sched.h revision 78f2c7db6068fd6ef75b8c120f04a388848eacb5
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30
31/*
32 * Scheduling policies
33 */
34#define SCHED_NORMAL		0
35#define SCHED_FIFO		1
36#define SCHED_RR		2
37#define SCHED_BATCH		3
38/* SCHED_ISO: reserved but not implemented yet */
39#define SCHED_IDLE		5
40
41#ifdef __KERNEL__
42
43struct sched_param {
44	int sched_priority;
45};
46
47#include <asm/param.h>	/* for HZ */
48
49#include <linux/capability.h>
50#include <linux/threads.h>
51#include <linux/kernel.h>
52#include <linux/types.h>
53#include <linux/timex.h>
54#include <linux/jiffies.h>
55#include <linux/rbtree.h>
56#include <linux/thread_info.h>
57#include <linux/cpumask.h>
58#include <linux/errno.h>
59#include <linux/nodemask.h>
60#include <linux/mm_types.h>
61
62#include <asm/system.h>
63#include <asm/semaphore.h>
64#include <asm/page.h>
65#include <asm/ptrace.h>
66#include <asm/cputime.h>
67
68#include <linux/smp.h>
69#include <linux/sem.h>
70#include <linux/signal.h>
71#include <linux/securebits.h>
72#include <linux/fs_struct.h>
73#include <linux/compiler.h>
74#include <linux/completion.h>
75#include <linux/pid.h>
76#include <linux/percpu.h>
77#include <linux/topology.h>
78#include <linux/proportions.h>
79#include <linux/seccomp.h>
80#include <linux/rcupdate.h>
81#include <linux/futex.h>
82#include <linux/rtmutex.h>
83
84#include <linux/time.h>
85#include <linux/param.h>
86#include <linux/resource.h>
87#include <linux/timer.h>
88#include <linux/hrtimer.h>
89#include <linux/task_io_accounting.h>
90#include <linux/kobject.h>
91
92#include <asm/processor.h>
93
94struct exec_domain;
95struct futex_pi_state;
96struct bio;
97
98/*
99 * List of flags we want to share for kernel threads,
100 * if only because they are not used by them anyway.
101 */
102#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
104/*
105 * These are the constant used to fake the fixed-point load-average
106 * counting. Some notes:
107 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
108 *    a load-average precision of 10 bits integer + 11 bits fractional
109 *  - if you want to count load-averages more often, you need more
110 *    precision, or rounding will get you. With 2-second counting freq,
111 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
112 *    11 bit fractions.
113 */
114extern unsigned long avenrun[];		/* Load averages */
115
116#define FSHIFT		11		/* nr of bits of precision */
117#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
118#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
119#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
120#define EXP_5		2014		/* 1/exp(5sec/5min) */
121#define EXP_15		2037		/* 1/exp(5sec/15min) */
122
123#define CALC_LOAD(load,exp,n) \
124	load *= exp; \
125	load += n*(FIXED_1-exp); \
126	load >>= FSHIFT;
127
128extern unsigned long total_forks;
129extern int nr_threads;
130DECLARE_PER_CPU(unsigned long, process_counts);
131extern int nr_processes(void);
132extern unsigned long nr_running(void);
133extern unsigned long nr_uninterruptible(void);
134extern unsigned long nr_active(void);
135extern unsigned long nr_iowait(void);
136extern unsigned long weighted_cpuload(const int cpu);
137
138struct seq_file;
139struct cfs_rq;
140struct task_group;
141#ifdef CONFIG_SCHED_DEBUG
142extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143extern void proc_sched_set_task(struct task_struct *p);
144extern void
145print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146#else
147static inline void
148proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149{
150}
151static inline void proc_sched_set_task(struct task_struct *p)
152{
153}
154static inline void
155print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156{
157}
158#endif
159
160/*
161 * Task state bitmask. NOTE! These bits are also
162 * encoded in fs/proc/array.c: get_task_state().
163 *
164 * We have two separate sets of flags: task->state
165 * is about runnability, while task->exit_state are
166 * about the task exiting. Confusing, but this way
167 * modifying one set can't modify the other one by
168 * mistake.
169 */
170#define TASK_RUNNING		0
171#define TASK_INTERRUPTIBLE	1
172#define TASK_UNINTERRUPTIBLE	2
173#define TASK_STOPPED		4
174#define TASK_TRACED		8
175/* in tsk->exit_state */
176#define EXIT_ZOMBIE		16
177#define EXIT_DEAD		32
178/* in tsk->state again */
179#define TASK_DEAD		64
180
181#define __set_task_state(tsk, state_value)		\
182	do { (tsk)->state = (state_value); } while (0)
183#define set_task_state(tsk, state_value)		\
184	set_mb((tsk)->state, (state_value))
185
186/*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 *	set_current_state(TASK_UNINTERRUPTIBLE);
192 *	if (do_i_need_to_sleep())
193 *		schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197#define __set_current_state(state_value)			\
198	do { current->state = (state_value); } while (0)
199#define set_current_state(state_value)		\
200	set_mb(current->state, (state_value))
201
202/* Task command name length */
203#define TASK_COMM_LEN 16
204
205#include <linux/spinlock.h>
206
207/*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213extern rwlock_t tasklist_lock;
214extern spinlock_t mmlist_lock;
215
216struct task_struct;
217
218extern void sched_init(void);
219extern void sched_init_smp(void);
220extern void init_idle(struct task_struct *idle, int cpu);
221extern void init_idle_bootup_task(struct task_struct *idle);
222
223extern cpumask_t nohz_cpu_mask;
224#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225extern int select_nohz_load_balancer(int cpu);
226#else
227static inline int select_nohz_load_balancer(int cpu)
228{
229	return 0;
230}
231#endif
232
233/*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236extern void show_state_filter(unsigned long state_filter);
237
238static inline void show_state(void)
239{
240	show_state_filter(0);
241}
242
243extern void show_regs(struct pt_regs *);
244
245/*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252void io_schedule(void);
253long io_schedule_timeout(long timeout);
254
255extern void cpu_init (void);
256extern void trap_init(void);
257extern void account_process_tick(struct task_struct *task, int user);
258extern void update_process_times(int user);
259extern void scheduler_tick(void);
260
261extern void sched_show_task(struct task_struct *p);
262
263#ifdef CONFIG_DETECT_SOFTLOCKUP
264extern void softlockup_tick(void);
265extern void spawn_softlockup_task(void);
266extern void touch_softlockup_watchdog(void);
267extern void touch_all_softlockup_watchdogs(void);
268extern int softlockup_thresh;
269extern unsigned long sysctl_hung_task_check_count;
270extern unsigned long sysctl_hung_task_timeout_secs;
271extern long sysctl_hung_task_warnings;
272#else
273static inline void softlockup_tick(void)
274{
275}
276static inline void spawn_softlockup_task(void)
277{
278}
279static inline void touch_softlockup_watchdog(void)
280{
281}
282static inline void touch_all_softlockup_watchdogs(void)
283{
284}
285#endif
286
287
288/* Attach to any functions which should be ignored in wchan output. */
289#define __sched		__attribute__((__section__(".sched.text")))
290
291/* Linker adds these: start and end of __sched functions */
292extern char __sched_text_start[], __sched_text_end[];
293
294/* Is this address in the __sched functions? */
295extern int in_sched_functions(unsigned long addr);
296
297#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
298extern signed long FASTCALL(schedule_timeout(signed long timeout));
299extern signed long schedule_timeout_interruptible(signed long timeout);
300extern signed long schedule_timeout_uninterruptible(signed long timeout);
301asmlinkage void schedule(void);
302
303struct nsproxy;
304struct user_namespace;
305
306/* Maximum number of active map areas.. This is a random (large) number */
307#define DEFAULT_MAX_MAP_COUNT	65536
308
309extern int sysctl_max_map_count;
310
311#include <linux/aio.h>
312
313extern unsigned long
314arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
315		       unsigned long, unsigned long);
316extern unsigned long
317arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
318			  unsigned long len, unsigned long pgoff,
319			  unsigned long flags);
320extern void arch_unmap_area(struct mm_struct *, unsigned long);
321extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
322
323#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
324/*
325 * The mm counters are not protected by its page_table_lock,
326 * so must be incremented atomically.
327 */
328#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
329#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
330#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
331#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
332#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
333
334#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
335/*
336 * The mm counters are protected by its page_table_lock,
337 * so can be incremented directly.
338 */
339#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
340#define get_mm_counter(mm, member) ((mm)->_##member)
341#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
342#define inc_mm_counter(mm, member) (mm)->_##member++
343#define dec_mm_counter(mm, member) (mm)->_##member--
344
345#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
346
347#define get_mm_rss(mm)					\
348	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
349#define update_hiwater_rss(mm)	do {			\
350	unsigned long _rss = get_mm_rss(mm);		\
351	if ((mm)->hiwater_rss < _rss)			\
352		(mm)->hiwater_rss = _rss;		\
353} while (0)
354#define update_hiwater_vm(mm)	do {			\
355	if ((mm)->hiwater_vm < (mm)->total_vm)		\
356		(mm)->hiwater_vm = (mm)->total_vm;	\
357} while (0)
358
359extern void set_dumpable(struct mm_struct *mm, int value);
360extern int get_dumpable(struct mm_struct *mm);
361
362/* mm flags */
363/* dumpable bits */
364#define MMF_DUMPABLE      0  /* core dump is permitted */
365#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
366#define MMF_DUMPABLE_BITS 2
367
368/* coredump filter bits */
369#define MMF_DUMP_ANON_PRIVATE	2
370#define MMF_DUMP_ANON_SHARED	3
371#define MMF_DUMP_MAPPED_PRIVATE	4
372#define MMF_DUMP_MAPPED_SHARED	5
373#define MMF_DUMP_ELF_HEADERS	6
374#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
375#define MMF_DUMP_FILTER_BITS	5
376#define MMF_DUMP_FILTER_MASK \
377	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
378#define MMF_DUMP_FILTER_DEFAULT \
379	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED))
380
381struct sighand_struct {
382	atomic_t		count;
383	struct k_sigaction	action[_NSIG];
384	spinlock_t		siglock;
385	wait_queue_head_t	signalfd_wqh;
386};
387
388struct pacct_struct {
389	int			ac_flag;
390	long			ac_exitcode;
391	unsigned long		ac_mem;
392	cputime_t		ac_utime, ac_stime;
393	unsigned long		ac_minflt, ac_majflt;
394};
395
396/*
397 * NOTE! "signal_struct" does not have it's own
398 * locking, because a shared signal_struct always
399 * implies a shared sighand_struct, so locking
400 * sighand_struct is always a proper superset of
401 * the locking of signal_struct.
402 */
403struct signal_struct {
404	atomic_t		count;
405	atomic_t		live;
406
407	wait_queue_head_t	wait_chldexit;	/* for wait4() */
408
409	/* current thread group signal load-balancing target: */
410	struct task_struct	*curr_target;
411
412	/* shared signal handling: */
413	struct sigpending	shared_pending;
414
415	/* thread group exit support */
416	int			group_exit_code;
417	/* overloaded:
418	 * - notify group_exit_task when ->count is equal to notify_count
419	 * - everyone except group_exit_task is stopped during signal delivery
420	 *   of fatal signals, group_exit_task processes the signal.
421	 */
422	struct task_struct	*group_exit_task;
423	int			notify_count;
424
425	/* thread group stop support, overloads group_exit_code too */
426	int			group_stop_count;
427	unsigned int		flags; /* see SIGNAL_* flags below */
428
429	/* POSIX.1b Interval Timers */
430	struct list_head posix_timers;
431
432	/* ITIMER_REAL timer for the process */
433	struct hrtimer real_timer;
434	struct task_struct *tsk;
435	ktime_t it_real_incr;
436
437	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
438	cputime_t it_prof_expires, it_virt_expires;
439	cputime_t it_prof_incr, it_virt_incr;
440
441	/* job control IDs */
442
443	/*
444	 * pgrp and session fields are deprecated.
445	 * use the task_session_Xnr and task_pgrp_Xnr routines below
446	 */
447
448	union {
449		pid_t pgrp __deprecated;
450		pid_t __pgrp;
451	};
452
453	struct pid *tty_old_pgrp;
454
455	union {
456		pid_t session __deprecated;
457		pid_t __session;
458	};
459
460	/* boolean value for session group leader */
461	int leader;
462
463	struct tty_struct *tty; /* NULL if no tty */
464
465	/*
466	 * Cumulative resource counters for dead threads in the group,
467	 * and for reaped dead child processes forked by this group.
468	 * Live threads maintain their own counters and add to these
469	 * in __exit_signal, except for the group leader.
470	 */
471	cputime_t utime, stime, cutime, cstime;
472	cputime_t gtime;
473	cputime_t cgtime;
474	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
475	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
476	unsigned long inblock, oublock, cinblock, coublock;
477
478	/*
479	 * Cumulative ns of scheduled CPU time for dead threads in the
480	 * group, not including a zombie group leader.  (This only differs
481	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
482	 * other than jiffies.)
483	 */
484	unsigned long long sum_sched_runtime;
485
486	/*
487	 * We don't bother to synchronize most readers of this at all,
488	 * because there is no reader checking a limit that actually needs
489	 * to get both rlim_cur and rlim_max atomically, and either one
490	 * alone is a single word that can safely be read normally.
491	 * getrlimit/setrlimit use task_lock(current->group_leader) to
492	 * protect this instead of the siglock, because they really
493	 * have no need to disable irqs.
494	 */
495	struct rlimit rlim[RLIM_NLIMITS];
496
497	struct list_head cpu_timers[3];
498
499	/* keep the process-shared keyrings here so that they do the right
500	 * thing in threads created with CLONE_THREAD */
501#ifdef CONFIG_KEYS
502	struct key *session_keyring;	/* keyring inherited over fork */
503	struct key *process_keyring;	/* keyring private to this process */
504#endif
505#ifdef CONFIG_BSD_PROCESS_ACCT
506	struct pacct_struct pacct;	/* per-process accounting information */
507#endif
508#ifdef CONFIG_TASKSTATS
509	struct taskstats *stats;
510#endif
511#ifdef CONFIG_AUDIT
512	unsigned audit_tty;
513	struct tty_audit_buf *tty_audit_buf;
514#endif
515};
516
517/* Context switch must be unlocked if interrupts are to be enabled */
518#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
519# define __ARCH_WANT_UNLOCKED_CTXSW
520#endif
521
522/*
523 * Bits in flags field of signal_struct.
524 */
525#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
526#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
527#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
528#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
529
530/*
531 * Some day this will be a full-fledged user tracking system..
532 */
533struct user_struct {
534	atomic_t __count;	/* reference count */
535	atomic_t processes;	/* How many processes does this user have? */
536	atomic_t files;		/* How many open files does this user have? */
537	atomic_t sigpending;	/* How many pending signals does this user have? */
538#ifdef CONFIG_INOTIFY_USER
539	atomic_t inotify_watches; /* How many inotify watches does this user have? */
540	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
541#endif
542#ifdef CONFIG_POSIX_MQUEUE
543	/* protected by mq_lock	*/
544	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
545#endif
546	unsigned long locked_shm; /* How many pages of mlocked shm ? */
547
548#ifdef CONFIG_KEYS
549	struct key *uid_keyring;	/* UID specific keyring */
550	struct key *session_keyring;	/* UID's default session keyring */
551#endif
552
553	/* Hash table maintenance information */
554	struct hlist_node uidhash_node;
555	uid_t uid;
556
557#ifdef CONFIG_FAIR_USER_SCHED
558	struct task_group *tg;
559#ifdef CONFIG_SYSFS
560	struct kobject kobj;
561	struct work_struct work;
562#endif
563#endif
564};
565
566extern int uids_sysfs_init(void);
567
568extern struct user_struct *find_user(uid_t);
569
570extern struct user_struct root_user;
571#define INIT_USER (&root_user)
572
573struct backing_dev_info;
574struct reclaim_state;
575
576#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
577struct sched_info {
578	/* cumulative counters */
579	unsigned long pcount;	      /* # of times run on this cpu */
580	unsigned long long cpu_time,  /* time spent on the cpu */
581			   run_delay; /* time spent waiting on a runqueue */
582
583	/* timestamps */
584	unsigned long long last_arrival,/* when we last ran on a cpu */
585			   last_queued;	/* when we were last queued to run */
586#ifdef CONFIG_SCHEDSTATS
587	/* BKL stats */
588	unsigned int bkl_count;
589#endif
590};
591#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
592
593#ifdef CONFIG_SCHEDSTATS
594extern const struct file_operations proc_schedstat_operations;
595#endif /* CONFIG_SCHEDSTATS */
596
597#ifdef CONFIG_TASK_DELAY_ACCT
598struct task_delay_info {
599	spinlock_t	lock;
600	unsigned int	flags;	/* Private per-task flags */
601
602	/* For each stat XXX, add following, aligned appropriately
603	 *
604	 * struct timespec XXX_start, XXX_end;
605	 * u64 XXX_delay;
606	 * u32 XXX_count;
607	 *
608	 * Atomicity of updates to XXX_delay, XXX_count protected by
609	 * single lock above (split into XXX_lock if contention is an issue).
610	 */
611
612	/*
613	 * XXX_count is incremented on every XXX operation, the delay
614	 * associated with the operation is added to XXX_delay.
615	 * XXX_delay contains the accumulated delay time in nanoseconds.
616	 */
617	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
618	u64 blkio_delay;	/* wait for sync block io completion */
619	u64 swapin_delay;	/* wait for swapin block io completion */
620	u32 blkio_count;	/* total count of the number of sync block */
621				/* io operations performed */
622	u32 swapin_count;	/* total count of the number of swapin block */
623				/* io operations performed */
624};
625#endif	/* CONFIG_TASK_DELAY_ACCT */
626
627static inline int sched_info_on(void)
628{
629#ifdef CONFIG_SCHEDSTATS
630	return 1;
631#elif defined(CONFIG_TASK_DELAY_ACCT)
632	extern int delayacct_on;
633	return delayacct_on;
634#else
635	return 0;
636#endif
637}
638
639enum cpu_idle_type {
640	CPU_IDLE,
641	CPU_NOT_IDLE,
642	CPU_NEWLY_IDLE,
643	CPU_MAX_IDLE_TYPES
644};
645
646/*
647 * sched-domains (multiprocessor balancing) declarations:
648 */
649
650/*
651 * Increase resolution of nice-level calculations:
652 */
653#define SCHED_LOAD_SHIFT	10
654#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
655
656#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
657
658#ifdef CONFIG_SMP
659#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
660#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
661#define SD_BALANCE_EXEC		4	/* Balance on exec */
662#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
663#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
664#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
665#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
666#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
667#define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
668#define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
669#define SD_SERIALIZE		1024	/* Only a single load balancing instance */
670
671#define BALANCE_FOR_MC_POWER	\
672	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
673
674#define BALANCE_FOR_PKG_POWER	\
675	((sched_mc_power_savings || sched_smt_power_savings) ?	\
676	 SD_POWERSAVINGS_BALANCE : 0)
677
678#define test_sd_parent(sd, flag)	((sd->parent &&		\
679					 (sd->parent->flags & flag)) ? 1 : 0)
680
681
682struct sched_group {
683	struct sched_group *next;	/* Must be a circular list */
684	cpumask_t cpumask;
685
686	/*
687	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
688	 * single CPU. This is read only (except for setup, hotplug CPU).
689	 * Note : Never change cpu_power without recompute its reciprocal
690	 */
691	unsigned int __cpu_power;
692	/*
693	 * reciprocal value of cpu_power to avoid expensive divides
694	 * (see include/linux/reciprocal_div.h)
695	 */
696	u32 reciprocal_cpu_power;
697};
698
699struct sched_domain {
700	/* These fields must be setup */
701	struct sched_domain *parent;	/* top domain must be null terminated */
702	struct sched_domain *child;	/* bottom domain must be null terminated */
703	struct sched_group *groups;	/* the balancing groups of the domain */
704	cpumask_t span;			/* span of all CPUs in this domain */
705	unsigned long min_interval;	/* Minimum balance interval ms */
706	unsigned long max_interval;	/* Maximum balance interval ms */
707	unsigned int busy_factor;	/* less balancing by factor if busy */
708	unsigned int imbalance_pct;	/* No balance until over watermark */
709	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
710	unsigned int busy_idx;
711	unsigned int idle_idx;
712	unsigned int newidle_idx;
713	unsigned int wake_idx;
714	unsigned int forkexec_idx;
715	int flags;			/* See SD_* */
716
717	/* Runtime fields. */
718	unsigned long last_balance;	/* init to jiffies. units in jiffies */
719	unsigned int balance_interval;	/* initialise to 1. units in ms. */
720	unsigned int nr_balance_failed; /* initialise to 0 */
721
722#ifdef CONFIG_SCHEDSTATS
723	/* load_balance() stats */
724	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
725	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
726	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
727	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
728	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
729	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
730	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
731	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
732
733	/* Active load balancing */
734	unsigned int alb_count;
735	unsigned int alb_failed;
736	unsigned int alb_pushed;
737
738	/* SD_BALANCE_EXEC stats */
739	unsigned int sbe_count;
740	unsigned int sbe_balanced;
741	unsigned int sbe_pushed;
742
743	/* SD_BALANCE_FORK stats */
744	unsigned int sbf_count;
745	unsigned int sbf_balanced;
746	unsigned int sbf_pushed;
747
748	/* try_to_wake_up() stats */
749	unsigned int ttwu_wake_remote;
750	unsigned int ttwu_move_affine;
751	unsigned int ttwu_move_balance;
752#endif
753};
754
755extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
756
757#endif	/* CONFIG_SMP */
758
759/*
760 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
761 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
762 * task of nice 0 or enough lower priority tasks to bring up the
763 * weighted_cpuload
764 */
765static inline int above_background_load(void)
766{
767	unsigned long cpu;
768
769	for_each_online_cpu(cpu) {
770		if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
771			return 1;
772	}
773	return 0;
774}
775
776struct io_context;			/* See blkdev.h */
777#define NGROUPS_SMALL		32
778#define NGROUPS_PER_BLOCK	((int)(PAGE_SIZE / sizeof(gid_t)))
779struct group_info {
780	int ngroups;
781	atomic_t usage;
782	gid_t small_block[NGROUPS_SMALL];
783	int nblocks;
784	gid_t *blocks[0];
785};
786
787/*
788 * get_group_info() must be called with the owning task locked (via task_lock())
789 * when task != current.  The reason being that the vast majority of callers are
790 * looking at current->group_info, which can not be changed except by the
791 * current task.  Changing current->group_info requires the task lock, too.
792 */
793#define get_group_info(group_info) do { \
794	atomic_inc(&(group_info)->usage); \
795} while (0)
796
797#define put_group_info(group_info) do { \
798	if (atomic_dec_and_test(&(group_info)->usage)) \
799		groups_free(group_info); \
800} while (0)
801
802extern struct group_info *groups_alloc(int gidsetsize);
803extern void groups_free(struct group_info *group_info);
804extern int set_current_groups(struct group_info *group_info);
805extern int groups_search(struct group_info *group_info, gid_t grp);
806/* access the groups "array" with this macro */
807#define GROUP_AT(gi, i) \
808    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
809
810#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
811extern void prefetch_stack(struct task_struct *t);
812#else
813static inline void prefetch_stack(struct task_struct *t) { }
814#endif
815
816struct audit_context;		/* See audit.c */
817struct mempolicy;
818struct pipe_inode_info;
819struct uts_namespace;
820
821struct rq;
822struct sched_domain;
823
824struct sched_class {
825	const struct sched_class *next;
826
827	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
828	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
829	void (*yield_task) (struct rq *rq);
830	int  (*select_task_rq)(struct task_struct *p, int sync);
831
832	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
833
834	struct task_struct * (*pick_next_task) (struct rq *rq);
835	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
836
837#ifdef CONFIG_SMP
838	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
839			struct rq *busiest, unsigned long max_load_move,
840			struct sched_domain *sd, enum cpu_idle_type idle,
841			int *all_pinned, int *this_best_prio);
842
843	int (*move_one_task) (struct rq *this_rq, int this_cpu,
844			      struct rq *busiest, struct sched_domain *sd,
845			      enum cpu_idle_type idle);
846	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
847	void (*post_schedule) (struct rq *this_rq);
848	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
849#endif
850
851	void (*set_curr_task) (struct rq *rq);
852	void (*task_tick) (struct rq *rq, struct task_struct *p);
853	void (*task_new) (struct rq *rq, struct task_struct *p);
854	void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
855
856	void (*join_domain)(struct rq *rq);
857	void (*leave_domain)(struct rq *rq);
858
859	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
860			       int running);
861	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
862			     int running);
863	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
864			     int oldprio, int running);
865};
866
867struct load_weight {
868	unsigned long weight, inv_weight;
869};
870
871/*
872 * CFS stats for a schedulable entity (task, task-group etc)
873 *
874 * Current field usage histogram:
875 *
876 *     4 se->block_start
877 *     4 se->run_node
878 *     4 se->sleep_start
879 *     6 se->load.weight
880 */
881struct sched_entity {
882	struct load_weight	load;		/* for load-balancing */
883	struct rb_node		run_node;
884	unsigned int		on_rq;
885
886	u64			exec_start;
887	u64			sum_exec_runtime;
888	u64			vruntime;
889	u64			prev_sum_exec_runtime;
890
891#ifdef CONFIG_SCHEDSTATS
892	u64			wait_start;
893	u64			wait_max;
894
895	u64			sleep_start;
896	u64			sleep_max;
897	s64			sum_sleep_runtime;
898
899	u64			block_start;
900	u64			block_max;
901	u64			exec_max;
902	u64			slice_max;
903
904	u64			nr_migrations;
905	u64			nr_migrations_cold;
906	u64			nr_failed_migrations_affine;
907	u64			nr_failed_migrations_running;
908	u64			nr_failed_migrations_hot;
909	u64			nr_forced_migrations;
910	u64			nr_forced2_migrations;
911
912	u64			nr_wakeups;
913	u64			nr_wakeups_sync;
914	u64			nr_wakeups_migrate;
915	u64			nr_wakeups_local;
916	u64			nr_wakeups_remote;
917	u64			nr_wakeups_affine;
918	u64			nr_wakeups_affine_attempts;
919	u64			nr_wakeups_passive;
920	u64			nr_wakeups_idle;
921#endif
922
923#ifdef CONFIG_FAIR_GROUP_SCHED
924	struct sched_entity	*parent;
925	/* rq on which this entity is (to be) queued: */
926	struct cfs_rq		*cfs_rq;
927	/* rq "owned" by this entity/group: */
928	struct cfs_rq		*my_q;
929#endif
930};
931
932struct sched_rt_entity {
933	struct list_head run_list;
934	unsigned int time_slice;
935	unsigned long timeout;
936};
937
938struct task_struct {
939	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
940	void *stack;
941	atomic_t usage;
942	unsigned int flags;	/* per process flags, defined below */
943	unsigned int ptrace;
944
945	int lock_depth;		/* BKL lock depth */
946
947#ifdef CONFIG_SMP
948#ifdef __ARCH_WANT_UNLOCKED_CTXSW
949	int oncpu;
950#endif
951#endif
952
953	int prio, static_prio, normal_prio;
954	const struct sched_class *sched_class;
955	struct sched_entity se;
956	struct sched_rt_entity rt;
957
958#ifdef CONFIG_PREEMPT_NOTIFIERS
959	/* list of struct preempt_notifier: */
960	struct hlist_head preempt_notifiers;
961#endif
962
963	unsigned short ioprio;
964	/*
965	 * fpu_counter contains the number of consecutive context switches
966	 * that the FPU is used. If this is over a threshold, the lazy fpu
967	 * saving becomes unlazy to save the trap. This is an unsigned char
968	 * so that after 256 times the counter wraps and the behavior turns
969	 * lazy again; this to deal with bursty apps that only use FPU for
970	 * a short time
971	 */
972	unsigned char fpu_counter;
973	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
974#ifdef CONFIG_BLK_DEV_IO_TRACE
975	unsigned int btrace_seq;
976#endif
977
978	unsigned int policy;
979	cpumask_t cpus_allowed;
980	int nr_cpus_allowed;
981
982#ifdef CONFIG_PREEMPT_RCU
983	int rcu_read_lock_nesting;
984	int rcu_flipctr_idx;
985#endif /* #ifdef CONFIG_PREEMPT_RCU */
986
987#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
988	struct sched_info sched_info;
989#endif
990
991	struct list_head tasks;
992	/*
993	 * ptrace_list/ptrace_children forms the list of my children
994	 * that were stolen by a ptracer.
995	 */
996	struct list_head ptrace_children;
997	struct list_head ptrace_list;
998
999	struct mm_struct *mm, *active_mm;
1000
1001/* task state */
1002	struct linux_binfmt *binfmt;
1003	int exit_state;
1004	int exit_code, exit_signal;
1005	int pdeath_signal;  /*  The signal sent when the parent dies  */
1006	/* ??? */
1007	unsigned int personality;
1008	unsigned did_exec:1;
1009	pid_t pid;
1010	pid_t tgid;
1011
1012#ifdef CONFIG_CC_STACKPROTECTOR
1013	/* Canary value for the -fstack-protector gcc feature */
1014	unsigned long stack_canary;
1015#endif
1016	/*
1017	 * pointers to (original) parent process, youngest child, younger sibling,
1018	 * older sibling, respectively.  (p->father can be replaced with
1019	 * p->parent->pid)
1020	 */
1021	struct task_struct *real_parent; /* real parent process (when being debugged) */
1022	struct task_struct *parent;	/* parent process */
1023	/*
1024	 * children/sibling forms the list of my children plus the
1025	 * tasks I'm ptracing.
1026	 */
1027	struct list_head children;	/* list of my children */
1028	struct list_head sibling;	/* linkage in my parent's children list */
1029	struct task_struct *group_leader;	/* threadgroup leader */
1030
1031	/* PID/PID hash table linkage. */
1032	struct pid_link pids[PIDTYPE_MAX];
1033	struct list_head thread_group;
1034
1035	struct completion *vfork_done;		/* for vfork() */
1036	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1037	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1038
1039	unsigned int rt_priority;
1040	cputime_t utime, stime, utimescaled, stimescaled;
1041	cputime_t gtime;
1042	cputime_t prev_utime, prev_stime;
1043	unsigned long nvcsw, nivcsw; /* context switch counts */
1044	struct timespec start_time; 		/* monotonic time */
1045	struct timespec real_start_time;	/* boot based time */
1046/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1047	unsigned long min_flt, maj_flt;
1048
1049  	cputime_t it_prof_expires, it_virt_expires;
1050	unsigned long long it_sched_expires;
1051	struct list_head cpu_timers[3];
1052
1053/* process credentials */
1054	uid_t uid,euid,suid,fsuid;
1055	gid_t gid,egid,sgid,fsgid;
1056	struct group_info *group_info;
1057	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
1058	unsigned keep_capabilities:1;
1059	struct user_struct *user;
1060#ifdef CONFIG_KEYS
1061	struct key *request_key_auth;	/* assumed request_key authority */
1062	struct key *thread_keyring;	/* keyring private to this thread */
1063	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1064#endif
1065	char comm[TASK_COMM_LEN]; /* executable name excluding path
1066				     - access with [gs]et_task_comm (which lock
1067				       it with task_lock())
1068				     - initialized normally by flush_old_exec */
1069/* file system info */
1070	int link_count, total_link_count;
1071#ifdef CONFIG_SYSVIPC
1072/* ipc stuff */
1073	struct sysv_sem sysvsem;
1074#endif
1075#ifdef CONFIG_DETECT_SOFTLOCKUP
1076/* hung task detection */
1077	unsigned long last_switch_timestamp;
1078	unsigned long last_switch_count;
1079#endif
1080/* CPU-specific state of this task */
1081	struct thread_struct thread;
1082/* filesystem information */
1083	struct fs_struct *fs;
1084/* open file information */
1085	struct files_struct *files;
1086/* namespaces */
1087	struct nsproxy *nsproxy;
1088/* signal handlers */
1089	struct signal_struct *signal;
1090	struct sighand_struct *sighand;
1091
1092	sigset_t blocked, real_blocked;
1093	sigset_t saved_sigmask;		/* To be restored with TIF_RESTORE_SIGMASK */
1094	struct sigpending pending;
1095
1096	unsigned long sas_ss_sp;
1097	size_t sas_ss_size;
1098	int (*notifier)(void *priv);
1099	void *notifier_data;
1100	sigset_t *notifier_mask;
1101#ifdef CONFIG_SECURITY
1102	void *security;
1103#endif
1104	struct audit_context *audit_context;
1105	seccomp_t seccomp;
1106
1107/* Thread group tracking */
1108   	u32 parent_exec_id;
1109   	u32 self_exec_id;
1110/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1111	spinlock_t alloc_lock;
1112
1113	/* Protection of the PI data structures: */
1114	spinlock_t pi_lock;
1115
1116#ifdef CONFIG_RT_MUTEXES
1117	/* PI waiters blocked on a rt_mutex held by this task */
1118	struct plist_head pi_waiters;
1119	/* Deadlock detection and priority inheritance handling */
1120	struct rt_mutex_waiter *pi_blocked_on;
1121#endif
1122
1123#ifdef CONFIG_DEBUG_MUTEXES
1124	/* mutex deadlock detection */
1125	struct mutex_waiter *blocked_on;
1126#endif
1127#ifdef CONFIG_TRACE_IRQFLAGS
1128	unsigned int irq_events;
1129	int hardirqs_enabled;
1130	unsigned long hardirq_enable_ip;
1131	unsigned int hardirq_enable_event;
1132	unsigned long hardirq_disable_ip;
1133	unsigned int hardirq_disable_event;
1134	int softirqs_enabled;
1135	unsigned long softirq_disable_ip;
1136	unsigned int softirq_disable_event;
1137	unsigned long softirq_enable_ip;
1138	unsigned int softirq_enable_event;
1139	int hardirq_context;
1140	int softirq_context;
1141#endif
1142#ifdef CONFIG_LOCKDEP
1143# define MAX_LOCK_DEPTH 30UL
1144	u64 curr_chain_key;
1145	int lockdep_depth;
1146	struct held_lock held_locks[MAX_LOCK_DEPTH];
1147	unsigned int lockdep_recursion;
1148#endif
1149
1150/* journalling filesystem info */
1151	void *journal_info;
1152
1153/* stacked block device info */
1154	struct bio *bio_list, **bio_tail;
1155
1156/* VM state */
1157	struct reclaim_state *reclaim_state;
1158
1159	struct backing_dev_info *backing_dev_info;
1160
1161	struct io_context *io_context;
1162
1163	unsigned long ptrace_message;
1164	siginfo_t *last_siginfo; /* For ptrace use.  */
1165#ifdef CONFIG_TASK_XACCT
1166/* i/o counters(bytes read/written, #syscalls */
1167	u64 rchar, wchar, syscr, syscw;
1168#endif
1169	struct task_io_accounting ioac;
1170#if defined(CONFIG_TASK_XACCT)
1171	u64 acct_rss_mem1;	/* accumulated rss usage */
1172	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1173	cputime_t acct_stimexpd;/* stime since last update */
1174#endif
1175#ifdef CONFIG_NUMA
1176  	struct mempolicy *mempolicy;
1177	short il_next;
1178#endif
1179#ifdef CONFIG_CPUSETS
1180	nodemask_t mems_allowed;
1181	int cpuset_mems_generation;
1182	int cpuset_mem_spread_rotor;
1183#endif
1184#ifdef CONFIG_CGROUPS
1185	/* Control Group info protected by css_set_lock */
1186	struct css_set *cgroups;
1187	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1188	struct list_head cg_list;
1189#endif
1190#ifdef CONFIG_FUTEX
1191	struct robust_list_head __user *robust_list;
1192#ifdef CONFIG_COMPAT
1193	struct compat_robust_list_head __user *compat_robust_list;
1194#endif
1195	struct list_head pi_state_list;
1196	struct futex_pi_state *pi_state_cache;
1197#endif
1198	atomic_t fs_excl;	/* holding fs exclusive resources */
1199	struct rcu_head rcu;
1200
1201	/*
1202	 * cache last used pipe for splice
1203	 */
1204	struct pipe_inode_info *splice_pipe;
1205#ifdef	CONFIG_TASK_DELAY_ACCT
1206	struct task_delay_info *delays;
1207#endif
1208#ifdef CONFIG_FAULT_INJECTION
1209	int make_it_fail;
1210#endif
1211	struct prop_local_single dirties;
1212};
1213
1214/*
1215 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1216 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1217 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1218 * values are inverted: lower p->prio value means higher priority.
1219 *
1220 * The MAX_USER_RT_PRIO value allows the actual maximum
1221 * RT priority to be separate from the value exported to
1222 * user-space.  This allows kernel threads to set their
1223 * priority to a value higher than any user task. Note:
1224 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1225 */
1226
1227#define MAX_USER_RT_PRIO	100
1228#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1229
1230#define MAX_PRIO		(MAX_RT_PRIO + 40)
1231#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1232
1233static inline int rt_prio(int prio)
1234{
1235	if (unlikely(prio < MAX_RT_PRIO))
1236		return 1;
1237	return 0;
1238}
1239
1240static inline int rt_task(struct task_struct *p)
1241{
1242	return rt_prio(p->prio);
1243}
1244
1245static inline void set_task_session(struct task_struct *tsk, pid_t session)
1246{
1247	tsk->signal->__session = session;
1248}
1249
1250static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1251{
1252	tsk->signal->__pgrp = pgrp;
1253}
1254
1255static inline struct pid *task_pid(struct task_struct *task)
1256{
1257	return task->pids[PIDTYPE_PID].pid;
1258}
1259
1260static inline struct pid *task_tgid(struct task_struct *task)
1261{
1262	return task->group_leader->pids[PIDTYPE_PID].pid;
1263}
1264
1265static inline struct pid *task_pgrp(struct task_struct *task)
1266{
1267	return task->group_leader->pids[PIDTYPE_PGID].pid;
1268}
1269
1270static inline struct pid *task_session(struct task_struct *task)
1271{
1272	return task->group_leader->pids[PIDTYPE_SID].pid;
1273}
1274
1275struct pid_namespace;
1276
1277/*
1278 * the helpers to get the task's different pids as they are seen
1279 * from various namespaces
1280 *
1281 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1282 * task_xid_vnr()    : virtual id, i.e. the id seen from the namespace the task
1283 *                     belongs to. this only makes sence when called in the
1284 *                     context of the task that belongs to the same namespace;
1285 * task_xid_nr_ns()  : id seen from the ns specified;
1286 *
1287 * set_task_vxid()   : assigns a virtual id to a task;
1288 *
1289 * see also pid_nr() etc in include/linux/pid.h
1290 */
1291
1292static inline pid_t task_pid_nr(struct task_struct *tsk)
1293{
1294	return tsk->pid;
1295}
1296
1297pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1298
1299static inline pid_t task_pid_vnr(struct task_struct *tsk)
1300{
1301	return pid_vnr(task_pid(tsk));
1302}
1303
1304
1305static inline pid_t task_tgid_nr(struct task_struct *tsk)
1306{
1307	return tsk->tgid;
1308}
1309
1310pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1311
1312static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1313{
1314	return pid_vnr(task_tgid(tsk));
1315}
1316
1317
1318static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1319{
1320	return tsk->signal->__pgrp;
1321}
1322
1323pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1324
1325static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1326{
1327	return pid_vnr(task_pgrp(tsk));
1328}
1329
1330
1331static inline pid_t task_session_nr(struct task_struct *tsk)
1332{
1333	return tsk->signal->__session;
1334}
1335
1336pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1337
1338static inline pid_t task_session_vnr(struct task_struct *tsk)
1339{
1340	return pid_vnr(task_session(tsk));
1341}
1342
1343
1344/**
1345 * pid_alive - check that a task structure is not stale
1346 * @p: Task structure to be checked.
1347 *
1348 * Test if a process is not yet dead (at most zombie state)
1349 * If pid_alive fails, then pointers within the task structure
1350 * can be stale and must not be dereferenced.
1351 */
1352static inline int pid_alive(struct task_struct *p)
1353{
1354	return p->pids[PIDTYPE_PID].pid != NULL;
1355}
1356
1357/**
1358 * is_global_init - check if a task structure is init
1359 * @tsk: Task structure to be checked.
1360 *
1361 * Check if a task structure is the first user space task the kernel created.
1362 */
1363static inline int is_global_init(struct task_struct *tsk)
1364{
1365	return tsk->pid == 1;
1366}
1367
1368/*
1369 * is_container_init:
1370 * check whether in the task is init in its own pid namespace.
1371 */
1372extern int is_container_init(struct task_struct *tsk);
1373
1374extern struct pid *cad_pid;
1375
1376extern void free_task(struct task_struct *tsk);
1377#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1378
1379extern void __put_task_struct(struct task_struct *t);
1380
1381static inline void put_task_struct(struct task_struct *t)
1382{
1383	if (atomic_dec_and_test(&t->usage))
1384		__put_task_struct(t);
1385}
1386
1387/*
1388 * Per process flags
1389 */
1390#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1391					/* Not implemented yet, only for 486*/
1392#define PF_STARTING	0x00000002	/* being created */
1393#define PF_EXITING	0x00000004	/* getting shut down */
1394#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1395#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1396#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1397#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1398#define PF_DUMPCORE	0x00000200	/* dumped core */
1399#define PF_SIGNALED	0x00000400	/* killed by a signal */
1400#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1401#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1402#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1403#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1404#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1405#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1406#define PF_KSWAPD	0x00040000	/* I am kswapd */
1407#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1408#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1409#define PF_BORROWED_MM	0x00200000	/* I am a kthread doing use_mm */
1410#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1411#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1412#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1413#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1414#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1415#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1416#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1417
1418/*
1419 * Only the _current_ task can read/write to tsk->flags, but other
1420 * tasks can access tsk->flags in readonly mode for example
1421 * with tsk_used_math (like during threaded core dumping).
1422 * There is however an exception to this rule during ptrace
1423 * or during fork: the ptracer task is allowed to write to the
1424 * child->flags of its traced child (same goes for fork, the parent
1425 * can write to the child->flags), because we're guaranteed the
1426 * child is not running and in turn not changing child->flags
1427 * at the same time the parent does it.
1428 */
1429#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1430#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1431#define clear_used_math() clear_stopped_child_used_math(current)
1432#define set_used_math() set_stopped_child_used_math(current)
1433#define conditional_stopped_child_used_math(condition, child) \
1434	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1435#define conditional_used_math(condition) \
1436	conditional_stopped_child_used_math(condition, current)
1437#define copy_to_stopped_child_used_math(child) \
1438	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1439/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1440#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1441#define used_math() tsk_used_math(current)
1442
1443#ifdef CONFIG_SMP
1444extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1445#else
1446static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1447{
1448	if (!cpu_isset(0, new_mask))
1449		return -EINVAL;
1450	return 0;
1451}
1452#endif
1453
1454extern unsigned long long sched_clock(void);
1455
1456/*
1457 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1458 * clock constructed from sched_clock():
1459 */
1460extern unsigned long long cpu_clock(int cpu);
1461
1462extern unsigned long long
1463task_sched_runtime(struct task_struct *task);
1464
1465/* sched_exec is called by processes performing an exec */
1466#ifdef CONFIG_SMP
1467extern void sched_exec(void);
1468#else
1469#define sched_exec()   {}
1470#endif
1471
1472extern void sched_clock_idle_sleep_event(void);
1473extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1474
1475#ifdef CONFIG_HOTPLUG_CPU
1476extern void idle_task_exit(void);
1477#else
1478static inline void idle_task_exit(void) {}
1479#endif
1480
1481extern void sched_idle_next(void);
1482
1483#ifdef CONFIG_SCHED_DEBUG
1484extern unsigned int sysctl_sched_latency;
1485extern unsigned int sysctl_sched_min_granularity;
1486extern unsigned int sysctl_sched_wakeup_granularity;
1487extern unsigned int sysctl_sched_batch_wakeup_granularity;
1488extern unsigned int sysctl_sched_child_runs_first;
1489extern unsigned int sysctl_sched_features;
1490extern unsigned int sysctl_sched_migration_cost;
1491extern unsigned int sysctl_sched_nr_migrate;
1492#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
1493extern unsigned int sysctl_sched_min_bal_int_shares;
1494extern unsigned int sysctl_sched_max_bal_int_shares;
1495#endif
1496
1497int sched_nr_latency_handler(struct ctl_table *table, int write,
1498		struct file *file, void __user *buffer, size_t *length,
1499		loff_t *ppos);
1500#endif
1501
1502extern unsigned int sysctl_sched_compat_yield;
1503
1504#ifdef CONFIG_RT_MUTEXES
1505extern int rt_mutex_getprio(struct task_struct *p);
1506extern void rt_mutex_setprio(struct task_struct *p, int prio);
1507extern void rt_mutex_adjust_pi(struct task_struct *p);
1508#else
1509static inline int rt_mutex_getprio(struct task_struct *p)
1510{
1511	return p->normal_prio;
1512}
1513# define rt_mutex_adjust_pi(p)		do { } while (0)
1514#endif
1515
1516extern void set_user_nice(struct task_struct *p, long nice);
1517extern int task_prio(const struct task_struct *p);
1518extern int task_nice(const struct task_struct *p);
1519extern int can_nice(const struct task_struct *p, const int nice);
1520extern int task_curr(const struct task_struct *p);
1521extern int idle_cpu(int cpu);
1522extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1523extern struct task_struct *idle_task(int cpu);
1524extern struct task_struct *curr_task(int cpu);
1525extern void set_curr_task(int cpu, struct task_struct *p);
1526
1527void yield(void);
1528
1529/*
1530 * The default (Linux) execution domain.
1531 */
1532extern struct exec_domain	default_exec_domain;
1533
1534union thread_union {
1535	struct thread_info thread_info;
1536	unsigned long stack[THREAD_SIZE/sizeof(long)];
1537};
1538
1539#ifndef __HAVE_ARCH_KSTACK_END
1540static inline int kstack_end(void *addr)
1541{
1542	/* Reliable end of stack detection:
1543	 * Some APM bios versions misalign the stack
1544	 */
1545	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1546}
1547#endif
1548
1549extern union thread_union init_thread_union;
1550extern struct task_struct init_task;
1551
1552extern struct   mm_struct init_mm;
1553
1554extern struct pid_namespace init_pid_ns;
1555
1556/*
1557 * find a task by one of its numerical ids
1558 *
1559 * find_task_by_pid_type_ns():
1560 *      it is the most generic call - it finds a task by all id,
1561 *      type and namespace specified
1562 * find_task_by_pid_ns():
1563 *      finds a task by its pid in the specified namespace
1564 * find_task_by_vpid():
1565 *      finds a task by its virtual pid
1566 * find_task_by_pid():
1567 *      finds a task by its global pid
1568 *
1569 * see also find_pid() etc in include/linux/pid.h
1570 */
1571
1572extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1573		struct pid_namespace *ns);
1574
1575extern struct task_struct *find_task_by_pid(pid_t nr);
1576extern struct task_struct *find_task_by_vpid(pid_t nr);
1577extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1578		struct pid_namespace *ns);
1579
1580extern void __set_special_pids(pid_t session, pid_t pgrp);
1581
1582/* per-UID process charging. */
1583extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1584static inline struct user_struct *get_uid(struct user_struct *u)
1585{
1586	atomic_inc(&u->__count);
1587	return u;
1588}
1589extern void free_uid(struct user_struct *);
1590extern void switch_uid(struct user_struct *);
1591extern void release_uids(struct user_namespace *ns);
1592
1593#include <asm/current.h>
1594
1595extern void do_timer(unsigned long ticks);
1596
1597extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1598extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1599extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1600						unsigned long clone_flags));
1601#ifdef CONFIG_SMP
1602 extern void kick_process(struct task_struct *tsk);
1603#else
1604 static inline void kick_process(struct task_struct *tsk) { }
1605#endif
1606extern void sched_fork(struct task_struct *p, int clone_flags);
1607extern void sched_dead(struct task_struct *p);
1608
1609extern int in_group_p(gid_t);
1610extern int in_egroup_p(gid_t);
1611
1612extern void proc_caches_init(void);
1613extern void flush_signals(struct task_struct *);
1614extern void ignore_signals(struct task_struct *);
1615extern void flush_signal_handlers(struct task_struct *, int force_default);
1616extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1617
1618static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1619{
1620	unsigned long flags;
1621	int ret;
1622
1623	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1624	ret = dequeue_signal(tsk, mask, info);
1625	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1626
1627	return ret;
1628}
1629
1630extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1631			      sigset_t *mask);
1632extern void unblock_all_signals(void);
1633extern void release_task(struct task_struct * p);
1634extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1635extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1636extern int force_sigsegv(int, struct task_struct *);
1637extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1638extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1639extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1640extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1641extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1642extern int kill_pgrp(struct pid *pid, int sig, int priv);
1643extern int kill_pid(struct pid *pid, int sig, int priv);
1644extern int kill_proc_info(int, struct siginfo *, pid_t);
1645extern void do_notify_parent(struct task_struct *, int);
1646extern void force_sig(int, struct task_struct *);
1647extern void force_sig_specific(int, struct task_struct *);
1648extern int send_sig(int, struct task_struct *, int);
1649extern void zap_other_threads(struct task_struct *p);
1650extern int kill_proc(pid_t, int, int);
1651extern struct sigqueue *sigqueue_alloc(void);
1652extern void sigqueue_free(struct sigqueue *);
1653extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1654extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1655extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1656extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1657
1658static inline int kill_cad_pid(int sig, int priv)
1659{
1660	return kill_pid(cad_pid, sig, priv);
1661}
1662
1663/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1664#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1665#define SEND_SIG_PRIV	((struct siginfo *) 1)
1666#define SEND_SIG_FORCED	((struct siginfo *) 2)
1667
1668static inline int is_si_special(const struct siginfo *info)
1669{
1670	return info <= SEND_SIG_FORCED;
1671}
1672
1673/* True if we are on the alternate signal stack.  */
1674
1675static inline int on_sig_stack(unsigned long sp)
1676{
1677	return (sp - current->sas_ss_sp < current->sas_ss_size);
1678}
1679
1680static inline int sas_ss_flags(unsigned long sp)
1681{
1682	return (current->sas_ss_size == 0 ? SS_DISABLE
1683		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1684}
1685
1686/*
1687 * Routines for handling mm_structs
1688 */
1689extern struct mm_struct * mm_alloc(void);
1690
1691/* mmdrop drops the mm and the page tables */
1692extern void FASTCALL(__mmdrop(struct mm_struct *));
1693static inline void mmdrop(struct mm_struct * mm)
1694{
1695	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1696		__mmdrop(mm);
1697}
1698
1699/* mmput gets rid of the mappings and all user-space */
1700extern void mmput(struct mm_struct *);
1701/* Grab a reference to a task's mm, if it is not already going away */
1702extern struct mm_struct *get_task_mm(struct task_struct *task);
1703/* Remove the current tasks stale references to the old mm_struct */
1704extern void mm_release(struct task_struct *, struct mm_struct *);
1705
1706extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1707extern void flush_thread(void);
1708extern void exit_thread(void);
1709
1710extern void exit_files(struct task_struct *);
1711extern void __cleanup_signal(struct signal_struct *);
1712extern void __cleanup_sighand(struct sighand_struct *);
1713extern void exit_itimers(struct signal_struct *);
1714
1715extern NORET_TYPE void do_group_exit(int);
1716
1717extern void daemonize(const char *, ...);
1718extern int allow_signal(int);
1719extern int disallow_signal(int);
1720
1721extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1722extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1723struct task_struct *fork_idle(int);
1724
1725extern void set_task_comm(struct task_struct *tsk, char *from);
1726extern void get_task_comm(char *to, struct task_struct *tsk);
1727
1728#ifdef CONFIG_SMP
1729extern void wait_task_inactive(struct task_struct * p);
1730#else
1731#define wait_task_inactive(p)	do { } while (0)
1732#endif
1733
1734#define remove_parent(p)	list_del_init(&(p)->sibling)
1735#define add_parent(p)		list_add_tail(&(p)->sibling,&(p)->parent->children)
1736
1737#define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1738
1739#define for_each_process(p) \
1740	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1741
1742/*
1743 * Careful: do_each_thread/while_each_thread is a double loop so
1744 *          'break' will not work as expected - use goto instead.
1745 */
1746#define do_each_thread(g, t) \
1747	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1748
1749#define while_each_thread(g, t) \
1750	while ((t = next_thread(t)) != g)
1751
1752/* de_thread depends on thread_group_leader not being a pid based check */
1753#define thread_group_leader(p)	(p == p->group_leader)
1754
1755/* Do to the insanities of de_thread it is possible for a process
1756 * to have the pid of the thread group leader without actually being
1757 * the thread group leader.  For iteration through the pids in proc
1758 * all we care about is that we have a task with the appropriate
1759 * pid, we don't actually care if we have the right task.
1760 */
1761static inline int has_group_leader_pid(struct task_struct *p)
1762{
1763	return p->pid == p->tgid;
1764}
1765
1766static inline
1767int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1768{
1769	return p1->tgid == p2->tgid;
1770}
1771
1772static inline struct task_struct *next_thread(const struct task_struct *p)
1773{
1774	return list_entry(rcu_dereference(p->thread_group.next),
1775			  struct task_struct, thread_group);
1776}
1777
1778static inline int thread_group_empty(struct task_struct *p)
1779{
1780	return list_empty(&p->thread_group);
1781}
1782
1783#define delay_group_leader(p) \
1784		(thread_group_leader(p) && !thread_group_empty(p))
1785
1786/*
1787 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1788 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1789 * pins the final release of task.io_context.  Also protects ->cpuset and
1790 * ->cgroup.subsys[].
1791 *
1792 * Nests both inside and outside of read_lock(&tasklist_lock).
1793 * It must not be nested with write_lock_irq(&tasklist_lock),
1794 * neither inside nor outside.
1795 */
1796static inline void task_lock(struct task_struct *p)
1797{
1798	spin_lock(&p->alloc_lock);
1799}
1800
1801static inline void task_unlock(struct task_struct *p)
1802{
1803	spin_unlock(&p->alloc_lock);
1804}
1805
1806extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1807							unsigned long *flags);
1808
1809static inline void unlock_task_sighand(struct task_struct *tsk,
1810						unsigned long *flags)
1811{
1812	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1813}
1814
1815#ifndef __HAVE_THREAD_FUNCTIONS
1816
1817#define task_thread_info(task)	((struct thread_info *)(task)->stack)
1818#define task_stack_page(task)	((task)->stack)
1819
1820static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1821{
1822	*task_thread_info(p) = *task_thread_info(org);
1823	task_thread_info(p)->task = p;
1824}
1825
1826static inline unsigned long *end_of_stack(struct task_struct *p)
1827{
1828	return (unsigned long *)(task_thread_info(p) + 1);
1829}
1830
1831#endif
1832
1833/* set thread flags in other task's structures
1834 * - see asm/thread_info.h for TIF_xxxx flags available
1835 */
1836static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1837{
1838	set_ti_thread_flag(task_thread_info(tsk), flag);
1839}
1840
1841static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1842{
1843	clear_ti_thread_flag(task_thread_info(tsk), flag);
1844}
1845
1846static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1847{
1848	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1849}
1850
1851static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1852{
1853	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1854}
1855
1856static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1857{
1858	return test_ti_thread_flag(task_thread_info(tsk), flag);
1859}
1860
1861static inline void set_tsk_need_resched(struct task_struct *tsk)
1862{
1863	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1864}
1865
1866static inline void clear_tsk_need_resched(struct task_struct *tsk)
1867{
1868	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1869}
1870
1871static inline int signal_pending(struct task_struct *p)
1872{
1873	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1874}
1875
1876static inline int need_resched(void)
1877{
1878	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1879}
1880
1881/*
1882 * cond_resched() and cond_resched_lock(): latency reduction via
1883 * explicit rescheduling in places that are safe. The return
1884 * value indicates whether a reschedule was done in fact.
1885 * cond_resched_lock() will drop the spinlock before scheduling,
1886 * cond_resched_softirq() will enable bhs before scheduling.
1887 */
1888extern int cond_resched(void);
1889extern int cond_resched_lock(spinlock_t * lock);
1890extern int cond_resched_softirq(void);
1891
1892/*
1893 * Does a critical section need to be broken due to another
1894 * task waiting?:
1895 */
1896#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1897# define need_lockbreak(lock) ((lock)->break_lock)
1898#else
1899# define need_lockbreak(lock) 0
1900#endif
1901
1902/*
1903 * Does a critical section need to be broken due to another
1904 * task waiting or preemption being signalled:
1905 */
1906static inline int lock_need_resched(spinlock_t *lock)
1907{
1908	if (need_lockbreak(lock) || need_resched())
1909		return 1;
1910	return 0;
1911}
1912
1913/*
1914 * Reevaluate whether the task has signals pending delivery.
1915 * Wake the task if so.
1916 * This is required every time the blocked sigset_t changes.
1917 * callers must hold sighand->siglock.
1918 */
1919extern void recalc_sigpending_and_wake(struct task_struct *t);
1920extern void recalc_sigpending(void);
1921
1922extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1923
1924/*
1925 * Wrappers for p->thread_info->cpu access. No-op on UP.
1926 */
1927#ifdef CONFIG_SMP
1928
1929static inline unsigned int task_cpu(const struct task_struct *p)
1930{
1931	return task_thread_info(p)->cpu;
1932}
1933
1934extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1935
1936#else
1937
1938static inline unsigned int task_cpu(const struct task_struct *p)
1939{
1940	return 0;
1941}
1942
1943static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1944{
1945}
1946
1947#endif /* CONFIG_SMP */
1948
1949#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1950extern void arch_pick_mmap_layout(struct mm_struct *mm);
1951#else
1952static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1953{
1954	mm->mmap_base = TASK_UNMAPPED_BASE;
1955	mm->get_unmapped_area = arch_get_unmapped_area;
1956	mm->unmap_area = arch_unmap_area;
1957}
1958#endif
1959
1960extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1961extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1962
1963extern int sched_mc_power_savings, sched_smt_power_savings;
1964
1965extern void normalize_rt_tasks(void);
1966
1967#ifdef CONFIG_FAIR_GROUP_SCHED
1968
1969extern struct task_group init_task_group;
1970
1971extern struct task_group *sched_create_group(void);
1972extern void sched_destroy_group(struct task_group *tg);
1973extern void sched_move_task(struct task_struct *tsk);
1974extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1975extern unsigned long sched_group_shares(struct task_group *tg);
1976
1977#endif
1978
1979#ifdef CONFIG_TASK_XACCT
1980static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1981{
1982	tsk->rchar += amt;
1983}
1984
1985static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1986{
1987	tsk->wchar += amt;
1988}
1989
1990static inline void inc_syscr(struct task_struct *tsk)
1991{
1992	tsk->syscr++;
1993}
1994
1995static inline void inc_syscw(struct task_struct *tsk)
1996{
1997	tsk->syscw++;
1998}
1999#else
2000static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2001{
2002}
2003
2004static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2005{
2006}
2007
2008static inline void inc_syscr(struct task_struct *tsk)
2009{
2010}
2011
2012static inline void inc_syscw(struct task_struct *tsk)
2013{
2014}
2015#endif
2016
2017#ifdef CONFIG_SMP
2018void migration_init(void);
2019#else
2020static inline void migration_init(void)
2021{
2022}
2023#endif
2024
2025#endif /* __KERNEL__ */
2026
2027#endif
2028