sched.h revision 690cc3ffe33ac4a2857583c22d4c6244ae11684d
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45	int sched_priority;
46};
47
48#include <asm/param.h>	/* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/page.h>
65#include <asm/ptrace.h>
66#include <asm/cputime.h>
67
68#include <linux/smp.h>
69#include <linux/sem.h>
70#include <linux/signal.h>
71#include <linux/path.h>
72#include <linux/compiler.h>
73#include <linux/completion.h>
74#include <linux/pid.h>
75#include <linux/percpu.h>
76#include <linux/topology.h>
77#include <linux/proportions.h>
78#include <linux/seccomp.h>
79#include <linux/rcupdate.h>
80#include <linux/rtmutex.h>
81
82#include <linux/time.h>
83#include <linux/param.h>
84#include <linux/resource.h>
85#include <linux/timer.h>
86#include <linux/hrtimer.h>
87#include <linux/task_io_accounting.h>
88#include <linux/kobject.h>
89#include <linux/latencytop.h>
90#include <linux/cred.h>
91
92#include <asm/processor.h>
93
94struct mem_cgroup;
95struct exec_domain;
96struct futex_pi_state;
97struct robust_list_head;
98struct bio;
99struct bts_tracer;
100struct fs_struct;
101
102/*
103 * List of flags we want to share for kernel threads,
104 * if only because they are not used by them anyway.
105 */
106#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
107
108/*
109 * These are the constant used to fake the fixed-point load-average
110 * counting. Some notes:
111 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
112 *    a load-average precision of 10 bits integer + 11 bits fractional
113 *  - if you want to count load-averages more often, you need more
114 *    precision, or rounding will get you. With 2-second counting freq,
115 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
116 *    11 bit fractions.
117 */
118extern unsigned long avenrun[];		/* Load averages */
119
120#define FSHIFT		11		/* nr of bits of precision */
121#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
122#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
123#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
124#define EXP_5		2014		/* 1/exp(5sec/5min) */
125#define EXP_15		2037		/* 1/exp(5sec/15min) */
126
127#define CALC_LOAD(load,exp,n) \
128	load *= exp; \
129	load += n*(FIXED_1-exp); \
130	load >>= FSHIFT;
131
132extern unsigned long total_forks;
133extern int nr_threads;
134DECLARE_PER_CPU(unsigned long, process_counts);
135extern int nr_processes(void);
136extern unsigned long nr_running(void);
137extern unsigned long nr_uninterruptible(void);
138extern unsigned long nr_active(void);
139extern unsigned long nr_iowait(void);
140
141extern unsigned long get_parent_ip(unsigned long addr);
142
143struct seq_file;
144struct cfs_rq;
145struct task_group;
146#ifdef CONFIG_SCHED_DEBUG
147extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
148extern void proc_sched_set_task(struct task_struct *p);
149extern void
150print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
151#else
152static inline void
153proc_sched_show_task(struct task_struct *p, struct seq_file *m)
154{
155}
156static inline void proc_sched_set_task(struct task_struct *p)
157{
158}
159static inline void
160print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
161{
162}
163#endif
164
165extern unsigned long long time_sync_thresh;
166
167/*
168 * Task state bitmask. NOTE! These bits are also
169 * encoded in fs/proc/array.c: get_task_state().
170 *
171 * We have two separate sets of flags: task->state
172 * is about runnability, while task->exit_state are
173 * about the task exiting. Confusing, but this way
174 * modifying one set can't modify the other one by
175 * mistake.
176 */
177#define TASK_RUNNING		0
178#define TASK_INTERRUPTIBLE	1
179#define TASK_UNINTERRUPTIBLE	2
180#define __TASK_STOPPED		4
181#define __TASK_TRACED		8
182/* in tsk->exit_state */
183#define EXIT_ZOMBIE		16
184#define EXIT_DEAD		32
185/* in tsk->state again */
186#define TASK_DEAD		64
187#define TASK_WAKEKILL		128
188
189/* Convenience macros for the sake of set_task_state */
190#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
191#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
192#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
193
194/* Convenience macros for the sake of wake_up */
195#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
196#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
197
198/* get_task_state() */
199#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
200				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
201				 __TASK_TRACED)
202
203#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
204#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
205#define task_is_stopped_or_traced(task)	\
206			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
207#define task_contributes_to_load(task)	\
208				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
209				 (task->flags & PF_FROZEN) == 0)
210
211#define __set_task_state(tsk, state_value)		\
212	do { (tsk)->state = (state_value); } while (0)
213#define set_task_state(tsk, state_value)		\
214	set_mb((tsk)->state, (state_value))
215
216/*
217 * set_current_state() includes a barrier so that the write of current->state
218 * is correctly serialised wrt the caller's subsequent test of whether to
219 * actually sleep:
220 *
221 *	set_current_state(TASK_UNINTERRUPTIBLE);
222 *	if (do_i_need_to_sleep())
223 *		schedule();
224 *
225 * If the caller does not need such serialisation then use __set_current_state()
226 */
227#define __set_current_state(state_value)			\
228	do { current->state = (state_value); } while (0)
229#define set_current_state(state_value)		\
230	set_mb(current->state, (state_value))
231
232/* Task command name length */
233#define TASK_COMM_LEN 16
234
235#include <linux/spinlock.h>
236
237/*
238 * This serializes "schedule()" and also protects
239 * the run-queue from deletions/modifications (but
240 * _adding_ to the beginning of the run-queue has
241 * a separate lock).
242 */
243extern rwlock_t tasklist_lock;
244extern spinlock_t mmlist_lock;
245
246struct task_struct;
247
248extern void sched_init(void);
249extern void sched_init_smp(void);
250extern asmlinkage void schedule_tail(struct task_struct *prev);
251extern void init_idle(struct task_struct *idle, int cpu);
252extern void init_idle_bootup_task(struct task_struct *idle);
253
254extern int runqueue_is_locked(void);
255extern void task_rq_unlock_wait(struct task_struct *p);
256
257extern cpumask_var_t nohz_cpu_mask;
258#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
259extern int select_nohz_load_balancer(int cpu);
260#else
261static inline int select_nohz_load_balancer(int cpu)
262{
263	return 0;
264}
265#endif
266
267/*
268 * Only dump TASK_* tasks. (0 for all tasks)
269 */
270extern void show_state_filter(unsigned long state_filter);
271
272static inline void show_state(void)
273{
274	show_state_filter(0);
275}
276
277extern void show_regs(struct pt_regs *);
278
279/*
280 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
281 * task), SP is the stack pointer of the first frame that should be shown in the back
282 * trace (or NULL if the entire call-chain of the task should be shown).
283 */
284extern void show_stack(struct task_struct *task, unsigned long *sp);
285
286void io_schedule(void);
287long io_schedule_timeout(long timeout);
288
289extern void cpu_init (void);
290extern void trap_init(void);
291extern void update_process_times(int user);
292extern void scheduler_tick(void);
293
294extern void sched_show_task(struct task_struct *p);
295
296#ifdef CONFIG_DETECT_SOFTLOCKUP
297extern void softlockup_tick(void);
298extern void touch_softlockup_watchdog(void);
299extern void touch_all_softlockup_watchdogs(void);
300extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
301				    struct file *filp, void __user *buffer,
302				    size_t *lenp, loff_t *ppos);
303extern unsigned int  softlockup_panic;
304extern int softlockup_thresh;
305#else
306static inline void softlockup_tick(void)
307{
308}
309static inline void touch_softlockup_watchdog(void)
310{
311}
312static inline void touch_all_softlockup_watchdogs(void)
313{
314}
315#endif
316
317#ifdef CONFIG_DETECT_HUNG_TASK
318extern unsigned int  sysctl_hung_task_panic;
319extern unsigned long sysctl_hung_task_check_count;
320extern unsigned long sysctl_hung_task_timeout_secs;
321extern unsigned long sysctl_hung_task_warnings;
322extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
323					 struct file *filp, void __user *buffer,
324					 size_t *lenp, loff_t *ppos);
325#endif
326
327/* Attach to any functions which should be ignored in wchan output. */
328#define __sched		__attribute__((__section__(".sched.text")))
329
330/* Linker adds these: start and end of __sched functions */
331extern char __sched_text_start[], __sched_text_end[];
332
333/* Is this address in the __sched functions? */
334extern int in_sched_functions(unsigned long addr);
335
336#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
337extern signed long schedule_timeout(signed long timeout);
338extern signed long schedule_timeout_interruptible(signed long timeout);
339extern signed long schedule_timeout_killable(signed long timeout);
340extern signed long schedule_timeout_uninterruptible(signed long timeout);
341asmlinkage void __schedule(void);
342asmlinkage void schedule(void);
343extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
344
345struct nsproxy;
346struct user_namespace;
347
348/* Maximum number of active map areas.. This is a random (large) number */
349#define DEFAULT_MAX_MAP_COUNT	65536
350
351extern int sysctl_max_map_count;
352
353#include <linux/aio.h>
354
355extern unsigned long
356arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
357		       unsigned long, unsigned long);
358extern unsigned long
359arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
360			  unsigned long len, unsigned long pgoff,
361			  unsigned long flags);
362extern void arch_unmap_area(struct mm_struct *, unsigned long);
363extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
364
365#if USE_SPLIT_PTLOCKS
366/*
367 * The mm counters are not protected by its page_table_lock,
368 * so must be incremented atomically.
369 */
370#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
371#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
372#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
373#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
374#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
375
376#else  /* !USE_SPLIT_PTLOCKS */
377/*
378 * The mm counters are protected by its page_table_lock,
379 * so can be incremented directly.
380 */
381#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
382#define get_mm_counter(mm, member) ((mm)->_##member)
383#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
384#define inc_mm_counter(mm, member) (mm)->_##member++
385#define dec_mm_counter(mm, member) (mm)->_##member--
386
387#endif /* !USE_SPLIT_PTLOCKS */
388
389#define get_mm_rss(mm)					\
390	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
391#define update_hiwater_rss(mm)	do {			\
392	unsigned long _rss = get_mm_rss(mm);		\
393	if ((mm)->hiwater_rss < _rss)			\
394		(mm)->hiwater_rss = _rss;		\
395} while (0)
396#define update_hiwater_vm(mm)	do {			\
397	if ((mm)->hiwater_vm < (mm)->total_vm)		\
398		(mm)->hiwater_vm = (mm)->total_vm;	\
399} while (0)
400
401static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
402{
403	return max(mm->hiwater_rss, get_mm_rss(mm));
404}
405
406static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
407{
408	return max(mm->hiwater_vm, mm->total_vm);
409}
410
411extern void set_dumpable(struct mm_struct *mm, int value);
412extern int get_dumpable(struct mm_struct *mm);
413
414/* mm flags */
415/* dumpable bits */
416#define MMF_DUMPABLE      0  /* core dump is permitted */
417#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
418#define MMF_DUMPABLE_BITS 2
419
420/* coredump filter bits */
421#define MMF_DUMP_ANON_PRIVATE	2
422#define MMF_DUMP_ANON_SHARED	3
423#define MMF_DUMP_MAPPED_PRIVATE	4
424#define MMF_DUMP_MAPPED_SHARED	5
425#define MMF_DUMP_ELF_HEADERS	6
426#define MMF_DUMP_HUGETLB_PRIVATE 7
427#define MMF_DUMP_HUGETLB_SHARED  8
428#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
429#define MMF_DUMP_FILTER_BITS	7
430#define MMF_DUMP_FILTER_MASK \
431	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
432#define MMF_DUMP_FILTER_DEFAULT \
433	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
434	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
435
436#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
437# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
438#else
439# define MMF_DUMP_MASK_DEFAULT_ELF	0
440#endif
441
442struct sighand_struct {
443	atomic_t		count;
444	struct k_sigaction	action[_NSIG];
445	spinlock_t		siglock;
446	wait_queue_head_t	signalfd_wqh;
447};
448
449struct pacct_struct {
450	int			ac_flag;
451	long			ac_exitcode;
452	unsigned long		ac_mem;
453	cputime_t		ac_utime, ac_stime;
454	unsigned long		ac_minflt, ac_majflt;
455};
456
457/**
458 * struct task_cputime - collected CPU time counts
459 * @utime:		time spent in user mode, in &cputime_t units
460 * @stime:		time spent in kernel mode, in &cputime_t units
461 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
462 *
463 * This structure groups together three kinds of CPU time that are
464 * tracked for threads and thread groups.  Most things considering
465 * CPU time want to group these counts together and treat all three
466 * of them in parallel.
467 */
468struct task_cputime {
469	cputime_t utime;
470	cputime_t stime;
471	unsigned long long sum_exec_runtime;
472};
473/* Alternate field names when used to cache expirations. */
474#define prof_exp	stime
475#define virt_exp	utime
476#define sched_exp	sum_exec_runtime
477
478#define INIT_CPUTIME	\
479	(struct task_cputime) {					\
480		.utime = cputime_zero,				\
481		.stime = cputime_zero,				\
482		.sum_exec_runtime = 0,				\
483	}
484
485/**
486 * struct thread_group_cputimer - thread group interval timer counts
487 * @cputime:		thread group interval timers.
488 * @running:		non-zero when there are timers running and
489 * 			@cputime receives updates.
490 * @lock:		lock for fields in this struct.
491 *
492 * This structure contains the version of task_cputime, above, that is
493 * used for thread group CPU timer calculations.
494 */
495struct thread_group_cputimer {
496	struct task_cputime cputime;
497	int running;
498	spinlock_t lock;
499};
500
501/*
502 * NOTE! "signal_struct" does not have it's own
503 * locking, because a shared signal_struct always
504 * implies a shared sighand_struct, so locking
505 * sighand_struct is always a proper superset of
506 * the locking of signal_struct.
507 */
508struct signal_struct {
509	atomic_t		count;
510	atomic_t		live;
511
512	wait_queue_head_t	wait_chldexit;	/* for wait4() */
513
514	/* current thread group signal load-balancing target: */
515	struct task_struct	*curr_target;
516
517	/* shared signal handling: */
518	struct sigpending	shared_pending;
519
520	/* thread group exit support */
521	int			group_exit_code;
522	/* overloaded:
523	 * - notify group_exit_task when ->count is equal to notify_count
524	 * - everyone except group_exit_task is stopped during signal delivery
525	 *   of fatal signals, group_exit_task processes the signal.
526	 */
527	int			notify_count;
528	struct task_struct	*group_exit_task;
529
530	/* thread group stop support, overloads group_exit_code too */
531	int			group_stop_count;
532	unsigned int		flags; /* see SIGNAL_* flags below */
533
534	/* POSIX.1b Interval Timers */
535	struct list_head posix_timers;
536
537	/* ITIMER_REAL timer for the process */
538	struct hrtimer real_timer;
539	struct pid *leader_pid;
540	ktime_t it_real_incr;
541
542	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
543	cputime_t it_prof_expires, it_virt_expires;
544	cputime_t it_prof_incr, it_virt_incr;
545
546	/*
547	 * Thread group totals for process CPU timers.
548	 * See thread_group_cputimer(), et al, for details.
549	 */
550	struct thread_group_cputimer cputimer;
551
552	/* Earliest-expiration cache. */
553	struct task_cputime cputime_expires;
554
555	struct list_head cpu_timers[3];
556
557	struct pid *tty_old_pgrp;
558
559	/* boolean value for session group leader */
560	int leader;
561
562	struct tty_struct *tty; /* NULL if no tty */
563
564	/*
565	 * Cumulative resource counters for dead threads in the group,
566	 * and for reaped dead child processes forked by this group.
567	 * Live threads maintain their own counters and add to these
568	 * in __exit_signal, except for the group leader.
569	 */
570	cputime_t utime, stime, cutime, cstime;
571	cputime_t gtime;
572	cputime_t cgtime;
573	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
574	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
575	unsigned long inblock, oublock, cinblock, coublock;
576	struct task_io_accounting ioac;
577
578	/*
579	 * Cumulative ns of schedule CPU time fo dead threads in the
580	 * group, not including a zombie group leader, (This only differs
581	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
582	 * other than jiffies.)
583	 */
584	unsigned long long sum_sched_runtime;
585
586	/*
587	 * We don't bother to synchronize most readers of this at all,
588	 * because there is no reader checking a limit that actually needs
589	 * to get both rlim_cur and rlim_max atomically, and either one
590	 * alone is a single word that can safely be read normally.
591	 * getrlimit/setrlimit use task_lock(current->group_leader) to
592	 * protect this instead of the siglock, because they really
593	 * have no need to disable irqs.
594	 */
595	struct rlimit rlim[RLIM_NLIMITS];
596
597#ifdef CONFIG_BSD_PROCESS_ACCT
598	struct pacct_struct pacct;	/* per-process accounting information */
599#endif
600#ifdef CONFIG_TASKSTATS
601	struct taskstats *stats;
602#endif
603#ifdef CONFIG_AUDIT
604	unsigned audit_tty;
605	struct tty_audit_buf *tty_audit_buf;
606#endif
607};
608
609/* Context switch must be unlocked if interrupts are to be enabled */
610#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
611# define __ARCH_WANT_UNLOCKED_CTXSW
612#endif
613
614/*
615 * Bits in flags field of signal_struct.
616 */
617#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
618#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
619#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
620#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
621/*
622 * Pending notifications to parent.
623 */
624#define SIGNAL_CLD_STOPPED	0x00000010
625#define SIGNAL_CLD_CONTINUED	0x00000020
626#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
627
628#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
629
630/* If true, all threads except ->group_exit_task have pending SIGKILL */
631static inline int signal_group_exit(const struct signal_struct *sig)
632{
633	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
634		(sig->group_exit_task != NULL);
635}
636
637/*
638 * Some day this will be a full-fledged user tracking system..
639 */
640struct user_struct {
641	atomic_t __count;	/* reference count */
642	atomic_t processes;	/* How many processes does this user have? */
643	atomic_t files;		/* How many open files does this user have? */
644	atomic_t sigpending;	/* How many pending signals does this user have? */
645#ifdef CONFIG_INOTIFY_USER
646	atomic_t inotify_watches; /* How many inotify watches does this user have? */
647	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
648#endif
649#ifdef CONFIG_EPOLL
650	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
651#endif
652#ifdef CONFIG_POSIX_MQUEUE
653	/* protected by mq_lock	*/
654	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
655#endif
656	unsigned long locked_shm; /* How many pages of mlocked shm ? */
657
658#ifdef CONFIG_KEYS
659	struct key *uid_keyring;	/* UID specific keyring */
660	struct key *session_keyring;	/* UID's default session keyring */
661#endif
662
663	/* Hash table maintenance information */
664	struct hlist_node uidhash_node;
665	uid_t uid;
666	struct user_namespace *user_ns;
667
668#ifdef CONFIG_USER_SCHED
669	struct task_group *tg;
670#ifdef CONFIG_SYSFS
671	struct kobject kobj;
672	struct work_struct work;
673#endif
674#endif
675};
676
677extern int uids_sysfs_init(void);
678
679extern struct user_struct *find_user(uid_t);
680
681extern struct user_struct root_user;
682#define INIT_USER (&root_user)
683
684
685struct backing_dev_info;
686struct reclaim_state;
687
688#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
689struct sched_info {
690	/* cumulative counters */
691	unsigned long pcount;	      /* # of times run on this cpu */
692	unsigned long long run_delay; /* time spent waiting on a runqueue */
693
694	/* timestamps */
695	unsigned long long last_arrival,/* when we last ran on a cpu */
696			   last_queued;	/* when we were last queued to run */
697#ifdef CONFIG_SCHEDSTATS
698	/* BKL stats */
699	unsigned int bkl_count;
700#endif
701};
702#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
703
704#ifdef CONFIG_TASK_DELAY_ACCT
705struct task_delay_info {
706	spinlock_t	lock;
707	unsigned int	flags;	/* Private per-task flags */
708
709	/* For each stat XXX, add following, aligned appropriately
710	 *
711	 * struct timespec XXX_start, XXX_end;
712	 * u64 XXX_delay;
713	 * u32 XXX_count;
714	 *
715	 * Atomicity of updates to XXX_delay, XXX_count protected by
716	 * single lock above (split into XXX_lock if contention is an issue).
717	 */
718
719	/*
720	 * XXX_count is incremented on every XXX operation, the delay
721	 * associated with the operation is added to XXX_delay.
722	 * XXX_delay contains the accumulated delay time in nanoseconds.
723	 */
724	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
725	u64 blkio_delay;	/* wait for sync block io completion */
726	u64 swapin_delay;	/* wait for swapin block io completion */
727	u32 blkio_count;	/* total count of the number of sync block */
728				/* io operations performed */
729	u32 swapin_count;	/* total count of the number of swapin block */
730				/* io operations performed */
731
732	struct timespec freepages_start, freepages_end;
733	u64 freepages_delay;	/* wait for memory reclaim */
734	u32 freepages_count;	/* total count of memory reclaim */
735};
736#endif	/* CONFIG_TASK_DELAY_ACCT */
737
738static inline int sched_info_on(void)
739{
740#ifdef CONFIG_SCHEDSTATS
741	return 1;
742#elif defined(CONFIG_TASK_DELAY_ACCT)
743	extern int delayacct_on;
744	return delayacct_on;
745#else
746	return 0;
747#endif
748}
749
750enum cpu_idle_type {
751	CPU_IDLE,
752	CPU_NOT_IDLE,
753	CPU_NEWLY_IDLE,
754	CPU_MAX_IDLE_TYPES
755};
756
757/*
758 * sched-domains (multiprocessor balancing) declarations:
759 */
760
761/*
762 * Increase resolution of nice-level calculations:
763 */
764#define SCHED_LOAD_SHIFT	10
765#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
766
767#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
768
769#ifdef CONFIG_SMP
770#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
771#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
772#define SD_BALANCE_EXEC		4	/* Balance on exec */
773#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
774#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
775#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
776#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
777#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
778#define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
779#define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
780#define SD_SERIALIZE		1024	/* Only a single load balancing instance */
781#define SD_WAKE_IDLE_FAR	2048	/* Gain latency sacrificing cache hit */
782
783enum powersavings_balance_level {
784	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
785	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
786					 * first for long running threads
787					 */
788	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
789					 * cpu package for power savings
790					 */
791	MAX_POWERSAVINGS_BALANCE_LEVELS
792};
793
794extern int sched_mc_power_savings, sched_smt_power_savings;
795
796static inline int sd_balance_for_mc_power(void)
797{
798	if (sched_smt_power_savings)
799		return SD_POWERSAVINGS_BALANCE;
800
801	return 0;
802}
803
804static inline int sd_balance_for_package_power(void)
805{
806	if (sched_mc_power_savings | sched_smt_power_savings)
807		return SD_POWERSAVINGS_BALANCE;
808
809	return 0;
810}
811
812/*
813 * Optimise SD flags for power savings:
814 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
815 * Keep default SD flags if sched_{smt,mc}_power_saving=0
816 */
817
818static inline int sd_power_saving_flags(void)
819{
820	if (sched_mc_power_savings | sched_smt_power_savings)
821		return SD_BALANCE_NEWIDLE;
822
823	return 0;
824}
825
826struct sched_group {
827	struct sched_group *next;	/* Must be a circular list */
828
829	/*
830	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
831	 * single CPU. This is read only (except for setup, hotplug CPU).
832	 * Note : Never change cpu_power without recompute its reciprocal
833	 */
834	unsigned int __cpu_power;
835	/*
836	 * reciprocal value of cpu_power to avoid expensive divides
837	 * (see include/linux/reciprocal_div.h)
838	 */
839	u32 reciprocal_cpu_power;
840
841	unsigned long cpumask[];
842};
843
844static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
845{
846	return to_cpumask(sg->cpumask);
847}
848
849enum sched_domain_level {
850	SD_LV_NONE = 0,
851	SD_LV_SIBLING,
852	SD_LV_MC,
853	SD_LV_CPU,
854	SD_LV_NODE,
855	SD_LV_ALLNODES,
856	SD_LV_MAX
857};
858
859struct sched_domain_attr {
860	int relax_domain_level;
861};
862
863#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
864	.relax_domain_level = -1,			\
865}
866
867struct sched_domain {
868	/* These fields must be setup */
869	struct sched_domain *parent;	/* top domain must be null terminated */
870	struct sched_domain *child;	/* bottom domain must be null terminated */
871	struct sched_group *groups;	/* the balancing groups of the domain */
872	unsigned long min_interval;	/* Minimum balance interval ms */
873	unsigned long max_interval;	/* Maximum balance interval ms */
874	unsigned int busy_factor;	/* less balancing by factor if busy */
875	unsigned int imbalance_pct;	/* No balance until over watermark */
876	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
877	unsigned int busy_idx;
878	unsigned int idle_idx;
879	unsigned int newidle_idx;
880	unsigned int wake_idx;
881	unsigned int forkexec_idx;
882	int flags;			/* See SD_* */
883	enum sched_domain_level level;
884
885	/* Runtime fields. */
886	unsigned long last_balance;	/* init to jiffies. units in jiffies */
887	unsigned int balance_interval;	/* initialise to 1. units in ms. */
888	unsigned int nr_balance_failed; /* initialise to 0 */
889
890	u64 last_update;
891
892#ifdef CONFIG_SCHEDSTATS
893	/* load_balance() stats */
894	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
895	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
896	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
897	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
898	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
899	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
900	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
901	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
902
903	/* Active load balancing */
904	unsigned int alb_count;
905	unsigned int alb_failed;
906	unsigned int alb_pushed;
907
908	/* SD_BALANCE_EXEC stats */
909	unsigned int sbe_count;
910	unsigned int sbe_balanced;
911	unsigned int sbe_pushed;
912
913	/* SD_BALANCE_FORK stats */
914	unsigned int sbf_count;
915	unsigned int sbf_balanced;
916	unsigned int sbf_pushed;
917
918	/* try_to_wake_up() stats */
919	unsigned int ttwu_wake_remote;
920	unsigned int ttwu_move_affine;
921	unsigned int ttwu_move_balance;
922#endif
923#ifdef CONFIG_SCHED_DEBUG
924	char *name;
925#endif
926
927	/* span of all CPUs in this domain */
928	unsigned long span[];
929};
930
931static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
932{
933	return to_cpumask(sd->span);
934}
935
936extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
937				    struct sched_domain_attr *dattr_new);
938
939/* Test a flag in parent sched domain */
940static inline int test_sd_parent(struct sched_domain *sd, int flag)
941{
942	if (sd->parent && (sd->parent->flags & flag))
943		return 1;
944
945	return 0;
946}
947
948#else /* CONFIG_SMP */
949
950struct sched_domain_attr;
951
952static inline void
953partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
954			struct sched_domain_attr *dattr_new)
955{
956}
957#endif	/* !CONFIG_SMP */
958
959struct io_context;			/* See blkdev.h */
960
961
962#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
963extern void prefetch_stack(struct task_struct *t);
964#else
965static inline void prefetch_stack(struct task_struct *t) { }
966#endif
967
968struct audit_context;		/* See audit.c */
969struct mempolicy;
970struct pipe_inode_info;
971struct uts_namespace;
972
973struct rq;
974struct sched_domain;
975
976struct sched_class {
977	const struct sched_class *next;
978
979	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
980	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
981	void (*yield_task) (struct rq *rq);
982
983	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
984
985	struct task_struct * (*pick_next_task) (struct rq *rq);
986	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
987
988#ifdef CONFIG_SMP
989	int  (*select_task_rq)(struct task_struct *p, int sync);
990
991	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
992			struct rq *busiest, unsigned long max_load_move,
993			struct sched_domain *sd, enum cpu_idle_type idle,
994			int *all_pinned, int *this_best_prio);
995
996	int (*move_one_task) (struct rq *this_rq, int this_cpu,
997			      struct rq *busiest, struct sched_domain *sd,
998			      enum cpu_idle_type idle);
999	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1000	int (*needs_post_schedule) (struct rq *this_rq);
1001	void (*post_schedule) (struct rq *this_rq);
1002	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1003
1004	void (*set_cpus_allowed)(struct task_struct *p,
1005				 const struct cpumask *newmask);
1006
1007	void (*rq_online)(struct rq *rq);
1008	void (*rq_offline)(struct rq *rq);
1009#endif
1010
1011	void (*set_curr_task) (struct rq *rq);
1012	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1013	void (*task_new) (struct rq *rq, struct task_struct *p);
1014
1015	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1016			       int running);
1017	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1018			     int running);
1019	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1020			     int oldprio, int running);
1021
1022#ifdef CONFIG_FAIR_GROUP_SCHED
1023	void (*moved_group) (struct task_struct *p);
1024#endif
1025};
1026
1027struct load_weight {
1028	unsigned long weight, inv_weight;
1029};
1030
1031/*
1032 * CFS stats for a schedulable entity (task, task-group etc)
1033 *
1034 * Current field usage histogram:
1035 *
1036 *     4 se->block_start
1037 *     4 se->run_node
1038 *     4 se->sleep_start
1039 *     6 se->load.weight
1040 */
1041struct sched_entity {
1042	struct load_weight	load;		/* for load-balancing */
1043	struct rb_node		run_node;
1044	struct list_head	group_node;
1045	unsigned int		on_rq;
1046
1047	u64			exec_start;
1048	u64			sum_exec_runtime;
1049	u64			vruntime;
1050	u64			prev_sum_exec_runtime;
1051
1052	u64			last_wakeup;
1053	u64			avg_overlap;
1054
1055	u64			start_runtime;
1056	u64			avg_wakeup;
1057	u64			nr_migrations;
1058
1059#ifdef CONFIG_SCHEDSTATS
1060	u64			wait_start;
1061	u64			wait_max;
1062	u64			wait_count;
1063	u64			wait_sum;
1064
1065	u64			sleep_start;
1066	u64			sleep_max;
1067	s64			sum_sleep_runtime;
1068
1069	u64			block_start;
1070	u64			block_max;
1071	u64			exec_max;
1072	u64			slice_max;
1073
1074	u64			nr_migrations_cold;
1075	u64			nr_failed_migrations_affine;
1076	u64			nr_failed_migrations_running;
1077	u64			nr_failed_migrations_hot;
1078	u64			nr_forced_migrations;
1079	u64			nr_forced2_migrations;
1080
1081	u64			nr_wakeups;
1082	u64			nr_wakeups_sync;
1083	u64			nr_wakeups_migrate;
1084	u64			nr_wakeups_local;
1085	u64			nr_wakeups_remote;
1086	u64			nr_wakeups_affine;
1087	u64			nr_wakeups_affine_attempts;
1088	u64			nr_wakeups_passive;
1089	u64			nr_wakeups_idle;
1090#endif
1091
1092#ifdef CONFIG_FAIR_GROUP_SCHED
1093	struct sched_entity	*parent;
1094	/* rq on which this entity is (to be) queued: */
1095	struct cfs_rq		*cfs_rq;
1096	/* rq "owned" by this entity/group: */
1097	struct cfs_rq		*my_q;
1098#endif
1099};
1100
1101struct sched_rt_entity {
1102	struct list_head run_list;
1103	unsigned long timeout;
1104	unsigned int time_slice;
1105	int nr_cpus_allowed;
1106
1107	struct sched_rt_entity *back;
1108#ifdef CONFIG_RT_GROUP_SCHED
1109	struct sched_rt_entity	*parent;
1110	/* rq on which this entity is (to be) queued: */
1111	struct rt_rq		*rt_rq;
1112	/* rq "owned" by this entity/group: */
1113	struct rt_rq		*my_q;
1114#endif
1115};
1116
1117struct task_struct {
1118	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1119	void *stack;
1120	atomic_t usage;
1121	unsigned int flags;	/* per process flags, defined below */
1122	unsigned int ptrace;
1123
1124	int lock_depth;		/* BKL lock depth */
1125
1126#ifdef CONFIG_SMP
1127#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1128	int oncpu;
1129#endif
1130#endif
1131
1132	int prio, static_prio, normal_prio;
1133	unsigned int rt_priority;
1134	const struct sched_class *sched_class;
1135	struct sched_entity se;
1136	struct sched_rt_entity rt;
1137
1138#ifdef CONFIG_PREEMPT_NOTIFIERS
1139	/* list of struct preempt_notifier: */
1140	struct hlist_head preempt_notifiers;
1141#endif
1142
1143	/*
1144	 * fpu_counter contains the number of consecutive context switches
1145	 * that the FPU is used. If this is over a threshold, the lazy fpu
1146	 * saving becomes unlazy to save the trap. This is an unsigned char
1147	 * so that after 256 times the counter wraps and the behavior turns
1148	 * lazy again; this to deal with bursty apps that only use FPU for
1149	 * a short time
1150	 */
1151	unsigned char fpu_counter;
1152	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1153#ifdef CONFIG_BLK_DEV_IO_TRACE
1154	unsigned int btrace_seq;
1155#endif
1156
1157	unsigned int policy;
1158	cpumask_t cpus_allowed;
1159
1160#ifdef CONFIG_PREEMPT_RCU
1161	int rcu_read_lock_nesting;
1162	int rcu_flipctr_idx;
1163#endif /* #ifdef CONFIG_PREEMPT_RCU */
1164
1165#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1166	struct sched_info sched_info;
1167#endif
1168
1169	struct list_head tasks;
1170	struct plist_node pushable_tasks;
1171
1172	struct mm_struct *mm, *active_mm;
1173
1174/* task state */
1175	struct linux_binfmt *binfmt;
1176	int exit_state;
1177	int exit_code, exit_signal;
1178	int pdeath_signal;  /*  The signal sent when the parent dies  */
1179	/* ??? */
1180	unsigned int personality;
1181	unsigned did_exec:1;
1182	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1183				 * execve */
1184	pid_t pid;
1185	pid_t tgid;
1186
1187	/* Canary value for the -fstack-protector gcc feature */
1188	unsigned long stack_canary;
1189
1190	/*
1191	 * pointers to (original) parent process, youngest child, younger sibling,
1192	 * older sibling, respectively.  (p->father can be replaced with
1193	 * p->real_parent->pid)
1194	 */
1195	struct task_struct *real_parent; /* real parent process */
1196	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1197	/*
1198	 * children/sibling forms the list of my natural children
1199	 */
1200	struct list_head children;	/* list of my children */
1201	struct list_head sibling;	/* linkage in my parent's children list */
1202	struct task_struct *group_leader;	/* threadgroup leader */
1203
1204	/*
1205	 * ptraced is the list of tasks this task is using ptrace on.
1206	 * This includes both natural children and PTRACE_ATTACH targets.
1207	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1208	 */
1209	struct list_head ptraced;
1210	struct list_head ptrace_entry;
1211
1212#ifdef CONFIG_X86_PTRACE_BTS
1213	/*
1214	 * This is the tracer handle for the ptrace BTS extension.
1215	 * This field actually belongs to the ptracer task.
1216	 */
1217	struct bts_tracer *bts;
1218	/*
1219	 * The buffer to hold the BTS data.
1220	 */
1221	void *bts_buffer;
1222	size_t bts_size;
1223#endif /* CONFIG_X86_PTRACE_BTS */
1224
1225	/* PID/PID hash table linkage. */
1226	struct pid_link pids[PIDTYPE_MAX];
1227	struct list_head thread_group;
1228
1229	struct completion *vfork_done;		/* for vfork() */
1230	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1231	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1232
1233	cputime_t utime, stime, utimescaled, stimescaled;
1234	cputime_t gtime;
1235	cputime_t prev_utime, prev_stime;
1236	unsigned long nvcsw, nivcsw; /* context switch counts */
1237	struct timespec start_time; 		/* monotonic time */
1238	struct timespec real_start_time;	/* boot based time */
1239/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1240	unsigned long min_flt, maj_flt;
1241
1242	struct task_cputime cputime_expires;
1243	struct list_head cpu_timers[3];
1244
1245/* process credentials */
1246	const struct cred *real_cred;	/* objective and real subjective task
1247					 * credentials (COW) */
1248	const struct cred *cred;	/* effective (overridable) subjective task
1249					 * credentials (COW) */
1250	struct mutex cred_exec_mutex;	/* execve vs ptrace cred calculation mutex */
1251
1252	char comm[TASK_COMM_LEN]; /* executable name excluding path
1253				     - access with [gs]et_task_comm (which lock
1254				       it with task_lock())
1255				     - initialized normally by flush_old_exec */
1256/* file system info */
1257	int link_count, total_link_count;
1258#ifdef CONFIG_SYSVIPC
1259/* ipc stuff */
1260	struct sysv_sem sysvsem;
1261#endif
1262#ifdef CONFIG_DETECT_HUNG_TASK
1263/* hung task detection */
1264	unsigned long last_switch_count;
1265#endif
1266/* CPU-specific state of this task */
1267	struct thread_struct thread;
1268/* filesystem information */
1269	struct fs_struct *fs;
1270/* open file information */
1271	struct files_struct *files;
1272/* namespaces */
1273	struct nsproxy *nsproxy;
1274/* signal handlers */
1275	struct signal_struct *signal;
1276	struct sighand_struct *sighand;
1277
1278	sigset_t blocked, real_blocked;
1279	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1280	struct sigpending pending;
1281
1282	unsigned long sas_ss_sp;
1283	size_t sas_ss_size;
1284	int (*notifier)(void *priv);
1285	void *notifier_data;
1286	sigset_t *notifier_mask;
1287	struct audit_context *audit_context;
1288#ifdef CONFIG_AUDITSYSCALL
1289	uid_t loginuid;
1290	unsigned int sessionid;
1291#endif
1292	seccomp_t seccomp;
1293
1294/* Thread group tracking */
1295   	u32 parent_exec_id;
1296   	u32 self_exec_id;
1297/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1298	spinlock_t alloc_lock;
1299
1300#ifdef CONFIG_GENERIC_HARDIRQS
1301	/* IRQ handler threads */
1302	struct irqaction *irqaction;
1303#endif
1304
1305	/* Protection of the PI data structures: */
1306	spinlock_t pi_lock;
1307
1308#ifdef CONFIG_RT_MUTEXES
1309	/* PI waiters blocked on a rt_mutex held by this task */
1310	struct plist_head pi_waiters;
1311	/* Deadlock detection and priority inheritance handling */
1312	struct rt_mutex_waiter *pi_blocked_on;
1313#endif
1314
1315#ifdef CONFIG_DEBUG_MUTEXES
1316	/* mutex deadlock detection */
1317	struct mutex_waiter *blocked_on;
1318#endif
1319#ifdef CONFIG_TRACE_IRQFLAGS
1320	unsigned int irq_events;
1321	int hardirqs_enabled;
1322	unsigned long hardirq_enable_ip;
1323	unsigned int hardirq_enable_event;
1324	unsigned long hardirq_disable_ip;
1325	unsigned int hardirq_disable_event;
1326	int softirqs_enabled;
1327	unsigned long softirq_disable_ip;
1328	unsigned int softirq_disable_event;
1329	unsigned long softirq_enable_ip;
1330	unsigned int softirq_enable_event;
1331	int hardirq_context;
1332	int softirq_context;
1333#endif
1334#ifdef CONFIG_LOCKDEP
1335# define MAX_LOCK_DEPTH 48UL
1336	u64 curr_chain_key;
1337	int lockdep_depth;
1338	unsigned int lockdep_recursion;
1339	struct held_lock held_locks[MAX_LOCK_DEPTH];
1340	gfp_t lockdep_reclaim_gfp;
1341#endif
1342
1343/* journalling filesystem info */
1344	void *journal_info;
1345
1346/* stacked block device info */
1347	struct bio *bio_list, **bio_tail;
1348
1349/* VM state */
1350	struct reclaim_state *reclaim_state;
1351
1352	struct backing_dev_info *backing_dev_info;
1353
1354	struct io_context *io_context;
1355
1356	unsigned long ptrace_message;
1357	siginfo_t *last_siginfo; /* For ptrace use.  */
1358	struct task_io_accounting ioac;
1359#if defined(CONFIG_TASK_XACCT)
1360	u64 acct_rss_mem1;	/* accumulated rss usage */
1361	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1362	cputime_t acct_timexpd;	/* stime + utime since last update */
1363#endif
1364#ifdef CONFIG_CPUSETS
1365	nodemask_t mems_allowed;
1366	int cpuset_mems_generation;
1367	int cpuset_mem_spread_rotor;
1368#endif
1369#ifdef CONFIG_CGROUPS
1370	/* Control Group info protected by css_set_lock */
1371	struct css_set *cgroups;
1372	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1373	struct list_head cg_list;
1374#endif
1375#ifdef CONFIG_FUTEX
1376	struct robust_list_head __user *robust_list;
1377#ifdef CONFIG_COMPAT
1378	struct compat_robust_list_head __user *compat_robust_list;
1379#endif
1380	struct list_head pi_state_list;
1381	struct futex_pi_state *pi_state_cache;
1382#endif
1383#ifdef CONFIG_NUMA
1384	struct mempolicy *mempolicy;
1385	short il_next;
1386#endif
1387	atomic_t fs_excl;	/* holding fs exclusive resources */
1388	struct rcu_head rcu;
1389
1390	/*
1391	 * cache last used pipe for splice
1392	 */
1393	struct pipe_inode_info *splice_pipe;
1394#ifdef	CONFIG_TASK_DELAY_ACCT
1395	struct task_delay_info *delays;
1396#endif
1397#ifdef CONFIG_FAULT_INJECTION
1398	int make_it_fail;
1399#endif
1400	struct prop_local_single dirties;
1401#ifdef CONFIG_LATENCYTOP
1402	int latency_record_count;
1403	struct latency_record latency_record[LT_SAVECOUNT];
1404#endif
1405	/*
1406	 * time slack values; these are used to round up poll() and
1407	 * select() etc timeout values. These are in nanoseconds.
1408	 */
1409	unsigned long timer_slack_ns;
1410	unsigned long default_timer_slack_ns;
1411
1412	struct list_head	*scm_work_list;
1413#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1414	/* Index of current stored adress in ret_stack */
1415	int curr_ret_stack;
1416	/* Stack of return addresses for return function tracing */
1417	struct ftrace_ret_stack	*ret_stack;
1418	/* time stamp for last schedule */
1419	unsigned long long ftrace_timestamp;
1420	/*
1421	 * Number of functions that haven't been traced
1422	 * because of depth overrun.
1423	 */
1424	atomic_t trace_overrun;
1425	/* Pause for the tracing */
1426	atomic_t tracing_graph_pause;
1427#endif
1428#ifdef CONFIG_TRACING
1429	/* state flags for use by tracers */
1430	unsigned long trace;
1431#endif
1432};
1433
1434/* Future-safe accessor for struct task_struct's cpus_allowed. */
1435#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1436
1437/*
1438 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1439 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1440 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1441 * values are inverted: lower p->prio value means higher priority.
1442 *
1443 * The MAX_USER_RT_PRIO value allows the actual maximum
1444 * RT priority to be separate from the value exported to
1445 * user-space.  This allows kernel threads to set their
1446 * priority to a value higher than any user task. Note:
1447 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1448 */
1449
1450#define MAX_USER_RT_PRIO	100
1451#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1452
1453#define MAX_PRIO		(MAX_RT_PRIO + 40)
1454#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1455
1456static inline int rt_prio(int prio)
1457{
1458	if (unlikely(prio < MAX_RT_PRIO))
1459		return 1;
1460	return 0;
1461}
1462
1463static inline int rt_task(struct task_struct *p)
1464{
1465	return rt_prio(p->prio);
1466}
1467
1468static inline struct pid *task_pid(struct task_struct *task)
1469{
1470	return task->pids[PIDTYPE_PID].pid;
1471}
1472
1473static inline struct pid *task_tgid(struct task_struct *task)
1474{
1475	return task->group_leader->pids[PIDTYPE_PID].pid;
1476}
1477
1478/*
1479 * Without tasklist or rcu lock it is not safe to dereference
1480 * the result of task_pgrp/task_session even if task == current,
1481 * we can race with another thread doing sys_setsid/sys_setpgid.
1482 */
1483static inline struct pid *task_pgrp(struct task_struct *task)
1484{
1485	return task->group_leader->pids[PIDTYPE_PGID].pid;
1486}
1487
1488static inline struct pid *task_session(struct task_struct *task)
1489{
1490	return task->group_leader->pids[PIDTYPE_SID].pid;
1491}
1492
1493struct pid_namespace;
1494
1495/*
1496 * the helpers to get the task's different pids as they are seen
1497 * from various namespaces
1498 *
1499 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1500 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1501 *                     current.
1502 * task_xid_nr_ns()  : id seen from the ns specified;
1503 *
1504 * set_task_vxid()   : assigns a virtual id to a task;
1505 *
1506 * see also pid_nr() etc in include/linux/pid.h
1507 */
1508pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1509			struct pid_namespace *ns);
1510
1511static inline pid_t task_pid_nr(struct task_struct *tsk)
1512{
1513	return tsk->pid;
1514}
1515
1516static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1517					struct pid_namespace *ns)
1518{
1519	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1520}
1521
1522static inline pid_t task_pid_vnr(struct task_struct *tsk)
1523{
1524	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1525}
1526
1527
1528static inline pid_t task_tgid_nr(struct task_struct *tsk)
1529{
1530	return tsk->tgid;
1531}
1532
1533pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1534
1535static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1536{
1537	return pid_vnr(task_tgid(tsk));
1538}
1539
1540
1541static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1542					struct pid_namespace *ns)
1543{
1544	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1545}
1546
1547static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1548{
1549	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1550}
1551
1552
1553static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1554					struct pid_namespace *ns)
1555{
1556	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1557}
1558
1559static inline pid_t task_session_vnr(struct task_struct *tsk)
1560{
1561	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1562}
1563
1564/* obsolete, do not use */
1565static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1566{
1567	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1568}
1569
1570/**
1571 * pid_alive - check that a task structure is not stale
1572 * @p: Task structure to be checked.
1573 *
1574 * Test if a process is not yet dead (at most zombie state)
1575 * If pid_alive fails, then pointers within the task structure
1576 * can be stale and must not be dereferenced.
1577 */
1578static inline int pid_alive(struct task_struct *p)
1579{
1580	return p->pids[PIDTYPE_PID].pid != NULL;
1581}
1582
1583/**
1584 * is_global_init - check if a task structure is init
1585 * @tsk: Task structure to be checked.
1586 *
1587 * Check if a task structure is the first user space task the kernel created.
1588 */
1589static inline int is_global_init(struct task_struct *tsk)
1590{
1591	return tsk->pid == 1;
1592}
1593
1594/*
1595 * is_container_init:
1596 * check whether in the task is init in its own pid namespace.
1597 */
1598extern int is_container_init(struct task_struct *tsk);
1599
1600extern struct pid *cad_pid;
1601
1602extern void free_task(struct task_struct *tsk);
1603#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1604
1605extern void __put_task_struct(struct task_struct *t);
1606
1607static inline void put_task_struct(struct task_struct *t)
1608{
1609	if (atomic_dec_and_test(&t->usage))
1610		__put_task_struct(t);
1611}
1612
1613extern cputime_t task_utime(struct task_struct *p);
1614extern cputime_t task_stime(struct task_struct *p);
1615extern cputime_t task_gtime(struct task_struct *p);
1616
1617/*
1618 * Per process flags
1619 */
1620#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1621					/* Not implemented yet, only for 486*/
1622#define PF_STARTING	0x00000002	/* being created */
1623#define PF_EXITING	0x00000004	/* getting shut down */
1624#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1625#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1626#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1627#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1628#define PF_DUMPCORE	0x00000200	/* dumped core */
1629#define PF_SIGNALED	0x00000400	/* killed by a signal */
1630#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1631#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1632#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1633#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1634#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1635#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1636#define PF_KSWAPD	0x00040000	/* I am kswapd */
1637#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1638#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1639#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1640#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1641#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1642#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1643#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1644#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1645#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1646#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1647#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1648#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1649
1650/*
1651 * Only the _current_ task can read/write to tsk->flags, but other
1652 * tasks can access tsk->flags in readonly mode for example
1653 * with tsk_used_math (like during threaded core dumping).
1654 * There is however an exception to this rule during ptrace
1655 * or during fork: the ptracer task is allowed to write to the
1656 * child->flags of its traced child (same goes for fork, the parent
1657 * can write to the child->flags), because we're guaranteed the
1658 * child is not running and in turn not changing child->flags
1659 * at the same time the parent does it.
1660 */
1661#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1662#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1663#define clear_used_math() clear_stopped_child_used_math(current)
1664#define set_used_math() set_stopped_child_used_math(current)
1665#define conditional_stopped_child_used_math(condition, child) \
1666	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1667#define conditional_used_math(condition) \
1668	conditional_stopped_child_used_math(condition, current)
1669#define copy_to_stopped_child_used_math(child) \
1670	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1671/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1672#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1673#define used_math() tsk_used_math(current)
1674
1675#ifdef CONFIG_SMP
1676extern int set_cpus_allowed_ptr(struct task_struct *p,
1677				const struct cpumask *new_mask);
1678#else
1679static inline int set_cpus_allowed_ptr(struct task_struct *p,
1680				       const struct cpumask *new_mask)
1681{
1682	if (!cpumask_test_cpu(0, new_mask))
1683		return -EINVAL;
1684	return 0;
1685}
1686#endif
1687static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1688{
1689	return set_cpus_allowed_ptr(p, &new_mask);
1690}
1691
1692/*
1693 * Architectures can set this to 1 if they have specified
1694 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1695 * but then during bootup it turns out that sched_clock()
1696 * is reliable after all:
1697 */
1698#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1699extern int sched_clock_stable;
1700#endif
1701
1702extern unsigned long long sched_clock(void);
1703
1704extern void sched_clock_init(void);
1705extern u64 sched_clock_cpu(int cpu);
1706
1707#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1708static inline void sched_clock_tick(void)
1709{
1710}
1711
1712static inline void sched_clock_idle_sleep_event(void)
1713{
1714}
1715
1716static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1717{
1718}
1719#else
1720extern void sched_clock_tick(void);
1721extern void sched_clock_idle_sleep_event(void);
1722extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1723#endif
1724
1725/*
1726 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1727 * clock constructed from sched_clock():
1728 */
1729extern unsigned long long cpu_clock(int cpu);
1730
1731extern unsigned long long
1732task_sched_runtime(struct task_struct *task);
1733extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1734
1735/* sched_exec is called by processes performing an exec */
1736#ifdef CONFIG_SMP
1737extern void sched_exec(void);
1738#else
1739#define sched_exec()   {}
1740#endif
1741
1742extern void sched_clock_idle_sleep_event(void);
1743extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1744
1745#ifdef CONFIG_HOTPLUG_CPU
1746extern void idle_task_exit(void);
1747#else
1748static inline void idle_task_exit(void) {}
1749#endif
1750
1751extern void sched_idle_next(void);
1752
1753#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1754extern void wake_up_idle_cpu(int cpu);
1755#else
1756static inline void wake_up_idle_cpu(int cpu) { }
1757#endif
1758
1759extern unsigned int sysctl_sched_latency;
1760extern unsigned int sysctl_sched_min_granularity;
1761extern unsigned int sysctl_sched_wakeup_granularity;
1762extern unsigned int sysctl_sched_shares_ratelimit;
1763extern unsigned int sysctl_sched_shares_thresh;
1764#ifdef CONFIG_SCHED_DEBUG
1765extern unsigned int sysctl_sched_child_runs_first;
1766extern unsigned int sysctl_sched_features;
1767extern unsigned int sysctl_sched_migration_cost;
1768extern unsigned int sysctl_sched_nr_migrate;
1769
1770int sched_nr_latency_handler(struct ctl_table *table, int write,
1771		struct file *file, void __user *buffer, size_t *length,
1772		loff_t *ppos);
1773#endif
1774extern unsigned int sysctl_sched_rt_period;
1775extern int sysctl_sched_rt_runtime;
1776
1777int sched_rt_handler(struct ctl_table *table, int write,
1778		struct file *filp, void __user *buffer, size_t *lenp,
1779		loff_t *ppos);
1780
1781extern unsigned int sysctl_sched_compat_yield;
1782
1783#ifdef CONFIG_RT_MUTEXES
1784extern int rt_mutex_getprio(struct task_struct *p);
1785extern void rt_mutex_setprio(struct task_struct *p, int prio);
1786extern void rt_mutex_adjust_pi(struct task_struct *p);
1787#else
1788static inline int rt_mutex_getprio(struct task_struct *p)
1789{
1790	return p->normal_prio;
1791}
1792# define rt_mutex_adjust_pi(p)		do { } while (0)
1793#endif
1794
1795extern void set_user_nice(struct task_struct *p, long nice);
1796extern int task_prio(const struct task_struct *p);
1797extern int task_nice(const struct task_struct *p);
1798extern int can_nice(const struct task_struct *p, const int nice);
1799extern int task_curr(const struct task_struct *p);
1800extern int idle_cpu(int cpu);
1801extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1802extern int sched_setscheduler_nocheck(struct task_struct *, int,
1803				      struct sched_param *);
1804extern struct task_struct *idle_task(int cpu);
1805extern struct task_struct *curr_task(int cpu);
1806extern void set_curr_task(int cpu, struct task_struct *p);
1807
1808void yield(void);
1809
1810/*
1811 * The default (Linux) execution domain.
1812 */
1813extern struct exec_domain	default_exec_domain;
1814
1815union thread_union {
1816	struct thread_info thread_info;
1817	unsigned long stack[THREAD_SIZE/sizeof(long)];
1818};
1819
1820#ifndef __HAVE_ARCH_KSTACK_END
1821static inline int kstack_end(void *addr)
1822{
1823	/* Reliable end of stack detection:
1824	 * Some APM bios versions misalign the stack
1825	 */
1826	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1827}
1828#endif
1829
1830extern union thread_union init_thread_union;
1831extern struct task_struct init_task;
1832
1833extern struct   mm_struct init_mm;
1834
1835extern struct pid_namespace init_pid_ns;
1836
1837/*
1838 * find a task by one of its numerical ids
1839 *
1840 * find_task_by_pid_type_ns():
1841 *      it is the most generic call - it finds a task by all id,
1842 *      type and namespace specified
1843 * find_task_by_pid_ns():
1844 *      finds a task by its pid in the specified namespace
1845 * find_task_by_vpid():
1846 *      finds a task by its virtual pid
1847 *
1848 * see also find_vpid() etc in include/linux/pid.h
1849 */
1850
1851extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1852		struct pid_namespace *ns);
1853
1854extern struct task_struct *find_task_by_vpid(pid_t nr);
1855extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1856		struct pid_namespace *ns);
1857
1858extern void __set_special_pids(struct pid *pid);
1859
1860/* per-UID process charging. */
1861extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1862static inline struct user_struct *get_uid(struct user_struct *u)
1863{
1864	atomic_inc(&u->__count);
1865	return u;
1866}
1867extern void free_uid(struct user_struct *);
1868extern void release_uids(struct user_namespace *ns);
1869
1870#include <asm/current.h>
1871
1872extern void do_timer(unsigned long ticks);
1873
1874extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1875extern int wake_up_process(struct task_struct *tsk);
1876extern void wake_up_new_task(struct task_struct *tsk,
1877				unsigned long clone_flags);
1878#ifdef CONFIG_SMP
1879 extern void kick_process(struct task_struct *tsk);
1880#else
1881 static inline void kick_process(struct task_struct *tsk) { }
1882#endif
1883extern void sched_fork(struct task_struct *p, int clone_flags);
1884extern void sched_dead(struct task_struct *p);
1885
1886extern void proc_caches_init(void);
1887extern void flush_signals(struct task_struct *);
1888extern void ignore_signals(struct task_struct *);
1889extern void flush_signal_handlers(struct task_struct *, int force_default);
1890extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1891
1892static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1893{
1894	unsigned long flags;
1895	int ret;
1896
1897	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1898	ret = dequeue_signal(tsk, mask, info);
1899	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1900
1901	return ret;
1902}
1903
1904extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1905			      sigset_t *mask);
1906extern void unblock_all_signals(void);
1907extern void release_task(struct task_struct * p);
1908extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1909extern int force_sigsegv(int, struct task_struct *);
1910extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1911extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1912extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1913extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1914extern int kill_pgrp(struct pid *pid, int sig, int priv);
1915extern int kill_pid(struct pid *pid, int sig, int priv);
1916extern int kill_proc_info(int, struct siginfo *, pid_t);
1917extern int do_notify_parent(struct task_struct *, int);
1918extern void force_sig(int, struct task_struct *);
1919extern void force_sig_specific(int, struct task_struct *);
1920extern int send_sig(int, struct task_struct *, int);
1921extern void zap_other_threads(struct task_struct *p);
1922extern struct sigqueue *sigqueue_alloc(void);
1923extern void sigqueue_free(struct sigqueue *);
1924extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1925extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1926extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1927
1928static inline int kill_cad_pid(int sig, int priv)
1929{
1930	return kill_pid(cad_pid, sig, priv);
1931}
1932
1933/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1934#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1935#define SEND_SIG_PRIV	((struct siginfo *) 1)
1936#define SEND_SIG_FORCED	((struct siginfo *) 2)
1937
1938static inline int is_si_special(const struct siginfo *info)
1939{
1940	return info <= SEND_SIG_FORCED;
1941}
1942
1943/* True if we are on the alternate signal stack.  */
1944
1945static inline int on_sig_stack(unsigned long sp)
1946{
1947	return (sp - current->sas_ss_sp < current->sas_ss_size);
1948}
1949
1950static inline int sas_ss_flags(unsigned long sp)
1951{
1952	return (current->sas_ss_size == 0 ? SS_DISABLE
1953		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1954}
1955
1956/*
1957 * Routines for handling mm_structs
1958 */
1959extern struct mm_struct * mm_alloc(void);
1960
1961/* mmdrop drops the mm and the page tables */
1962extern void __mmdrop(struct mm_struct *);
1963static inline void mmdrop(struct mm_struct * mm)
1964{
1965	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1966		__mmdrop(mm);
1967}
1968
1969/* mmput gets rid of the mappings and all user-space */
1970extern void mmput(struct mm_struct *);
1971/* Grab a reference to a task's mm, if it is not already going away */
1972extern struct mm_struct *get_task_mm(struct task_struct *task);
1973/* Remove the current tasks stale references to the old mm_struct */
1974extern void mm_release(struct task_struct *, struct mm_struct *);
1975/* Allocate a new mm structure and copy contents from tsk->mm */
1976extern struct mm_struct *dup_mm(struct task_struct *tsk);
1977
1978extern int copy_thread(unsigned long, unsigned long, unsigned long,
1979			struct task_struct *, struct pt_regs *);
1980extern void flush_thread(void);
1981extern void exit_thread(void);
1982
1983extern void exit_files(struct task_struct *);
1984extern void __cleanup_signal(struct signal_struct *);
1985extern void __cleanup_sighand(struct sighand_struct *);
1986
1987extern void exit_itimers(struct signal_struct *);
1988extern void flush_itimer_signals(void);
1989
1990extern NORET_TYPE void do_group_exit(int);
1991
1992extern void daemonize(const char *, ...);
1993extern int allow_signal(int);
1994extern int disallow_signal(int);
1995
1996extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1997extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1998struct task_struct *fork_idle(int);
1999
2000extern void set_task_comm(struct task_struct *tsk, char *from);
2001extern char *get_task_comm(char *to, struct task_struct *tsk);
2002
2003#ifdef CONFIG_SMP
2004extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2005#else
2006static inline unsigned long wait_task_inactive(struct task_struct *p,
2007					       long match_state)
2008{
2009	return 1;
2010}
2011#endif
2012
2013#define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
2014
2015#define for_each_process(p) \
2016	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2017
2018extern bool is_single_threaded(struct task_struct *);
2019
2020/*
2021 * Careful: do_each_thread/while_each_thread is a double loop so
2022 *          'break' will not work as expected - use goto instead.
2023 */
2024#define do_each_thread(g, t) \
2025	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2026
2027#define while_each_thread(g, t) \
2028	while ((t = next_thread(t)) != g)
2029
2030/* de_thread depends on thread_group_leader not being a pid based check */
2031#define thread_group_leader(p)	(p == p->group_leader)
2032
2033/* Do to the insanities of de_thread it is possible for a process
2034 * to have the pid of the thread group leader without actually being
2035 * the thread group leader.  For iteration through the pids in proc
2036 * all we care about is that we have a task with the appropriate
2037 * pid, we don't actually care if we have the right task.
2038 */
2039static inline int has_group_leader_pid(struct task_struct *p)
2040{
2041	return p->pid == p->tgid;
2042}
2043
2044static inline
2045int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2046{
2047	return p1->tgid == p2->tgid;
2048}
2049
2050static inline struct task_struct *next_thread(const struct task_struct *p)
2051{
2052	return list_entry(rcu_dereference(p->thread_group.next),
2053			  struct task_struct, thread_group);
2054}
2055
2056static inline int thread_group_empty(struct task_struct *p)
2057{
2058	return list_empty(&p->thread_group);
2059}
2060
2061#define delay_group_leader(p) \
2062		(thread_group_leader(p) && !thread_group_empty(p))
2063
2064static inline int task_detached(struct task_struct *p)
2065{
2066	return p->exit_signal == -1;
2067}
2068
2069/*
2070 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2071 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2072 * pins the final release of task.io_context.  Also protects ->cpuset and
2073 * ->cgroup.subsys[].
2074 *
2075 * Nests both inside and outside of read_lock(&tasklist_lock).
2076 * It must not be nested with write_lock_irq(&tasklist_lock),
2077 * neither inside nor outside.
2078 */
2079static inline void task_lock(struct task_struct *p)
2080{
2081	spin_lock(&p->alloc_lock);
2082}
2083
2084static inline void task_unlock(struct task_struct *p)
2085{
2086	spin_unlock(&p->alloc_lock);
2087}
2088
2089extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2090							unsigned long *flags);
2091
2092static inline void unlock_task_sighand(struct task_struct *tsk,
2093						unsigned long *flags)
2094{
2095	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2096}
2097
2098#ifndef __HAVE_THREAD_FUNCTIONS
2099
2100#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2101#define task_stack_page(task)	((task)->stack)
2102
2103static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2104{
2105	*task_thread_info(p) = *task_thread_info(org);
2106	task_thread_info(p)->task = p;
2107}
2108
2109static inline unsigned long *end_of_stack(struct task_struct *p)
2110{
2111	return (unsigned long *)(task_thread_info(p) + 1);
2112}
2113
2114#endif
2115
2116static inline int object_is_on_stack(void *obj)
2117{
2118	void *stack = task_stack_page(current);
2119
2120	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2121}
2122
2123extern void thread_info_cache_init(void);
2124
2125#ifdef CONFIG_DEBUG_STACK_USAGE
2126static inline unsigned long stack_not_used(struct task_struct *p)
2127{
2128	unsigned long *n = end_of_stack(p);
2129
2130	do { 	/* Skip over canary */
2131		n++;
2132	} while (!*n);
2133
2134	return (unsigned long)n - (unsigned long)end_of_stack(p);
2135}
2136#endif
2137
2138/* set thread flags in other task's structures
2139 * - see asm/thread_info.h for TIF_xxxx flags available
2140 */
2141static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2142{
2143	set_ti_thread_flag(task_thread_info(tsk), flag);
2144}
2145
2146static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2147{
2148	clear_ti_thread_flag(task_thread_info(tsk), flag);
2149}
2150
2151static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2152{
2153	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2154}
2155
2156static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2157{
2158	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2159}
2160
2161static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2162{
2163	return test_ti_thread_flag(task_thread_info(tsk), flag);
2164}
2165
2166static inline void set_tsk_need_resched(struct task_struct *tsk)
2167{
2168	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2169}
2170
2171static inline void clear_tsk_need_resched(struct task_struct *tsk)
2172{
2173	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2174}
2175
2176static inline int test_tsk_need_resched(struct task_struct *tsk)
2177{
2178	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2179}
2180
2181static inline int restart_syscall(void)
2182{
2183	set_tsk_thread_flag(current, TIF_SIGPENDING);
2184	return -ERESTARTNOINTR;
2185}
2186
2187static inline int signal_pending(struct task_struct *p)
2188{
2189	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2190}
2191
2192extern int __fatal_signal_pending(struct task_struct *p);
2193
2194static inline int fatal_signal_pending(struct task_struct *p)
2195{
2196	return signal_pending(p) && __fatal_signal_pending(p);
2197}
2198
2199static inline int signal_pending_state(long state, struct task_struct *p)
2200{
2201	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2202		return 0;
2203	if (!signal_pending(p))
2204		return 0;
2205
2206	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2207}
2208
2209static inline int need_resched(void)
2210{
2211	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2212}
2213
2214/*
2215 * cond_resched() and cond_resched_lock(): latency reduction via
2216 * explicit rescheduling in places that are safe. The return
2217 * value indicates whether a reschedule was done in fact.
2218 * cond_resched_lock() will drop the spinlock before scheduling,
2219 * cond_resched_softirq() will enable bhs before scheduling.
2220 */
2221extern int _cond_resched(void);
2222#ifdef CONFIG_PREEMPT_BKL
2223static inline int cond_resched(void)
2224{
2225	return 0;
2226}
2227#else
2228static inline int cond_resched(void)
2229{
2230	return _cond_resched();
2231}
2232#endif
2233extern int cond_resched_lock(spinlock_t * lock);
2234extern int cond_resched_softirq(void);
2235static inline int cond_resched_bkl(void)
2236{
2237	return _cond_resched();
2238}
2239
2240/*
2241 * Does a critical section need to be broken due to another
2242 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2243 * but a general need for low latency)
2244 */
2245static inline int spin_needbreak(spinlock_t *lock)
2246{
2247#ifdef CONFIG_PREEMPT
2248	return spin_is_contended(lock);
2249#else
2250	return 0;
2251#endif
2252}
2253
2254/*
2255 * Thread group CPU time accounting.
2256 */
2257void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2258void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2259
2260static inline void thread_group_cputime_init(struct signal_struct *sig)
2261{
2262	sig->cputimer.cputime = INIT_CPUTIME;
2263	spin_lock_init(&sig->cputimer.lock);
2264	sig->cputimer.running = 0;
2265}
2266
2267static inline void thread_group_cputime_free(struct signal_struct *sig)
2268{
2269}
2270
2271/*
2272 * Reevaluate whether the task has signals pending delivery.
2273 * Wake the task if so.
2274 * This is required every time the blocked sigset_t changes.
2275 * callers must hold sighand->siglock.
2276 */
2277extern void recalc_sigpending_and_wake(struct task_struct *t);
2278extern void recalc_sigpending(void);
2279
2280extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2281
2282/*
2283 * Wrappers for p->thread_info->cpu access. No-op on UP.
2284 */
2285#ifdef CONFIG_SMP
2286
2287static inline unsigned int task_cpu(const struct task_struct *p)
2288{
2289	return task_thread_info(p)->cpu;
2290}
2291
2292extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2293
2294#else
2295
2296static inline unsigned int task_cpu(const struct task_struct *p)
2297{
2298	return 0;
2299}
2300
2301static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2302{
2303}
2304
2305#endif /* CONFIG_SMP */
2306
2307extern void arch_pick_mmap_layout(struct mm_struct *mm);
2308
2309#ifdef CONFIG_TRACING
2310extern void
2311__trace_special(void *__tr, void *__data,
2312		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2313#else
2314static inline void
2315__trace_special(void *__tr, void *__data,
2316		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2317{
2318}
2319#endif
2320
2321extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2322extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2323
2324extern void normalize_rt_tasks(void);
2325
2326#ifdef CONFIG_GROUP_SCHED
2327
2328extern struct task_group init_task_group;
2329#ifdef CONFIG_USER_SCHED
2330extern struct task_group root_task_group;
2331extern void set_tg_uid(struct user_struct *user);
2332#endif
2333
2334extern struct task_group *sched_create_group(struct task_group *parent);
2335extern void sched_destroy_group(struct task_group *tg);
2336extern void sched_move_task(struct task_struct *tsk);
2337#ifdef CONFIG_FAIR_GROUP_SCHED
2338extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2339extern unsigned long sched_group_shares(struct task_group *tg);
2340#endif
2341#ifdef CONFIG_RT_GROUP_SCHED
2342extern int sched_group_set_rt_runtime(struct task_group *tg,
2343				      long rt_runtime_us);
2344extern long sched_group_rt_runtime(struct task_group *tg);
2345extern int sched_group_set_rt_period(struct task_group *tg,
2346				      long rt_period_us);
2347extern long sched_group_rt_period(struct task_group *tg);
2348extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2349#endif
2350#endif
2351
2352extern int task_can_switch_user(struct user_struct *up,
2353					struct task_struct *tsk);
2354
2355#ifdef CONFIG_TASK_XACCT
2356static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2357{
2358	tsk->ioac.rchar += amt;
2359}
2360
2361static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2362{
2363	tsk->ioac.wchar += amt;
2364}
2365
2366static inline void inc_syscr(struct task_struct *tsk)
2367{
2368	tsk->ioac.syscr++;
2369}
2370
2371static inline void inc_syscw(struct task_struct *tsk)
2372{
2373	tsk->ioac.syscw++;
2374}
2375#else
2376static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2377{
2378}
2379
2380static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2381{
2382}
2383
2384static inline void inc_syscr(struct task_struct *tsk)
2385{
2386}
2387
2388static inline void inc_syscw(struct task_struct *tsk)
2389{
2390}
2391#endif
2392
2393#ifndef TASK_SIZE_OF
2394#define TASK_SIZE_OF(tsk)	TASK_SIZE
2395#endif
2396
2397#ifdef CONFIG_MM_OWNER
2398extern void mm_update_next_owner(struct mm_struct *mm);
2399extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2400#else
2401static inline void mm_update_next_owner(struct mm_struct *mm)
2402{
2403}
2404
2405static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2406{
2407}
2408#endif /* CONFIG_MM_OWNER */
2409
2410#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2411
2412#endif /* __KERNEL__ */
2413
2414#endif
2415