sched.h revision a9d9baa1e819b2f92f9cfa5240f766c535e636a6
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <asm/param.h>	/* for HZ */
5
6#include <linux/config.h>
7#include <linux/capability.h>
8#include <linux/threads.h>
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/timex.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/thread_info.h>
15#include <linux/cpumask.h>
16#include <linux/errno.h>
17#include <linux/nodemask.h>
18
19#include <asm/system.h>
20#include <asm/semaphore.h>
21#include <asm/page.h>
22#include <asm/ptrace.h>
23#include <asm/mmu.h>
24#include <asm/cputime.h>
25
26#include <linux/smp.h>
27#include <linux/sem.h>
28#include <linux/signal.h>
29#include <linux/securebits.h>
30#include <linux/fs_struct.h>
31#include <linux/compiler.h>
32#include <linux/completion.h>
33#include <linux/pid.h>
34#include <linux/percpu.h>
35#include <linux/topology.h>
36#include <linux/seccomp.h>
37
38#include <linux/auxvec.h>	/* For AT_VECTOR_SIZE */
39
40struct exec_domain;
41
42/*
43 * cloning flags:
44 */
45#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
46#define CLONE_VM	0x00000100	/* set if VM shared between processes */
47#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
48#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
49#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
50#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
51#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
52#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
53#define CLONE_THREAD	0x00010000	/* Same thread group? */
54#define CLONE_NEWNS	0x00020000	/* New namespace group? */
55#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
56#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
57#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
58#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
59#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
60#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
61#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
62#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
63
64/*
65 * List of flags we want to share for kernel threads,
66 * if only because they are not used by them anyway.
67 */
68#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
69
70/*
71 * These are the constant used to fake the fixed-point load-average
72 * counting. Some notes:
73 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
74 *    a load-average precision of 10 bits integer + 11 bits fractional
75 *  - if you want to count load-averages more often, you need more
76 *    precision, or rounding will get you. With 2-second counting freq,
77 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
78 *    11 bit fractions.
79 */
80extern unsigned long avenrun[];		/* Load averages */
81
82#define FSHIFT		11		/* nr of bits of precision */
83#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
84#define LOAD_FREQ	(5*HZ)		/* 5 sec intervals */
85#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
86#define EXP_5		2014		/* 1/exp(5sec/5min) */
87#define EXP_15		2037		/* 1/exp(5sec/15min) */
88
89#define CALC_LOAD(load,exp,n) \
90	load *= exp; \
91	load += n*(FIXED_1-exp); \
92	load >>= FSHIFT;
93
94extern unsigned long total_forks;
95extern int nr_threads;
96extern int last_pid;
97DECLARE_PER_CPU(unsigned long, process_counts);
98extern int nr_processes(void);
99extern unsigned long nr_running(void);
100extern unsigned long nr_uninterruptible(void);
101extern unsigned long nr_iowait(void);
102
103#include <linux/time.h>
104#include <linux/param.h>
105#include <linux/resource.h>
106#include <linux/timer.h>
107
108#include <asm/processor.h>
109
110/*
111 * Task state bitmask. NOTE! These bits are also
112 * encoded in fs/proc/array.c: get_task_state().
113 *
114 * We have two separate sets of flags: task->state
115 * is about runnability, while task->exit_state are
116 * about the task exiting. Confusing, but this way
117 * modifying one set can't modify the other one by
118 * mistake.
119 */
120#define TASK_RUNNING		0
121#define TASK_INTERRUPTIBLE	1
122#define TASK_UNINTERRUPTIBLE	2
123#define TASK_STOPPED		4
124#define TASK_TRACED		8
125/* in tsk->exit_state */
126#define EXIT_ZOMBIE		16
127#define EXIT_DEAD		32
128/* in tsk->state again */
129#define TASK_NONINTERACTIVE	64
130
131#define __set_task_state(tsk, state_value)		\
132	do { (tsk)->state = (state_value); } while (0)
133#define set_task_state(tsk, state_value)		\
134	set_mb((tsk)->state, (state_value))
135
136/*
137 * set_current_state() includes a barrier so that the write of current->state
138 * is correctly serialised wrt the caller's subsequent test of whether to
139 * actually sleep:
140 *
141 *	set_current_state(TASK_UNINTERRUPTIBLE);
142 *	if (do_i_need_to_sleep())
143 *		schedule();
144 *
145 * If the caller does not need such serialisation then use __set_current_state()
146 */
147#define __set_current_state(state_value)			\
148	do { current->state = (state_value); } while (0)
149#define set_current_state(state_value)		\
150	set_mb(current->state, (state_value))
151
152/* Task command name length */
153#define TASK_COMM_LEN 16
154
155/*
156 * Scheduling policies
157 */
158#define SCHED_NORMAL		0
159#define SCHED_FIFO		1
160#define SCHED_RR		2
161
162struct sched_param {
163	int sched_priority;
164};
165
166#ifdef __KERNEL__
167
168#include <linux/spinlock.h>
169
170/*
171 * This serializes "schedule()" and also protects
172 * the run-queue from deletions/modifications (but
173 * _adding_ to the beginning of the run-queue has
174 * a separate lock).
175 */
176extern rwlock_t tasklist_lock;
177extern spinlock_t mmlist_lock;
178
179typedef struct task_struct task_t;
180
181extern void sched_init(void);
182extern void sched_init_smp(void);
183extern void init_idle(task_t *idle, int cpu);
184
185extern cpumask_t nohz_cpu_mask;
186
187extern void show_state(void);
188extern void show_regs(struct pt_regs *);
189
190/*
191 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
192 * task), SP is the stack pointer of the first frame that should be shown in the back
193 * trace (or NULL if the entire call-chain of the task should be shown).
194 */
195extern void show_stack(struct task_struct *task, unsigned long *sp);
196
197void io_schedule(void);
198long io_schedule_timeout(long timeout);
199
200extern void cpu_init (void);
201extern void trap_init(void);
202extern void update_process_times(int user);
203extern void scheduler_tick(void);
204
205#ifdef CONFIG_DETECT_SOFTLOCKUP
206extern void softlockup_tick(struct pt_regs *regs);
207extern void spawn_softlockup_task(void);
208extern void touch_softlockup_watchdog(void);
209#else
210static inline void softlockup_tick(struct pt_regs *regs)
211{
212}
213static inline void spawn_softlockup_task(void)
214{
215}
216static inline void touch_softlockup_watchdog(void)
217{
218}
219#endif
220
221
222/* Attach to any functions which should be ignored in wchan output. */
223#define __sched		__attribute__((__section__(".sched.text")))
224/* Is this address in the __sched functions? */
225extern int in_sched_functions(unsigned long addr);
226
227#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
228extern signed long FASTCALL(schedule_timeout(signed long timeout));
229extern signed long schedule_timeout_interruptible(signed long timeout);
230extern signed long schedule_timeout_uninterruptible(signed long timeout);
231asmlinkage void schedule(void);
232
233struct namespace;
234
235/* Maximum number of active map areas.. This is a random (large) number */
236#define DEFAULT_MAX_MAP_COUNT	65536
237
238extern int sysctl_max_map_count;
239
240#include <linux/aio.h>
241
242extern unsigned long
243arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
244		       unsigned long, unsigned long);
245extern unsigned long
246arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
247			  unsigned long len, unsigned long pgoff,
248			  unsigned long flags);
249extern void arch_unmap_area(struct mm_struct *, unsigned long);
250extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
251
252#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
253/*
254 * The mm counters are not protected by its page_table_lock,
255 * so must be incremented atomically.
256 */
257#ifdef ATOMIC64_INIT
258#define set_mm_counter(mm, member, value) atomic64_set(&(mm)->_##member, value)
259#define get_mm_counter(mm, member) ((unsigned long)atomic64_read(&(mm)->_##member))
260#define add_mm_counter(mm, member, value) atomic64_add(value, &(mm)->_##member)
261#define inc_mm_counter(mm, member) atomic64_inc(&(mm)->_##member)
262#define dec_mm_counter(mm, member) atomic64_dec(&(mm)->_##member)
263typedef atomic64_t mm_counter_t;
264#else /* !ATOMIC64_INIT */
265/*
266 * The counters wrap back to 0 at 2^32 * PAGE_SIZE,
267 * that is, at 16TB if using 4kB page size.
268 */
269#define set_mm_counter(mm, member, value) atomic_set(&(mm)->_##member, value)
270#define get_mm_counter(mm, member) ((unsigned long)atomic_read(&(mm)->_##member))
271#define add_mm_counter(mm, member, value) atomic_add(value, &(mm)->_##member)
272#define inc_mm_counter(mm, member) atomic_inc(&(mm)->_##member)
273#define dec_mm_counter(mm, member) atomic_dec(&(mm)->_##member)
274typedef atomic_t mm_counter_t;
275#endif /* !ATOMIC64_INIT */
276
277#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
278/*
279 * The mm counters are protected by its page_table_lock,
280 * so can be incremented directly.
281 */
282#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
283#define get_mm_counter(mm, member) ((mm)->_##member)
284#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
285#define inc_mm_counter(mm, member) (mm)->_##member++
286#define dec_mm_counter(mm, member) (mm)->_##member--
287typedef unsigned long mm_counter_t;
288
289#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
290
291#define get_mm_rss(mm)					\
292	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
293#define update_hiwater_rss(mm)	do {			\
294	unsigned long _rss = get_mm_rss(mm);		\
295	if ((mm)->hiwater_rss < _rss)			\
296		(mm)->hiwater_rss = _rss;		\
297} while (0)
298#define update_hiwater_vm(mm)	do {			\
299	if ((mm)->hiwater_vm < (mm)->total_vm)		\
300		(mm)->hiwater_vm = (mm)->total_vm;	\
301} while (0)
302
303struct mm_struct {
304	struct vm_area_struct * mmap;		/* list of VMAs */
305	struct rb_root mm_rb;
306	struct vm_area_struct * mmap_cache;	/* last find_vma result */
307	unsigned long (*get_unmapped_area) (struct file *filp,
308				unsigned long addr, unsigned long len,
309				unsigned long pgoff, unsigned long flags);
310	void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
311        unsigned long mmap_base;		/* base of mmap area */
312        unsigned long cached_hole_size;         /* if non-zero, the largest hole below free_area_cache */
313	unsigned long free_area_cache;		/* first hole of size cached_hole_size or larger */
314	pgd_t * pgd;
315	atomic_t mm_users;			/* How many users with user space? */
316	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
317	int map_count;				/* number of VMAs */
318	struct rw_semaphore mmap_sem;
319	spinlock_t page_table_lock;		/* Protects page tables and some counters */
320
321	struct list_head mmlist;		/* List of maybe swapped mm's.  These are globally strung
322						 * together off init_mm.mmlist, and are protected
323						 * by mmlist_lock
324						 */
325
326	/* Special counters, in some configurations protected by the
327	 * page_table_lock, in other configurations by being atomic.
328	 */
329	mm_counter_t _file_rss;
330	mm_counter_t _anon_rss;
331
332	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
333	unsigned long hiwater_vm;	/* High-water virtual memory usage */
334
335	unsigned long total_vm, locked_vm, shared_vm, exec_vm;
336	unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
337	unsigned long start_code, end_code, start_data, end_data;
338	unsigned long start_brk, brk, start_stack;
339	unsigned long arg_start, arg_end, env_start, env_end;
340
341	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
342
343	unsigned dumpable:2;
344	cpumask_t cpu_vm_mask;
345
346	/* Architecture-specific MM context */
347	mm_context_t context;
348
349	/* Token based thrashing protection. */
350	unsigned long swap_token_time;
351	char recent_pagein;
352
353	/* coredumping support */
354	int core_waiters;
355	struct completion *core_startup_done, core_done;
356
357	/* aio bits */
358	rwlock_t		ioctx_list_lock;
359	struct kioctx		*ioctx_list;
360};
361
362struct sighand_struct {
363	atomic_t		count;
364	struct k_sigaction	action[_NSIG];
365	spinlock_t		siglock;
366};
367
368/*
369 * NOTE! "signal_struct" does not have it's own
370 * locking, because a shared signal_struct always
371 * implies a shared sighand_struct, so locking
372 * sighand_struct is always a proper superset of
373 * the locking of signal_struct.
374 */
375struct signal_struct {
376	atomic_t		count;
377	atomic_t		live;
378
379	wait_queue_head_t	wait_chldexit;	/* for wait4() */
380
381	/* current thread group signal load-balancing target: */
382	task_t			*curr_target;
383
384	/* shared signal handling: */
385	struct sigpending	shared_pending;
386
387	/* thread group exit support */
388	int			group_exit_code;
389	/* overloaded:
390	 * - notify group_exit_task when ->count is equal to notify_count
391	 * - everyone except group_exit_task is stopped during signal delivery
392	 *   of fatal signals, group_exit_task processes the signal.
393	 */
394	struct task_struct	*group_exit_task;
395	int			notify_count;
396
397	/* thread group stop support, overloads group_exit_code too */
398	int			group_stop_count;
399	unsigned int		flags; /* see SIGNAL_* flags below */
400
401	/* POSIX.1b Interval Timers */
402	struct list_head posix_timers;
403
404	/* ITIMER_REAL timer for the process */
405	struct timer_list real_timer;
406	unsigned long it_real_value, it_real_incr;
407
408	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
409	cputime_t it_prof_expires, it_virt_expires;
410	cputime_t it_prof_incr, it_virt_incr;
411
412	/* job control IDs */
413	pid_t pgrp;
414	pid_t tty_old_pgrp;
415	pid_t session;
416	/* boolean value for session group leader */
417	int leader;
418
419	struct tty_struct *tty; /* NULL if no tty */
420
421	/*
422	 * Cumulative resource counters for dead threads in the group,
423	 * and for reaped dead child processes forked by this group.
424	 * Live threads maintain their own counters and add to these
425	 * in __exit_signal, except for the group leader.
426	 */
427	cputime_t utime, stime, cutime, cstime;
428	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
429	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
430
431	/*
432	 * Cumulative ns of scheduled CPU time for dead threads in the
433	 * group, not including a zombie group leader.  (This only differs
434	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
435	 * other than jiffies.)
436	 */
437	unsigned long long sched_time;
438
439	/*
440	 * We don't bother to synchronize most readers of this at all,
441	 * because there is no reader checking a limit that actually needs
442	 * to get both rlim_cur and rlim_max atomically, and either one
443	 * alone is a single word that can safely be read normally.
444	 * getrlimit/setrlimit use task_lock(current->group_leader) to
445	 * protect this instead of the siglock, because they really
446	 * have no need to disable irqs.
447	 */
448	struct rlimit rlim[RLIM_NLIMITS];
449
450	struct list_head cpu_timers[3];
451
452	/* keep the process-shared keyrings here so that they do the right
453	 * thing in threads created with CLONE_THREAD */
454#ifdef CONFIG_KEYS
455	struct key *session_keyring;	/* keyring inherited over fork */
456	struct key *process_keyring;	/* keyring private to this process */
457#endif
458};
459
460/* Context switch must be unlocked if interrupts are to be enabled */
461#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
462# define __ARCH_WANT_UNLOCKED_CTXSW
463#endif
464
465/*
466 * Bits in flags field of signal_struct.
467 */
468#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
469#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
470#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
471#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
472
473
474/*
475 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
476 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
477 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
478 * are inverted: lower p->prio value means higher priority.
479 *
480 * The MAX_USER_RT_PRIO value allows the actual maximum
481 * RT priority to be separate from the value exported to
482 * user-space.  This allows kernel threads to set their
483 * priority to a value higher than any user task. Note:
484 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
485 */
486
487#define MAX_USER_RT_PRIO	100
488#define MAX_RT_PRIO		MAX_USER_RT_PRIO
489
490#define MAX_PRIO		(MAX_RT_PRIO + 40)
491
492#define rt_task(p)		(unlikely((p)->prio < MAX_RT_PRIO))
493
494/*
495 * Some day this will be a full-fledged user tracking system..
496 */
497struct user_struct {
498	atomic_t __count;	/* reference count */
499	atomic_t processes;	/* How many processes does this user have? */
500	atomic_t files;		/* How many open files does this user have? */
501	atomic_t sigpending;	/* How many pending signals does this user have? */
502#ifdef CONFIG_INOTIFY
503	atomic_t inotify_watches; /* How many inotify watches does this user have? */
504	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
505#endif
506	/* protected by mq_lock	*/
507	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
508	unsigned long locked_shm; /* How many pages of mlocked shm ? */
509
510#ifdef CONFIG_KEYS
511	struct key *uid_keyring;	/* UID specific keyring */
512	struct key *session_keyring;	/* UID's default session keyring */
513#endif
514
515	/* Hash table maintenance information */
516	struct list_head uidhash_list;
517	uid_t uid;
518};
519
520extern struct user_struct *find_user(uid_t);
521
522extern struct user_struct root_user;
523#define INIT_USER (&root_user)
524
525typedef struct prio_array prio_array_t;
526struct backing_dev_info;
527struct reclaim_state;
528
529#ifdef CONFIG_SCHEDSTATS
530struct sched_info {
531	/* cumulative counters */
532	unsigned long	cpu_time,	/* time spent on the cpu */
533			run_delay,	/* time spent waiting on a runqueue */
534			pcnt;		/* # of timeslices run on this cpu */
535
536	/* timestamps */
537	unsigned long	last_arrival,	/* when we last ran on a cpu */
538			last_queued;	/* when we were last queued to run */
539};
540
541extern struct file_operations proc_schedstat_operations;
542#endif
543
544enum idle_type
545{
546	SCHED_IDLE,
547	NOT_IDLE,
548	NEWLY_IDLE,
549	MAX_IDLE_TYPES
550};
551
552/*
553 * sched-domains (multiprocessor balancing) declarations:
554 */
555#ifdef CONFIG_SMP
556#define SCHED_LOAD_SCALE	128UL	/* increase resolution of load */
557
558#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
559#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
560#define SD_BALANCE_EXEC		4	/* Balance on exec */
561#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
562#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
563#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
564#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
565#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
566
567struct sched_group {
568	struct sched_group *next;	/* Must be a circular list */
569	cpumask_t cpumask;
570
571	/*
572	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
573	 * single CPU. This is read only (except for setup, hotplug CPU).
574	 */
575	unsigned long cpu_power;
576};
577
578struct sched_domain {
579	/* These fields must be setup */
580	struct sched_domain *parent;	/* top domain must be null terminated */
581	struct sched_group *groups;	/* the balancing groups of the domain */
582	cpumask_t span;			/* span of all CPUs in this domain */
583	unsigned long min_interval;	/* Minimum balance interval ms */
584	unsigned long max_interval;	/* Maximum balance interval ms */
585	unsigned int busy_factor;	/* less balancing by factor if busy */
586	unsigned int imbalance_pct;	/* No balance until over watermark */
587	unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
588	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
589	unsigned int per_cpu_gain;	/* CPU % gained by adding domain cpus */
590	unsigned int busy_idx;
591	unsigned int idle_idx;
592	unsigned int newidle_idx;
593	unsigned int wake_idx;
594	unsigned int forkexec_idx;
595	int flags;			/* See SD_* */
596
597	/* Runtime fields. */
598	unsigned long last_balance;	/* init to jiffies. units in jiffies */
599	unsigned int balance_interval;	/* initialise to 1. units in ms. */
600	unsigned int nr_balance_failed; /* initialise to 0 */
601
602#ifdef CONFIG_SCHEDSTATS
603	/* load_balance() stats */
604	unsigned long lb_cnt[MAX_IDLE_TYPES];
605	unsigned long lb_failed[MAX_IDLE_TYPES];
606	unsigned long lb_balanced[MAX_IDLE_TYPES];
607	unsigned long lb_imbalance[MAX_IDLE_TYPES];
608	unsigned long lb_gained[MAX_IDLE_TYPES];
609	unsigned long lb_hot_gained[MAX_IDLE_TYPES];
610	unsigned long lb_nobusyg[MAX_IDLE_TYPES];
611	unsigned long lb_nobusyq[MAX_IDLE_TYPES];
612
613	/* Active load balancing */
614	unsigned long alb_cnt;
615	unsigned long alb_failed;
616	unsigned long alb_pushed;
617
618	/* SD_BALANCE_EXEC stats */
619	unsigned long sbe_cnt;
620	unsigned long sbe_balanced;
621	unsigned long sbe_pushed;
622
623	/* SD_BALANCE_FORK stats */
624	unsigned long sbf_cnt;
625	unsigned long sbf_balanced;
626	unsigned long sbf_pushed;
627
628	/* try_to_wake_up() stats */
629	unsigned long ttwu_wake_remote;
630	unsigned long ttwu_move_affine;
631	unsigned long ttwu_move_balance;
632#endif
633};
634
635extern void partition_sched_domains(cpumask_t *partition1,
636				    cpumask_t *partition2);
637#endif /* CONFIG_SMP */
638
639
640struct io_context;			/* See blkdev.h */
641void exit_io_context(void);
642struct cpuset;
643
644#define NGROUPS_SMALL		32
645#define NGROUPS_PER_BLOCK	((int)(PAGE_SIZE / sizeof(gid_t)))
646struct group_info {
647	int ngroups;
648	atomic_t usage;
649	gid_t small_block[NGROUPS_SMALL];
650	int nblocks;
651	gid_t *blocks[0];
652};
653
654/*
655 * get_group_info() must be called with the owning task locked (via task_lock())
656 * when task != current.  The reason being that the vast majority of callers are
657 * looking at current->group_info, which can not be changed except by the
658 * current task.  Changing current->group_info requires the task lock, too.
659 */
660#define get_group_info(group_info) do { \
661	atomic_inc(&(group_info)->usage); \
662} while (0)
663
664#define put_group_info(group_info) do { \
665	if (atomic_dec_and_test(&(group_info)->usage)) \
666		groups_free(group_info); \
667} while (0)
668
669extern struct group_info *groups_alloc(int gidsetsize);
670extern void groups_free(struct group_info *group_info);
671extern int set_current_groups(struct group_info *group_info);
672extern int groups_search(struct group_info *group_info, gid_t grp);
673/* access the groups "array" with this macro */
674#define GROUP_AT(gi, i) \
675    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
676
677#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
678extern void prefetch_stack(struct task_struct*);
679#else
680static inline void prefetch_stack(struct task_struct *t) { }
681#endif
682
683struct audit_context;		/* See audit.c */
684struct mempolicy;
685
686struct task_struct {
687	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
688	struct thread_info *thread_info;
689	atomic_t usage;
690	unsigned long flags;	/* per process flags, defined below */
691	unsigned long ptrace;
692
693	int lock_depth;		/* BKL lock depth */
694
695#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
696	int oncpu;
697#endif
698	int prio, static_prio;
699	struct list_head run_list;
700	prio_array_t *array;
701
702	unsigned short ioprio;
703
704	unsigned long sleep_avg;
705	unsigned long long timestamp, last_ran;
706	unsigned long long sched_time; /* sched_clock time spent running */
707	int activated;
708
709	unsigned long policy;
710	cpumask_t cpus_allowed;
711	unsigned int time_slice, first_time_slice;
712
713#ifdef CONFIG_SCHEDSTATS
714	struct sched_info sched_info;
715#endif
716
717	struct list_head tasks;
718	/*
719	 * ptrace_list/ptrace_children forms the list of my children
720	 * that were stolen by a ptracer.
721	 */
722	struct list_head ptrace_children;
723	struct list_head ptrace_list;
724
725	struct mm_struct *mm, *active_mm;
726
727/* task state */
728	struct linux_binfmt *binfmt;
729	long exit_state;
730	int exit_code, exit_signal;
731	int pdeath_signal;  /*  The signal sent when the parent dies  */
732	/* ??? */
733	unsigned long personality;
734	unsigned did_exec:1;
735	pid_t pid;
736	pid_t tgid;
737	/*
738	 * pointers to (original) parent process, youngest child, younger sibling,
739	 * older sibling, respectively.  (p->father can be replaced with
740	 * p->parent->pid)
741	 */
742	struct task_struct *real_parent; /* real parent process (when being debugged) */
743	struct task_struct *parent;	/* parent process */
744	/*
745	 * children/sibling forms the list of my children plus the
746	 * tasks I'm ptracing.
747	 */
748	struct list_head children;	/* list of my children */
749	struct list_head sibling;	/* linkage in my parent's children list */
750	struct task_struct *group_leader;	/* threadgroup leader */
751
752	/* PID/PID hash table linkage. */
753	struct pid pids[PIDTYPE_MAX];
754
755	struct completion *vfork_done;		/* for vfork() */
756	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
757	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
758
759	unsigned long rt_priority;
760	cputime_t utime, stime;
761	unsigned long nvcsw, nivcsw; /* context switch counts */
762	struct timespec start_time;
763/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
764	unsigned long min_flt, maj_flt;
765
766  	cputime_t it_prof_expires, it_virt_expires;
767	unsigned long long it_sched_expires;
768	struct list_head cpu_timers[3];
769
770/* process credentials */
771	uid_t uid,euid,suid,fsuid;
772	gid_t gid,egid,sgid,fsgid;
773	struct group_info *group_info;
774	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
775	unsigned keep_capabilities:1;
776	struct user_struct *user;
777#ifdef CONFIG_KEYS
778	struct key *thread_keyring;	/* keyring private to this thread */
779	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
780#endif
781	int oomkilladj; /* OOM kill score adjustment (bit shift). */
782	char comm[TASK_COMM_LEN]; /* executable name excluding path
783				     - access with [gs]et_task_comm (which lock
784				       it with task_lock())
785				     - initialized normally by flush_old_exec */
786/* file system info */
787	int link_count, total_link_count;
788/* ipc stuff */
789	struct sysv_sem sysvsem;
790/* CPU-specific state of this task */
791	struct thread_struct thread;
792/* filesystem information */
793	struct fs_struct *fs;
794/* open file information */
795	struct files_struct *files;
796/* namespace */
797	struct namespace *namespace;
798/* signal handlers */
799	struct signal_struct *signal;
800	struct sighand_struct *sighand;
801
802	sigset_t blocked, real_blocked;
803	struct sigpending pending;
804
805	unsigned long sas_ss_sp;
806	size_t sas_ss_size;
807	int (*notifier)(void *priv);
808	void *notifier_data;
809	sigset_t *notifier_mask;
810
811	void *security;
812	struct audit_context *audit_context;
813	seccomp_t seccomp;
814
815/* Thread group tracking */
816   	u32 parent_exec_id;
817   	u32 self_exec_id;
818/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
819	spinlock_t alloc_lock;
820/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
821	spinlock_t proc_lock;
822
823/* journalling filesystem info */
824	void *journal_info;
825
826/* VM state */
827	struct reclaim_state *reclaim_state;
828
829	struct dentry *proc_dentry;
830	struct backing_dev_info *backing_dev_info;
831
832	struct io_context *io_context;
833
834	unsigned long ptrace_message;
835	siginfo_t *last_siginfo; /* For ptrace use.  */
836/*
837 * current io wait handle: wait queue entry to use for io waits
838 * If this thread is processing aio, this points at the waitqueue
839 * inside the currently handled kiocb. It may be NULL (i.e. default
840 * to a stack based synchronous wait) if its doing sync IO.
841 */
842	wait_queue_t *io_wait;
843/* i/o counters(bytes read/written, #syscalls */
844	u64 rchar, wchar, syscr, syscw;
845#if defined(CONFIG_BSD_PROCESS_ACCT)
846	u64 acct_rss_mem1;	/* accumulated rss usage */
847	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
848	clock_t acct_stimexpd;	/* clock_t-converted stime since last update */
849#endif
850#ifdef CONFIG_NUMA
851  	struct mempolicy *mempolicy;
852	short il_next;
853#endif
854#ifdef CONFIG_CPUSETS
855	struct cpuset *cpuset;
856	nodemask_t mems_allowed;
857	int cpuset_mems_generation;
858#endif
859	atomic_t fs_excl;	/* holding fs exclusive resources */
860};
861
862static inline pid_t process_group(struct task_struct *tsk)
863{
864	return tsk->signal->pgrp;
865}
866
867/**
868 * pid_alive - check that a task structure is not stale
869 * @p: Task structure to be checked.
870 *
871 * Test if a process is not yet dead (at most zombie state)
872 * If pid_alive fails, then pointers within the task structure
873 * can be stale and must not be dereferenced.
874 */
875static inline int pid_alive(struct task_struct *p)
876{
877	return p->pids[PIDTYPE_PID].nr != 0;
878}
879
880extern void free_task(struct task_struct *tsk);
881extern void __put_task_struct(struct task_struct *tsk);
882#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
883#define put_task_struct(tsk) \
884do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
885
886/*
887 * Per process flags
888 */
889#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
890					/* Not implemented yet, only for 486*/
891#define PF_STARTING	0x00000002	/* being created */
892#define PF_EXITING	0x00000004	/* getting shut down */
893#define PF_DEAD		0x00000008	/* Dead */
894#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
895#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
896#define PF_DUMPCORE	0x00000200	/* dumped core */
897#define PF_SIGNALED	0x00000400	/* killed by a signal */
898#define PF_MEMALLOC	0x00000800	/* Allocating memory */
899#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
900#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
901#define PF_FREEZE	0x00004000	/* this task is being frozen for suspend now */
902#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
903#define PF_FROZEN	0x00010000	/* frozen for system suspend */
904#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
905#define PF_KSWAPD	0x00040000	/* I am kswapd */
906#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
907#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
908#define PF_SYNCWRITE	0x00200000	/* I am doing a sync write */
909#define PF_BORROWED_MM	0x00400000	/* I am a kthread doing use_mm */
910#define PF_RANDOMIZE	0x00800000	/* randomize virtual address space */
911
912/*
913 * Only the _current_ task can read/write to tsk->flags, but other
914 * tasks can access tsk->flags in readonly mode for example
915 * with tsk_used_math (like during threaded core dumping).
916 * There is however an exception to this rule during ptrace
917 * or during fork: the ptracer task is allowed to write to the
918 * child->flags of its traced child (same goes for fork, the parent
919 * can write to the child->flags), because we're guaranteed the
920 * child is not running and in turn not changing child->flags
921 * at the same time the parent does it.
922 */
923#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
924#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
925#define clear_used_math() clear_stopped_child_used_math(current)
926#define set_used_math() set_stopped_child_used_math(current)
927#define conditional_stopped_child_used_math(condition, child) \
928	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
929#define conditional_used_math(condition) \
930	conditional_stopped_child_used_math(condition, current)
931#define copy_to_stopped_child_used_math(child) \
932	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
933/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
934#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
935#define used_math() tsk_used_math(current)
936
937#ifdef CONFIG_SMP
938extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
939#else
940static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
941{
942	if (!cpu_isset(0, new_mask))
943		return -EINVAL;
944	return 0;
945}
946#endif
947
948extern unsigned long long sched_clock(void);
949extern unsigned long long current_sched_time(const task_t *current_task);
950
951/* sched_exec is called by processes performing an exec */
952#ifdef CONFIG_SMP
953extern void sched_exec(void);
954#else
955#define sched_exec()   {}
956#endif
957
958#ifdef CONFIG_HOTPLUG_CPU
959extern void idle_task_exit(void);
960#else
961static inline void idle_task_exit(void) {}
962#endif
963
964extern void sched_idle_next(void);
965extern void set_user_nice(task_t *p, long nice);
966extern int task_prio(const task_t *p);
967extern int task_nice(const task_t *p);
968extern int can_nice(const task_t *p, const int nice);
969extern int task_curr(const task_t *p);
970extern int idle_cpu(int cpu);
971extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
972extern task_t *idle_task(int cpu);
973extern task_t *curr_task(int cpu);
974extern void set_curr_task(int cpu, task_t *p);
975
976void yield(void);
977
978/*
979 * The default (Linux) execution domain.
980 */
981extern struct exec_domain	default_exec_domain;
982
983union thread_union {
984	struct thread_info thread_info;
985	unsigned long stack[THREAD_SIZE/sizeof(long)];
986};
987
988#ifndef __HAVE_ARCH_KSTACK_END
989static inline int kstack_end(void *addr)
990{
991	/* Reliable end of stack detection:
992	 * Some APM bios versions misalign the stack
993	 */
994	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
995}
996#endif
997
998extern union thread_union init_thread_union;
999extern struct task_struct init_task;
1000
1001extern struct   mm_struct init_mm;
1002
1003#define find_task_by_pid(nr)	find_task_by_pid_type(PIDTYPE_PID, nr)
1004extern struct task_struct *find_task_by_pid_type(int type, int pid);
1005extern void set_special_pids(pid_t session, pid_t pgrp);
1006extern void __set_special_pids(pid_t session, pid_t pgrp);
1007
1008/* per-UID process charging. */
1009extern struct user_struct * alloc_uid(uid_t);
1010static inline struct user_struct *get_uid(struct user_struct *u)
1011{
1012	atomic_inc(&u->__count);
1013	return u;
1014}
1015extern void free_uid(struct user_struct *);
1016extern void switch_uid(struct user_struct *);
1017
1018#include <asm/current.h>
1019
1020extern void do_timer(struct pt_regs *);
1021
1022extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1023extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1024extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1025						unsigned long clone_flags));
1026#ifdef CONFIG_SMP
1027 extern void kick_process(struct task_struct *tsk);
1028#else
1029 static inline void kick_process(struct task_struct *tsk) { }
1030#endif
1031extern void FASTCALL(sched_fork(task_t * p, int clone_flags));
1032extern void FASTCALL(sched_exit(task_t * p));
1033
1034extern int in_group_p(gid_t);
1035extern int in_egroup_p(gid_t);
1036
1037extern void proc_caches_init(void);
1038extern void flush_signals(struct task_struct *);
1039extern void flush_signal_handlers(struct task_struct *, int force_default);
1040extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1041
1042static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1043{
1044	unsigned long flags;
1045	int ret;
1046
1047	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1048	ret = dequeue_signal(tsk, mask, info);
1049	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1050
1051	return ret;
1052}
1053
1054extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1055			      sigset_t *mask);
1056extern void unblock_all_signals(void);
1057extern void release_task(struct task_struct * p);
1058extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1059extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1060extern int force_sigsegv(int, struct task_struct *);
1061extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1062extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
1063extern int kill_pg_info(int, struct siginfo *, pid_t);
1064extern int kill_proc_info(int, struct siginfo *, pid_t);
1065extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t);
1066extern void do_notify_parent(struct task_struct *, int);
1067extern void force_sig(int, struct task_struct *);
1068extern void force_sig_specific(int, struct task_struct *);
1069extern int send_sig(int, struct task_struct *, int);
1070extern void zap_other_threads(struct task_struct *p);
1071extern int kill_pg(pid_t, int, int);
1072extern int kill_sl(pid_t, int, int);
1073extern int kill_proc(pid_t, int, int);
1074extern struct sigqueue *sigqueue_alloc(void);
1075extern void sigqueue_free(struct sigqueue *);
1076extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1077extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1078extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
1079extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1080
1081/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1082#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1083#define SEND_SIG_PRIV	((struct siginfo *) 1)
1084#define SEND_SIG_FORCED	((struct siginfo *) 2)
1085
1086static inline int is_si_special(const struct siginfo *info)
1087{
1088	return info <= SEND_SIG_FORCED;
1089}
1090
1091/* True if we are on the alternate signal stack.  */
1092
1093static inline int on_sig_stack(unsigned long sp)
1094{
1095	return (sp - current->sas_ss_sp < current->sas_ss_size);
1096}
1097
1098static inline int sas_ss_flags(unsigned long sp)
1099{
1100	return (current->sas_ss_size == 0 ? SS_DISABLE
1101		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1102}
1103
1104
1105#ifdef CONFIG_SECURITY
1106/* code is in security.c */
1107extern int capable(int cap);
1108#else
1109static inline int capable(int cap)
1110{
1111	if (cap_raised(current->cap_effective, cap)) {
1112		current->flags |= PF_SUPERPRIV;
1113		return 1;
1114	}
1115	return 0;
1116}
1117#endif
1118
1119/*
1120 * Routines for handling mm_structs
1121 */
1122extern struct mm_struct * mm_alloc(void);
1123
1124/* mmdrop drops the mm and the page tables */
1125extern void FASTCALL(__mmdrop(struct mm_struct *));
1126static inline void mmdrop(struct mm_struct * mm)
1127{
1128	if (atomic_dec_and_test(&mm->mm_count))
1129		__mmdrop(mm);
1130}
1131
1132/* mmput gets rid of the mappings and all user-space */
1133extern void mmput(struct mm_struct *);
1134/* Grab a reference to a task's mm, if it is not already going away */
1135extern struct mm_struct *get_task_mm(struct task_struct *task);
1136/* Remove the current tasks stale references to the old mm_struct */
1137extern void mm_release(struct task_struct *, struct mm_struct *);
1138
1139extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1140extern void flush_thread(void);
1141extern void exit_thread(void);
1142
1143extern void exit_files(struct task_struct *);
1144extern void exit_signal(struct task_struct *);
1145extern void __exit_signal(struct task_struct *);
1146extern void exit_sighand(struct task_struct *);
1147extern void __exit_sighand(struct task_struct *);
1148extern void exit_itimers(struct signal_struct *);
1149
1150extern NORET_TYPE void do_group_exit(int);
1151
1152extern void daemonize(const char *, ...);
1153extern int allow_signal(int);
1154extern int disallow_signal(int);
1155extern task_t *child_reaper;
1156
1157extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1158extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1159task_t *fork_idle(int);
1160
1161extern void set_task_comm(struct task_struct *tsk, char *from);
1162extern void get_task_comm(char *to, struct task_struct *tsk);
1163
1164#ifdef CONFIG_SMP
1165extern void wait_task_inactive(task_t * p);
1166#else
1167#define wait_task_inactive(p)	do { } while (0)
1168#endif
1169
1170#define remove_parent(p)	list_del_init(&(p)->sibling)
1171#define add_parent(p, parent)	list_add_tail(&(p)->sibling,&(parent)->children)
1172
1173#define REMOVE_LINKS(p) do {					\
1174	if (thread_group_leader(p))				\
1175		list_del_init(&(p)->tasks);			\
1176	remove_parent(p);					\
1177	} while (0)
1178
1179#define SET_LINKS(p) do {					\
1180	if (thread_group_leader(p))				\
1181		list_add_tail(&(p)->tasks,&init_task.tasks);	\
1182	add_parent(p, (p)->parent);				\
1183	} while (0)
1184
1185#define next_task(p)	list_entry((p)->tasks.next, struct task_struct, tasks)
1186#define prev_task(p)	list_entry((p)->tasks.prev, struct task_struct, tasks)
1187
1188#define for_each_process(p) \
1189	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1190
1191/*
1192 * Careful: do_each_thread/while_each_thread is a double loop so
1193 *          'break' will not work as expected - use goto instead.
1194 */
1195#define do_each_thread(g, t) \
1196	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1197
1198#define while_each_thread(g, t) \
1199	while ((t = next_thread(t)) != g)
1200
1201extern task_t * FASTCALL(next_thread(const task_t *p));
1202
1203#define thread_group_leader(p)	(p->pid == p->tgid)
1204
1205static inline int thread_group_empty(task_t *p)
1206{
1207	return list_empty(&p->pids[PIDTYPE_TGID].pid_list);
1208}
1209
1210#define delay_group_leader(p) \
1211		(thread_group_leader(p) && !thread_group_empty(p))
1212
1213extern void unhash_process(struct task_struct *p);
1214
1215/*
1216 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
1217 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1218 * pins the final release of task.io_context.  Also protects ->cpuset.
1219 *
1220 * Nests both inside and outside of read_lock(&tasklist_lock).
1221 * It must not be nested with write_lock_irq(&tasklist_lock),
1222 * neither inside nor outside.
1223 */
1224static inline void task_lock(struct task_struct *p)
1225{
1226	spin_lock(&p->alloc_lock);
1227}
1228
1229static inline void task_unlock(struct task_struct *p)
1230{
1231	spin_unlock(&p->alloc_lock);
1232}
1233
1234#ifndef __HAVE_THREAD_FUNCTIONS
1235
1236#define task_thread_info(task) (task)->thread_info
1237
1238static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1239{
1240	*task_thread_info(p) = *task_thread_info(org);
1241	task_thread_info(p)->task = p;
1242}
1243
1244static inline unsigned long *end_of_stack(struct task_struct *p)
1245{
1246	return (unsigned long *)(p->thread_info + 1);
1247}
1248
1249#endif
1250
1251/* set thread flags in other task's structures
1252 * - see asm/thread_info.h for TIF_xxxx flags available
1253 */
1254static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1255{
1256	set_ti_thread_flag(task_thread_info(tsk), flag);
1257}
1258
1259static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1260{
1261	clear_ti_thread_flag(task_thread_info(tsk), flag);
1262}
1263
1264static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1265{
1266	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1267}
1268
1269static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1270{
1271	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1272}
1273
1274static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1275{
1276	return test_ti_thread_flag(task_thread_info(tsk), flag);
1277}
1278
1279static inline void set_tsk_need_resched(struct task_struct *tsk)
1280{
1281	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1282}
1283
1284static inline void clear_tsk_need_resched(struct task_struct *tsk)
1285{
1286	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1287}
1288
1289static inline int signal_pending(struct task_struct *p)
1290{
1291	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1292}
1293
1294static inline int need_resched(void)
1295{
1296	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1297}
1298
1299/*
1300 * cond_resched() and cond_resched_lock(): latency reduction via
1301 * explicit rescheduling in places that are safe. The return
1302 * value indicates whether a reschedule was done in fact.
1303 * cond_resched_lock() will drop the spinlock before scheduling,
1304 * cond_resched_softirq() will enable bhs before scheduling.
1305 */
1306extern int cond_resched(void);
1307extern int cond_resched_lock(spinlock_t * lock);
1308extern int cond_resched_softirq(void);
1309
1310/*
1311 * Does a critical section need to be broken due to another
1312 * task waiting?:
1313 */
1314#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1315# define need_lockbreak(lock) ((lock)->break_lock)
1316#else
1317# define need_lockbreak(lock) 0
1318#endif
1319
1320/*
1321 * Does a critical section need to be broken due to another
1322 * task waiting or preemption being signalled:
1323 */
1324static inline int lock_need_resched(spinlock_t *lock)
1325{
1326	if (need_lockbreak(lock) || need_resched())
1327		return 1;
1328	return 0;
1329}
1330
1331/* Reevaluate whether the task has signals pending delivery.
1332   This is required every time the blocked sigset_t changes.
1333   callers must hold sighand->siglock.  */
1334
1335extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1336extern void recalc_sigpending(void);
1337
1338extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1339
1340/*
1341 * Wrappers for p->thread_info->cpu access. No-op on UP.
1342 */
1343#ifdef CONFIG_SMP
1344
1345static inline unsigned int task_cpu(const struct task_struct *p)
1346{
1347	return task_thread_info(p)->cpu;
1348}
1349
1350static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1351{
1352	task_thread_info(p)->cpu = cpu;
1353}
1354
1355#else
1356
1357static inline unsigned int task_cpu(const struct task_struct *p)
1358{
1359	return 0;
1360}
1361
1362static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1363{
1364}
1365
1366#endif /* CONFIG_SMP */
1367
1368#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1369extern void arch_pick_mmap_layout(struct mm_struct *mm);
1370#else
1371static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1372{
1373	mm->mmap_base = TASK_UNMAPPED_BASE;
1374	mm->get_unmapped_area = arch_get_unmapped_area;
1375	mm->unmap_area = arch_unmap_area;
1376}
1377#endif
1378
1379extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1380extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1381
1382#ifdef CONFIG_MAGIC_SYSRQ
1383
1384extern void normalize_rt_tasks(void);
1385
1386#endif
1387
1388#ifdef CONFIG_PM
1389/*
1390 * Check if a process has been frozen
1391 */
1392static inline int frozen(struct task_struct *p)
1393{
1394	return p->flags & PF_FROZEN;
1395}
1396
1397/*
1398 * Check if there is a request to freeze a process
1399 */
1400static inline int freezing(struct task_struct *p)
1401{
1402	return p->flags & PF_FREEZE;
1403}
1404
1405/*
1406 * Request that a process be frozen
1407 * FIXME: SMP problem. We may not modify other process' flags!
1408 */
1409static inline void freeze(struct task_struct *p)
1410{
1411	p->flags |= PF_FREEZE;
1412}
1413
1414/*
1415 * Wake up a frozen process
1416 */
1417static inline int thaw_process(struct task_struct *p)
1418{
1419	if (frozen(p)) {
1420		p->flags &= ~PF_FROZEN;
1421		wake_up_process(p);
1422		return 1;
1423	}
1424	return 0;
1425}
1426
1427/*
1428 * freezing is complete, mark process as frozen
1429 */
1430static inline void frozen_process(struct task_struct *p)
1431{
1432	p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1433}
1434
1435extern void refrigerator(void);
1436extern int freeze_processes(void);
1437extern void thaw_processes(void);
1438
1439static inline int try_to_freeze(void)
1440{
1441	if (freezing(current)) {
1442		refrigerator();
1443		return 1;
1444	} else
1445		return 0;
1446}
1447#else
1448static inline int frozen(struct task_struct *p) { return 0; }
1449static inline int freezing(struct task_struct *p) { return 0; }
1450static inline void freeze(struct task_struct *p) { BUG(); }
1451static inline int thaw_process(struct task_struct *p) { return 1; }
1452static inline void frozen_process(struct task_struct *p) { BUG(); }
1453
1454static inline void refrigerator(void) {}
1455static inline int freeze_processes(void) { BUG(); return 0; }
1456static inline void thaw_processes(void) {}
1457
1458static inline int try_to_freeze(void) { return 0; }
1459
1460#endif /* CONFIG_PM */
1461#endif /* __KERNEL__ */
1462
1463#endif
1464