal->__session;
1424}
1425
1426pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1427
1428static inline pid_t task_session_vnr(struct task_struct *tsk)
1429{
1430	return pid_vnr(task_session(tsk));
1431}
1432
1433
1434/**
1435 * pid_alive - check that a task structure is not stale
1436 * @p: Task structure to be checked.
1437 *
1438 * Test if a process is not yet dead (at most zombie state)
1439 * If pid_alive fails, then pointers within the task structure
1440 * can be stale and must not be dereferenced.
1441 */
1442static inline int pid_alive(struct task_struct *p)
1443{
1444	return p->pids[PIDTYPE_PID].pid != NULL;
1445}
1446
1447/**
1448 * is_global_init - check if a task structure is init
1449 * @tsk: Task structure to be checked.
1450 *
1451 * Check if a task structure is the first user space task the kernel created.
1452 */
1453static inline int is_global_init(struct task_struct *tsk)
1454{
1455	return tsk->pid == 1;
1456}
1457
1458/*
1459 * is_container_init:
1460 * check whether in the task is init in its own pid namespace.
1461 */
1462extern int is_container_init(struct task_struct *tsk);
1463
1464extern struct pid *cad_pid;
1465
1466extern void free_task(struct task_struct *tsk);
1467#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1468
1469extern void __put_task_struct(struct task_struct *t);
1470
1471static inline void put_task_struct(struct task_struct *t)
1472{
1473	if (atomic_dec_and_test(&t->usage))
1474		__put_task_struct(t);
1475}
1476
1477/*
1478 * Per process flags
1479 */
1480#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1481					/* Not implemented yet, only for 486*/
1482#define PF_STARTING	0x00000002	/* being created */
1483#define PF_EXITING	0x00000004	/* getting shut down */
1484#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1485#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1486#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1487#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1488#define PF_DUMPCORE	0x00000200	/* dumped core */
1489#define PF_SIGNALED	0x00000400	/* killed by a signal */
1490#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1491#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1492#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1493#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1494#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1495#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1496#define PF_KSWAPD	0x00040000	/* I am kswapd */
1497#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1498#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1499#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1500#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1501#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1502#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1503#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1504#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1505#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1506#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1507#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1508#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1509
1510/*
1511 * Only the _current_ task can read/write to tsk->flags, but other
1512 * tasks can access tsk->flags in readonly mode for example
1513 * with tsk_used_math (like during threaded core dumping).
1514 * There is however an exception to this rule during ptrace
1515 * or during fork: the ptracer task is allowed to write to the
1516 * child->flags of its traced child (same goes for fork, the parent
1517 * can write to the child->flags), because we're guaranteed the
1518 * child is not running and in turn not changing child->flags
1519 * at the same time the parent does it.
1520 */
1521#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1522#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1523#define clear_used_math() clear_stopped_child_used_math(current)
1524#define set_used_math() set_stopped_child_used_math(current)
1525#define conditional_stopped_child_used_math(condition, child) \
1526	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1527#define conditional_used_math(condition) \
1528	conditional_stopped_child_used_math(condition, current)
1529#define copy_to_stopped_child_used_math(child) \
1530	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1531/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1532#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1533#define used_math() tsk_used_math(current)
1534
1535#ifdef CONFIG_SMP
1536extern int set_cpus_allowed_ptr(struct task_struct *p,
1537				const cpumask_t *new_mask);
1538#else
1539static inline int set_cpus_allowed_ptr(struct task_struct *p,
1540				       const cpumask_t *new_mask)
1541{
1542	if (!cpu_isset(0, *new_mask))
1543		return -EINVAL;
1544	return 0;
1545}
1546#endif
1547static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1548{
1549	return set_cpus_allowed_ptr(p, &new_mask);
1550}
1551
1552extern unsigned long long sched_clock(void);
1553
1554#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1555static inline void sched_clock_init(void)
1556{
1557}
1558
1559static inline u64 sched_clock_cpu(int cpu)
1560{
1561	return sched_clock();
1562}
1563
1564static inline void sched_clock_tick(void)
1565{
1566}
1567
1568static inline void sched_clock_idle_sleep_event(void)
1569{
1570}
1571
1572static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1573{
1574}
1575
1576#ifdef CONFIG_NO_HZ
1577static inline void sched_clock_tick_stop(int cpu)
1578{
1579}
1580
1581static inline void sched_clock_tick_start(int cpu)
1582{
1583}
1584#endif
1585
1586#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1587extern void sched_clock_init(void);
1588extern u64 sched_clock_cpu(int cpu);
1589extern void sched_clock_tick(void);
1590extern void sched_clock_idle_sleep_event(void);
1591extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1592#ifdef CONFIG_NO_HZ
1593extern void sched_clock_tick_stop(int cpu);
1594extern void sched_clock_tick_start(int cpu);
1595#endif
1596#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1597
1598/*
1599 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1600 * clock constructed from sched_clock():
1601 */
1602extern unsigned long long cpu_clock(int cpu);
1603
1604extern unsigned long long
1605task_sched_runtime(struct task_struct *task);
1606
1607/* sched_exec is called by processes performing an exec */
1608#ifdef CONFIG_SMP
1609extern void sched_exec(void);
1610#else
1611#define sched_exec()   {}
1612#endif
1613
1614extern void sched_clock_idle_sleep_event(void);
1615extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1616
1617#ifdef CONFIG_HOTPLUG_CPU
1618extern void idle_task_exit(void);
1619#else
1620static inline void idle_task_exit(void) {}
1621#endif
1622
1623extern void sched_idle_next(void);
1624
1625#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1626extern void wake_up_idle_cpu(int cpu);
1627#else
1628static inline void wake_up_idle_cpu(int cpu) { }
1629#endif
1630
1631#ifdef CONFIG_SCHED_DEBUG
1632extern unsigned int sysctl_sched_latency;
1633extern unsigned int sysctl_sched_min_granularity;
1634extern unsigned int sysctl_sched_wakeup_granularity;
1635extern unsigned int sysctl_sched_child_runs_first;
1636extern unsigned int sysctl_sched_features;
1637extern unsigned int sysctl_sched_migration_cost;
1638extern unsigned int sysctl_sched_nr_migrate;
1639extern unsigned int sysctl_sched_shares_ratelimit;
1640
1641int sched_nr_latency_handler(struct ctl_table *table, int write,
1642		struct file *file, void __user *buffer, size_t *length,
1643		loff_t *ppos);
1644#endif
1645extern unsigned int sysctl_sched_rt_period;
1646extern int sysctl_sched_rt_runtime;
1647
1648int sched_rt_handler(struct ctl_table *table, int write,
1649		struct file *filp, void __user *buffer, size_t *lenp,
1650		loff_t *ppos);
1651
1652extern unsigned int sysctl_sched_compat_yield;
1653
1654#ifdef CONFIG_RT_MUTEXES
1655extern int rt_mutex_getprio(struct task_struct *p);
1656extern void rt_mutex_setprio(struct task_struct *p, int prio);
1657extern void rt_mutex_adjust_pi(struct task_struct *p);
1658#else
1659static inline int rt_mutex_getprio(struct task_struct *p)
1660{
1661	return p->normal_prio;
1662}
1663# define rt_mutex_adjust_pi(p)		do { } while (0)
1664#endif
1665
1666extern void set_user_nice(struct task_struct *p, long nice);
1667extern int task_prio(const struct task_struct *p);
1668extern int task_nice(const struct task_struct *p);
1669extern int can_nice(const struct task_struct *p, const int nice);
1670extern int task_curr(const struct task_struct *p);
1671extern int idle_cpu(int cpu);
1672extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1673extern int sched_setscheduler_nocheck(struct task_struct *, int,
1674				      struct sched_param *);
1675extern struct task_struct *idle_task(int cpu);
1676extern struct task_struct *curr_task(int cpu);
1677extern void set_curr_task(int cpu, struct task_struct *p);
1678
1679void yield(void);
1680
1681/*
1682 * The default (Linux) execution domain.
1683 */
1684extern struct exec_domain	default_exec_domain;
1685
1686union thread_union {
1687	struct thread_info thread_info;
1688	unsigned long stack[THREAD_SIZE/sizeof(long)];
1689};
1690
1691#ifndef __HAVE_ARCH_KSTACK_END
1692static inline int kstack_end(void *addr)
1693{
1694	/* Reliable end of stack detection:
1695	 * Some APM bios versions misalign the stack
1696	 */
1697	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1698}
1699#endif
1700
1701extern union thread_union init_thread_union;
1702extern struct task_struct init_task;
1703
1704extern struct   mm_struct init_mm;
1705
1706extern struct pid_namespace init_pid_ns;
1707
1708/*
1709 * find a task by one of its numerical ids
1710 *
1711 * find_task_by_pid_type_ns():
1712 *      it is the most generic call - it finds a task by all id,
1713 *      type and namespace specified
1714 * find_task_by_pid_ns():
1715 *      finds a task by its pid in the specified namespace
1716 * find_task_by_vpid():
1717 *      finds a task by its virtual pid
1718 * find_task_by_pid():
1719 *      finds a task by its global pid
1720 *
1721 * see also find_pid() etc in include/linux/pid.h
1722 */
1723
1724extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1725		struct pid_namespace *ns);
1726
1727static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1728{
1729	return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1730}
1731extern struct task_struct *find_task_by_vpid(pid_t nr);
1732extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1733		struct pid_namespace *ns);
1734
1735extern void __set_special_pids(struct pid *pid);
1736
1737/* per-UID process charging. */
1738extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1739static inline struct user_struct *get_uid(struct user_struct *u)
1740{
1741	atomic_inc(&u->__count);
1742	return u;
1743}
1744extern void free_uid(struct user_struct *);
1745extern void switch_uid(struct user_struct *);
1746extern void release_uids(struct user_namespace *ns);
1747
1748#include <asm/current.h>
1749
1750extern void do_timer(unsigned long ticks);
1751
1752extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1753extern int wake_up_process(struct task_struct *tsk);
1754extern void wake_up_new_task(struct task_struct *tsk,
1755				unsigned long clone_flags);
1756#ifdef CONFIG_SMP
1757 extern void kick_process(struct task_struct *tsk);
1758#else
1759 static inline void kick_process(struct task_struct *tsk) { }
1760#endif
1761extern void sched_fork(struct task_struct *p, int clone_flags);
1762extern void sched_dead(struct task_struct *p);
1763
1764extern int in_group_p(gid_t);
1765extern int in_egroup_p(gid_t);
1766
1767extern void proc_caches_init(void);
1768extern void flush_signals(struct task_struct *);
1769extern void ignore_signals(struct task_struct *);
1770extern void flush_signal_handlers(struct task_struct *, int force_default);
1771extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1772
1773static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1774{
1775	unsigned long flags;
1776	int ret;
1777
1778	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1779	ret = dequeue_signal(tsk, mask, info);
1780	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1781
1782	return ret;
1783}
1784
1785extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1786			      sigset_t *mask);
1787extern void unblock_all_signals(void);
1788extern void release_task(struct task_struct * p);
1789extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1790extern int force_sigsegv(int, struct task_struct *);
1791extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1792extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1793extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1794extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1795extern int kill_pgrp(struct pid *pid, int sig, int priv);
1796extern int kill_pid(struct pid *pid, int sig, int priv);
1797extern int kill_proc_info(int, struct siginfo *, pid_t);
1798extern void do_notify_parent(struct task_struct *, int);
1799extern void force_sig(int, struct task_struct *);
1800extern void force_sig_specific(int, struct task_struct *);
1801extern int send_sig(int, struct task_struct *, int);
1802extern void zap_other_threads(struct task_struct *p);
1803extern int kill_proc(pid_t, int, int);
1804extern struct sigqueue *sigqueue_alloc(void);
1805extern void sigqueue_free(struct sigqueue *);
1806extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1807extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1808extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1809
1810static inline int kill_cad_pid(int sig, int priv)
1811{
1812	return kill_pid(cad_pid, sig, priv);
1813}
1814
1815/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1816#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1817#define SEND_SIG_PRIV	((struct siginfo *) 1)
1818#define SEND_SIG_FORCED	((struct siginfo *) 2)
1819
1820static inline int is_si_special(const struct siginfo *info)
1821{
1822	return info <= SEND_SIG_FORCED;
1823}
1824
1825/* True if we are on the alternate signal stack.  */
1826
1827static inline int on_sig_stack(unsigned long sp)
1828{
1829	return (sp - current->sas_ss_sp < current->sas_ss_size);
1830}
1831
1832static inline int sas_ss_flags(unsigned long sp)
1833{
1834	return (current->sas_ss_size == 0 ? SS_DISABLE
1835		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1836}
1837
1838/*
1839 * Routines for handling mm_structs
1840 */
1841extern struct mm_struct * mm_alloc(void);
1842
1843/* mmdrop drops the mm and the page tables */
1844extern void __mmdrop(struct mm_struct *);
1845static inline void mmdrop(struct mm_struct * mm)
1846{
1847	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1848		__mmdrop(mm);
1849}
1850
1851/* mmput gets rid of the mappings and all user-space */
1852extern void mmput(struct mm_struct *);
1853/* Grab a reference to a task's mm, if it is not already going away */
1854extern struct mm_struct *get_task_mm(struct task_struct *task);
1855/* Remove the current tasks stale references to the old mm_struct */
1856extern void mm_release(struct task_struct *, struct mm_struct *);
1857/* Allocate a new mm structure and copy contents from tsk->mm */
1858extern struct mm_struct *dup_mm(struct task_struct *tsk);
1859
1860extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1861extern void flush_thread(void);
1862extern void exit_thread(void);
1863
1864extern void exit_files(struct task_struct *);
1865extern void __cleanup_signal(struct signal_struct *);
1866extern void __cleanup_sighand(struct sighand_struct *);
1867
1868extern void exit_itimers(struct signal_struct *);
1869extern void flush_itimer_signals(void);
1870
1871extern NORET_TYPE void do_group_exit(int);
1872
1873extern void daemonize(const char *, ...);
1874extern int allow_signal(int);
1875extern int disallow_signal(int);
1876
1877extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1878extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1879struct task_struct *fork_idle(int);
1880
1881extern void set_task_comm(struct task_struct *tsk, char *from);
1882extern char *get_task_comm(char *to, struct task_struct *tsk);
1883
1884#ifdef CONFIG_SMP
1885extern void wait_task_inactive(struct task_struct * p);
1886#else
1887#define wait_task_inactive(p)	do { } while (0)
1888#endif
1889
1890#define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1891
1892#define for_each_process(p) \
1893	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1894
1895/*
1896 * Careful: do_each_thread/while_each_thread is a double loop so
1897 *          'break' will not work as expected - use goto instead.
1898 */
1899#define do_each_thread(g, t) \
1900	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1901
1902#define while_each_thread(g, t) \
1903	while ((t = next_thread(t)) != g)
1904
1905/* de_thread depends on thread_group_leader not being a pid based check */
1906#define thread_group_leader(p)	(p == p->group_leader)
1907
1908/* Do to the insanities of de_thread it is possible for a process
1909 * to have the pid of the thread group leader without actually being
1910 * the thread group leader.  For iteration through the pids in proc
1911 * all we care about is that we have a task with the appropriate
1912 * pid, we don't actually care if we have the right task.
1913 */
1914static inline int has_group_leader_pid(struct task_struct *p)
1915{
1916	return p->pid == p->tgid;
1917}
1918
1919static inline
1920int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1921{
1922	return p1->tgid == p2->tgid;
1923}
1924
1925static inline struct task_struct *next_thread(const struct task_struct *p)
1926{
1927	return list_entry(rcu_dereference(p->thread_group.next),
1928			  struct task_struct, thread_group);
1929}
1930
1931static inline int thread_group_empty(struct task_struct *p)
1932{
1933	return list_empty(&p->thread_group);
1934}
1935
1936#define delay_group_leader(p) \
1937		(thread_group_leader(p) && !thread_group_empty(p))
1938
1939/*
1940 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1941 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1942 * pins the final release of task.io_context.  Also protects ->cpuset and
1943 * ->cgroup.subsys[].
1944 *
1945 * Nests both inside and outside of read_lock(&tasklist_lock).
1946 * It must not be nested with write_lock_irq(&tasklist_lock),
1947 * neither inside nor outside.
1948 */
1949static inline void task_lock(struct task_struct *p)
1950{
1951	spin_lock(&p->alloc_lock);
1952}
1953
1954static inline void task_unlock(struct task_struct *p)
1955{
1956	spin_unlock(&p->alloc_lock);
1957}
1958
1959extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1960							unsigned long *flags);
1961
1962static inline void unlock_task_sighand(struct task_struct *tsk,
1963						unsigned long *flags)
1964{
1965	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1966}
1967
1968#ifndef __HAVE_THREAD_FUNCTIONS
1969
1970#define task_thread_info(task)	((struct thread_info *)(task)->stack)
1971#define task_stack_page(task)	((task)->stack)
1972
1973static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1974{
1975	*task_thread_info(p) = *task_thread_info(org);
1976	task_thread_info(p)->task = p;
1977}
1978
1979static inline unsigned long *end_of_stack(struct task_struct *p)
1980{
1981	return (unsigned long *)(task_thread_info(p) + 1);
1982}
1983
1984#endif
1985
1986static inline int object_is_on_stack(void *obj)
1987{
1988	void *stack = task_stack_page(current);
1989
1990	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1991}
1992
1993extern void thread_info_cache_init(void);
1994
1995/* set thread flags in other task's structures
1996 * - see asm/thread_info.h for TIF_xxxx flags available
1997 */
1998static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1999{
2000	set_ti_thread_flag(task_thread_info(tsk), flag);
2001}
2002
2003static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2004{
2005	clear_ti_thread_flag(task_thread_info(tsk), flag);
2006}
2007
2008static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2009{
2010	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2011}
2012
2013static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2014{
2015	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2016}
2017
2018static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2019{
2020	return test_ti_thread_flag(task_thread_info(tsk), flag);
2021}
2022
2023static inline void set_tsk_need_resched(struct task_struct *tsk)
2024{
2025	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2026}
2027
2028static inline void clear_tsk_need_resched(struct task_struct *tsk)
2029{
2030	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2031}
2032
2033static inline int test_tsk_need_resched(struct task_struct *tsk)
2034{
2035	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2036}
2037
2038static inline int signal_pending(struct task_struct *p)
2039{
2040	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2041}
2042
2043extern int __fatal_signal_pending(struct task_struct *p);
2044
2045static inline int fatal_signal_pending(struct task_struct *p)
2046{
2047	return signal_pending(p) && __fatal_signal_pending(p);
2048}
2049
2050static inline int signal_pending_state(long state, struct task_struct *p)
2051{
2052	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2053		return 0;
2054	if (!signal_pending(p))
2055		return 0;
2056
2057	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2058}
2059
2060static inline int need_resched(void)
2061{
2062	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2063}
2064
2065/*
2066 * cond_resched() and cond_resched_lock(): latency reduction via
2067 * explicit rescheduling in places that are safe. The return
2068 * value indicates whether a reschedule was done in fact.
2069 * cond_resched_lock() will drop the spinlock before scheduling,
2070 * cond_resched_softirq() will enable bhs before scheduling.
2071 */
2072extern int _cond_resched(void);
2073#ifdef CONFIG_PREEMPT_BKL
2074static inline int cond_resched(void)
2075{
2076	return 0;
2077}
2078#else
2079static inline int cond_resched(void)
2080{
2081	return _cond_resched();
2082}
2083#endif
2084extern int cond_resched_lock(spinlock_t * lock);
2085extern int cond_resched_softirq(void);
2086static inline int cond_resched_bkl(void)
2087{
2088	return _cond_resched();
2089}
2090
2091/*
2092 * Does a critical section need to be broken due to another
2093 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2094 * but a general need for low latency)
2095 */
2096static inline int spin_needbreak(spinlock_t *lock)
2097{
2098#ifdef CONFIG_PREEMPT
2099	return spin_is_contended(lock);
2100#else
2101	return 0;
2102#endif
2103}
2104
2105/*
2106 * Reevaluate whether the task has signals pending delivery.
2107 * Wake the task if so.
2108 * This is required every time the blocked sigset_t changes.
2109 * callers must hold sighand->siglock.
2110 */
2111extern void recalc_sigpending_and_wake(struct task_struct *t);
2112extern void recalc_sigpending(void);
2113
2114extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2115
2116/*
2117 * Wrappers for p->thread_info->cpu access. No-op on UP.
2118 */
2119#ifdef CONFIG_SMP
2120
2121static inline unsigned int task_cpu(const struct task_struct *p)
2122{
2123	return task_thread_info(p)->cpu;
2124}
2125
2126extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2127
2128#else
2129
2130static inline unsigned int task_cpu(const struct task_struct *p)
2131{
2132	return 0;
2133}
2134
2135static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2136{
2137}
2138
2139#endif /* CONFIG_SMP */
2140
2141#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2142extern void arch_pick_mmap_layout(struct mm_struct *mm);
2143#else
2144static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2145{
2146	mm->mmap_base = TASK_UNMAPPED_BASE;
2147	mm->get_unmapped_area = arch_get_unmapped_area;
2148	mm->unmap_area = arch_unmap_area;
2149}
2150#endif
2151
2152#ifdef CONFIG_TRACING
2153extern void
2154__trace_special(void *__tr, void *__data,
2155		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2156#else
2157static inline void
2158__trace_special(void *__tr, void *__data,
2159		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2160{
2161}
2162#endif
2163
2164extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2165extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2166
2167extern int sched_mc_power_savings, sched_smt_power_savings;
2168
2169extern void normalize_rt_tasks(void);
2170
2171#ifdef CONFIG_GROUP_SCHED
2172
2173extern struct task_group init_task_group;
2174#ifdef CONFIG_USER_SCHED
2175extern struct task_group root_task_group;
2176#endif
2177
2178extern struct task_group *sched_create_group(struct task_group *parent);
2179extern void sched_destroy_group(struct task_group *tg);
2180extern void sched_move_task(struct task_struct *tsk);
2181#ifdef CONFIG_FAIR_GROUP_SCHED
2182extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2183extern unsigned long sched_group_shares(struct task_group *tg);
2184#endif
2185#ifdef CONFIG_RT_GROUP_SCHED
2186extern int sched_group_set_rt_runtime(struct task_group *tg,
2187				      long rt_runtime_us);
2188extern long sched_group_rt_runtime(struct task_group *tg);
2189extern int sched_group_set_rt_period(struct task_group *tg,
2190				      long rt_period_us);
2191extern long sched_group_rt_period(struct task_group *tg);
2192#endif
2193#endif
2194
2195#ifdef CONFIG_TASK_XACCT
2196static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2197{
2198	tsk->rchar += amt;
2199}
2200
2201static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2202{
2203	tsk->wchar += amt;
2204}
2205
2206static inline void inc_syscr(struct task_struct *tsk)
2207{
2208	tsk->syscr++;
2209}
2210
2211static inline void inc_syscw(struct task_struct *tsk)
2212{
2213	tsk->syscw++;
2214}
2215#else
2216static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2217{
2218}
2219
2220static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2221{
2222}
2223
2224static inline void inc_syscr(struct task_struct *tsk)
2225{
2226}
2227
2228static inline void inc_syscw(struct task_struct *tsk)
2229{
2230}
2231#endif
2232
2233#ifdef CONFIG_SMP
2234void migration_init(void);
2235#else
2236static inline void migration_init(void)
2237{
2238}
2239#endif
2240
2241#ifndef TASK_SIZE_OF
2242#define TASK_SIZE_OF(tsk)	TASK_SIZE
2243#endif
2244
2245#ifdef CONFIG_MM_OWNER
2246extern void mm_update_next_owner(struct mm_struct *mm);
2247extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2248#else
2249static inline void mm_update_next_owner(struct mm_struct *mm)
2250{
2251}
2252
2253static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2254{
2255}
2256#endif /* CONFIG_MM_OWNER */
2257
2258#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2259
2260#endif /* __KERNEL__ */
2261
2262#endif
2263