sched.h revision 83e1d2cd9eabec5164afea295ff06b941ae8e4a9
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8	int sched_priority;
9};
10
11#include <asm/param.h>	/* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25#include <linux/preempt.h>
26
27#include <asm/page.h>
28#include <asm/ptrace.h>
29#include <asm/cputime.h>
30
31#include <linux/smp.h>
32#include <linux/sem.h>
33#include <linux/signal.h>
34#include <linux/compiler.h>
35#include <linux/completion.h>
36#include <linux/pid.h>
37#include <linux/percpu.h>
38#include <linux/topology.h>
39#include <linux/proportions.h>
40#include <linux/seccomp.h>
41#include <linux/rcupdate.h>
42#include <linux/rculist.h>
43#include <linux/rtmutex.h>
44
45#include <linux/time.h>
46#include <linux/param.h>
47#include <linux/resource.h>
48#include <linux/timer.h>
49#include <linux/hrtimer.h>
50#include <linux/task_io_accounting.h>
51#include <linux/latencytop.h>
52#include <linux/cred.h>
53#include <linux/llist.h>
54#include <linux/uidgid.h>
55#include <linux/gfp.h>
56
57#include <asm/processor.h>
58
59struct exec_domain;
60struct futex_pi_state;
61struct robust_list_head;
62struct bio_list;
63struct fs_struct;
64struct perf_event_context;
65struct blk_plug;
66
67/*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73/*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 *    a load-average precision of 10 bits integer + 11 bits fractional
78 *  - if you want to count load-averages more often, you need more
79 *    precision, or rounding will get you. With 2-second counting freq,
80 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
81 *    11 bit fractions.
82 */
83extern unsigned long avenrun[];		/* Load averages */
84extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86#define FSHIFT		11		/* nr of bits of precision */
87#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
88#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
89#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
90#define EXP_5		2014		/* 1/exp(5sec/5min) */
91#define EXP_15		2037		/* 1/exp(5sec/15min) */
92
93#define CALC_LOAD(load,exp,n) \
94	load *= exp; \
95	load += n*(FIXED_1-exp); \
96	load >>= FSHIFT;
97
98extern unsigned long total_forks;
99extern int nr_threads;
100DECLARE_PER_CPU(unsigned long, process_counts);
101extern int nr_processes(void);
102extern unsigned long nr_running(void);
103extern unsigned long nr_iowait(void);
104extern unsigned long nr_iowait_cpu(int cpu);
105extern unsigned long this_cpu_load(void);
106
107
108extern void calc_global_load(unsigned long ticks);
109extern void update_cpu_load_nohz(void);
110
111extern unsigned long get_parent_ip(unsigned long addr);
112
113extern void dump_cpu_task(int cpu);
114
115struct seq_file;
116struct cfs_rq;
117struct task_group;
118#ifdef CONFIG_SCHED_DEBUG
119extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120extern void proc_sched_set_task(struct task_struct *p);
121extern void
122print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123#endif
124
125/*
126 * Task state bitmask. NOTE! These bits are also
127 * encoded in fs/proc/array.c: get_task_state().
128 *
129 * We have two separate sets of flags: task->state
130 * is about runnability, while task->exit_state are
131 * about the task exiting. Confusing, but this way
132 * modifying one set can't modify the other one by
133 * mistake.
134 */
135#define TASK_RUNNING		0
136#define TASK_INTERRUPTIBLE	1
137#define TASK_UNINTERRUPTIBLE	2
138#define __TASK_STOPPED		4
139#define __TASK_TRACED		8
140/* in tsk->exit_state */
141#define EXIT_ZOMBIE		16
142#define EXIT_DEAD		32
143/* in tsk->state again */
144#define TASK_DEAD		64
145#define TASK_WAKEKILL		128
146#define TASK_WAKING		256
147#define TASK_PARKED		512
148#define TASK_STATE_MAX		1024
149
150#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152extern char ___assert_task_state[1 - 2*!!(
153		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155/* Convenience macros for the sake of set_task_state */
156#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
158#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
159
160/* Convenience macros for the sake of wake_up */
161#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164/* get_task_state() */
165#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
166				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167				 __TASK_TRACED)
168
169#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
170#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
171#define task_is_dead(task)	((task)->exit_state != 0)
172#define task_is_stopped_or_traced(task)	\
173			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174#define task_contributes_to_load(task)	\
175				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176				 (task->flags & PF_FROZEN) == 0)
177
178#define __set_task_state(tsk, state_value)		\
179	do { (tsk)->state = (state_value); } while (0)
180#define set_task_state(tsk, state_value)		\
181	set_mb((tsk)->state, (state_value))
182
183/*
184 * set_current_state() includes a barrier so that the write of current->state
185 * is correctly serialised wrt the caller's subsequent test of whether to
186 * actually sleep:
187 *
188 *	set_current_state(TASK_UNINTERRUPTIBLE);
189 *	if (do_i_need_to_sleep())
190 *		schedule();
191 *
192 * If the caller does not need such serialisation then use __set_current_state()
193 */
194#define __set_current_state(state_value)			\
195	do { current->state = (state_value); } while (0)
196#define set_current_state(state_value)		\
197	set_mb(current->state, (state_value))
198
199/* Task command name length */
200#define TASK_COMM_LEN 16
201
202#include <linux/spinlock.h>
203
204/*
205 * This serializes "schedule()" and also protects
206 * the run-queue from deletions/modifications (but
207 * _adding_ to the beginning of the run-queue has
208 * a separate lock).
209 */
210extern rwlock_t tasklist_lock;
211extern spinlock_t mmlist_lock;
212
213struct task_struct;
214
215#ifdef CONFIG_PROVE_RCU
216extern int lockdep_tasklist_lock_is_held(void);
217#endif /* #ifdef CONFIG_PROVE_RCU */
218
219extern void sched_init(void);
220extern void sched_init_smp(void);
221extern asmlinkage void schedule_tail(struct task_struct *prev);
222extern void init_idle(struct task_struct *idle, int cpu);
223extern void init_idle_bootup_task(struct task_struct *idle);
224
225extern int runqueue_is_locked(int cpu);
226
227#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228extern void nohz_balance_enter_idle(int cpu);
229extern void set_cpu_sd_state_idle(void);
230extern int get_nohz_timer_target(void);
231#else
232static inline void nohz_balance_enter_idle(int cpu) { }
233static inline void set_cpu_sd_state_idle(void) { }
234#endif
235
236/*
237 * Only dump TASK_* tasks. (0 for all tasks)
238 */
239extern void show_state_filter(unsigned long state_filter);
240
241static inline void show_state(void)
242{
243	show_state_filter(0);
244}
245
246extern void show_regs(struct pt_regs *);
247
248/*
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
252 */
253extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255void io_schedule(void);
256long io_schedule_timeout(long timeout);
257
258extern void cpu_init (void);
259extern void trap_init(void);
260extern void update_process_times(int user);
261extern void scheduler_tick(void);
262
263extern void sched_show_task(struct task_struct *p);
264
265#ifdef CONFIG_LOCKUP_DETECTOR
266extern void touch_softlockup_watchdog(void);
267extern void touch_softlockup_watchdog_sync(void);
268extern void touch_all_softlockup_watchdogs(void);
269extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270				  void __user *buffer,
271				  size_t *lenp, loff_t *ppos);
272extern unsigned int  softlockup_panic;
273void lockup_detector_init(void);
274#else
275static inline void touch_softlockup_watchdog(void)
276{
277}
278static inline void touch_softlockup_watchdog_sync(void)
279{
280}
281static inline void touch_all_softlockup_watchdogs(void)
282{
283}
284static inline void lockup_detector_init(void)
285{
286}
287#endif
288
289/* Attach to any functions which should be ignored in wchan output. */
290#define __sched		__attribute__((__section__(".sched.text")))
291
292/* Linker adds these: start and end of __sched functions */
293extern char __sched_text_start[], __sched_text_end[];
294
295/* Is this address in the __sched functions? */
296extern int in_sched_functions(unsigned long addr);
297
298#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
299extern signed long schedule_timeout(signed long timeout);
300extern signed long schedule_timeout_interruptible(signed long timeout);
301extern signed long schedule_timeout_killable(signed long timeout);
302extern signed long schedule_timeout_uninterruptible(signed long timeout);
303asmlinkage void schedule(void);
304extern void schedule_preempt_disabled(void);
305
306struct nsproxy;
307struct user_namespace;
308
309#ifdef CONFIG_MMU
310extern void arch_pick_mmap_layout(struct mm_struct *mm);
311extern unsigned long
312arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
313		       unsigned long, unsigned long);
314extern unsigned long
315arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
316			  unsigned long len, unsigned long pgoff,
317			  unsigned long flags);
318#else
319static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
320#endif
321
322
323extern void set_dumpable(struct mm_struct *mm, int value);
324extern int get_dumpable(struct mm_struct *mm);
325
326/* mm flags */
327/* dumpable bits */
328#define MMF_DUMPABLE      0  /* core dump is permitted */
329#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
330
331#define MMF_DUMPABLE_BITS 2
332#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
333
334/* coredump filter bits */
335#define MMF_DUMP_ANON_PRIVATE	2
336#define MMF_DUMP_ANON_SHARED	3
337#define MMF_DUMP_MAPPED_PRIVATE	4
338#define MMF_DUMP_MAPPED_SHARED	5
339#define MMF_DUMP_ELF_HEADERS	6
340#define MMF_DUMP_HUGETLB_PRIVATE 7
341#define MMF_DUMP_HUGETLB_SHARED  8
342
343#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
344#define MMF_DUMP_FILTER_BITS	7
345#define MMF_DUMP_FILTER_MASK \
346	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
347#define MMF_DUMP_FILTER_DEFAULT \
348	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
349	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
350
351#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
352# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
353#else
354# define MMF_DUMP_MASK_DEFAULT_ELF	0
355#endif
356					/* leave room for more dump flags */
357#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
358#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
359#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
360
361#define MMF_HAS_UPROBES		19	/* has uprobes */
362#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
363
364#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
365
366struct sighand_struct {
367	atomic_t		count;
368	struct k_sigaction	action[_NSIG];
369	spinlock_t		siglock;
370	wait_queue_head_t	signalfd_wqh;
371};
372
373struct pacct_struct {
374	int			ac_flag;
375	long			ac_exitcode;
376	unsigned long		ac_mem;
377	cputime_t		ac_utime, ac_stime;
378	unsigned long		ac_minflt, ac_majflt;
379};
380
381struct cpu_itimer {
382	cputime_t expires;
383	cputime_t incr;
384	u32 error;
385	u32 incr_error;
386};
387
388/**
389 * struct cputime - snaphsot of system and user cputime
390 * @utime: time spent in user mode
391 * @stime: time spent in system mode
392 *
393 * Gathers a generic snapshot of user and system time.
394 */
395struct cputime {
396	cputime_t utime;
397	cputime_t stime;
398};
399
400/**
401 * struct task_cputime - collected CPU time counts
402 * @utime:		time spent in user mode, in &cputime_t units
403 * @stime:		time spent in kernel mode, in &cputime_t units
404 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
405 *
406 * This is an extension of struct cputime that includes the total runtime
407 * spent by the task from the scheduler point of view.
408 *
409 * As a result, this structure groups together three kinds of CPU time
410 * that are tracked for threads and thread groups.  Most things considering
411 * CPU time want to group these counts together and treat all three
412 * of them in parallel.
413 */
414struct task_cputime {
415	cputime_t utime;
416	cputime_t stime;
417	unsigned long long sum_exec_runtime;
418};
419/* Alternate field names when used to cache expirations. */
420#define prof_exp	stime
421#define virt_exp	utime
422#define sched_exp	sum_exec_runtime
423
424#define INIT_CPUTIME	\
425	(struct task_cputime) {					\
426		.utime = 0,					\
427		.stime = 0,					\
428		.sum_exec_runtime = 0,				\
429	}
430
431#define PREEMPT_ENABLED		(PREEMPT_NEED_RESCHED)
432
433#ifdef CONFIG_PREEMPT_COUNT
434#define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
435#else
436#define PREEMPT_DISABLED	PREEMPT_ENABLED
437#endif
438
439/*
440 * Disable preemption until the scheduler is running.
441 * Reset by start_kernel()->sched_init()->init_idle().
442 *
443 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444 * before the scheduler is active -- see should_resched().
445 */
446#define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
447
448/**
449 * struct thread_group_cputimer - thread group interval timer counts
450 * @cputime:		thread group interval timers.
451 * @running:		non-zero when there are timers running and
452 * 			@cputime receives updates.
453 * @lock:		lock for fields in this struct.
454 *
455 * This structure contains the version of task_cputime, above, that is
456 * used for thread group CPU timer calculations.
457 */
458struct thread_group_cputimer {
459	struct task_cputime cputime;
460	int running;
461	raw_spinlock_t lock;
462};
463
464#include <linux/rwsem.h>
465struct autogroup;
466
467/*
468 * NOTE! "signal_struct" does not have its own
469 * locking, because a shared signal_struct always
470 * implies a shared sighand_struct, so locking
471 * sighand_struct is always a proper superset of
472 * the locking of signal_struct.
473 */
474struct signal_struct {
475	atomic_t		sigcnt;
476	atomic_t		live;
477	int			nr_threads;
478
479	wait_queue_head_t	wait_chldexit;	/* for wait4() */
480
481	/* current thread group signal load-balancing target: */
482	struct task_struct	*curr_target;
483
484	/* shared signal handling: */
485	struct sigpending	shared_pending;
486
487	/* thread group exit support */
488	int			group_exit_code;
489	/* overloaded:
490	 * - notify group_exit_task when ->count is equal to notify_count
491	 * - everyone except group_exit_task is stopped during signal delivery
492	 *   of fatal signals, group_exit_task processes the signal.
493	 */
494	int			notify_count;
495	struct task_struct	*group_exit_task;
496
497	/* thread group stop support, overloads group_exit_code too */
498	int			group_stop_count;
499	unsigned int		flags; /* see SIGNAL_* flags below */
500
501	/*
502	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
503	 * manager, to re-parent orphan (double-forking) child processes
504	 * to this process instead of 'init'. The service manager is
505	 * able to receive SIGCHLD signals and is able to investigate
506	 * the process until it calls wait(). All children of this
507	 * process will inherit a flag if they should look for a
508	 * child_subreaper process at exit.
509	 */
510	unsigned int		is_child_subreaper:1;
511	unsigned int		has_child_subreaper:1;
512
513	/* POSIX.1b Interval Timers */
514	int			posix_timer_id;
515	struct list_head	posix_timers;
516
517	/* ITIMER_REAL timer for the process */
518	struct hrtimer real_timer;
519	struct pid *leader_pid;
520	ktime_t it_real_incr;
521
522	/*
523	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525	 * values are defined to 0 and 1 respectively
526	 */
527	struct cpu_itimer it[2];
528
529	/*
530	 * Thread group totals for process CPU timers.
531	 * See thread_group_cputimer(), et al, for details.
532	 */
533	struct thread_group_cputimer cputimer;
534
535	/* Earliest-expiration cache. */
536	struct task_cputime cputime_expires;
537
538	struct list_head cpu_timers[3];
539
540	struct pid *tty_old_pgrp;
541
542	/* boolean value for session group leader */
543	int leader;
544
545	struct tty_struct *tty; /* NULL if no tty */
546
547#ifdef CONFIG_SCHED_AUTOGROUP
548	struct autogroup *autogroup;
549#endif
550	/*
551	 * Cumulative resource counters for dead threads in the group,
552	 * and for reaped dead child processes forked by this group.
553	 * Live threads maintain their own counters and add to these
554	 * in __exit_signal, except for the group leader.
555	 */
556	cputime_t utime, stime, cutime, cstime;
557	cputime_t gtime;
558	cputime_t cgtime;
559#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560	struct cputime prev_cputime;
561#endif
562	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564	unsigned long inblock, oublock, cinblock, coublock;
565	unsigned long maxrss, cmaxrss;
566	struct task_io_accounting ioac;
567
568	/*
569	 * Cumulative ns of schedule CPU time fo dead threads in the
570	 * group, not including a zombie group leader, (This only differs
571	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
572	 * other than jiffies.)
573	 */
574	unsigned long long sum_sched_runtime;
575
576	/*
577	 * We don't bother to synchronize most readers of this at all,
578	 * because there is no reader checking a limit that actually needs
579	 * to get both rlim_cur and rlim_max atomically, and either one
580	 * alone is a single word that can safely be read normally.
581	 * getrlimit/setrlimit use task_lock(current->group_leader) to
582	 * protect this instead of the siglock, because they really
583	 * have no need to disable irqs.
584	 */
585	struct rlimit rlim[RLIM_NLIMITS];
586
587#ifdef CONFIG_BSD_PROCESS_ACCT
588	struct pacct_struct pacct;	/* per-process accounting information */
589#endif
590#ifdef CONFIG_TASKSTATS
591	struct taskstats *stats;
592#endif
593#ifdef CONFIG_AUDIT
594	unsigned audit_tty;
595	unsigned audit_tty_log_passwd;
596	struct tty_audit_buf *tty_audit_buf;
597#endif
598#ifdef CONFIG_CGROUPS
599	/*
600	 * group_rwsem prevents new tasks from entering the threadgroup and
601	 * member tasks from exiting,a more specifically, setting of
602	 * PF_EXITING.  fork and exit paths are protected with this rwsem
603	 * using threadgroup_change_begin/end().  Users which require
604	 * threadgroup to remain stable should use threadgroup_[un]lock()
605	 * which also takes care of exec path.  Currently, cgroup is the
606	 * only user.
607	 */
608	struct rw_semaphore group_rwsem;
609#endif
610
611	oom_flags_t oom_flags;
612	short oom_score_adj;		/* OOM kill score adjustment */
613	short oom_score_adj_min;	/* OOM kill score adjustment min value.
614					 * Only settable by CAP_SYS_RESOURCE. */
615
616	struct mutex cred_guard_mutex;	/* guard against foreign influences on
617					 * credential calculations
618					 * (notably. ptrace) */
619};
620
621/*
622 * Bits in flags field of signal_struct.
623 */
624#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
625#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
626#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
627#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
628/*
629 * Pending notifications to parent.
630 */
631#define SIGNAL_CLD_STOPPED	0x00000010
632#define SIGNAL_CLD_CONTINUED	0x00000020
633#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
636
637/* If true, all threads except ->group_exit_task have pending SIGKILL */
638static inline int signal_group_exit(const struct signal_struct *sig)
639{
640	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
641		(sig->group_exit_task != NULL);
642}
643
644/*
645 * Some day this will be a full-fledged user tracking system..
646 */
647struct user_struct {
648	atomic_t __count;	/* reference count */
649	atomic_t processes;	/* How many processes does this user have? */
650	atomic_t files;		/* How many open files does this user have? */
651	atomic_t sigpending;	/* How many pending signals does this user have? */
652#ifdef CONFIG_INOTIFY_USER
653	atomic_t inotify_watches; /* How many inotify watches does this user have? */
654	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
655#endif
656#ifdef CONFIG_FANOTIFY
657	atomic_t fanotify_listeners;
658#endif
659#ifdef CONFIG_EPOLL
660	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661#endif
662#ifdef CONFIG_POSIX_MQUEUE
663	/* protected by mq_lock	*/
664	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
665#endif
666	unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668#ifdef CONFIG_KEYS
669	struct key *uid_keyring;	/* UID specific keyring */
670	struct key *session_keyring;	/* UID's default session keyring */
671#endif
672
673	/* Hash table maintenance information */
674	struct hlist_node uidhash_node;
675	kuid_t uid;
676
677#ifdef CONFIG_PERF_EVENTS
678	atomic_long_t locked_vm;
679#endif
680};
681
682extern int uids_sysfs_init(void);
683
684extern struct user_struct *find_user(kuid_t);
685
686extern struct user_struct root_user;
687#define INIT_USER (&root_user)
688
689
690struct backing_dev_info;
691struct reclaim_state;
692
693#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694struct sched_info {
695	/* cumulative counters */
696	unsigned long pcount;	      /* # of times run on this cpu */
697	unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699	/* timestamps */
700	unsigned long long last_arrival,/* when we last ran on a cpu */
701			   last_queued;	/* when we were last queued to run */
702};
703#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705#ifdef CONFIG_TASK_DELAY_ACCT
706struct task_delay_info {
707	spinlock_t	lock;
708	unsigned int	flags;	/* Private per-task flags */
709
710	/* For each stat XXX, add following, aligned appropriately
711	 *
712	 * struct timespec XXX_start, XXX_end;
713	 * u64 XXX_delay;
714	 * u32 XXX_count;
715	 *
716	 * Atomicity of updates to XXX_delay, XXX_count protected by
717	 * single lock above (split into XXX_lock if contention is an issue).
718	 */
719
720	/*
721	 * XXX_count is incremented on every XXX operation, the delay
722	 * associated with the operation is added to XXX_delay.
723	 * XXX_delay contains the accumulated delay time in nanoseconds.
724	 */
725	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
726	u64 blkio_delay;	/* wait for sync block io completion */
727	u64 swapin_delay;	/* wait for swapin block io completion */
728	u32 blkio_count;	/* total count of the number of sync block */
729				/* io operations performed */
730	u32 swapin_count;	/* total count of the number of swapin block */
731				/* io operations performed */
732
733	struct timespec freepages_start, freepages_end;
734	u64 freepages_delay;	/* wait for memory reclaim */
735	u32 freepages_count;	/* total count of memory reclaim */
736};
737#endif	/* CONFIG_TASK_DELAY_ACCT */
738
739static inline int sched_info_on(void)
740{
741#ifdef CONFIG_SCHEDSTATS
742	return 1;
743#elif defined(CONFIG_TASK_DELAY_ACCT)
744	extern int delayacct_on;
745	return delayacct_on;
746#else
747	return 0;
748#endif
749}
750
751enum cpu_idle_type {
752	CPU_IDLE,
753	CPU_NOT_IDLE,
754	CPU_NEWLY_IDLE,
755	CPU_MAX_IDLE_TYPES
756};
757
758/*
759 * Increase resolution of cpu_power calculations
760 */
761#define SCHED_POWER_SHIFT	10
762#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
763
764/*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767#ifdef CONFIG_SMP
768#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
769#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
770#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
771#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
772#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
773#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
774#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
775#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
776#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
777#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
778#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
779#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
780#define SD_NUMA			0x4000	/* cross-node balancing */
781
782extern int __weak arch_sd_sibiling_asym_packing(void);
783
784struct sched_domain_attr {
785	int relax_domain_level;
786};
787
788#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
789	.relax_domain_level = -1,			\
790}
791
792extern int sched_domain_level_max;
793
794struct sched_group;
795
796struct sched_domain {
797	/* These fields must be setup */
798	struct sched_domain *parent;	/* top domain must be null terminated */
799	struct sched_domain *child;	/* bottom domain must be null terminated */
800	struct sched_group *groups;	/* the balancing groups of the domain */
801	unsigned long min_interval;	/* Minimum balance interval ms */
802	unsigned long max_interval;	/* Maximum balance interval ms */
803	unsigned int busy_factor;	/* less balancing by factor if busy */
804	unsigned int imbalance_pct;	/* No balance until over watermark */
805	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
806	unsigned int busy_idx;
807	unsigned int idle_idx;
808	unsigned int newidle_idx;
809	unsigned int wake_idx;
810	unsigned int forkexec_idx;
811	unsigned int smt_gain;
812
813	int nohz_idle;			/* NOHZ IDLE status */
814	int flags;			/* See SD_* */
815	int level;
816
817	/* Runtime fields. */
818	unsigned long last_balance;	/* init to jiffies. units in jiffies */
819	unsigned int balance_interval;	/* initialise to 1. units in ms. */
820	unsigned int nr_balance_failed; /* initialise to 0 */
821
822	u64 last_update;
823
824	/* idle_balance() stats */
825	u64 max_newidle_lb_cost;
826	unsigned long next_decay_max_lb_cost;
827
828#ifdef CONFIG_SCHEDSTATS
829	/* load_balance() stats */
830	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
831	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
832	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
833	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
834	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
835	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
836	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
837	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
838
839	/* Active load balancing */
840	unsigned int alb_count;
841	unsigned int alb_failed;
842	unsigned int alb_pushed;
843
844	/* SD_BALANCE_EXEC stats */
845	unsigned int sbe_count;
846	unsigned int sbe_balanced;
847	unsigned int sbe_pushed;
848
849	/* SD_BALANCE_FORK stats */
850	unsigned int sbf_count;
851	unsigned int sbf_balanced;
852	unsigned int sbf_pushed;
853
854	/* try_to_wake_up() stats */
855	unsigned int ttwu_wake_remote;
856	unsigned int ttwu_move_affine;
857	unsigned int ttwu_move_balance;
858#endif
859#ifdef CONFIG_SCHED_DEBUG
860	char *name;
861#endif
862	union {
863		void *private;		/* used during construction */
864		struct rcu_head rcu;	/* used during destruction */
865	};
866
867	unsigned int span_weight;
868	/*
869	 * Span of all CPUs in this domain.
870	 *
871	 * NOTE: this field is variable length. (Allocated dynamically
872	 * by attaching extra space to the end of the structure,
873	 * depending on how many CPUs the kernel has booted up with)
874	 */
875	unsigned long span[0];
876};
877
878static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
879{
880	return to_cpumask(sd->span);
881}
882
883extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
884				    struct sched_domain_attr *dattr_new);
885
886/* Allocate an array of sched domains, for partition_sched_domains(). */
887cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
888void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
889
890bool cpus_share_cache(int this_cpu, int that_cpu);
891
892#else /* CONFIG_SMP */
893
894struct sched_domain_attr;
895
896static inline void
897partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
898			struct sched_domain_attr *dattr_new)
899{
900}
901
902static inline bool cpus_share_cache(int this_cpu, int that_cpu)
903{
904	return true;
905}
906
907#endif	/* !CONFIG_SMP */
908
909
910struct io_context;			/* See blkdev.h */
911
912
913#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
914extern void prefetch_stack(struct task_struct *t);
915#else
916static inline void prefetch_stack(struct task_struct *t) { }
917#endif
918
919struct audit_context;		/* See audit.c */
920struct mempolicy;
921struct pipe_inode_info;
922struct uts_namespace;
923
924struct load_weight {
925	unsigned long weight, inv_weight;
926};
927
928struct sched_avg {
929	/*
930	 * These sums represent an infinite geometric series and so are bound
931	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
932	 * choices of y < 1-2^(-32)*1024.
933	 */
934	u32 runnable_avg_sum, runnable_avg_period;
935	u64 last_runnable_update;
936	s64 decay_count;
937	unsigned long load_avg_contrib;
938};
939
940#ifdef CONFIG_SCHEDSTATS
941struct sched_statistics {
942	u64			wait_start;
943	u64			wait_max;
944	u64			wait_count;
945	u64			wait_sum;
946	u64			iowait_count;
947	u64			iowait_sum;
948
949	u64			sleep_start;
950	u64			sleep_max;
951	s64			sum_sleep_runtime;
952
953	u64			block_start;
954	u64			block_max;
955	u64			exec_max;
956	u64			slice_max;
957
958	u64			nr_migrations_cold;
959	u64			nr_failed_migrations_affine;
960	u64			nr_failed_migrations_running;
961	u64			nr_failed_migrations_hot;
962	u64			nr_forced_migrations;
963
964	u64			nr_wakeups;
965	u64			nr_wakeups_sync;
966	u64			nr_wakeups_migrate;
967	u64			nr_wakeups_local;
968	u64			nr_wakeups_remote;
969	u64			nr_wakeups_affine;
970	u64			nr_wakeups_affine_attempts;
971	u64			nr_wakeups_passive;
972	u64			nr_wakeups_idle;
973};
974#endif
975
976struct sched_entity {
977	struct load_weight	load;		/* for load-balancing */
978	struct rb_node		run_node;
979	struct list_head	group_node;
980	unsigned int		on_rq;
981
982	u64			exec_start;
983	u64			sum_exec_runtime;
984	u64			vruntime;
985	u64			prev_sum_exec_runtime;
986
987	u64			nr_migrations;
988
989#ifdef CONFIG_SCHEDSTATS
990	struct sched_statistics statistics;
991#endif
992
993#ifdef CONFIG_FAIR_GROUP_SCHED
994	struct sched_entity	*parent;
995	/* rq on which this entity is (to be) queued: */
996	struct cfs_rq		*cfs_rq;
997	/* rq "owned" by this entity/group: */
998	struct cfs_rq		*my_q;
999#endif
1000
1001#ifdef CONFIG_SMP
1002	/* Per-entity load-tracking */
1003	struct sched_avg	avg;
1004#endif
1005};
1006
1007struct sched_rt_entity {
1008	struct list_head run_list;
1009	unsigned long timeout;
1010	unsigned long watchdog_stamp;
1011	unsigned int time_slice;
1012
1013	struct sched_rt_entity *back;
1014#ifdef CONFIG_RT_GROUP_SCHED
1015	struct sched_rt_entity	*parent;
1016	/* rq on which this entity is (to be) queued: */
1017	struct rt_rq		*rt_rq;
1018	/* rq "owned" by this entity/group: */
1019	struct rt_rq		*my_q;
1020#endif
1021};
1022
1023
1024struct rcu_node;
1025
1026enum perf_event_task_context {
1027	perf_invalid_context = -1,
1028	perf_hw_context = 0,
1029	perf_sw_context,
1030	perf_nr_task_contexts,
1031};
1032
1033struct task_struct {
1034	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1035	void *stack;
1036	atomic_t usage;
1037	unsigned int flags;	/* per process flags, defined below */
1038	unsigned int ptrace;
1039
1040#ifdef CONFIG_SMP
1041	struct llist_node wake_entry;
1042	int on_cpu;
1043	struct task_struct *last_wakee;
1044	unsigned long wakee_flips;
1045	unsigned long wakee_flip_decay_ts;
1046
1047	int wake_cpu;
1048#endif
1049	int on_rq;
1050
1051	int prio, static_prio, normal_prio;
1052	unsigned int rt_priority;
1053	const struct sched_class *sched_class;
1054	struct sched_entity se;
1055	struct sched_rt_entity rt;
1056#ifdef CONFIG_CGROUP_SCHED
1057	struct task_group *sched_task_group;
1058#endif
1059
1060#ifdef CONFIG_PREEMPT_NOTIFIERS
1061	/* list of struct preempt_notifier: */
1062	struct hlist_head preempt_notifiers;
1063#endif
1064
1065	/*
1066	 * fpu_counter contains the number of consecutive context switches
1067	 * that the FPU is used. If this is over a threshold, the lazy fpu
1068	 * saving becomes unlazy to save the trap. This is an unsigned char
1069	 * so that after 256 times the counter wraps and the behavior turns
1070	 * lazy again; this to deal with bursty apps that only use FPU for
1071	 * a short time
1072	 */
1073	unsigned char fpu_counter;
1074#ifdef CONFIG_BLK_DEV_IO_TRACE
1075	unsigned int btrace_seq;
1076#endif
1077
1078	unsigned int policy;
1079	int nr_cpus_allowed;
1080	cpumask_t cpus_allowed;
1081
1082#ifdef CONFIG_PREEMPT_RCU
1083	int rcu_read_lock_nesting;
1084	char rcu_read_unlock_special;
1085	struct list_head rcu_node_entry;
1086#endif /* #ifdef CONFIG_PREEMPT_RCU */
1087#ifdef CONFIG_TREE_PREEMPT_RCU
1088	struct rcu_node *rcu_blocked_node;
1089#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1090#ifdef CONFIG_RCU_BOOST
1091	struct rt_mutex *rcu_boost_mutex;
1092#endif /* #ifdef CONFIG_RCU_BOOST */
1093
1094#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1095	struct sched_info sched_info;
1096#endif
1097
1098	struct list_head tasks;
1099#ifdef CONFIG_SMP
1100	struct plist_node pushable_tasks;
1101#endif
1102
1103	struct mm_struct *mm, *active_mm;
1104#ifdef CONFIG_COMPAT_BRK
1105	unsigned brk_randomized:1;
1106#endif
1107#if defined(SPLIT_RSS_COUNTING)
1108	struct task_rss_stat	rss_stat;
1109#endif
1110/* task state */
1111	int exit_state;
1112	int exit_code, exit_signal;
1113	int pdeath_signal;  /*  The signal sent when the parent dies  */
1114	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1115
1116	/* Used for emulating ABI behavior of previous Linux versions */
1117	unsigned int personality;
1118
1119	unsigned did_exec:1;
1120	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1121				 * execve */
1122	unsigned in_iowait:1;
1123
1124	/* task may not gain privileges */
1125	unsigned no_new_privs:1;
1126
1127	/* Revert to default priority/policy when forking */
1128	unsigned sched_reset_on_fork:1;
1129	unsigned sched_contributes_to_load:1;
1130
1131	pid_t pid;
1132	pid_t tgid;
1133
1134#ifdef CONFIG_CC_STACKPROTECTOR
1135	/* Canary value for the -fstack-protector gcc feature */
1136	unsigned long stack_canary;
1137#endif
1138	/*
1139	 * pointers to (original) parent process, youngest child, younger sibling,
1140	 * older sibling, respectively.  (p->father can be replaced with
1141	 * p->real_parent->pid)
1142	 */
1143	struct task_struct __rcu *real_parent; /* real parent process */
1144	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1145	/*
1146	 * children/sibling forms the list of my natural children
1147	 */
1148	struct list_head children;	/* list of my children */
1149	struct list_head sibling;	/* linkage in my parent's children list */
1150	struct task_struct *group_leader;	/* threadgroup leader */
1151
1152	/*
1153	 * ptraced is the list of tasks this task is using ptrace on.
1154	 * This includes both natural children and PTRACE_ATTACH targets.
1155	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1156	 */
1157	struct list_head ptraced;
1158	struct list_head ptrace_entry;
1159
1160	/* PID/PID hash table linkage. */
1161	struct pid_link pids[PIDTYPE_MAX];
1162	struct list_head thread_group;
1163
1164	struct completion *vfork_done;		/* for vfork() */
1165	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1166	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1167
1168	cputime_t utime, stime, utimescaled, stimescaled;
1169	cputime_t gtime;
1170#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1171	struct cputime prev_cputime;
1172#endif
1173#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1174	seqlock_t vtime_seqlock;
1175	unsigned long long vtime_snap;
1176	enum {
1177		VTIME_SLEEPING = 0,
1178		VTIME_USER,
1179		VTIME_SYS,
1180	} vtime_snap_whence;
1181#endif
1182	unsigned long nvcsw, nivcsw; /* context switch counts */
1183	struct timespec start_time; 		/* monotonic time */
1184	struct timespec real_start_time;	/* boot based time */
1185/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1186	unsigned long min_flt, maj_flt;
1187
1188	struct task_cputime cputime_expires;
1189	struct list_head cpu_timers[3];
1190
1191/* process credentials */
1192	const struct cred __rcu *real_cred; /* objective and real subjective task
1193					 * credentials (COW) */
1194	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1195					 * credentials (COW) */
1196	char comm[TASK_COMM_LEN]; /* executable name excluding path
1197				     - access with [gs]et_task_comm (which lock
1198				       it with task_lock())
1199				     - initialized normally by setup_new_exec */
1200/* file system info */
1201	int link_count, total_link_count;
1202#ifdef CONFIG_SYSVIPC
1203/* ipc stuff */
1204	struct sysv_sem sysvsem;
1205#endif
1206#ifdef CONFIG_DETECT_HUNG_TASK
1207/* hung task detection */
1208	unsigned long last_switch_count;
1209#endif
1210/* CPU-specific state of this task */
1211	struct thread_struct thread;
1212/* filesystem information */
1213	struct fs_struct *fs;
1214/* open file information */
1215	struct files_struct *files;
1216/* namespaces */
1217	struct nsproxy *nsproxy;
1218/* signal handlers */
1219	struct signal_struct *signal;
1220	struct sighand_struct *sighand;
1221
1222	sigset_t blocked, real_blocked;
1223	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1224	struct sigpending pending;
1225
1226	unsigned long sas_ss_sp;
1227	size_t sas_ss_size;
1228	int (*notifier)(void *priv);
1229	void *notifier_data;
1230	sigset_t *notifier_mask;
1231	struct callback_head *task_works;
1232
1233	struct audit_context *audit_context;
1234#ifdef CONFIG_AUDITSYSCALL
1235	kuid_t loginuid;
1236	unsigned int sessionid;
1237#endif
1238	struct seccomp seccomp;
1239
1240/* Thread group tracking */
1241   	u32 parent_exec_id;
1242   	u32 self_exec_id;
1243/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1244 * mempolicy */
1245	spinlock_t alloc_lock;
1246
1247	/* Protection of the PI data structures: */
1248	raw_spinlock_t pi_lock;
1249
1250#ifdef CONFIG_RT_MUTEXES
1251	/* PI waiters blocked on a rt_mutex held by this task */
1252	struct plist_head pi_waiters;
1253	/* Deadlock detection and priority inheritance handling */
1254	struct rt_mutex_waiter *pi_blocked_on;
1255#endif
1256
1257#ifdef CONFIG_DEBUG_MUTEXES
1258	/* mutex deadlock detection */
1259	struct mutex_waiter *blocked_on;
1260#endif
1261#ifdef CONFIG_TRACE_IRQFLAGS
1262	unsigned int irq_events;
1263	unsigned long hardirq_enable_ip;
1264	unsigned long hardirq_disable_ip;
1265	unsigned int hardirq_enable_event;
1266	unsigned int hardirq_disable_event;
1267	int hardirqs_enabled;
1268	int hardirq_context;
1269	unsigned long softirq_disable_ip;
1270	unsigned long softirq_enable_ip;
1271	unsigned int softirq_disable_event;
1272	unsigned int softirq_enable_event;
1273	int softirqs_enabled;
1274	int softirq_context;
1275#endif
1276#ifdef CONFIG_LOCKDEP
1277# define MAX_LOCK_DEPTH 48UL
1278	u64 curr_chain_key;
1279	int lockdep_depth;
1280	unsigned int lockdep_recursion;
1281	struct held_lock held_locks[MAX_LOCK_DEPTH];
1282	gfp_t lockdep_reclaim_gfp;
1283#endif
1284
1285/* journalling filesystem info */
1286	void *journal_info;
1287
1288/* stacked block device info */
1289	struct bio_list *bio_list;
1290
1291#ifdef CONFIG_BLOCK
1292/* stack plugging */
1293	struct blk_plug *plug;
1294#endif
1295
1296/* VM state */
1297	struct reclaim_state *reclaim_state;
1298
1299	struct backing_dev_info *backing_dev_info;
1300
1301	struct io_context *io_context;
1302
1303	unsigned long ptrace_message;
1304	siginfo_t *last_siginfo; /* For ptrace use.  */
1305	struct task_io_accounting ioac;
1306#if defined(CONFIG_TASK_XACCT)
1307	u64 acct_rss_mem1;	/* accumulated rss usage */
1308	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1309	cputime_t acct_timexpd;	/* stime + utime since last update */
1310#endif
1311#ifdef CONFIG_CPUSETS
1312	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1313	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1314	int cpuset_mem_spread_rotor;
1315	int cpuset_slab_spread_rotor;
1316#endif
1317#ifdef CONFIG_CGROUPS
1318	/* Control Group info protected by css_set_lock */
1319	struct css_set __rcu *cgroups;
1320	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1321	struct list_head cg_list;
1322#endif
1323#ifdef CONFIG_FUTEX
1324	struct robust_list_head __user *robust_list;
1325#ifdef CONFIG_COMPAT
1326	struct compat_robust_list_head __user *compat_robust_list;
1327#endif
1328	struct list_head pi_state_list;
1329	struct futex_pi_state *pi_state_cache;
1330#endif
1331#ifdef CONFIG_PERF_EVENTS
1332	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1333	struct mutex perf_event_mutex;
1334	struct list_head perf_event_list;
1335#endif
1336#ifdef CONFIG_NUMA
1337	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1338	short il_next;
1339	short pref_node_fork;
1340#endif
1341#ifdef CONFIG_NUMA_BALANCING
1342	int numa_scan_seq;
1343	int numa_migrate_seq;
1344	unsigned int numa_scan_period;
1345	unsigned int numa_scan_period_max;
1346	unsigned long numa_migrate_retry;
1347	u64 node_stamp;			/* migration stamp  */
1348	struct callback_head numa_work;
1349
1350	struct list_head numa_entry;
1351	struct numa_group *numa_group;
1352
1353	/*
1354	 * Exponential decaying average of faults on a per-node basis.
1355	 * Scheduling placement decisions are made based on the these counts.
1356	 * The values remain static for the duration of a PTE scan
1357	 */
1358	unsigned long *numa_faults;
1359	unsigned long total_numa_faults;
1360
1361	/*
1362	 * numa_faults_buffer records faults per node during the current
1363	 * scan window. When the scan completes, the counts in numa_faults
1364	 * decay and these values are copied.
1365	 */
1366	unsigned long *numa_faults_buffer;
1367
1368	int numa_preferred_nid;
1369#endif /* CONFIG_NUMA_BALANCING */
1370
1371	struct rcu_head rcu;
1372
1373	/*
1374	 * cache last used pipe for splice
1375	 */
1376	struct pipe_inode_info *splice_pipe;
1377
1378	struct page_frag task_frag;
1379
1380#ifdef	CONFIG_TASK_DELAY_ACCT
1381	struct task_delay_info *delays;
1382#endif
1383#ifdef CONFIG_FAULT_INJECTION
1384	int make_it_fail;
1385#endif
1386	/*
1387	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1388	 * balance_dirty_pages() for some dirty throttling pause
1389	 */
1390	int nr_dirtied;
1391	int nr_dirtied_pause;
1392	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1393
1394#ifdef CONFIG_LATENCYTOP
1395	int latency_record_count;
1396	struct latency_record latency_record[LT_SAVECOUNT];
1397#endif
1398	/*
1399	 * time slack values; these are used to round up poll() and
1400	 * select() etc timeout values. These are in nanoseconds.
1401	 */
1402	unsigned long timer_slack_ns;
1403	unsigned long default_timer_slack_ns;
1404
1405#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1406	/* Index of current stored address in ret_stack */
1407	int curr_ret_stack;
1408	/* Stack of return addresses for return function tracing */
1409	struct ftrace_ret_stack	*ret_stack;
1410	/* time stamp for last schedule */
1411	unsigned long long ftrace_timestamp;
1412	/*
1413	 * Number of functions that haven't been traced
1414	 * because of depth overrun.
1415	 */
1416	atomic_t trace_overrun;
1417	/* Pause for the tracing */
1418	atomic_t tracing_graph_pause;
1419#endif
1420#ifdef CONFIG_TRACING
1421	/* state flags for use by tracers */
1422	unsigned long trace;
1423	/* bitmask and counter of trace recursion */
1424	unsigned long trace_recursion;
1425#endif /* CONFIG_TRACING */
1426#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1427	struct memcg_batch_info {
1428		int do_batch;	/* incremented when batch uncharge started */
1429		struct mem_cgroup *memcg; /* target memcg of uncharge */
1430		unsigned long nr_pages;	/* uncharged usage */
1431		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1432	} memcg_batch;
1433	unsigned int memcg_kmem_skip_account;
1434	struct memcg_oom_info {
1435		unsigned int may_oom:1;
1436		unsigned int in_memcg_oom:1;
1437		unsigned int oom_locked:1;
1438		int wakeups;
1439		struct mem_cgroup *wait_on_memcg;
1440	} memcg_oom;
1441#endif
1442#ifdef CONFIG_UPROBES
1443	struct uprobe_task *utask;
1444#endif
1445#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1446	unsigned int	sequential_io;
1447	unsigned int	sequential_io_avg;
1448#endif
1449};
1450
1451/* Future-safe accessor for struct task_struct's cpus_allowed. */
1452#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1453
1454#define TNF_MIGRATED	0x01
1455#define TNF_NO_GROUP	0x02
1456
1457#ifdef CONFIG_NUMA_BALANCING
1458extern void task_numa_fault(int last_node, int node, int pages, int flags);
1459extern pid_t task_numa_group_id(struct task_struct *p);
1460extern void set_numabalancing_state(bool enabled);
1461#else
1462static inline void task_numa_fault(int last_node, int node, int pages,
1463				   int flags)
1464{
1465}
1466static inline pid_t task_numa_group_id(struct task_struct *p)
1467{
1468	return 0;
1469}
1470static inline void set_numabalancing_state(bool enabled)
1471{
1472}
1473#endif
1474
1475static inline struct pid *task_pid(struct task_struct *task)
1476{
1477	return task->pids[PIDTYPE_PID].pid;
1478}
1479
1480static inline struct pid *task_tgid(struct task_struct *task)
1481{
1482	return task->group_leader->pids[PIDTYPE_PID].pid;
1483}
1484
1485/*
1486 * Without tasklist or rcu lock it is not safe to dereference
1487 * the result of task_pgrp/task_session even if task == current,
1488 * we can race with another thread doing sys_setsid/sys_setpgid.
1489 */
1490static inline struct pid *task_pgrp(struct task_struct *task)
1491{
1492	return task->group_leader->pids[PIDTYPE_PGID].pid;
1493}
1494
1495static inline struct pid *task_session(struct task_struct *task)
1496{
1497	return task->group_leader->pids[PIDTYPE_SID].pid;
1498}
1499
1500struct pid_namespace;
1501
1502/*
1503 * the helpers to get the task's different pids as they are seen
1504 * from various namespaces
1505 *
1506 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1507 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1508 *                     current.
1509 * task_xid_nr_ns()  : id seen from the ns specified;
1510 *
1511 * set_task_vxid()   : assigns a virtual id to a task;
1512 *
1513 * see also pid_nr() etc in include/linux/pid.h
1514 */
1515pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1516			struct pid_namespace *ns);
1517
1518static inline pid_t task_pid_nr(struct task_struct *tsk)
1519{
1520	return tsk->pid;
1521}
1522
1523static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1524					struct pid_namespace *ns)
1525{
1526	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1527}
1528
1529static inline pid_t task_pid_vnr(struct task_struct *tsk)
1530{
1531	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1532}
1533
1534
1535static inline pid_t task_tgid_nr(struct task_struct *tsk)
1536{
1537	return tsk->tgid;
1538}
1539
1540pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1541
1542static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1543{
1544	return pid_vnr(task_tgid(tsk));
1545}
1546
1547
1548static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1549					struct pid_namespace *ns)
1550{
1551	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1552}
1553
1554static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1555{
1556	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1557}
1558
1559
1560static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1561					struct pid_namespace *ns)
1562{
1563	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1564}
1565
1566static inline pid_t task_session_vnr(struct task_struct *tsk)
1567{
1568	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1569}
1570
1571/* obsolete, do not use */
1572static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1573{
1574	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1575}
1576
1577/**
1578 * pid_alive - check that a task structure is not stale
1579 * @p: Task structure to be checked.
1580 *
1581 * Test if a process is not yet dead (at most zombie state)
1582 * If pid_alive fails, then pointers within the task structure
1583 * can be stale and must not be dereferenced.
1584 *
1585 * Return: 1 if the process is alive. 0 otherwise.
1586 */
1587static inline int pid_alive(struct task_struct *p)
1588{
1589	return p->pids[PIDTYPE_PID].pid != NULL;
1590}
1591
1592/**
1593 * is_global_init - check if a task structure is init
1594 * @tsk: Task structure to be checked.
1595 *
1596 * Check if a task structure is the first user space task the kernel created.
1597 *
1598 * Return: 1 if the task structure is init. 0 otherwise.
1599 */
1600static inline int is_global_init(struct task_struct *tsk)
1601{
1602	return tsk->pid == 1;
1603}
1604
1605extern struct pid *cad_pid;
1606
1607extern void free_task(struct task_struct *tsk);
1608#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1609
1610extern void __put_task_struct(struct task_struct *t);
1611
1612static inline void put_task_struct(struct task_struct *t)
1613{
1614	if (atomic_dec_and_test(&t->usage))
1615		__put_task_struct(t);
1616}
1617
1618#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1619extern void task_cputime(struct task_struct *t,
1620			 cputime_t *utime, cputime_t *stime);
1621extern void task_cputime_scaled(struct task_struct *t,
1622				cputime_t *utimescaled, cputime_t *stimescaled);
1623extern cputime_t task_gtime(struct task_struct *t);
1624#else
1625static inline void task_cputime(struct task_struct *t,
1626				cputime_t *utime, cputime_t *stime)
1627{
1628	if (utime)
1629		*utime = t->utime;
1630	if (stime)
1631		*stime = t->stime;
1632}
1633
1634static inline void task_cputime_scaled(struct task_struct *t,
1635				       cputime_t *utimescaled,
1636				       cputime_t *stimescaled)
1637{
1638	if (utimescaled)
1639		*utimescaled = t->utimescaled;
1640	if (stimescaled)
1641		*stimescaled = t->stimescaled;
1642}
1643
1644static inline cputime_t task_gtime(struct task_struct *t)
1645{
1646	return t->gtime;
1647}
1648#endif
1649extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1650extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1651
1652/*
1653 * Per process flags
1654 */
1655#define PF_EXITING	0x00000004	/* getting shut down */
1656#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1657#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1658#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1659#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1660#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1661#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1662#define PF_DUMPCORE	0x00000200	/* dumped core */
1663#define PF_SIGNALED	0x00000400	/* killed by a signal */
1664#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1665#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1666#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1667#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1668#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1669#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1670#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1671#define PF_KSWAPD	0x00040000	/* I am kswapd */
1672#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1673#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1674#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1675#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1676#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1677#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1678#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1679#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1680#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1681#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1682#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1683#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1684#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1685
1686/*
1687 * Only the _current_ task can read/write to tsk->flags, but other
1688 * tasks can access tsk->flags in readonly mode for example
1689 * with tsk_used_math (like during threaded core dumping).
1690 * There is however an exception to this rule during ptrace
1691 * or during fork: the ptracer task is allowed to write to the
1692 * child->flags of its traced child (same goes for fork, the parent
1693 * can write to the child->flags), because we're guaranteed the
1694 * child is not running and in turn not changing child->flags
1695 * at the same time the parent does it.
1696 */
1697#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1698#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1699#define clear_used_math() clear_stopped_child_used_math(current)
1700#define set_used_math() set_stopped_child_used_math(current)
1701#define conditional_stopped_child_used_math(condition, child) \
1702	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1703#define conditional_used_math(condition) \
1704	conditional_stopped_child_used_math(condition, current)
1705#define copy_to_stopped_child_used_math(child) \
1706	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1707/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1708#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1709#define used_math() tsk_used_math(current)
1710
1711/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1712static inline gfp_t memalloc_noio_flags(gfp_t flags)
1713{
1714	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1715		flags &= ~__GFP_IO;
1716	return flags;
1717}
1718
1719static inline unsigned int memalloc_noio_save(void)
1720{
1721	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1722	current->flags |= PF_MEMALLOC_NOIO;
1723	return flags;
1724}
1725
1726static inline void memalloc_noio_restore(unsigned int flags)
1727{
1728	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1729}
1730
1731/*
1732 * task->jobctl flags
1733 */
1734#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1735
1736#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1737#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1738#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1739#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1740#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1741#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1742#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1743
1744#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1745#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1746#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1747#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1748#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1749#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1750#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1751
1752#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1753#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1754
1755extern bool task_set_jobctl_pending(struct task_struct *task,
1756				    unsigned int mask);
1757extern void task_clear_jobctl_trapping(struct task_struct *task);
1758extern void task_clear_jobctl_pending(struct task_struct *task,
1759				      unsigned int mask);
1760
1761#ifdef CONFIG_PREEMPT_RCU
1762
1763#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1764#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1765
1766static inline void rcu_copy_process(struct task_struct *p)
1767{
1768	p->rcu_read_lock_nesting = 0;
1769	p->rcu_read_unlock_special = 0;
1770#ifdef CONFIG_TREE_PREEMPT_RCU
1771	p->rcu_blocked_node = NULL;
1772#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1773#ifdef CONFIG_RCU_BOOST
1774	p->rcu_boost_mutex = NULL;
1775#endif /* #ifdef CONFIG_RCU_BOOST */
1776	INIT_LIST_HEAD(&p->rcu_node_entry);
1777}
1778
1779#else
1780
1781static inline void rcu_copy_process(struct task_struct *p)
1782{
1783}
1784
1785#endif
1786
1787static inline void tsk_restore_flags(struct task_struct *task,
1788				unsigned long orig_flags, unsigned long flags)
1789{
1790	task->flags &= ~flags;
1791	task->flags |= orig_flags & flags;
1792}
1793
1794#ifdef CONFIG_SMP
1795extern void do_set_cpus_allowed(struct task_struct *p,
1796			       const struct cpumask *new_mask);
1797
1798extern int set_cpus_allowed_ptr(struct task_struct *p,
1799				const struct cpumask *new_mask);
1800#else
1801static inline void do_set_cpus_allowed(struct task_struct *p,
1802				      const struct cpumask *new_mask)
1803{
1804}
1805static inline int set_cpus_allowed_ptr(struct task_struct *p,
1806				       const struct cpumask *new_mask)
1807{
1808	if (!cpumask_test_cpu(0, new_mask))
1809		return -EINVAL;
1810	return 0;
1811}
1812#endif
1813
1814#ifdef CONFIG_NO_HZ_COMMON
1815void calc_load_enter_idle(void);
1816void calc_load_exit_idle(void);
1817#else
1818static inline void calc_load_enter_idle(void) { }
1819static inline void calc_load_exit_idle(void) { }
1820#endif /* CONFIG_NO_HZ_COMMON */
1821
1822#ifndef CONFIG_CPUMASK_OFFSTACK
1823static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1824{
1825	return set_cpus_allowed_ptr(p, &new_mask);
1826}
1827#endif
1828
1829/*
1830 * Do not use outside of architecture code which knows its limitations.
1831 *
1832 * sched_clock() has no promise of monotonicity or bounded drift between
1833 * CPUs, use (which you should not) requires disabling IRQs.
1834 *
1835 * Please use one of the three interfaces below.
1836 */
1837extern unsigned long long notrace sched_clock(void);
1838/*
1839 * See the comment in kernel/sched/clock.c
1840 */
1841extern u64 cpu_clock(int cpu);
1842extern u64 local_clock(void);
1843extern u64 sched_clock_cpu(int cpu);
1844
1845
1846extern void sched_clock_init(void);
1847
1848#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1849static inline void sched_clock_tick(void)
1850{
1851}
1852
1853static inline void sched_clock_idle_sleep_event(void)
1854{
1855}
1856
1857static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1858{
1859}
1860#else
1861/*
1862 * Architectures can set this to 1 if they have specified
1863 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1864 * but then during bootup it turns out that sched_clock()
1865 * is reliable after all:
1866 */
1867extern int sched_clock_stable;
1868
1869extern void sched_clock_tick(void);
1870extern void sched_clock_idle_sleep_event(void);
1871extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1872#endif
1873
1874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1875/*
1876 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1877 * The reason for this explicit opt-in is not to have perf penalty with
1878 * slow sched_clocks.
1879 */
1880extern void enable_sched_clock_irqtime(void);
1881extern void disable_sched_clock_irqtime(void);
1882#else
1883static inline void enable_sched_clock_irqtime(void) {}
1884static inline void disable_sched_clock_irqtime(void) {}
1885#endif
1886
1887extern unsigned long long
1888task_sched_runtime(struct task_struct *task);
1889
1890/* sched_exec is called by processes performing an exec */
1891#ifdef CONFIG_SMP
1892extern void sched_exec(void);
1893#else
1894#define sched_exec()   {}
1895#endif
1896
1897extern void sched_clock_idle_sleep_event(void);
1898extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1899
1900#ifdef CONFIG_HOTPLUG_CPU
1901extern void idle_task_exit(void);
1902#else
1903static inline void idle_task_exit(void) {}
1904#endif
1905
1906#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1907extern void wake_up_nohz_cpu(int cpu);
1908#else
1909static inline void wake_up_nohz_cpu(int cpu) { }
1910#endif
1911
1912#ifdef CONFIG_NO_HZ_FULL
1913extern bool sched_can_stop_tick(void);
1914extern u64 scheduler_tick_max_deferment(void);
1915#else
1916static inline bool sched_can_stop_tick(void) { return false; }
1917#endif
1918
1919#ifdef CONFIG_SCHED_AUTOGROUP
1920extern void sched_autogroup_create_attach(struct task_struct *p);
1921extern void sched_autogroup_detach(struct task_struct *p);
1922extern void sched_autogroup_fork(struct signal_struct *sig);
1923extern void sched_autogroup_exit(struct signal_struct *sig);
1924#ifdef CONFIG_PROC_FS
1925extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1926extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1927#endif
1928#else
1929static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1930static inline void sched_autogroup_detach(struct task_struct *p) { }
1931static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1932static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1933#endif
1934
1935extern bool yield_to(struct task_struct *p, bool preempt);
1936extern void set_user_nice(struct task_struct *p, long nice);
1937extern int task_prio(const struct task_struct *p);
1938extern int task_nice(const struct task_struct *p);
1939extern int can_nice(const struct task_struct *p, const int nice);
1940extern int task_curr(const struct task_struct *p);
1941extern int idle_cpu(int cpu);
1942extern int sched_setscheduler(struct task_struct *, int,
1943			      const struct sched_param *);
1944extern int sched_setscheduler_nocheck(struct task_struct *, int,
1945				      const struct sched_param *);
1946extern struct task_struct *idle_task(int cpu);
1947/**
1948 * is_idle_task - is the specified task an idle task?
1949 * @p: the task in question.
1950 *
1951 * Return: 1 if @p is an idle task. 0 otherwise.
1952 */
1953static inline bool is_idle_task(const struct task_struct *p)
1954{
1955	return p->pid == 0;
1956}
1957extern struct task_struct *curr_task(int cpu);
1958extern void set_curr_task(int cpu, struct task_struct *p);
1959
1960void yield(void);
1961
1962/*
1963 * The default (Linux) execution domain.
1964 */
1965extern struct exec_domain	default_exec_domain;
1966
1967union thread_union {
1968	struct thread_info thread_info;
1969	unsigned long stack[THREAD_SIZE/sizeof(long)];
1970};
1971
1972#ifndef __HAVE_ARCH_KSTACK_END
1973static inline int kstack_end(void *addr)
1974{
1975	/* Reliable end of stack detection:
1976	 * Some APM bios versions misalign the stack
1977	 */
1978	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1979}
1980#endif
1981
1982extern union thread_union init_thread_union;
1983extern struct task_struct init_task;
1984
1985extern struct   mm_struct init_mm;
1986
1987extern struct pid_namespace init_pid_ns;
1988
1989/*
1990 * find a task by one of its numerical ids
1991 *
1992 * find_task_by_pid_ns():
1993 *      finds a task by its pid in the specified namespace
1994 * find_task_by_vpid():
1995 *      finds a task by its virtual pid
1996 *
1997 * see also find_vpid() etc in include/linux/pid.h
1998 */
1999
2000extern struct task_struct *find_task_by_vpid(pid_t nr);
2001extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2002		struct pid_namespace *ns);
2003
2004/* per-UID process charging. */
2005extern struct user_struct * alloc_uid(kuid_t);
2006static inline struct user_struct *get_uid(struct user_struct *u)
2007{
2008	atomic_inc(&u->__count);
2009	return u;
2010}
2011extern void free_uid(struct user_struct *);
2012
2013#include <asm/current.h>
2014
2015extern void xtime_update(unsigned long ticks);
2016
2017extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2018extern int wake_up_process(struct task_struct *tsk);
2019extern void wake_up_new_task(struct task_struct *tsk);
2020#ifdef CONFIG_SMP
2021 extern void kick_process(struct task_struct *tsk);
2022#else
2023 static inline void kick_process(struct task_struct *tsk) { }
2024#endif
2025extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2026extern void sched_dead(struct task_struct *p);
2027
2028extern void proc_caches_init(void);
2029extern void flush_signals(struct task_struct *);
2030extern void __flush_signals(struct task_struct *);
2031extern void ignore_signals(struct task_struct *);
2032extern void flush_signal_handlers(struct task_struct *, int force_default);
2033extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2034
2035static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2036{
2037	unsigned long flags;
2038	int ret;
2039
2040	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2041	ret = dequeue_signal(tsk, mask, info);
2042	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2043
2044	return ret;
2045}
2046
2047extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2048			      sigset_t *mask);
2049extern void unblock_all_signals(void);
2050extern void release_task(struct task_struct * p);
2051extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2052extern int force_sigsegv(int, struct task_struct *);
2053extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2054extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2055extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2056extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2057				const struct cred *, u32);
2058extern int kill_pgrp(struct pid *pid, int sig, int priv);
2059extern int kill_pid(struct pid *pid, int sig, int priv);
2060extern int kill_proc_info(int, struct siginfo *, pid_t);
2061extern __must_check bool do_notify_parent(struct task_struct *, int);
2062extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2063extern void force_sig(int, struct task_struct *);
2064extern int send_sig(int, struct task_struct *, int);
2065extern int zap_other_threads(struct task_struct *p);
2066extern struct sigqueue *sigqueue_alloc(void);
2067extern void sigqueue_free(struct sigqueue *);
2068extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2069extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2070
2071static inline void restore_saved_sigmask(void)
2072{
2073	if (test_and_clear_restore_sigmask())
2074		__set_current_blocked(&current->saved_sigmask);
2075}
2076
2077static inline sigset_t *sigmask_to_save(void)
2078{
2079	sigset_t *res = &current->blocked;
2080	if (unlikely(test_restore_sigmask()))
2081		res = &current->saved_sigmask;
2082	return res;
2083}
2084
2085static inline int kill_cad_pid(int sig, int priv)
2086{
2087	return kill_pid(cad_pid, sig, priv);
2088}
2089
2090/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2091#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2092#define SEND_SIG_PRIV	((struct siginfo *) 1)
2093#define SEND_SIG_FORCED	((struct siginfo *) 2)
2094
2095/*
2096 * True if we are on the alternate signal stack.
2097 */
2098static inline int on_sig_stack(unsigned long sp)
2099{
2100#ifdef CONFIG_STACK_GROWSUP
2101	return sp >= current->sas_ss_sp &&
2102		sp - current->sas_ss_sp < current->sas_ss_size;
2103#else
2104	return sp > current->sas_ss_sp &&
2105		sp - current->sas_ss_sp <= current->sas_ss_size;
2106#endif
2107}
2108
2109static inline int sas_ss_flags(unsigned long sp)
2110{
2111	return (current->sas_ss_size == 0 ? SS_DISABLE
2112		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2113}
2114
2115static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2116{
2117	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2118#ifdef CONFIG_STACK_GROWSUP
2119		return current->sas_ss_sp;
2120#else
2121		return current->sas_ss_sp + current->sas_ss_size;
2122#endif
2123	return sp;
2124}
2125
2126/*
2127 * Routines for handling mm_structs
2128 */
2129extern struct mm_struct * mm_alloc(void);
2130
2131/* mmdrop drops the mm and the page tables */
2132extern void __mmdrop(struct mm_struct *);
2133static inline void mmdrop(struct mm_struct * mm)
2134{
2135	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2136		__mmdrop(mm);
2137}
2138
2139/* mmput gets rid of the mappings and all user-space */
2140extern void mmput(struct mm_struct *);
2141/* Grab a reference to a task's mm, if it is not already going away */
2142extern struct mm_struct *get_task_mm(struct task_struct *task);
2143/*
2144 * Grab a reference to a task's mm, if it is not already going away
2145 * and ptrace_may_access with the mode parameter passed to it
2146 * succeeds.
2147 */
2148extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2149/* Remove the current tasks stale references to the old mm_struct */
2150extern void mm_release(struct task_struct *, struct mm_struct *);
2151/* Allocate a new mm structure and copy contents from tsk->mm */
2152extern struct mm_struct *dup_mm(struct task_struct *tsk);
2153
2154extern int copy_thread(unsigned long, unsigned long, unsigned long,
2155			struct task_struct *);
2156extern void flush_thread(void);
2157extern void exit_thread(void);
2158
2159extern void exit_files(struct task_struct *);
2160extern void __cleanup_sighand(struct sighand_struct *);
2161
2162extern void exit_itimers(struct signal_struct *);
2163extern void flush_itimer_signals(void);
2164
2165extern void do_group_exit(int);
2166
2167extern int allow_signal(int);
2168extern int disallow_signal(int);
2169
2170extern int do_execve(const char *,
2171		     const char __user * const __user *,
2172		     const char __user * const __user *);
2173extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2174struct task_struct *fork_idle(int);
2175extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2176
2177extern void set_task_comm(struct task_struct *tsk, char *from);
2178extern char *get_task_comm(char *to, struct task_struct *tsk);
2179
2180#ifdef CONFIG_SMP
2181void scheduler_ipi(void);
2182extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2183#else
2184static inline void scheduler_ipi(void) { }
2185static inline unsigned long wait_task_inactive(struct task_struct *p,
2186					       long match_state)
2187{
2188	return 1;
2189}
2190#endif
2191
2192#define next_task(p) \
2193	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2194
2195#define for_each_process(p) \
2196	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2197
2198extern bool current_is_single_threaded(void);
2199
2200/*
2201 * Careful: do_each_thread/while_each_thread is a double loop so
2202 *          'break' will not work as expected - use goto instead.
2203 */
2204#define do_each_thread(g, t) \
2205	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2206
2207#define while_each_thread(g, t) \
2208	while ((t = next_thread(t)) != g)
2209
2210static inline int get_nr_threads(struct task_struct *tsk)
2211{
2212	return tsk->signal->nr_threads;
2213}
2214
2215static inline bool thread_group_leader(struct task_struct *p)
2216{
2217	return p->exit_signal >= 0;
2218}
2219
2220/* Do to the insanities of de_thread it is possible for a process
2221 * to have the pid of the thread group leader without actually being
2222 * the thread group leader.  For iteration through the pids in proc
2223 * all we care about is that we have a task with the appropriate
2224 * pid, we don't actually care if we have the right task.
2225 */
2226static inline bool has_group_leader_pid(struct task_struct *p)
2227{
2228	return task_pid(p) == p->signal->leader_pid;
2229}
2230
2231static inline
2232bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2233{
2234	return p1->signal == p2->signal;
2235}
2236
2237static inline struct task_struct *next_thread(const struct task_struct *p)
2238{
2239	return list_entry_rcu(p->thread_group.next,
2240			      struct task_struct, thread_group);
2241}
2242
2243static inline int thread_group_empty(struct task_struct *p)
2244{
2245	return list_empty(&p->thread_group);
2246}
2247
2248#define delay_group_leader(p) \
2249		(thread_group_leader(p) && !thread_group_empty(p))
2250
2251/*
2252 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2253 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2254 * pins the final release of task.io_context.  Also protects ->cpuset and
2255 * ->cgroup.subsys[]. And ->vfork_done.
2256 *
2257 * Nests both inside and outside of read_lock(&tasklist_lock).
2258 * It must not be nested with write_lock_irq(&tasklist_lock),
2259 * neither inside nor outside.
2260 */
2261static inline void task_lock(struct task_struct *p)
2262{
2263	spin_lock(&p->alloc_lock);
2264}
2265
2266static inline void task_unlock(struct task_struct *p)
2267{
2268	spin_unlock(&p->alloc_lock);
2269}
2270
2271extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2272							unsigned long *flags);
2273
2274static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2275						       unsigned long *flags)
2276{
2277	struct sighand_struct *ret;
2278
2279	ret = __lock_task_sighand(tsk, flags);
2280	(void)__cond_lock(&tsk->sighand->siglock, ret);
2281	return ret;
2282}
2283
2284static inline void unlock_task_sighand(struct task_struct *tsk,
2285						unsigned long *flags)
2286{
2287	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2288}
2289
2290#ifdef CONFIG_CGROUPS
2291static inline void threadgroup_change_begin(struct task_struct *tsk)
2292{
2293	down_read(&tsk->signal->group_rwsem);
2294}
2295static inline void threadgroup_change_end(struct task_struct *tsk)
2296{
2297	up_read(&tsk->signal->group_rwsem);
2298}
2299
2300/**
2301 * threadgroup_lock - lock threadgroup
2302 * @tsk: member task of the threadgroup to lock
2303 *
2304 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2305 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2306 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2307 * needs to stay stable across blockable operations.
2308 *
2309 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2310 * synchronization.  While held, no new task will be added to threadgroup
2311 * and no existing live task will have its PF_EXITING set.
2312 *
2313 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2314 * sub-thread becomes a new leader.
2315 */
2316static inline void threadgroup_lock(struct task_struct *tsk)
2317{
2318	down_write(&tsk->signal->group_rwsem);
2319}
2320
2321/**
2322 * threadgroup_unlock - unlock threadgroup
2323 * @tsk: member task of the threadgroup to unlock
2324 *
2325 * Reverse threadgroup_lock().
2326 */
2327static inline void threadgroup_unlock(struct task_struct *tsk)
2328{
2329	up_write(&tsk->signal->group_rwsem);
2330}
2331#else
2332static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2333static inline void threadgroup_change_end(struct task_struct *tsk) {}
2334static inline void threadgroup_lock(struct task_struct *tsk) {}
2335static inline void threadgroup_unlock(struct task_struct *tsk) {}
2336#endif
2337
2338#ifndef __HAVE_THREAD_FUNCTIONS
2339
2340#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2341#define task_stack_page(task)	((task)->stack)
2342
2343static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2344{
2345	*task_thread_info(p) = *task_thread_info(org);
2346	task_thread_info(p)->task = p;
2347}
2348
2349static inline unsigned long *end_of_stack(struct task_struct *p)
2350{
2351	return (unsigned long *)(task_thread_info(p) + 1);
2352}
2353
2354#endif
2355
2356static inline int object_is_on_stack(void *obj)
2357{
2358	void *stack = task_stack_page(current);
2359
2360	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2361}
2362
2363extern void thread_info_cache_init(void);
2364
2365#ifdef CONFIG_DEBUG_STACK_USAGE
2366static inline unsigned long stack_not_used(struct task_struct *p)
2367{
2368	unsigned long *n = end_of_stack(p);
2369
2370	do { 	/* Skip over canary */
2371		n++;
2372	} while (!*n);
2373
2374	return (unsigned long)n - (unsigned long)end_of_stack(p);
2375}
2376#endif
2377
2378/* set thread flags in other task's structures
2379 * - see asm/thread_info.h for TIF_xxxx flags available
2380 */
2381static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2382{
2383	set_ti_thread_flag(task_thread_info(tsk), flag);
2384}
2385
2386static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2387{
2388	clear_ti_thread_flag(task_thread_info(tsk), flag);
2389}
2390
2391static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2392{
2393	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2394}
2395
2396static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2397{
2398	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2399}
2400
2401static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2402{
2403	return test_ti_thread_flag(task_thread_info(tsk), flag);
2404}
2405
2406static inline void set_tsk_need_resched(struct task_struct *tsk)
2407{
2408	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2409}
2410
2411static inline void clear_tsk_need_resched(struct task_struct *tsk)
2412{
2413	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2414}
2415
2416static inline int test_tsk_need_resched(struct task_struct *tsk)
2417{
2418	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2419}
2420
2421static inline int restart_syscall(void)
2422{
2423	set_tsk_thread_flag(current, TIF_SIGPENDING);
2424	return -ERESTARTNOINTR;
2425}
2426
2427static inline int signal_pending(struct task_struct *p)
2428{
2429	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2430}
2431
2432static inline int __fatal_signal_pending(struct task_struct *p)
2433{
2434	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2435}
2436
2437static inline int fatal_signal_pending(struct task_struct *p)
2438{
2439	return signal_pending(p) && __fatal_signal_pending(p);
2440}
2441
2442static inline int signal_pending_state(long state, struct task_struct *p)
2443{
2444	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2445		return 0;
2446	if (!signal_pending(p))
2447		return 0;
2448
2449	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2450}
2451
2452/*
2453 * cond_resched() and cond_resched_lock(): latency reduction via
2454 * explicit rescheduling in places that are safe. The return
2455 * value indicates whether a reschedule was done in fact.
2456 * cond_resched_lock() will drop the spinlock before scheduling,
2457 * cond_resched_softirq() will enable bhs before scheduling.
2458 */
2459extern int _cond_resched(void);
2460
2461#define cond_resched() ({			\
2462	__might_sleep(__FILE__, __LINE__, 0);	\
2463	_cond_resched();			\
2464})
2465
2466extern int __cond_resched_lock(spinlock_t *lock);
2467
2468#ifdef CONFIG_PREEMPT_COUNT
2469#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2470#else
2471#define PREEMPT_LOCK_OFFSET	0
2472#endif
2473
2474#define cond_resched_lock(lock) ({				\
2475	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2476	__cond_resched_lock(lock);				\
2477})
2478
2479extern int __cond_resched_softirq(void);
2480
2481#define cond_resched_softirq() ({					\
2482	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2483	__cond_resched_softirq();					\
2484})
2485
2486static inline void cond_resched_rcu(void)
2487{
2488#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2489	rcu_read_unlock();
2490	cond_resched();
2491	rcu_read_lock();
2492#endif
2493}
2494
2495/*
2496 * Does a critical section need to be broken due to another
2497 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2498 * but a general need for low latency)
2499 */
2500static inline int spin_needbreak(spinlock_t *lock)
2501{
2502#ifdef CONFIG_PREEMPT
2503	return spin_is_contended(lock);
2504#else
2505	return 0;
2506#endif
2507}
2508
2509/*
2510 * Idle thread specific functions to determine the need_resched
2511 * polling state. We have two versions, one based on TS_POLLING in
2512 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2513 * thread_info.flags
2514 */
2515#ifdef TS_POLLING
2516static inline int tsk_is_polling(struct task_struct *p)
2517{
2518	return task_thread_info(p)->status & TS_POLLING;
2519}
2520static inline void __current_set_polling(void)
2521{
2522	current_thread_info()->status |= TS_POLLING;
2523}
2524
2525static inline bool __must_check current_set_polling_and_test(void)
2526{
2527	__current_set_polling();
2528
2529	/*
2530	 * Polling state must be visible before we test NEED_RESCHED,
2531	 * paired by resched_task()
2532	 */
2533	smp_mb();
2534
2535	return unlikely(tif_need_resched());
2536}
2537
2538static inline void __current_clr_polling(void)
2539{
2540	current_thread_info()->status &= ~TS_POLLING;
2541}
2542
2543static inline bool __must_check current_clr_polling_and_test(void)
2544{
2545	__current_clr_polling();
2546
2547	/*
2548	 * Polling state must be visible before we test NEED_RESCHED,
2549	 * paired by resched_task()
2550	 */
2551	smp_mb();
2552
2553	return unlikely(tif_need_resched());
2554}
2555#elif defined(TIF_POLLING_NRFLAG)
2556static inline int tsk_is_polling(struct task_struct *p)
2557{
2558	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2559}
2560
2561static inline void __current_set_polling(void)
2562{
2563	set_thread_flag(TIF_POLLING_NRFLAG);
2564}
2565
2566static inline bool __must_check current_set_polling_and_test(void)
2567{
2568	__current_set_polling();
2569
2570	/*
2571	 * Polling state must be visible before we test NEED_RESCHED,
2572	 * paired by resched_task()
2573	 *
2574	 * XXX: assumes set/clear bit are identical barrier wise.
2575	 */
2576	smp_mb__after_clear_bit();
2577
2578	return unlikely(tif_need_resched());
2579}
2580
2581static inline void __current_clr_polling(void)
2582{
2583	clear_thread_flag(TIF_POLLING_NRFLAG);
2584}
2585
2586static inline bool __must_check current_clr_polling_and_test(void)
2587{
2588	__current_clr_polling();
2589
2590	/*
2591	 * Polling state must be visible before we test NEED_RESCHED,
2592	 * paired by resched_task()
2593	 */
2594	smp_mb__after_clear_bit();
2595
2596	return unlikely(tif_need_resched());
2597}
2598
2599#else
2600static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2601static inline void __current_set_polling(void) { }
2602static inline void __current_clr_polling(void) { }
2603
2604static inline bool __must_check current_set_polling_and_test(void)
2605{
2606	return unlikely(tif_need_resched());
2607}
2608static inline bool __must_check current_clr_polling_and_test(void)
2609{
2610	return unlikely(tif_need_resched());
2611}
2612#endif
2613
2614static __always_inline bool need_resched(void)
2615{
2616	return unlikely(tif_need_resched());
2617}
2618
2619/*
2620 * Thread group CPU time accounting.
2621 */
2622void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2623void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2624
2625static inline void thread_group_cputime_init(struct signal_struct *sig)
2626{
2627	raw_spin_lock_init(&sig->cputimer.lock);
2628}
2629
2630/*
2631 * Reevaluate whether the task has signals pending delivery.
2632 * Wake the task if so.
2633 * This is required every time the blocked sigset_t changes.
2634 * callers must hold sighand->siglock.
2635 */
2636extern void recalc_sigpending_and_wake(struct task_struct *t);
2637extern void recalc_sigpending(void);
2638
2639extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2640
2641static inline void signal_wake_up(struct task_struct *t, bool resume)
2642{
2643	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2644}
2645static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2646{
2647	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2648}
2649
2650/*
2651 * Wrappers for p->thread_info->cpu access. No-op on UP.
2652 */
2653#ifdef CONFIG_SMP
2654
2655static inline unsigned int task_cpu(const struct task_struct *p)
2656{
2657	return task_thread_info(p)->cpu;
2658}
2659
2660extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2661
2662#else
2663
2664static inline unsigned int task_cpu(const struct task_struct *p)
2665{
2666	return 0;
2667}
2668
2669static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2670{
2671}
2672
2673#endif /* CONFIG_SMP */
2674
2675extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2676extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2677
2678#ifdef CONFIG_CGROUP_SCHED
2679extern struct task_group root_task_group;
2680#endif /* CONFIG_CGROUP_SCHED */
2681
2682extern int task_can_switch_user(struct user_struct *up,
2683					struct task_struct *tsk);
2684
2685#ifdef CONFIG_TASK_XACCT
2686static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2687{
2688	tsk->ioac.rchar += amt;
2689}
2690
2691static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2692{
2693	tsk->ioac.wchar += amt;
2694}
2695
2696static inline void inc_syscr(struct task_struct *tsk)
2697{
2698	tsk->ioac.syscr++;
2699}
2700
2701static inline void inc_syscw(struct task_struct *tsk)
2702{
2703	tsk->ioac.syscw++;
2704}
2705#else
2706static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2707{
2708}
2709
2710static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2711{
2712}
2713
2714static inline void inc_syscr(struct task_struct *tsk)
2715{
2716}
2717
2718static inline void inc_syscw(struct task_struct *tsk)
2719{
2720}
2721#endif
2722
2723#ifndef TASK_SIZE_OF
2724#define TASK_SIZE_OF(tsk)	TASK_SIZE
2725#endif
2726
2727#ifdef CONFIG_MM_OWNER
2728extern void mm_update_next_owner(struct mm_struct *mm);
2729extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2730#else
2731static inline void mm_update_next_owner(struct mm_struct *mm)
2732{
2733}
2734
2735static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2736{
2737}
2738#endif /* CONFIG_MM_OWNER */
2739
2740static inline unsigned long task_rlimit(const struct task_struct *tsk,
2741		unsigned int limit)
2742{
2743	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2744}
2745
2746static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2747		unsigned int limit)
2748{
2749	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2750}
2751
2752static inline unsigned long rlimit(unsigned int limit)
2753{
2754	return task_rlimit(current, limit);
2755}
2756
2757static inline unsigned long rlimit_max(unsigned int limit)
2758{
2759	return task_rlimit_max(current, limit);
2760}
2761
2762#endif
2763