sched.h revision c66f08be7e3ad0a28bcd9a0aef766fdf08ea0ec6
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWNET		0x40000000	/* New network namespace */
29
30/*
31 * Scheduling policies
32 */
33#define SCHED_NORMAL		0
34#define SCHED_FIFO		1
35#define SCHED_RR		2
36#define SCHED_BATCH		3
37/* SCHED_ISO: reserved but not implemented yet */
38#define SCHED_IDLE		5
39
40#ifdef __KERNEL__
41
42struct sched_param {
43	int sched_priority;
44};
45
46#include <asm/param.h>	/* for HZ */
47
48#include <linux/capability.h>
49#include <linux/threads.h>
50#include <linux/kernel.h>
51#include <linux/types.h>
52#include <linux/timex.h>
53#include <linux/jiffies.h>
54#include <linux/rbtree.h>
55#include <linux/thread_info.h>
56#include <linux/cpumask.h>
57#include <linux/errno.h>
58#include <linux/nodemask.h>
59#include <linux/mm_types.h>
60
61#include <asm/system.h>
62#include <asm/semaphore.h>
63#include <asm/page.h>
64#include <asm/ptrace.h>
65#include <asm/cputime.h>
66
67#include <linux/smp.h>
68#include <linux/sem.h>
69#include <linux/signal.h>
70#include <linux/securebits.h>
71#include <linux/fs_struct.h>
72#include <linux/compiler.h>
73#include <linux/completion.h>
74#include <linux/pid.h>
75#include <linux/percpu.h>
76#include <linux/topology.h>
77#include <linux/proportions.h>
78#include <linux/seccomp.h>
79#include <linux/rcupdate.h>
80#include <linux/futex.h>
81#include <linux/rtmutex.h>
82
83#include <linux/time.h>
84#include <linux/param.h>
85#include <linux/resource.h>
86#include <linux/timer.h>
87#include <linux/hrtimer.h>
88#include <linux/task_io_accounting.h>
89#include <linux/kobject.h>
90
91#include <asm/processor.h>
92
93struct exec_domain;
94struct futex_pi_state;
95struct bio;
96
97/*
98 * List of flags we want to share for kernel threads,
99 * if only because they are not used by them anyway.
100 */
101#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
102
103/*
104 * These are the constant used to fake the fixed-point load-average
105 * counting. Some notes:
106 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
107 *    a load-average precision of 10 bits integer + 11 bits fractional
108 *  - if you want to count load-averages more often, you need more
109 *    precision, or rounding will get you. With 2-second counting freq,
110 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
111 *    11 bit fractions.
112 */
113extern unsigned long avenrun[];		/* Load averages */
114
115#define FSHIFT		11		/* nr of bits of precision */
116#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
117#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
118#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
119#define EXP_5		2014		/* 1/exp(5sec/5min) */
120#define EXP_15		2037		/* 1/exp(5sec/15min) */
121
122#define CALC_LOAD(load,exp,n) \
123	load *= exp; \
124	load += n*(FIXED_1-exp); \
125	load >>= FSHIFT;
126
127extern unsigned long total_forks;
128extern int nr_threads;
129DECLARE_PER_CPU(unsigned long, process_counts);
130extern int nr_processes(void);
131extern unsigned long nr_running(void);
132extern unsigned long nr_uninterruptible(void);
133extern unsigned long nr_active(void);
134extern unsigned long nr_iowait(void);
135extern unsigned long weighted_cpuload(const int cpu);
136
137struct seq_file;
138struct cfs_rq;
139struct task_group;
140#ifdef CONFIG_SCHED_DEBUG
141extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
142extern void proc_sched_set_task(struct task_struct *p);
143extern void
144print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
145#else
146static inline void
147proc_sched_show_task(struct task_struct *p, struct seq_file *m)
148{
149}
150static inline void proc_sched_set_task(struct task_struct *p)
151{
152}
153static inline void
154print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
155{
156}
157#endif
158
159/*
160 * Task state bitmask. NOTE! These bits are also
161 * encoded in fs/proc/array.c: get_task_state().
162 *
163 * We have two separate sets of flags: task->state
164 * is about runnability, while task->exit_state are
165 * about the task exiting. Confusing, but this way
166 * modifying one set can't modify the other one by
167 * mistake.
168 */
169#define TASK_RUNNING		0
170#define TASK_INTERRUPTIBLE	1
171#define TASK_UNINTERRUPTIBLE	2
172#define TASK_STOPPED		4
173#define TASK_TRACED		8
174/* in tsk->exit_state */
175#define EXIT_ZOMBIE		16
176#define EXIT_DEAD		32
177/* in tsk->state again */
178#define TASK_DEAD		64
179
180#define __set_task_state(tsk, state_value)		\
181	do { (tsk)->state = (state_value); } while (0)
182#define set_task_state(tsk, state_value)		\
183	set_mb((tsk)->state, (state_value))
184
185/*
186 * set_current_state() includes a barrier so that the write of current->state
187 * is correctly serialised wrt the caller's subsequent test of whether to
188 * actually sleep:
189 *
190 *	set_current_state(TASK_UNINTERRUPTIBLE);
191 *	if (do_i_need_to_sleep())
192 *		schedule();
193 *
194 * If the caller does not need such serialisation then use __set_current_state()
195 */
196#define __set_current_state(state_value)			\
197	do { current->state = (state_value); } while (0)
198#define set_current_state(state_value)		\
199	set_mb(current->state, (state_value))
200
201/* Task command name length */
202#define TASK_COMM_LEN 16
203
204#include <linux/spinlock.h>
205
206/*
207 * This serializes "schedule()" and also protects
208 * the run-queue from deletions/modifications (but
209 * _adding_ to the beginning of the run-queue has
210 * a separate lock).
211 */
212extern rwlock_t tasklist_lock;
213extern spinlock_t mmlist_lock;
214
215struct task_struct;
216
217extern void sched_init(void);
218extern void sched_init_smp(void);
219extern void init_idle(struct task_struct *idle, int cpu);
220extern void init_idle_bootup_task(struct task_struct *idle);
221
222extern cpumask_t nohz_cpu_mask;
223#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
224extern int select_nohz_load_balancer(int cpu);
225#else
226static inline int select_nohz_load_balancer(int cpu)
227{
228	return 0;
229}
230#endif
231
232/*
233 * Only dump TASK_* tasks. (0 for all tasks)
234 */
235extern void show_state_filter(unsigned long state_filter);
236
237static inline void show_state(void)
238{
239	show_state_filter(0);
240}
241
242extern void show_regs(struct pt_regs *);
243
244/*
245 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
246 * task), SP is the stack pointer of the first frame that should be shown in the back
247 * trace (or NULL if the entire call-chain of the task should be shown).
248 */
249extern void show_stack(struct task_struct *task, unsigned long *sp);
250
251void io_schedule(void);
252long io_schedule_timeout(long timeout);
253
254extern void cpu_init (void);
255extern void trap_init(void);
256extern void update_process_times(int user);
257extern void scheduler_tick(void);
258
259#ifdef CONFIG_DETECT_SOFTLOCKUP
260extern void softlockup_tick(void);
261extern void spawn_softlockup_task(void);
262extern void touch_softlockup_watchdog(void);
263extern void touch_all_softlockup_watchdogs(void);
264extern int softlockup_thresh;
265#else
266static inline void softlockup_tick(void)
267{
268}
269static inline void spawn_softlockup_task(void)
270{
271}
272static inline void touch_softlockup_watchdog(void)
273{
274}
275static inline void touch_all_softlockup_watchdogs(void)
276{
277}
278#endif
279
280
281/* Attach to any functions which should be ignored in wchan output. */
282#define __sched		__attribute__((__section__(".sched.text")))
283/* Is this address in the __sched functions? */
284extern int in_sched_functions(unsigned long addr);
285
286#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
287extern signed long FASTCALL(schedule_timeout(signed long timeout));
288extern signed long schedule_timeout_interruptible(signed long timeout);
289extern signed long schedule_timeout_uninterruptible(signed long timeout);
290asmlinkage void schedule(void);
291
292struct nsproxy;
293struct user_namespace;
294
295/* Maximum number of active map areas.. This is a random (large) number */
296#define DEFAULT_MAX_MAP_COUNT	65536
297
298extern int sysctl_max_map_count;
299
300#include <linux/aio.h>
301
302extern unsigned long
303arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
304		       unsigned long, unsigned long);
305extern unsigned long
306arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
307			  unsigned long len, unsigned long pgoff,
308			  unsigned long flags);
309extern void arch_unmap_area(struct mm_struct *, unsigned long);
310extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
311
312#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
313/*
314 * The mm counters are not protected by its page_table_lock,
315 * so must be incremented atomically.
316 */
317#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
318#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
319#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
320#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
321#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
322
323#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
324/*
325 * The mm counters are protected by its page_table_lock,
326 * so can be incremented directly.
327 */
328#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
329#define get_mm_counter(mm, member) ((mm)->_##member)
330#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
331#define inc_mm_counter(mm, member) (mm)->_##member++
332#define dec_mm_counter(mm, member) (mm)->_##member--
333
334#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
335
336#define get_mm_rss(mm)					\
337	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
338#define update_hiwater_rss(mm)	do {			\
339	unsigned long _rss = get_mm_rss(mm);		\
340	if ((mm)->hiwater_rss < _rss)			\
341		(mm)->hiwater_rss = _rss;		\
342} while (0)
343#define update_hiwater_vm(mm)	do {			\
344	if ((mm)->hiwater_vm < (mm)->total_vm)		\
345		(mm)->hiwater_vm = (mm)->total_vm;	\
346} while (0)
347
348extern void set_dumpable(struct mm_struct *mm, int value);
349extern int get_dumpable(struct mm_struct *mm);
350
351/* mm flags */
352/* dumpable bits */
353#define MMF_DUMPABLE      0  /* core dump is permitted */
354#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
355#define MMF_DUMPABLE_BITS 2
356
357/* coredump filter bits */
358#define MMF_DUMP_ANON_PRIVATE	2
359#define MMF_DUMP_ANON_SHARED	3
360#define MMF_DUMP_MAPPED_PRIVATE	4
361#define MMF_DUMP_MAPPED_SHARED	5
362#define MMF_DUMP_ELF_HEADERS	6
363#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
364#define MMF_DUMP_FILTER_BITS	5
365#define MMF_DUMP_FILTER_MASK \
366	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
367#define MMF_DUMP_FILTER_DEFAULT \
368	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED))
369
370struct sighand_struct {
371	atomic_t		count;
372	struct k_sigaction	action[_NSIG];
373	spinlock_t		siglock;
374	wait_queue_head_t	signalfd_wqh;
375};
376
377struct pacct_struct {
378	int			ac_flag;
379	long			ac_exitcode;
380	unsigned long		ac_mem;
381	cputime_t		ac_utime, ac_stime;
382	unsigned long		ac_minflt, ac_majflt;
383};
384
385/*
386 * NOTE! "signal_struct" does not have it's own
387 * locking, because a shared signal_struct always
388 * implies a shared sighand_struct, so locking
389 * sighand_struct is always a proper superset of
390 * the locking of signal_struct.
391 */
392struct signal_struct {
393	atomic_t		count;
394	atomic_t		live;
395
396	wait_queue_head_t	wait_chldexit;	/* for wait4() */
397
398	/* current thread group signal load-balancing target: */
399	struct task_struct	*curr_target;
400
401	/* shared signal handling: */
402	struct sigpending	shared_pending;
403
404	/* thread group exit support */
405	int			group_exit_code;
406	/* overloaded:
407	 * - notify group_exit_task when ->count is equal to notify_count
408	 * - everyone except group_exit_task is stopped during signal delivery
409	 *   of fatal signals, group_exit_task processes the signal.
410	 */
411	struct task_struct	*group_exit_task;
412	int			notify_count;
413
414	/* thread group stop support, overloads group_exit_code too */
415	int			group_stop_count;
416	unsigned int		flags; /* see SIGNAL_* flags below */
417
418	/* POSIX.1b Interval Timers */
419	struct list_head posix_timers;
420
421	/* ITIMER_REAL timer for the process */
422	struct hrtimer real_timer;
423	struct task_struct *tsk;
424	ktime_t it_real_incr;
425
426	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
427	cputime_t it_prof_expires, it_virt_expires;
428	cputime_t it_prof_incr, it_virt_incr;
429
430	/* job control IDs */
431	pid_t pgrp;
432	struct pid *tty_old_pgrp;
433
434	union {
435		pid_t session __deprecated;
436		pid_t __session;
437	};
438
439	/* boolean value for session group leader */
440	int leader;
441
442	struct tty_struct *tty; /* NULL if no tty */
443
444	/*
445	 * Cumulative resource counters for dead threads in the group,
446	 * and for reaped dead child processes forked by this group.
447	 * Live threads maintain their own counters and add to these
448	 * in __exit_signal, except for the group leader.
449	 */
450	cputime_t utime, stime, cutime, cstime;
451	cputime_t gtime;
452	cputime_t cgtime;
453	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
454	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
455	unsigned long inblock, oublock, cinblock, coublock;
456
457	/*
458	 * Cumulative ns of scheduled CPU time for dead threads in the
459	 * group, not including a zombie group leader.  (This only differs
460	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
461	 * other than jiffies.)
462	 */
463	unsigned long long sum_sched_runtime;
464
465	/*
466	 * We don't bother to synchronize most readers of this at all,
467	 * because there is no reader checking a limit that actually needs
468	 * to get both rlim_cur and rlim_max atomically, and either one
469	 * alone is a single word that can safely be read normally.
470	 * getrlimit/setrlimit use task_lock(current->group_leader) to
471	 * protect this instead of the siglock, because they really
472	 * have no need to disable irqs.
473	 */
474	struct rlimit rlim[RLIM_NLIMITS];
475
476	struct list_head cpu_timers[3];
477
478	/* keep the process-shared keyrings here so that they do the right
479	 * thing in threads created with CLONE_THREAD */
480#ifdef CONFIG_KEYS
481	struct key *session_keyring;	/* keyring inherited over fork */
482	struct key *process_keyring;	/* keyring private to this process */
483#endif
484#ifdef CONFIG_BSD_PROCESS_ACCT
485	struct pacct_struct pacct;	/* per-process accounting information */
486#endif
487#ifdef CONFIG_TASKSTATS
488	struct taskstats *stats;
489#endif
490#ifdef CONFIG_AUDIT
491	unsigned audit_tty;
492	struct tty_audit_buf *tty_audit_buf;
493#endif
494};
495
496/* Context switch must be unlocked if interrupts are to be enabled */
497#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
498# define __ARCH_WANT_UNLOCKED_CTXSW
499#endif
500
501/*
502 * Bits in flags field of signal_struct.
503 */
504#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
505#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
506#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
507#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
508
509/*
510 * Some day this will be a full-fledged user tracking system..
511 */
512struct user_struct {
513	atomic_t __count;	/* reference count */
514	atomic_t processes;	/* How many processes does this user have? */
515	atomic_t files;		/* How many open files does this user have? */
516	atomic_t sigpending;	/* How many pending signals does this user have? */
517#ifdef CONFIG_INOTIFY_USER
518	atomic_t inotify_watches; /* How many inotify watches does this user have? */
519	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
520#endif
521#ifdef CONFIG_POSIX_MQUEUE
522	/* protected by mq_lock	*/
523	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
524#endif
525	unsigned long locked_shm; /* How many pages of mlocked shm ? */
526
527#ifdef CONFIG_KEYS
528	struct key *uid_keyring;	/* UID specific keyring */
529	struct key *session_keyring;	/* UID's default session keyring */
530#endif
531
532	/* Hash table maintenance information */
533	struct hlist_node uidhash_node;
534	uid_t uid;
535
536#ifdef CONFIG_FAIR_USER_SCHED
537	struct task_group *tg;
538#ifdef CONFIG_SYSFS
539	struct kset kset;
540	struct subsys_attribute user_attr;
541	struct work_struct work;
542#endif
543#endif
544};
545
546#ifdef CONFIG_FAIR_USER_SCHED
547extern int uids_kobject_init(void);
548#else
549static inline int uids_kobject_init(void) { return 0; }
550#endif
551
552extern struct user_struct *find_user(uid_t);
553
554extern struct user_struct root_user;
555#define INIT_USER (&root_user)
556
557struct backing_dev_info;
558struct reclaim_state;
559
560#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
561struct sched_info {
562	/* cumulative counters */
563	unsigned long pcount;	      /* # of times run on this cpu */
564	unsigned long long cpu_time,  /* time spent on the cpu */
565			   run_delay; /* time spent waiting on a runqueue */
566
567	/* timestamps */
568	unsigned long long last_arrival,/* when we last ran on a cpu */
569			   last_queued;	/* when we were last queued to run */
570#ifdef CONFIG_SCHEDSTATS
571	/* BKL stats */
572	unsigned long bkl_count;
573#endif
574};
575#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
576
577#ifdef CONFIG_SCHEDSTATS
578extern const struct file_operations proc_schedstat_operations;
579#endif /* CONFIG_SCHEDSTATS */
580
581#ifdef CONFIG_TASK_DELAY_ACCT
582struct task_delay_info {
583	spinlock_t	lock;
584	unsigned int	flags;	/* Private per-task flags */
585
586	/* For each stat XXX, add following, aligned appropriately
587	 *
588	 * struct timespec XXX_start, XXX_end;
589	 * u64 XXX_delay;
590	 * u32 XXX_count;
591	 *
592	 * Atomicity of updates to XXX_delay, XXX_count protected by
593	 * single lock above (split into XXX_lock if contention is an issue).
594	 */
595
596	/*
597	 * XXX_count is incremented on every XXX operation, the delay
598	 * associated with the operation is added to XXX_delay.
599	 * XXX_delay contains the accumulated delay time in nanoseconds.
600	 */
601	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
602	u64 blkio_delay;	/* wait for sync block io completion */
603	u64 swapin_delay;	/* wait for swapin block io completion */
604	u32 blkio_count;	/* total count of the number of sync block */
605				/* io operations performed */
606	u32 swapin_count;	/* total count of the number of swapin block */
607				/* io operations performed */
608};
609#endif	/* CONFIG_TASK_DELAY_ACCT */
610
611static inline int sched_info_on(void)
612{
613#ifdef CONFIG_SCHEDSTATS
614	return 1;
615#elif defined(CONFIG_TASK_DELAY_ACCT)
616	extern int delayacct_on;
617	return delayacct_on;
618#else
619	return 0;
620#endif
621}
622
623enum cpu_idle_type {
624	CPU_IDLE,
625	CPU_NOT_IDLE,
626	CPU_NEWLY_IDLE,
627	CPU_MAX_IDLE_TYPES
628};
629
630/*
631 * sched-domains (multiprocessor balancing) declarations:
632 */
633
634/*
635 * Increase resolution of nice-level calculations:
636 */
637#define SCHED_LOAD_SHIFT	10
638#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
639
640#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
641
642#ifdef CONFIG_SMP
643#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
644#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
645#define SD_BALANCE_EXEC		4	/* Balance on exec */
646#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
647#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
648#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
649#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
650#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
651#define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
652#define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
653#define SD_SERIALIZE		1024	/* Only a single load balancing instance */
654
655#define BALANCE_FOR_MC_POWER	\
656	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
657
658#define BALANCE_FOR_PKG_POWER	\
659	((sched_mc_power_savings || sched_smt_power_savings) ?	\
660	 SD_POWERSAVINGS_BALANCE : 0)
661
662#define test_sd_parent(sd, flag)	((sd->parent &&		\
663					 (sd->parent->flags & flag)) ? 1 : 0)
664
665
666struct sched_group {
667	struct sched_group *next;	/* Must be a circular list */
668	cpumask_t cpumask;
669
670	/*
671	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
672	 * single CPU. This is read only (except for setup, hotplug CPU).
673	 * Note : Never change cpu_power without recompute its reciprocal
674	 */
675	unsigned int __cpu_power;
676	/*
677	 * reciprocal value of cpu_power to avoid expensive divides
678	 * (see include/linux/reciprocal_div.h)
679	 */
680	u32 reciprocal_cpu_power;
681};
682
683struct sched_domain {
684	/* These fields must be setup */
685	struct sched_domain *parent;	/* top domain must be null terminated */
686	struct sched_domain *child;	/* bottom domain must be null terminated */
687	struct sched_group *groups;	/* the balancing groups of the domain */
688	cpumask_t span;			/* span of all CPUs in this domain */
689	unsigned long min_interval;	/* Minimum balance interval ms */
690	unsigned long max_interval;	/* Maximum balance interval ms */
691	unsigned int busy_factor;	/* less balancing by factor if busy */
692	unsigned int imbalance_pct;	/* No balance until over watermark */
693	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
694	unsigned int busy_idx;
695	unsigned int idle_idx;
696	unsigned int newidle_idx;
697	unsigned int wake_idx;
698	unsigned int forkexec_idx;
699	int flags;			/* See SD_* */
700
701	/* Runtime fields. */
702	unsigned long last_balance;	/* init to jiffies. units in jiffies */
703	unsigned int balance_interval;	/* initialise to 1. units in ms. */
704	unsigned int nr_balance_failed; /* initialise to 0 */
705
706#ifdef CONFIG_SCHEDSTATS
707	/* load_balance() stats */
708	unsigned long lb_count[CPU_MAX_IDLE_TYPES];
709	unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
710	unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
711	unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
712	unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
713	unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
714	unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
715	unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
716
717	/* Active load balancing */
718	unsigned long alb_count;
719	unsigned long alb_failed;
720	unsigned long alb_pushed;
721
722	/* SD_BALANCE_EXEC stats */
723	unsigned long sbe_count;
724	unsigned long sbe_balanced;
725	unsigned long sbe_pushed;
726
727	/* SD_BALANCE_FORK stats */
728	unsigned long sbf_count;
729	unsigned long sbf_balanced;
730	unsigned long sbf_pushed;
731
732	/* try_to_wake_up() stats */
733	unsigned long ttwu_wake_remote;
734	unsigned long ttwu_move_affine;
735	unsigned long ttwu_move_balance;
736#endif
737};
738
739#endif	/* CONFIG_SMP */
740
741/*
742 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
743 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
744 * task of nice 0 or enough lower priority tasks to bring up the
745 * weighted_cpuload
746 */
747static inline int above_background_load(void)
748{
749	unsigned long cpu;
750
751	for_each_online_cpu(cpu) {
752		if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
753			return 1;
754	}
755	return 0;
756}
757
758struct io_context;			/* See blkdev.h */
759struct cpuset;
760
761#define NGROUPS_SMALL		32
762#define NGROUPS_PER_BLOCK	((int)(PAGE_SIZE / sizeof(gid_t)))
763struct group_info {
764	int ngroups;
765	atomic_t usage;
766	gid_t small_block[NGROUPS_SMALL];
767	int nblocks;
768	gid_t *blocks[0];
769};
770
771/*
772 * get_group_info() must be called with the owning task locked (via task_lock())
773 * when task != current.  The reason being that the vast majority of callers are
774 * looking at current->group_info, which can not be changed except by the
775 * current task.  Changing current->group_info requires the task lock, too.
776 */
777#define get_group_info(group_info) do { \
778	atomic_inc(&(group_info)->usage); \
779} while (0)
780
781#define put_group_info(group_info) do { \
782	if (atomic_dec_and_test(&(group_info)->usage)) \
783		groups_free(group_info); \
784} while (0)
785
786extern struct group_info *groups_alloc(int gidsetsize);
787extern void groups_free(struct group_info *group_info);
788extern int set_current_groups(struct group_info *group_info);
789extern int groups_search(struct group_info *group_info, gid_t grp);
790/* access the groups "array" with this macro */
791#define GROUP_AT(gi, i) \
792    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
793
794#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
795extern void prefetch_stack(struct task_struct *t);
796#else
797static inline void prefetch_stack(struct task_struct *t) { }
798#endif
799
800struct audit_context;		/* See audit.c */
801struct mempolicy;
802struct pipe_inode_info;
803struct uts_namespace;
804
805struct rq;
806struct sched_domain;
807
808struct sched_class {
809	const struct sched_class *next;
810
811	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
812	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
813	void (*yield_task) (struct rq *rq);
814
815	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
816
817	struct task_struct * (*pick_next_task) (struct rq *rq);
818	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
819
820	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
821			struct rq *busiest,
822			unsigned long max_nr_move, unsigned long max_load_move,
823			struct sched_domain *sd, enum cpu_idle_type idle,
824			int *all_pinned, int *this_best_prio);
825
826	void (*set_curr_task) (struct rq *rq);
827	void (*task_tick) (struct rq *rq, struct task_struct *p);
828	void (*task_new) (struct rq *rq, struct task_struct *p);
829};
830
831struct load_weight {
832	unsigned long weight, inv_weight;
833};
834
835/*
836 * CFS stats for a schedulable entity (task, task-group etc)
837 *
838 * Current field usage histogram:
839 *
840 *     4 se->block_start
841 *     4 se->run_node
842 *     4 se->sleep_start
843 *     6 se->load.weight
844 */
845struct sched_entity {
846	struct load_weight	load;		/* for load-balancing */
847	struct rb_node		run_node;
848	unsigned int		on_rq;
849	int			peer_preempt;
850
851	u64			exec_start;
852	u64			sum_exec_runtime;
853	u64			vruntime;
854	u64			prev_sum_exec_runtime;
855
856#ifdef CONFIG_SCHEDSTATS
857	u64			wait_start;
858	u64			wait_max;
859
860	u64			sleep_start;
861	u64			sleep_max;
862	s64			sum_sleep_runtime;
863
864	u64			block_start;
865	u64			block_max;
866	u64			exec_max;
867	u64			slice_max;
868
869	u64			nr_migrations;
870	u64			nr_migrations_cold;
871	u64			nr_failed_migrations_affine;
872	u64			nr_failed_migrations_running;
873	u64			nr_failed_migrations_hot;
874	u64			nr_forced_migrations;
875	u64			nr_forced2_migrations;
876
877	u64			nr_wakeups;
878	u64			nr_wakeups_sync;
879	u64			nr_wakeups_migrate;
880	u64			nr_wakeups_local;
881	u64			nr_wakeups_remote;
882	u64			nr_wakeups_affine;
883	u64			nr_wakeups_affine_attempts;
884	u64			nr_wakeups_passive;
885	u64			nr_wakeups_idle;
886#endif
887
888#ifdef CONFIG_FAIR_GROUP_SCHED
889	struct sched_entity	*parent;
890	/* rq on which this entity is (to be) queued: */
891	struct cfs_rq		*cfs_rq;
892	/* rq "owned" by this entity/group: */
893	struct cfs_rq		*my_q;
894#endif
895};
896
897struct task_struct {
898	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
899	void *stack;
900	atomic_t usage;
901	unsigned int flags;	/* per process flags, defined below */
902	unsigned int ptrace;
903
904	int lock_depth;		/* BKL lock depth */
905
906#ifdef CONFIG_SMP
907#ifdef __ARCH_WANT_UNLOCKED_CTXSW
908	int oncpu;
909#endif
910#endif
911
912	int prio, static_prio, normal_prio;
913	struct list_head run_list;
914	const struct sched_class *sched_class;
915	struct sched_entity se;
916
917#ifdef CONFIG_PREEMPT_NOTIFIERS
918	/* list of struct preempt_notifier: */
919	struct hlist_head preempt_notifiers;
920#endif
921
922	unsigned short ioprio;
923	/*
924	 * fpu_counter contains the number of consecutive context switches
925	 * that the FPU is used. If this is over a threshold, the lazy fpu
926	 * saving becomes unlazy to save the trap. This is an unsigned char
927	 * so that after 256 times the counter wraps and the behavior turns
928	 * lazy again; this to deal with bursty apps that only use FPU for
929	 * a short time
930	 */
931	unsigned char fpu_counter;
932	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
933#ifdef CONFIG_BLK_DEV_IO_TRACE
934	unsigned int btrace_seq;
935#endif
936
937	unsigned int policy;
938	cpumask_t cpus_allowed;
939	unsigned int time_slice;
940
941#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
942	struct sched_info sched_info;
943#endif
944
945	struct list_head tasks;
946	/*
947	 * ptrace_list/ptrace_children forms the list of my children
948	 * that were stolen by a ptracer.
949	 */
950	struct list_head ptrace_children;
951	struct list_head ptrace_list;
952
953	struct mm_struct *mm, *active_mm;
954
955/* task state */
956	struct linux_binfmt *binfmt;
957	int exit_state;
958	int exit_code, exit_signal;
959	int pdeath_signal;  /*  The signal sent when the parent dies  */
960	/* ??? */
961	unsigned int personality;
962	unsigned did_exec:1;
963	pid_t pid;
964	pid_t tgid;
965
966#ifdef CONFIG_CC_STACKPROTECTOR
967	/* Canary value for the -fstack-protector gcc feature */
968	unsigned long stack_canary;
969#endif
970	/*
971	 * pointers to (original) parent process, youngest child, younger sibling,
972	 * older sibling, respectively.  (p->father can be replaced with
973	 * p->parent->pid)
974	 */
975	struct task_struct *real_parent; /* real parent process (when being debugged) */
976	struct task_struct *parent;	/* parent process */
977	/*
978	 * children/sibling forms the list of my children plus the
979	 * tasks I'm ptracing.
980	 */
981	struct list_head children;	/* list of my children */
982	struct list_head sibling;	/* linkage in my parent's children list */
983	struct task_struct *group_leader;	/* threadgroup leader */
984
985	/* PID/PID hash table linkage. */
986	struct pid_link pids[PIDTYPE_MAX];
987	struct list_head thread_group;
988
989	struct completion *vfork_done;		/* for vfork() */
990	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
991	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
992
993	unsigned int rt_priority;
994	cputime_t utime, stime, utimescaled, stimescaled;
995	cputime_t gtime;
996	unsigned long nvcsw, nivcsw; /* context switch counts */
997	struct timespec start_time; 		/* monotonic time */
998	struct timespec real_start_time;	/* boot based time */
999/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1000	unsigned long min_flt, maj_flt;
1001
1002  	cputime_t it_prof_expires, it_virt_expires;
1003	unsigned long long it_sched_expires;
1004	struct list_head cpu_timers[3];
1005
1006/* process credentials */
1007	uid_t uid,euid,suid,fsuid;
1008	gid_t gid,egid,sgid,fsgid;
1009	struct group_info *group_info;
1010	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
1011	unsigned keep_capabilities:1;
1012	struct user_struct *user;
1013#ifdef CONFIG_KEYS
1014	struct key *request_key_auth;	/* assumed request_key authority */
1015	struct key *thread_keyring;	/* keyring private to this thread */
1016	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1017#endif
1018	char comm[TASK_COMM_LEN]; /* executable name excluding path
1019				     - access with [gs]et_task_comm (which lock
1020				       it with task_lock())
1021				     - initialized normally by flush_old_exec */
1022/* file system info */
1023	int link_count, total_link_count;
1024#ifdef CONFIG_SYSVIPC
1025/* ipc stuff */
1026	struct sysv_sem sysvsem;
1027#endif
1028/* CPU-specific state of this task */
1029	struct thread_struct thread;
1030/* filesystem information */
1031	struct fs_struct *fs;
1032/* open file information */
1033	struct files_struct *files;
1034/* namespaces */
1035	struct nsproxy *nsproxy;
1036/* signal handlers */
1037	struct signal_struct *signal;
1038	struct sighand_struct *sighand;
1039
1040	sigset_t blocked, real_blocked;
1041	sigset_t saved_sigmask;		/* To be restored with TIF_RESTORE_SIGMASK */
1042	struct sigpending pending;
1043
1044	unsigned long sas_ss_sp;
1045	size_t sas_ss_size;
1046	int (*notifier)(void *priv);
1047	void *notifier_data;
1048	sigset_t *notifier_mask;
1049#ifdef CONFIG_SECURITY
1050	void *security;
1051#endif
1052	struct audit_context *audit_context;
1053	seccomp_t seccomp;
1054
1055/* Thread group tracking */
1056   	u32 parent_exec_id;
1057   	u32 self_exec_id;
1058/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1059	spinlock_t alloc_lock;
1060
1061	/* Protection of the PI data structures: */
1062	spinlock_t pi_lock;
1063
1064#ifdef CONFIG_RT_MUTEXES
1065	/* PI waiters blocked on a rt_mutex held by this task */
1066	struct plist_head pi_waiters;
1067	/* Deadlock detection and priority inheritance handling */
1068	struct rt_mutex_waiter *pi_blocked_on;
1069#endif
1070
1071#ifdef CONFIG_DEBUG_MUTEXES
1072	/* mutex deadlock detection */
1073	struct mutex_waiter *blocked_on;
1074#endif
1075#ifdef CONFIG_TRACE_IRQFLAGS
1076	unsigned int irq_events;
1077	int hardirqs_enabled;
1078	unsigned long hardirq_enable_ip;
1079	unsigned int hardirq_enable_event;
1080	unsigned long hardirq_disable_ip;
1081	unsigned int hardirq_disable_event;
1082	int softirqs_enabled;
1083	unsigned long softirq_disable_ip;
1084	unsigned int softirq_disable_event;
1085	unsigned long softirq_enable_ip;
1086	unsigned int softirq_enable_event;
1087	int hardirq_context;
1088	int softirq_context;
1089#endif
1090#ifdef CONFIG_LOCKDEP
1091# define MAX_LOCK_DEPTH 30UL
1092	u64 curr_chain_key;
1093	int lockdep_depth;
1094	struct held_lock held_locks[MAX_LOCK_DEPTH];
1095	unsigned int lockdep_recursion;
1096#endif
1097
1098/* journalling filesystem info */
1099	void *journal_info;
1100
1101/* stacked block device info */
1102	struct bio *bio_list, **bio_tail;
1103
1104/* VM state */
1105	struct reclaim_state *reclaim_state;
1106
1107	struct backing_dev_info *backing_dev_info;
1108
1109	struct io_context *io_context;
1110
1111	unsigned long ptrace_message;
1112	siginfo_t *last_siginfo; /* For ptrace use.  */
1113#ifdef CONFIG_TASK_XACCT
1114/* i/o counters(bytes read/written, #syscalls */
1115	u64 rchar, wchar, syscr, syscw;
1116#endif
1117	struct task_io_accounting ioac;
1118#if defined(CONFIG_TASK_XACCT)
1119	u64 acct_rss_mem1;	/* accumulated rss usage */
1120	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1121	cputime_t acct_stimexpd;/* stime since last update */
1122#endif
1123#ifdef CONFIG_NUMA
1124  	struct mempolicy *mempolicy;
1125	short il_next;
1126#endif
1127#ifdef CONFIG_CPUSETS
1128	struct cpuset *cpuset;
1129	nodemask_t mems_allowed;
1130	int cpuset_mems_generation;
1131	int cpuset_mem_spread_rotor;
1132#endif
1133#ifdef CONFIG_FUTEX
1134	struct robust_list_head __user *robust_list;
1135#ifdef CONFIG_COMPAT
1136	struct compat_robust_list_head __user *compat_robust_list;
1137#endif
1138	struct list_head pi_state_list;
1139	struct futex_pi_state *pi_state_cache;
1140#endif
1141	atomic_t fs_excl;	/* holding fs exclusive resources */
1142	struct rcu_head rcu;
1143
1144	/*
1145	 * cache last used pipe for splice
1146	 */
1147	struct pipe_inode_info *splice_pipe;
1148#ifdef	CONFIG_TASK_DELAY_ACCT
1149	struct task_delay_info *delays;
1150#endif
1151#ifdef CONFIG_FAULT_INJECTION
1152	int make_it_fail;
1153#endif
1154	struct prop_local_single dirties;
1155};
1156
1157/*
1158 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1159 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1160 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1161 * values are inverted: lower p->prio value means higher priority.
1162 *
1163 * The MAX_USER_RT_PRIO value allows the actual maximum
1164 * RT priority to be separate from the value exported to
1165 * user-space.  This allows kernel threads to set their
1166 * priority to a value higher than any user task. Note:
1167 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1168 */
1169
1170#define MAX_USER_RT_PRIO	100
1171#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1172
1173#define MAX_PRIO		(MAX_RT_PRIO + 40)
1174#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1175
1176static inline int rt_prio(int prio)
1177{
1178	if (unlikely(prio < MAX_RT_PRIO))
1179		return 1;
1180	return 0;
1181}
1182
1183static inline int rt_task(struct task_struct *p)
1184{
1185	return rt_prio(p->prio);
1186}
1187
1188static inline pid_t process_group(struct task_struct *tsk)
1189{
1190	return tsk->signal->pgrp;
1191}
1192
1193static inline pid_t signal_session(struct signal_struct *sig)
1194{
1195	return sig->__session;
1196}
1197
1198static inline pid_t process_session(struct task_struct *tsk)
1199{
1200	return signal_session(tsk->signal);
1201}
1202
1203static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1204{
1205	sig->__session = session;
1206}
1207
1208static inline struct pid *task_pid(struct task_struct *task)
1209{
1210	return task->pids[PIDTYPE_PID].pid;
1211}
1212
1213static inline struct pid *task_tgid(struct task_struct *task)
1214{
1215	return task->group_leader->pids[PIDTYPE_PID].pid;
1216}
1217
1218static inline struct pid *task_pgrp(struct task_struct *task)
1219{
1220	return task->group_leader->pids[PIDTYPE_PGID].pid;
1221}
1222
1223static inline struct pid *task_session(struct task_struct *task)
1224{
1225	return task->group_leader->pids[PIDTYPE_SID].pid;
1226}
1227
1228/**
1229 * pid_alive - check that a task structure is not stale
1230 * @p: Task structure to be checked.
1231 *
1232 * Test if a process is not yet dead (at most zombie state)
1233 * If pid_alive fails, then pointers within the task structure
1234 * can be stale and must not be dereferenced.
1235 */
1236static inline int pid_alive(struct task_struct *p)
1237{
1238	return p->pids[PIDTYPE_PID].pid != NULL;
1239}
1240
1241/**
1242 * is_init - check if a task structure is init
1243 * @tsk: Task structure to be checked.
1244 *
1245 * Check if a task structure is the first user space task the kernel created.
1246 */
1247static inline int is_init(struct task_struct *tsk)
1248{
1249	return tsk->pid == 1;
1250}
1251
1252extern struct pid *cad_pid;
1253
1254extern void free_task(struct task_struct *tsk);
1255#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1256
1257extern void __put_task_struct(struct task_struct *t);
1258
1259static inline void put_task_struct(struct task_struct *t)
1260{
1261	if (atomic_dec_and_test(&t->usage))
1262		__put_task_struct(t);
1263}
1264
1265/*
1266 * Per process flags
1267 */
1268#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1269					/* Not implemented yet, only for 486*/
1270#define PF_STARTING	0x00000002	/* being created */
1271#define PF_EXITING	0x00000004	/* getting shut down */
1272#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1273#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1274#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1275#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1276#define PF_DUMPCORE	0x00000200	/* dumped core */
1277#define PF_SIGNALED	0x00000400	/* killed by a signal */
1278#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1279#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1280#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1281#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1282#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1283#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1284#define PF_KSWAPD	0x00040000	/* I am kswapd */
1285#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1286#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1287#define PF_BORROWED_MM	0x00200000	/* I am a kthread doing use_mm */
1288#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1289#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1290#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1291#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1292#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1293#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1294#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1295
1296/*
1297 * Only the _current_ task can read/write to tsk->flags, but other
1298 * tasks can access tsk->flags in readonly mode for example
1299 * with tsk_used_math (like during threaded core dumping).
1300 * There is however an exception to this rule during ptrace
1301 * or during fork: the ptracer task is allowed to write to the
1302 * child->flags of its traced child (same goes for fork, the parent
1303 * can write to the child->flags), because we're guaranteed the
1304 * child is not running and in turn not changing child->flags
1305 * at the same time the parent does it.
1306 */
1307#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1308#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1309#define clear_used_math() clear_stopped_child_used_math(current)
1310#define set_used_math() set_stopped_child_used_math(current)
1311#define conditional_stopped_child_used_math(condition, child) \
1312	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1313#define conditional_used_math(condition) \
1314	conditional_stopped_child_used_math(condition, current)
1315#define copy_to_stopped_child_used_math(child) \
1316	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1317/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1318#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1319#define used_math() tsk_used_math(current)
1320
1321#ifdef CONFIG_SMP
1322extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1323#else
1324static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1325{
1326	if (!cpu_isset(0, new_mask))
1327		return -EINVAL;
1328	return 0;
1329}
1330#endif
1331
1332extern unsigned long long sched_clock(void);
1333
1334/*
1335 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1336 * clock constructed from sched_clock():
1337 */
1338extern unsigned long long cpu_clock(int cpu);
1339
1340extern unsigned long long
1341task_sched_runtime(struct task_struct *task);
1342
1343/* sched_exec is called by processes performing an exec */
1344#ifdef CONFIG_SMP
1345extern void sched_exec(void);
1346#else
1347#define sched_exec()   {}
1348#endif
1349
1350extern void sched_clock_idle_sleep_event(void);
1351extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1352
1353#ifdef CONFIG_HOTPLUG_CPU
1354extern void idle_task_exit(void);
1355#else
1356static inline void idle_task_exit(void) {}
1357#endif
1358
1359extern void sched_idle_next(void);
1360
1361#ifdef CONFIG_SCHED_DEBUG
1362extern unsigned int sysctl_sched_latency;
1363extern unsigned int sysctl_sched_nr_latency;
1364extern unsigned int sysctl_sched_wakeup_granularity;
1365extern unsigned int sysctl_sched_batch_wakeup_granularity;
1366extern unsigned int sysctl_sched_child_runs_first;
1367extern unsigned int sysctl_sched_features;
1368extern unsigned int sysctl_sched_migration_cost;
1369#endif
1370
1371extern unsigned int sysctl_sched_compat_yield;
1372
1373#ifdef CONFIG_RT_MUTEXES
1374extern int rt_mutex_getprio(struct task_struct *p);
1375extern void rt_mutex_setprio(struct task_struct *p, int prio);
1376extern void rt_mutex_adjust_pi(struct task_struct *p);
1377#else
1378static inline int rt_mutex_getprio(struct task_struct *p)
1379{
1380	return p->normal_prio;
1381}
1382# define rt_mutex_adjust_pi(p)		do { } while (0)
1383#endif
1384
1385extern void set_user_nice(struct task_struct *p, long nice);
1386extern int task_prio(const struct task_struct *p);
1387extern int task_nice(const struct task_struct *p);
1388extern int can_nice(const struct task_struct *p, const int nice);
1389extern int task_curr(const struct task_struct *p);
1390extern int idle_cpu(int cpu);
1391extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1392extern struct task_struct *idle_task(int cpu);
1393extern struct task_struct *curr_task(int cpu);
1394extern void set_curr_task(int cpu, struct task_struct *p);
1395
1396void yield(void);
1397
1398/*
1399 * The default (Linux) execution domain.
1400 */
1401extern struct exec_domain	default_exec_domain;
1402
1403union thread_union {
1404	struct thread_info thread_info;
1405	unsigned long stack[THREAD_SIZE/sizeof(long)];
1406};
1407
1408#ifndef __HAVE_ARCH_KSTACK_END
1409static inline int kstack_end(void *addr)
1410{
1411	/* Reliable end of stack detection:
1412	 * Some APM bios versions misalign the stack
1413	 */
1414	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1415}
1416#endif
1417
1418extern union thread_union init_thread_union;
1419extern struct task_struct init_task;
1420
1421extern struct   mm_struct init_mm;
1422
1423#define find_task_by_pid(nr)	find_task_by_pid_type(PIDTYPE_PID, nr)
1424extern struct task_struct *find_task_by_pid_type(int type, int pid);
1425extern void __set_special_pids(pid_t session, pid_t pgrp);
1426
1427/* per-UID process charging. */
1428extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1429static inline struct user_struct *get_uid(struct user_struct *u)
1430{
1431	atomic_inc(&u->__count);
1432	return u;
1433}
1434extern void free_uid(struct user_struct *);
1435extern void switch_uid(struct user_struct *);
1436extern void release_uids(struct user_namespace *ns);
1437
1438#include <asm/current.h>
1439
1440extern void do_timer(unsigned long ticks);
1441
1442extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1443extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1444extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1445						unsigned long clone_flags));
1446#ifdef CONFIG_SMP
1447 extern void kick_process(struct task_struct *tsk);
1448#else
1449 static inline void kick_process(struct task_struct *tsk) { }
1450#endif
1451extern void sched_fork(struct task_struct *p, int clone_flags);
1452extern void sched_dead(struct task_struct *p);
1453
1454extern int in_group_p(gid_t);
1455extern int in_egroup_p(gid_t);
1456
1457extern void proc_caches_init(void);
1458extern void flush_signals(struct task_struct *);
1459extern void ignore_signals(struct task_struct *);
1460extern void flush_signal_handlers(struct task_struct *, int force_default);
1461extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1462
1463static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1464{
1465	unsigned long flags;
1466	int ret;
1467
1468	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1469	ret = dequeue_signal(tsk, mask, info);
1470	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1471
1472	return ret;
1473}
1474
1475extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1476			      sigset_t *mask);
1477extern void unblock_all_signals(void);
1478extern void release_task(struct task_struct * p);
1479extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1480extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1481extern int force_sigsegv(int, struct task_struct *);
1482extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1483extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1484extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1485extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1486extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1487extern int kill_pgrp(struct pid *pid, int sig, int priv);
1488extern int kill_pid(struct pid *pid, int sig, int priv);
1489extern int kill_proc_info(int, struct siginfo *, pid_t);
1490extern void do_notify_parent(struct task_struct *, int);
1491extern void force_sig(int, struct task_struct *);
1492extern void force_sig_specific(int, struct task_struct *);
1493extern int send_sig(int, struct task_struct *, int);
1494extern void zap_other_threads(struct task_struct *p);
1495extern int kill_proc(pid_t, int, int);
1496extern struct sigqueue *sigqueue_alloc(void);
1497extern void sigqueue_free(struct sigqueue *);
1498extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1499extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1500extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1501extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1502
1503static inline int kill_cad_pid(int sig, int priv)
1504{
1505	return kill_pid(cad_pid, sig, priv);
1506}
1507
1508/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1509#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1510#define SEND_SIG_PRIV	((struct siginfo *) 1)
1511#define SEND_SIG_FORCED	((struct siginfo *) 2)
1512
1513static inline int is_si_special(const struct siginfo *info)
1514{
1515	return info <= SEND_SIG_FORCED;
1516}
1517
1518/* True if we are on the alternate signal stack.  */
1519
1520static inline int on_sig_stack(unsigned long sp)
1521{
1522	return (sp - current->sas_ss_sp < current->sas_ss_size);
1523}
1524
1525static inline int sas_ss_flags(unsigned long sp)
1526{
1527	return (current->sas_ss_size == 0 ? SS_DISABLE
1528		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1529}
1530
1531/*
1532 * Routines for handling mm_structs
1533 */
1534extern struct mm_struct * mm_alloc(void);
1535
1536/* mmdrop drops the mm and the page tables */
1537extern void FASTCALL(__mmdrop(struct mm_struct *));
1538static inline void mmdrop(struct mm_struct * mm)
1539{
1540	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1541		__mmdrop(mm);
1542}
1543
1544/* mmput gets rid of the mappings and all user-space */
1545extern void mmput(struct mm_struct *);
1546/* Grab a reference to a task's mm, if it is not already going away */
1547extern struct mm_struct *get_task_mm(struct task_struct *task);
1548/* Remove the current tasks stale references to the old mm_struct */
1549extern void mm_release(struct task_struct *, struct mm_struct *);
1550
1551extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1552extern void flush_thread(void);
1553extern void exit_thread(void);
1554
1555extern void exit_files(struct task_struct *);
1556extern void __cleanup_signal(struct signal_struct *);
1557extern void __cleanup_sighand(struct sighand_struct *);
1558extern void exit_itimers(struct signal_struct *);
1559
1560extern NORET_TYPE void do_group_exit(int);
1561
1562extern void daemonize(const char *, ...);
1563extern int allow_signal(int);
1564extern int disallow_signal(int);
1565
1566extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1567extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1568struct task_struct *fork_idle(int);
1569
1570extern void set_task_comm(struct task_struct *tsk, char *from);
1571extern void get_task_comm(char *to, struct task_struct *tsk);
1572
1573#ifdef CONFIG_SMP
1574extern void wait_task_inactive(struct task_struct * p);
1575#else
1576#define wait_task_inactive(p)	do { } while (0)
1577#endif
1578
1579#define remove_parent(p)	list_del_init(&(p)->sibling)
1580#define add_parent(p)		list_add_tail(&(p)->sibling,&(p)->parent->children)
1581
1582#define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1583
1584#define for_each_process(p) \
1585	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1586
1587/*
1588 * Careful: do_each_thread/while_each_thread is a double loop so
1589 *          'break' will not work as expected - use goto instead.
1590 */
1591#define do_each_thread(g, t) \
1592	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1593
1594#define while_each_thread(g, t) \
1595	while ((t = next_thread(t)) != g)
1596
1597/* de_thread depends on thread_group_leader not being a pid based check */
1598#define thread_group_leader(p)	(p == p->group_leader)
1599
1600/* Do to the insanities of de_thread it is possible for a process
1601 * to have the pid of the thread group leader without actually being
1602 * the thread group leader.  For iteration through the pids in proc
1603 * all we care about is that we have a task with the appropriate
1604 * pid, we don't actually care if we have the right task.
1605 */
1606static inline int has_group_leader_pid(struct task_struct *p)
1607{
1608	return p->pid == p->tgid;
1609}
1610
1611static inline struct task_struct *next_thread(const struct task_struct *p)
1612{
1613	return list_entry(rcu_dereference(p->thread_group.next),
1614			  struct task_struct, thread_group);
1615}
1616
1617static inline int thread_group_empty(struct task_struct *p)
1618{
1619	return list_empty(&p->thread_group);
1620}
1621
1622#define delay_group_leader(p) \
1623		(thread_group_leader(p) && !thread_group_empty(p))
1624
1625/*
1626 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1627 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1628 * pins the final release of task.io_context.  Also protects ->cpuset.
1629 *
1630 * Nests both inside and outside of read_lock(&tasklist_lock).
1631 * It must not be nested with write_lock_irq(&tasklist_lock),
1632 * neither inside nor outside.
1633 */
1634static inline void task_lock(struct task_struct *p)
1635{
1636	spin_lock(&p->alloc_lock);
1637}
1638
1639static inline void task_unlock(struct task_struct *p)
1640{
1641	spin_unlock(&p->alloc_lock);
1642}
1643
1644extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1645							unsigned long *flags);
1646
1647static inline void unlock_task_sighand(struct task_struct *tsk,
1648						unsigned long *flags)
1649{
1650	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1651}
1652
1653#ifndef __HAVE_THREAD_FUNCTIONS
1654
1655#define task_thread_info(task)	((struct thread_info *)(task)->stack)
1656#define task_stack_page(task)	((task)->stack)
1657
1658static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1659{
1660	*task_thread_info(p) = *task_thread_info(org);
1661	task_thread_info(p)->task = p;
1662}
1663
1664static inline unsigned long *end_of_stack(struct task_struct *p)
1665{
1666	return (unsigned long *)(task_thread_info(p) + 1);
1667}
1668
1669#endif
1670
1671/* set thread flags in other task's structures
1672 * - see asm/thread_info.h for TIF_xxxx flags available
1673 */
1674static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1675{
1676	set_ti_thread_flag(task_thread_info(tsk), flag);
1677}
1678
1679static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1680{
1681	clear_ti_thread_flag(task_thread_info(tsk), flag);
1682}
1683
1684static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1685{
1686	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1687}
1688
1689static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1690{
1691	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1692}
1693
1694static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1695{
1696	return test_ti_thread_flag(task_thread_info(tsk), flag);
1697}
1698
1699static inline void set_tsk_need_resched(struct task_struct *tsk)
1700{
1701	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1702}
1703
1704static inline void clear_tsk_need_resched(struct task_struct *tsk)
1705{
1706	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1707}
1708
1709static inline int signal_pending(struct task_struct *p)
1710{
1711	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1712}
1713
1714static inline int need_resched(void)
1715{
1716	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1717}
1718
1719/*
1720 * cond_resched() and cond_resched_lock(): latency reduction via
1721 * explicit rescheduling in places that are safe. The return
1722 * value indicates whether a reschedule was done in fact.
1723 * cond_resched_lock() will drop the spinlock before scheduling,
1724 * cond_resched_softirq() will enable bhs before scheduling.
1725 */
1726extern int cond_resched(void);
1727extern int cond_resched_lock(spinlock_t * lock);
1728extern int cond_resched_softirq(void);
1729
1730/*
1731 * Does a critical section need to be broken due to another
1732 * task waiting?:
1733 */
1734#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1735# define need_lockbreak(lock) ((lock)->break_lock)
1736#else
1737# define need_lockbreak(lock) 0
1738#endif
1739
1740/*
1741 * Does a critical section need to be broken due to another
1742 * task waiting or preemption being signalled:
1743 */
1744static inline int lock_need_resched(spinlock_t *lock)
1745{
1746	if (need_lockbreak(lock) || need_resched())
1747		return 1;
1748	return 0;
1749}
1750
1751/*
1752 * Reevaluate whether the task has signals pending delivery.
1753 * Wake the task if so.
1754 * This is required every time the blocked sigset_t changes.
1755 * callers must hold sighand->siglock.
1756 */
1757extern void recalc_sigpending_and_wake(struct task_struct *t);
1758extern void recalc_sigpending(void);
1759
1760extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1761
1762/*
1763 * Wrappers for p->thread_info->cpu access. No-op on UP.
1764 */
1765#ifdef CONFIG_SMP
1766
1767static inline unsigned int task_cpu(const struct task_struct *p)
1768{
1769	return task_thread_info(p)->cpu;
1770}
1771
1772extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1773
1774#else
1775
1776static inline unsigned int task_cpu(const struct task_struct *p)
1777{
1778	return 0;
1779}
1780
1781static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1782{
1783}
1784
1785#endif /* CONFIG_SMP */
1786
1787#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1788extern void arch_pick_mmap_layout(struct mm_struct *mm);
1789#else
1790static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1791{
1792	mm->mmap_base = TASK_UNMAPPED_BASE;
1793	mm->get_unmapped_area = arch_get_unmapped_area;
1794	mm->unmap_area = arch_unmap_area;
1795}
1796#endif
1797
1798extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1799extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1800
1801extern int sched_mc_power_savings, sched_smt_power_savings;
1802
1803extern void normalize_rt_tasks(void);
1804
1805#ifdef CONFIG_FAIR_GROUP_SCHED
1806
1807extern struct task_group init_task_group;
1808
1809extern struct task_group *sched_create_group(void);
1810extern void sched_destroy_group(struct task_group *tg);
1811extern void sched_move_task(struct task_struct *tsk);
1812extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1813extern unsigned long sched_group_shares(struct task_group *tg);
1814
1815#endif
1816
1817#ifdef CONFIG_TASK_XACCT
1818static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1819{
1820	tsk->rchar += amt;
1821}
1822
1823static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1824{
1825	tsk->wchar += amt;
1826}
1827
1828static inline void inc_syscr(struct task_struct *tsk)
1829{
1830	tsk->syscr++;
1831}
1832
1833static inline void inc_syscw(struct task_struct *tsk)
1834{
1835	tsk->syscw++;
1836}
1837#else
1838static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1839{
1840}
1841
1842static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1843{
1844}
1845
1846static inline void inc_syscr(struct task_struct *tsk)
1847{
1848}
1849
1850static inline void inc_syscw(struct task_struct *tsk)
1851{
1852}
1853#endif
1854
1855#endif /* __KERNEL__ */
1856
1857#endif
1858