sched.h revision df54d6fa54275ce59660453e29d1228c2b45a826
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8	int sched_priority;
9};
10
11#include <asm/param.h>	/* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25
26#include <asm/page.h>
27#include <asm/ptrace.h>
28#include <asm/cputime.h>
29
30#include <linux/smp.h>
31#include <linux/sem.h>
32#include <linux/signal.h>
33#include <linux/compiler.h>
34#include <linux/completion.h>
35#include <linux/pid.h>
36#include <linux/percpu.h>
37#include <linux/topology.h>
38#include <linux/proportions.h>
39#include <linux/seccomp.h>
40#include <linux/rcupdate.h>
41#include <linux/rculist.h>
42#include <linux/rtmutex.h>
43
44#include <linux/time.h>
45#include <linux/param.h>
46#include <linux/resource.h>
47#include <linux/timer.h>
48#include <linux/hrtimer.h>
49#include <linux/task_io_accounting.h>
50#include <linux/latencytop.h>
51#include <linux/cred.h>
52#include <linux/llist.h>
53#include <linux/uidgid.h>
54#include <linux/gfp.h>
55
56#include <asm/processor.h>
57
58struct exec_domain;
59struct futex_pi_state;
60struct robust_list_head;
61struct bio_list;
62struct fs_struct;
63struct perf_event_context;
64struct blk_plug;
65
66/*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72/*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 *    a load-average precision of 10 bits integer + 11 bits fractional
77 *  - if you want to count load-averages more often, you need more
78 *    precision, or rounding will get you. With 2-second counting freq,
79 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80 *    11 bit fractions.
81 */
82extern unsigned long avenrun[];		/* Load averages */
83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85#define FSHIFT		11		/* nr of bits of precision */
86#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89#define EXP_5		2014		/* 1/exp(5sec/5min) */
90#define EXP_15		2037		/* 1/exp(5sec/15min) */
91
92#define CALC_LOAD(load,exp,n) \
93	load *= exp; \
94	load += n*(FIXED_1-exp); \
95	load >>= FSHIFT;
96
97extern unsigned long total_forks;
98extern int nr_threads;
99DECLARE_PER_CPU(unsigned long, process_counts);
100extern int nr_processes(void);
101extern unsigned long nr_running(void);
102extern unsigned long nr_iowait(void);
103extern unsigned long nr_iowait_cpu(int cpu);
104extern unsigned long this_cpu_load(void);
105
106
107extern void calc_global_load(unsigned long ticks);
108extern void update_cpu_load_nohz(void);
109
110/* Notifier for when a task gets migrated to a new CPU */
111struct task_migration_notifier {
112	struct task_struct *task;
113	int from_cpu;
114	int to_cpu;
115};
116extern void register_task_migration_notifier(struct notifier_block *n);
117
118extern unsigned long get_parent_ip(unsigned long addr);
119
120extern void dump_cpu_task(int cpu);
121
122struct seq_file;
123struct cfs_rq;
124struct task_group;
125#ifdef CONFIG_SCHED_DEBUG
126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127extern void proc_sched_set_task(struct task_struct *p);
128extern void
129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130#endif
131
132/*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142#define TASK_RUNNING		0
143#define TASK_INTERRUPTIBLE	1
144#define TASK_UNINTERRUPTIBLE	2
145#define __TASK_STOPPED		4
146#define __TASK_TRACED		8
147/* in tsk->exit_state */
148#define EXIT_ZOMBIE		16
149#define EXIT_DEAD		32
150/* in tsk->state again */
151#define TASK_DEAD		64
152#define TASK_WAKEKILL		128
153#define TASK_WAKING		256
154#define TASK_PARKED		512
155#define TASK_STATE_MAX		1024
156
157#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159extern char ___assert_task_state[1 - 2*!!(
160		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162/* Convenience macros for the sake of set_task_state */
163#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
165#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
166
167/* Convenience macros for the sake of wake_up */
168#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171/* get_task_state() */
172#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
173				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174				 __TASK_TRACED)
175
176#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
177#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
178#define task_is_dead(task)	((task)->exit_state != 0)
179#define task_is_stopped_or_traced(task)	\
180			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181#define task_contributes_to_load(task)	\
182				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183				 (task->flags & PF_FROZEN) == 0)
184
185#define __set_task_state(tsk, state_value)		\
186	do { (tsk)->state = (state_value); } while (0)
187#define set_task_state(tsk, state_value)		\
188	set_mb((tsk)->state, (state_value))
189
190/*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 *	set_current_state(TASK_UNINTERRUPTIBLE);
196 *	if (do_i_need_to_sleep())
197 *		schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201#define __set_current_state(state_value)			\
202	do { current->state = (state_value); } while (0)
203#define set_current_state(state_value)		\
204	set_mb(current->state, (state_value))
205
206/* Task command name length */
207#define TASK_COMM_LEN 16
208
209#include <linux/spinlock.h>
210
211/*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217extern rwlock_t tasklist_lock;
218extern spinlock_t mmlist_lock;
219
220struct task_struct;
221
222#ifdef CONFIG_PROVE_RCU
223extern int lockdep_tasklist_lock_is_held(void);
224#endif /* #ifdef CONFIG_PROVE_RCU */
225
226extern void sched_init(void);
227extern void sched_init_smp(void);
228extern asmlinkage void schedule_tail(struct task_struct *prev);
229extern void init_idle(struct task_struct *idle, int cpu);
230extern void init_idle_bootup_task(struct task_struct *idle);
231
232extern int runqueue_is_locked(int cpu);
233
234#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235extern void nohz_balance_enter_idle(int cpu);
236extern void set_cpu_sd_state_idle(void);
237extern int get_nohz_timer_target(void);
238#else
239static inline void nohz_balance_enter_idle(int cpu) { }
240static inline void set_cpu_sd_state_idle(void) { }
241#endif
242
243/*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246extern void show_state_filter(unsigned long state_filter);
247
248static inline void show_state(void)
249{
250	show_state_filter(0);
251}
252
253extern void show_regs(struct pt_regs *);
254
255/*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262void io_schedule(void);
263long io_schedule_timeout(long timeout);
264
265extern void cpu_init (void);
266extern void trap_init(void);
267extern void update_process_times(int user);
268extern void scheduler_tick(void);
269
270extern void sched_show_task(struct task_struct *p);
271
272#ifdef CONFIG_LOCKUP_DETECTOR
273extern void touch_softlockup_watchdog(void);
274extern void touch_softlockup_watchdog_sync(void);
275extern void touch_all_softlockup_watchdogs(void);
276extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277				  void __user *buffer,
278				  size_t *lenp, loff_t *ppos);
279extern unsigned int  softlockup_panic;
280void lockup_detector_init(void);
281#else
282static inline void touch_softlockup_watchdog(void)
283{
284}
285static inline void touch_softlockup_watchdog_sync(void)
286{
287}
288static inline void touch_all_softlockup_watchdogs(void)
289{
290}
291static inline void lockup_detector_init(void)
292{
293}
294#endif
295
296/* Attach to any functions which should be ignored in wchan output. */
297#define __sched		__attribute__((__section__(".sched.text")))
298
299/* Linker adds these: start and end of __sched functions */
300extern char __sched_text_start[], __sched_text_end[];
301
302/* Is this address in the __sched functions? */
303extern int in_sched_functions(unsigned long addr);
304
305#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
306extern signed long schedule_timeout(signed long timeout);
307extern signed long schedule_timeout_interruptible(signed long timeout);
308extern signed long schedule_timeout_killable(signed long timeout);
309extern signed long schedule_timeout_uninterruptible(signed long timeout);
310asmlinkage void schedule(void);
311extern void schedule_preempt_disabled(void);
312
313struct nsproxy;
314struct user_namespace;
315
316#ifdef CONFIG_MMU
317extern unsigned long mmap_legacy_base(void);
318extern void arch_pick_mmap_layout(struct mm_struct *mm);
319extern unsigned long
320arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321		       unsigned long, unsigned long);
322extern unsigned long
323arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324			  unsigned long len, unsigned long pgoff,
325			  unsigned long flags);
326#else
327static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
328#endif
329
330
331extern void set_dumpable(struct mm_struct *mm, int value);
332extern int get_dumpable(struct mm_struct *mm);
333
334/* mm flags */
335/* dumpable bits */
336#define MMF_DUMPABLE      0  /* core dump is permitted */
337#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
338
339#define MMF_DUMPABLE_BITS 2
340#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
341
342/* coredump filter bits */
343#define MMF_DUMP_ANON_PRIVATE	2
344#define MMF_DUMP_ANON_SHARED	3
345#define MMF_DUMP_MAPPED_PRIVATE	4
346#define MMF_DUMP_MAPPED_SHARED	5
347#define MMF_DUMP_ELF_HEADERS	6
348#define MMF_DUMP_HUGETLB_PRIVATE 7
349#define MMF_DUMP_HUGETLB_SHARED  8
350
351#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
352#define MMF_DUMP_FILTER_BITS	7
353#define MMF_DUMP_FILTER_MASK \
354	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
355#define MMF_DUMP_FILTER_DEFAULT \
356	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
357	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
358
359#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
360# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
361#else
362# define MMF_DUMP_MASK_DEFAULT_ELF	0
363#endif
364					/* leave room for more dump flags */
365#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
366#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
367#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
368
369#define MMF_HAS_UPROBES		19	/* has uprobes */
370#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
371
372#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
373
374struct sighand_struct {
375	atomic_t		count;
376	struct k_sigaction	action[_NSIG];
377	spinlock_t		siglock;
378	wait_queue_head_t	signalfd_wqh;
379};
380
381struct pacct_struct {
382	int			ac_flag;
383	long			ac_exitcode;
384	unsigned long		ac_mem;
385	cputime_t		ac_utime, ac_stime;
386	unsigned long		ac_minflt, ac_majflt;
387};
388
389struct cpu_itimer {
390	cputime_t expires;
391	cputime_t incr;
392	u32 error;
393	u32 incr_error;
394};
395
396/**
397 * struct cputime - snaphsot of system and user cputime
398 * @utime: time spent in user mode
399 * @stime: time spent in system mode
400 *
401 * Gathers a generic snapshot of user and system time.
402 */
403struct cputime {
404	cputime_t utime;
405	cputime_t stime;
406};
407
408/**
409 * struct task_cputime - collected CPU time counts
410 * @utime:		time spent in user mode, in &cputime_t units
411 * @stime:		time spent in kernel mode, in &cputime_t units
412 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
413 *
414 * This is an extension of struct cputime that includes the total runtime
415 * spent by the task from the scheduler point of view.
416 *
417 * As a result, this structure groups together three kinds of CPU time
418 * that are tracked for threads and thread groups.  Most things considering
419 * CPU time want to group these counts together and treat all three
420 * of them in parallel.
421 */
422struct task_cputime {
423	cputime_t utime;
424	cputime_t stime;
425	unsigned long long sum_exec_runtime;
426};
427/* Alternate field names when used to cache expirations. */
428#define prof_exp	stime
429#define virt_exp	utime
430#define sched_exp	sum_exec_runtime
431
432#define INIT_CPUTIME	\
433	(struct task_cputime) {					\
434		.utime = 0,					\
435		.stime = 0,					\
436		.sum_exec_runtime = 0,				\
437	}
438
439/*
440 * Disable preemption until the scheduler is running.
441 * Reset by start_kernel()->sched_init()->init_idle().
442 *
443 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444 * before the scheduler is active -- see should_resched().
445 */
446#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
447
448/**
449 * struct thread_group_cputimer - thread group interval timer counts
450 * @cputime:		thread group interval timers.
451 * @running:		non-zero when there are timers running and
452 * 			@cputime receives updates.
453 * @lock:		lock for fields in this struct.
454 *
455 * This structure contains the version of task_cputime, above, that is
456 * used for thread group CPU timer calculations.
457 */
458struct thread_group_cputimer {
459	struct task_cputime cputime;
460	int running;
461	raw_spinlock_t lock;
462};
463
464#include <linux/rwsem.h>
465struct autogroup;
466
467/*
468 * NOTE! "signal_struct" does not have its own
469 * locking, because a shared signal_struct always
470 * implies a shared sighand_struct, so locking
471 * sighand_struct is always a proper superset of
472 * the locking of signal_struct.
473 */
474struct signal_struct {
475	atomic_t		sigcnt;
476	atomic_t		live;
477	int			nr_threads;
478
479	wait_queue_head_t	wait_chldexit;	/* for wait4() */
480
481	/* current thread group signal load-balancing target: */
482	struct task_struct	*curr_target;
483
484	/* shared signal handling: */
485	struct sigpending	shared_pending;
486
487	/* thread group exit support */
488	int			group_exit_code;
489	/* overloaded:
490	 * - notify group_exit_task when ->count is equal to notify_count
491	 * - everyone except group_exit_task is stopped during signal delivery
492	 *   of fatal signals, group_exit_task processes the signal.
493	 */
494	int			notify_count;
495	struct task_struct	*group_exit_task;
496
497	/* thread group stop support, overloads group_exit_code too */
498	int			group_stop_count;
499	unsigned int		flags; /* see SIGNAL_* flags below */
500
501	/*
502	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
503	 * manager, to re-parent orphan (double-forking) child processes
504	 * to this process instead of 'init'. The service manager is
505	 * able to receive SIGCHLD signals and is able to investigate
506	 * the process until it calls wait(). All children of this
507	 * process will inherit a flag if they should look for a
508	 * child_subreaper process at exit.
509	 */
510	unsigned int		is_child_subreaper:1;
511	unsigned int		has_child_subreaper:1;
512
513	/* POSIX.1b Interval Timers */
514	int			posix_timer_id;
515	struct list_head	posix_timers;
516
517	/* ITIMER_REAL timer for the process */
518	struct hrtimer real_timer;
519	struct pid *leader_pid;
520	ktime_t it_real_incr;
521
522	/*
523	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525	 * values are defined to 0 and 1 respectively
526	 */
527	struct cpu_itimer it[2];
528
529	/*
530	 * Thread group totals for process CPU timers.
531	 * See thread_group_cputimer(), et al, for details.
532	 */
533	struct thread_group_cputimer cputimer;
534
535	/* Earliest-expiration cache. */
536	struct task_cputime cputime_expires;
537
538	struct list_head cpu_timers[3];
539
540	struct pid *tty_old_pgrp;
541
542	/* boolean value for session group leader */
543	int leader;
544
545	struct tty_struct *tty; /* NULL if no tty */
546
547#ifdef CONFIG_SCHED_AUTOGROUP
548	struct autogroup *autogroup;
549#endif
550	/*
551	 * Cumulative resource counters for dead threads in the group,
552	 * and for reaped dead child processes forked by this group.
553	 * Live threads maintain their own counters and add to these
554	 * in __exit_signal, except for the group leader.
555	 */
556	cputime_t utime, stime, cutime, cstime;
557	cputime_t gtime;
558	cputime_t cgtime;
559#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560	struct cputime prev_cputime;
561#endif
562	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564	unsigned long inblock, oublock, cinblock, coublock;
565	unsigned long maxrss, cmaxrss;
566	struct task_io_accounting ioac;
567
568	/*
569	 * Cumulative ns of schedule CPU time fo dead threads in the
570	 * group, not including a zombie group leader, (This only differs
571	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
572	 * other than jiffies.)
573	 */
574	unsigned long long sum_sched_runtime;
575
576	/*
577	 * We don't bother to synchronize most readers of this at all,
578	 * because there is no reader checking a limit that actually needs
579	 * to get both rlim_cur and rlim_max atomically, and either one
580	 * alone is a single word that can safely be read normally.
581	 * getrlimit/setrlimit use task_lock(current->group_leader) to
582	 * protect this instead of the siglock, because they really
583	 * have no need to disable irqs.
584	 */
585	struct rlimit rlim[RLIM_NLIMITS];
586
587#ifdef CONFIG_BSD_PROCESS_ACCT
588	struct pacct_struct pacct;	/* per-process accounting information */
589#endif
590#ifdef CONFIG_TASKSTATS
591	struct taskstats *stats;
592#endif
593#ifdef CONFIG_AUDIT
594	unsigned audit_tty;
595	unsigned audit_tty_log_passwd;
596	struct tty_audit_buf *tty_audit_buf;
597#endif
598#ifdef CONFIG_CGROUPS
599	/*
600	 * group_rwsem prevents new tasks from entering the threadgroup and
601	 * member tasks from exiting,a more specifically, setting of
602	 * PF_EXITING.  fork and exit paths are protected with this rwsem
603	 * using threadgroup_change_begin/end().  Users which require
604	 * threadgroup to remain stable should use threadgroup_[un]lock()
605	 * which also takes care of exec path.  Currently, cgroup is the
606	 * only user.
607	 */
608	struct rw_semaphore group_rwsem;
609#endif
610
611	oom_flags_t oom_flags;
612	short oom_score_adj;		/* OOM kill score adjustment */
613	short oom_score_adj_min;	/* OOM kill score adjustment min value.
614					 * Only settable by CAP_SYS_RESOURCE. */
615
616	struct mutex cred_guard_mutex;	/* guard against foreign influences on
617					 * credential calculations
618					 * (notably. ptrace) */
619};
620
621/*
622 * Bits in flags field of signal_struct.
623 */
624#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
625#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
626#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
627#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
628/*
629 * Pending notifications to parent.
630 */
631#define SIGNAL_CLD_STOPPED	0x00000010
632#define SIGNAL_CLD_CONTINUED	0x00000020
633#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
636
637/* If true, all threads except ->group_exit_task have pending SIGKILL */
638static inline int signal_group_exit(const struct signal_struct *sig)
639{
640	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
641		(sig->group_exit_task != NULL);
642}
643
644/*
645 * Some day this will be a full-fledged user tracking system..
646 */
647struct user_struct {
648	atomic_t __count;	/* reference count */
649	atomic_t processes;	/* How many processes does this user have? */
650	atomic_t files;		/* How many open files does this user have? */
651	atomic_t sigpending;	/* How many pending signals does this user have? */
652#ifdef CONFIG_INOTIFY_USER
653	atomic_t inotify_watches; /* How many inotify watches does this user have? */
654	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
655#endif
656#ifdef CONFIG_FANOTIFY
657	atomic_t fanotify_listeners;
658#endif
659#ifdef CONFIG_EPOLL
660	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661#endif
662#ifdef CONFIG_POSIX_MQUEUE
663	/* protected by mq_lock	*/
664	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
665#endif
666	unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668#ifdef CONFIG_KEYS
669	struct key *uid_keyring;	/* UID specific keyring */
670	struct key *session_keyring;	/* UID's default session keyring */
671#endif
672
673	/* Hash table maintenance information */
674	struct hlist_node uidhash_node;
675	kuid_t uid;
676
677#ifdef CONFIG_PERF_EVENTS
678	atomic_long_t locked_vm;
679#endif
680};
681
682extern int uids_sysfs_init(void);
683
684extern struct user_struct *find_user(kuid_t);
685
686extern struct user_struct root_user;
687#define INIT_USER (&root_user)
688
689
690struct backing_dev_info;
691struct reclaim_state;
692
693#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694struct sched_info {
695	/* cumulative counters */
696	unsigned long pcount;	      /* # of times run on this cpu */
697	unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699	/* timestamps */
700	unsigned long long last_arrival,/* when we last ran on a cpu */
701			   last_queued;	/* when we were last queued to run */
702};
703#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705#ifdef CONFIG_TASK_DELAY_ACCT
706struct task_delay_info {
707	spinlock_t	lock;
708	unsigned int	flags;	/* Private per-task flags */
709
710	/* For each stat XXX, add following, aligned appropriately
711	 *
712	 * struct timespec XXX_start, XXX_end;
713	 * u64 XXX_delay;
714	 * u32 XXX_count;
715	 *
716	 * Atomicity of updates to XXX_delay, XXX_count protected by
717	 * single lock above (split into XXX_lock if contention is an issue).
718	 */
719
720	/*
721	 * XXX_count is incremented on every XXX operation, the delay
722	 * associated with the operation is added to XXX_delay.
723	 * XXX_delay contains the accumulated delay time in nanoseconds.
724	 */
725	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
726	u64 blkio_delay;	/* wait for sync block io completion */
727	u64 swapin_delay;	/* wait for swapin block io completion */
728	u32 blkio_count;	/* total count of the number of sync block */
729				/* io operations performed */
730	u32 swapin_count;	/* total count of the number of swapin block */
731				/* io operations performed */
732
733	struct timespec freepages_start, freepages_end;
734	u64 freepages_delay;	/* wait for memory reclaim */
735	u32 freepages_count;	/* total count of memory reclaim */
736};
737#endif	/* CONFIG_TASK_DELAY_ACCT */
738
739static inline int sched_info_on(void)
740{
741#ifdef CONFIG_SCHEDSTATS
742	return 1;
743#elif defined(CONFIG_TASK_DELAY_ACCT)
744	extern int delayacct_on;
745	return delayacct_on;
746#else
747	return 0;
748#endif
749}
750
751enum cpu_idle_type {
752	CPU_IDLE,
753	CPU_NOT_IDLE,
754	CPU_NEWLY_IDLE,
755	CPU_MAX_IDLE_TYPES
756};
757
758/*
759 * Increase resolution of cpu_power calculations
760 */
761#define SCHED_POWER_SHIFT	10
762#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
763
764/*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767#ifdef CONFIG_SMP
768#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
769#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
770#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
771#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
772#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
773#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
774#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
775#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
776#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
777#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
778#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
779#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
780
781extern int __weak arch_sd_sibiling_asym_packing(void);
782
783struct sched_domain_attr {
784	int relax_domain_level;
785};
786
787#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
788	.relax_domain_level = -1,			\
789}
790
791extern int sched_domain_level_max;
792
793struct sched_group;
794
795struct sched_domain {
796	/* These fields must be setup */
797	struct sched_domain *parent;	/* top domain must be null terminated */
798	struct sched_domain *child;	/* bottom domain must be null terminated */
799	struct sched_group *groups;	/* the balancing groups of the domain */
800	unsigned long min_interval;	/* Minimum balance interval ms */
801	unsigned long max_interval;	/* Maximum balance interval ms */
802	unsigned int busy_factor;	/* less balancing by factor if busy */
803	unsigned int imbalance_pct;	/* No balance until over watermark */
804	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
805	unsigned int busy_idx;
806	unsigned int idle_idx;
807	unsigned int newidle_idx;
808	unsigned int wake_idx;
809	unsigned int forkexec_idx;
810	unsigned int smt_gain;
811
812	int nohz_idle;			/* NOHZ IDLE status */
813	int flags;			/* See SD_* */
814	int level;
815
816	/* Runtime fields. */
817	unsigned long last_balance;	/* init to jiffies. units in jiffies */
818	unsigned int balance_interval;	/* initialise to 1. units in ms. */
819	unsigned int nr_balance_failed; /* initialise to 0 */
820
821	u64 last_update;
822
823#ifdef CONFIG_SCHEDSTATS
824	/* load_balance() stats */
825	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
826	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
827	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
828	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
829	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
830	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
831	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
832	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
833
834	/* Active load balancing */
835	unsigned int alb_count;
836	unsigned int alb_failed;
837	unsigned int alb_pushed;
838
839	/* SD_BALANCE_EXEC stats */
840	unsigned int sbe_count;
841	unsigned int sbe_balanced;
842	unsigned int sbe_pushed;
843
844	/* SD_BALANCE_FORK stats */
845	unsigned int sbf_count;
846	unsigned int sbf_balanced;
847	unsigned int sbf_pushed;
848
849	/* try_to_wake_up() stats */
850	unsigned int ttwu_wake_remote;
851	unsigned int ttwu_move_affine;
852	unsigned int ttwu_move_balance;
853#endif
854#ifdef CONFIG_SCHED_DEBUG
855	char *name;
856#endif
857	union {
858		void *private;		/* used during construction */
859		struct rcu_head rcu;	/* used during destruction */
860	};
861
862	unsigned int span_weight;
863	/*
864	 * Span of all CPUs in this domain.
865	 *
866	 * NOTE: this field is variable length. (Allocated dynamically
867	 * by attaching extra space to the end of the structure,
868	 * depending on how many CPUs the kernel has booted up with)
869	 */
870	unsigned long span[0];
871};
872
873static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
874{
875	return to_cpumask(sd->span);
876}
877
878extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
879				    struct sched_domain_attr *dattr_new);
880
881/* Allocate an array of sched domains, for partition_sched_domains(). */
882cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
883void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
884
885bool cpus_share_cache(int this_cpu, int that_cpu);
886
887#else /* CONFIG_SMP */
888
889struct sched_domain_attr;
890
891static inline void
892partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
893			struct sched_domain_attr *dattr_new)
894{
895}
896
897static inline bool cpus_share_cache(int this_cpu, int that_cpu)
898{
899	return true;
900}
901
902#endif	/* !CONFIG_SMP */
903
904
905struct io_context;			/* See blkdev.h */
906
907
908#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
909extern void prefetch_stack(struct task_struct *t);
910#else
911static inline void prefetch_stack(struct task_struct *t) { }
912#endif
913
914struct audit_context;		/* See audit.c */
915struct mempolicy;
916struct pipe_inode_info;
917struct uts_namespace;
918
919struct load_weight {
920	unsigned long weight, inv_weight;
921};
922
923struct sched_avg {
924	/*
925	 * These sums represent an infinite geometric series and so are bound
926	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
927	 * choices of y < 1-2^(-32)*1024.
928	 */
929	u32 runnable_avg_sum, runnable_avg_period;
930	u64 last_runnable_update;
931	s64 decay_count;
932	unsigned long load_avg_contrib;
933};
934
935#ifdef CONFIG_SCHEDSTATS
936struct sched_statistics {
937	u64			wait_start;
938	u64			wait_max;
939	u64			wait_count;
940	u64			wait_sum;
941	u64			iowait_count;
942	u64			iowait_sum;
943
944	u64			sleep_start;
945	u64			sleep_max;
946	s64			sum_sleep_runtime;
947
948	u64			block_start;
949	u64			block_max;
950	u64			exec_max;
951	u64			slice_max;
952
953	u64			nr_migrations_cold;
954	u64			nr_failed_migrations_affine;
955	u64			nr_failed_migrations_running;
956	u64			nr_failed_migrations_hot;
957	u64			nr_forced_migrations;
958
959	u64			nr_wakeups;
960	u64			nr_wakeups_sync;
961	u64			nr_wakeups_migrate;
962	u64			nr_wakeups_local;
963	u64			nr_wakeups_remote;
964	u64			nr_wakeups_affine;
965	u64			nr_wakeups_affine_attempts;
966	u64			nr_wakeups_passive;
967	u64			nr_wakeups_idle;
968};
969#endif
970
971struct sched_entity {
972	struct load_weight	load;		/* for load-balancing */
973	struct rb_node		run_node;
974	struct list_head	group_node;
975	unsigned int		on_rq;
976
977	u64			exec_start;
978	u64			sum_exec_runtime;
979	u64			vruntime;
980	u64			prev_sum_exec_runtime;
981
982	u64			nr_migrations;
983
984#ifdef CONFIG_SCHEDSTATS
985	struct sched_statistics statistics;
986#endif
987
988#ifdef CONFIG_FAIR_GROUP_SCHED
989	struct sched_entity	*parent;
990	/* rq on which this entity is (to be) queued: */
991	struct cfs_rq		*cfs_rq;
992	/* rq "owned" by this entity/group: */
993	struct cfs_rq		*my_q;
994#endif
995
996#ifdef CONFIG_SMP
997	/* Per-entity load-tracking */
998	struct sched_avg	avg;
999#endif
1000};
1001
1002struct sched_rt_entity {
1003	struct list_head run_list;
1004	unsigned long timeout;
1005	unsigned long watchdog_stamp;
1006	unsigned int time_slice;
1007
1008	struct sched_rt_entity *back;
1009#ifdef CONFIG_RT_GROUP_SCHED
1010	struct sched_rt_entity	*parent;
1011	/* rq on which this entity is (to be) queued: */
1012	struct rt_rq		*rt_rq;
1013	/* rq "owned" by this entity/group: */
1014	struct rt_rq		*my_q;
1015#endif
1016};
1017
1018
1019struct rcu_node;
1020
1021enum perf_event_task_context {
1022	perf_invalid_context = -1,
1023	perf_hw_context = 0,
1024	perf_sw_context,
1025	perf_nr_task_contexts,
1026};
1027
1028struct task_struct {
1029	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1030	void *stack;
1031	atomic_t usage;
1032	unsigned int flags;	/* per process flags, defined below */
1033	unsigned int ptrace;
1034
1035#ifdef CONFIG_SMP
1036	struct llist_node wake_entry;
1037	int on_cpu;
1038#endif
1039	int on_rq;
1040
1041	int prio, static_prio, normal_prio;
1042	unsigned int rt_priority;
1043	const struct sched_class *sched_class;
1044	struct sched_entity se;
1045	struct sched_rt_entity rt;
1046#ifdef CONFIG_CGROUP_SCHED
1047	struct task_group *sched_task_group;
1048#endif
1049
1050#ifdef CONFIG_PREEMPT_NOTIFIERS
1051	/* list of struct preempt_notifier: */
1052	struct hlist_head preempt_notifiers;
1053#endif
1054
1055	/*
1056	 * fpu_counter contains the number of consecutive context switches
1057	 * that the FPU is used. If this is over a threshold, the lazy fpu
1058	 * saving becomes unlazy to save the trap. This is an unsigned char
1059	 * so that after 256 times the counter wraps and the behavior turns
1060	 * lazy again; this to deal with bursty apps that only use FPU for
1061	 * a short time
1062	 */
1063	unsigned char fpu_counter;
1064#ifdef CONFIG_BLK_DEV_IO_TRACE
1065	unsigned int btrace_seq;
1066#endif
1067
1068	unsigned int policy;
1069	int nr_cpus_allowed;
1070	cpumask_t cpus_allowed;
1071
1072#ifdef CONFIG_PREEMPT_RCU
1073	int rcu_read_lock_nesting;
1074	char rcu_read_unlock_special;
1075	struct list_head rcu_node_entry;
1076#endif /* #ifdef CONFIG_PREEMPT_RCU */
1077#ifdef CONFIG_TREE_PREEMPT_RCU
1078	struct rcu_node *rcu_blocked_node;
1079#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1080#ifdef CONFIG_RCU_BOOST
1081	struct rt_mutex *rcu_boost_mutex;
1082#endif /* #ifdef CONFIG_RCU_BOOST */
1083
1084#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1085	struct sched_info sched_info;
1086#endif
1087
1088	struct list_head tasks;
1089#ifdef CONFIG_SMP
1090	struct plist_node pushable_tasks;
1091#endif
1092
1093	struct mm_struct *mm, *active_mm;
1094#ifdef CONFIG_COMPAT_BRK
1095	unsigned brk_randomized:1;
1096#endif
1097#if defined(SPLIT_RSS_COUNTING)
1098	struct task_rss_stat	rss_stat;
1099#endif
1100/* task state */
1101	int exit_state;
1102	int exit_code, exit_signal;
1103	int pdeath_signal;  /*  The signal sent when the parent dies  */
1104	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1105
1106	/* Used for emulating ABI behavior of previous Linux versions */
1107	unsigned int personality;
1108
1109	unsigned did_exec:1;
1110	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1111				 * execve */
1112	unsigned in_iowait:1;
1113
1114	/* task may not gain privileges */
1115	unsigned no_new_privs:1;
1116
1117	/* Revert to default priority/policy when forking */
1118	unsigned sched_reset_on_fork:1;
1119	unsigned sched_contributes_to_load:1;
1120
1121	pid_t pid;
1122	pid_t tgid;
1123
1124#ifdef CONFIG_CC_STACKPROTECTOR
1125	/* Canary value for the -fstack-protector gcc feature */
1126	unsigned long stack_canary;
1127#endif
1128	/*
1129	 * pointers to (original) parent process, youngest child, younger sibling,
1130	 * older sibling, respectively.  (p->father can be replaced with
1131	 * p->real_parent->pid)
1132	 */
1133	struct task_struct __rcu *real_parent; /* real parent process */
1134	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1135	/*
1136	 * children/sibling forms the list of my natural children
1137	 */
1138	struct list_head children;	/* list of my children */
1139	struct list_head sibling;	/* linkage in my parent's children list */
1140	struct task_struct *group_leader;	/* threadgroup leader */
1141
1142	/*
1143	 * ptraced is the list of tasks this task is using ptrace on.
1144	 * This includes both natural children and PTRACE_ATTACH targets.
1145	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1146	 */
1147	struct list_head ptraced;
1148	struct list_head ptrace_entry;
1149
1150	/* PID/PID hash table linkage. */
1151	struct pid_link pids[PIDTYPE_MAX];
1152	struct list_head thread_group;
1153
1154	struct completion *vfork_done;		/* for vfork() */
1155	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1156	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1157
1158	cputime_t utime, stime, utimescaled, stimescaled;
1159	cputime_t gtime;
1160#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1161	struct cputime prev_cputime;
1162#endif
1163#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1164	seqlock_t vtime_seqlock;
1165	unsigned long long vtime_snap;
1166	enum {
1167		VTIME_SLEEPING = 0,
1168		VTIME_USER,
1169		VTIME_SYS,
1170	} vtime_snap_whence;
1171#endif
1172	unsigned long nvcsw, nivcsw; /* context switch counts */
1173	struct timespec start_time; 		/* monotonic time */
1174	struct timespec real_start_time;	/* boot based time */
1175/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1176	unsigned long min_flt, maj_flt;
1177
1178	struct task_cputime cputime_expires;
1179	struct list_head cpu_timers[3];
1180
1181/* process credentials */
1182	const struct cred __rcu *real_cred; /* objective and real subjective task
1183					 * credentials (COW) */
1184	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1185					 * credentials (COW) */
1186	char comm[TASK_COMM_LEN]; /* executable name excluding path
1187				     - access with [gs]et_task_comm (which lock
1188				       it with task_lock())
1189				     - initialized normally by setup_new_exec */
1190/* file system info */
1191	int link_count, total_link_count;
1192#ifdef CONFIG_SYSVIPC
1193/* ipc stuff */
1194	struct sysv_sem sysvsem;
1195#endif
1196#ifdef CONFIG_DETECT_HUNG_TASK
1197/* hung task detection */
1198	unsigned long last_switch_count;
1199#endif
1200/* CPU-specific state of this task */
1201	struct thread_struct thread;
1202/* filesystem information */
1203	struct fs_struct *fs;
1204/* open file information */
1205	struct files_struct *files;
1206/* namespaces */
1207	struct nsproxy *nsproxy;
1208/* signal handlers */
1209	struct signal_struct *signal;
1210	struct sighand_struct *sighand;
1211
1212	sigset_t blocked, real_blocked;
1213	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1214	struct sigpending pending;
1215
1216	unsigned long sas_ss_sp;
1217	size_t sas_ss_size;
1218	int (*notifier)(void *priv);
1219	void *notifier_data;
1220	sigset_t *notifier_mask;
1221	struct callback_head *task_works;
1222
1223	struct audit_context *audit_context;
1224#ifdef CONFIG_AUDITSYSCALL
1225	kuid_t loginuid;
1226	unsigned int sessionid;
1227#endif
1228	struct seccomp seccomp;
1229
1230/* Thread group tracking */
1231   	u32 parent_exec_id;
1232   	u32 self_exec_id;
1233/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1234 * mempolicy */
1235	spinlock_t alloc_lock;
1236
1237	/* Protection of the PI data structures: */
1238	raw_spinlock_t pi_lock;
1239
1240#ifdef CONFIG_RT_MUTEXES
1241	/* PI waiters blocked on a rt_mutex held by this task */
1242	struct plist_head pi_waiters;
1243	/* Deadlock detection and priority inheritance handling */
1244	struct rt_mutex_waiter *pi_blocked_on;
1245#endif
1246
1247#ifdef CONFIG_DEBUG_MUTEXES
1248	/* mutex deadlock detection */
1249	struct mutex_waiter *blocked_on;
1250#endif
1251#ifdef CONFIG_TRACE_IRQFLAGS
1252	unsigned int irq_events;
1253	unsigned long hardirq_enable_ip;
1254	unsigned long hardirq_disable_ip;
1255	unsigned int hardirq_enable_event;
1256	unsigned int hardirq_disable_event;
1257	int hardirqs_enabled;
1258	int hardirq_context;
1259	unsigned long softirq_disable_ip;
1260	unsigned long softirq_enable_ip;
1261	unsigned int softirq_disable_event;
1262	unsigned int softirq_enable_event;
1263	int softirqs_enabled;
1264	int softirq_context;
1265#endif
1266#ifdef CONFIG_LOCKDEP
1267# define MAX_LOCK_DEPTH 48UL
1268	u64 curr_chain_key;
1269	int lockdep_depth;
1270	unsigned int lockdep_recursion;
1271	struct held_lock held_locks[MAX_LOCK_DEPTH];
1272	gfp_t lockdep_reclaim_gfp;
1273#endif
1274
1275/* journalling filesystem info */
1276	void *journal_info;
1277
1278/* stacked block device info */
1279	struct bio_list *bio_list;
1280
1281#ifdef CONFIG_BLOCK
1282/* stack plugging */
1283	struct blk_plug *plug;
1284#endif
1285
1286/* VM state */
1287	struct reclaim_state *reclaim_state;
1288
1289	struct backing_dev_info *backing_dev_info;
1290
1291	struct io_context *io_context;
1292
1293	unsigned long ptrace_message;
1294	siginfo_t *last_siginfo; /* For ptrace use.  */
1295	struct task_io_accounting ioac;
1296#if defined(CONFIG_TASK_XACCT)
1297	u64 acct_rss_mem1;	/* accumulated rss usage */
1298	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1299	cputime_t acct_timexpd;	/* stime + utime since last update */
1300#endif
1301#ifdef CONFIG_CPUSETS
1302	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1303	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1304	int cpuset_mem_spread_rotor;
1305	int cpuset_slab_spread_rotor;
1306#endif
1307#ifdef CONFIG_CGROUPS
1308	/* Control Group info protected by css_set_lock */
1309	struct css_set __rcu *cgroups;
1310	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1311	struct list_head cg_list;
1312#endif
1313#ifdef CONFIG_FUTEX
1314	struct robust_list_head __user *robust_list;
1315#ifdef CONFIG_COMPAT
1316	struct compat_robust_list_head __user *compat_robust_list;
1317#endif
1318	struct list_head pi_state_list;
1319	struct futex_pi_state *pi_state_cache;
1320#endif
1321#ifdef CONFIG_PERF_EVENTS
1322	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1323	struct mutex perf_event_mutex;
1324	struct list_head perf_event_list;
1325#endif
1326#ifdef CONFIG_NUMA
1327	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1328	short il_next;
1329	short pref_node_fork;
1330#endif
1331#ifdef CONFIG_NUMA_BALANCING
1332	int numa_scan_seq;
1333	int numa_migrate_seq;
1334	unsigned int numa_scan_period;
1335	u64 node_stamp;			/* migration stamp  */
1336	struct callback_head numa_work;
1337#endif /* CONFIG_NUMA_BALANCING */
1338
1339	struct rcu_head rcu;
1340
1341	/*
1342	 * cache last used pipe for splice
1343	 */
1344	struct pipe_inode_info *splice_pipe;
1345
1346	struct page_frag task_frag;
1347
1348#ifdef	CONFIG_TASK_DELAY_ACCT
1349	struct task_delay_info *delays;
1350#endif
1351#ifdef CONFIG_FAULT_INJECTION
1352	int make_it_fail;
1353#endif
1354	/*
1355	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1356	 * balance_dirty_pages() for some dirty throttling pause
1357	 */
1358	int nr_dirtied;
1359	int nr_dirtied_pause;
1360	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1361
1362#ifdef CONFIG_LATENCYTOP
1363	int latency_record_count;
1364	struct latency_record latency_record[LT_SAVECOUNT];
1365#endif
1366	/*
1367	 * time slack values; these are used to round up poll() and
1368	 * select() etc timeout values. These are in nanoseconds.
1369	 */
1370	unsigned long timer_slack_ns;
1371	unsigned long default_timer_slack_ns;
1372
1373#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1374	/* Index of current stored address in ret_stack */
1375	int curr_ret_stack;
1376	/* Stack of return addresses for return function tracing */
1377	struct ftrace_ret_stack	*ret_stack;
1378	/* time stamp for last schedule */
1379	unsigned long long ftrace_timestamp;
1380	/*
1381	 * Number of functions that haven't been traced
1382	 * because of depth overrun.
1383	 */
1384	atomic_t trace_overrun;
1385	/* Pause for the tracing */
1386	atomic_t tracing_graph_pause;
1387#endif
1388#ifdef CONFIG_TRACING
1389	/* state flags for use by tracers */
1390	unsigned long trace;
1391	/* bitmask and counter of trace recursion */
1392	unsigned long trace_recursion;
1393#endif /* CONFIG_TRACING */
1394#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1395	struct memcg_batch_info {
1396		int do_batch;	/* incremented when batch uncharge started */
1397		struct mem_cgroup *memcg; /* target memcg of uncharge */
1398		unsigned long nr_pages;	/* uncharged usage */
1399		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1400	} memcg_batch;
1401	unsigned int memcg_kmem_skip_account;
1402#endif
1403#ifdef CONFIG_UPROBES
1404	struct uprobe_task *utask;
1405#endif
1406#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1407	unsigned int	sequential_io;
1408	unsigned int	sequential_io_avg;
1409#endif
1410};
1411
1412/* Future-safe accessor for struct task_struct's cpus_allowed. */
1413#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1414
1415#ifdef CONFIG_NUMA_BALANCING
1416extern void task_numa_fault(int node, int pages, bool migrated);
1417extern void set_numabalancing_state(bool enabled);
1418#else
1419static inline void task_numa_fault(int node, int pages, bool migrated)
1420{
1421}
1422static inline void set_numabalancing_state(bool enabled)
1423{
1424}
1425#endif
1426
1427static inline struct pid *task_pid(struct task_struct *task)
1428{
1429	return task->pids[PIDTYPE_PID].pid;
1430}
1431
1432static inline struct pid *task_tgid(struct task_struct *task)
1433{
1434	return task->group_leader->pids[PIDTYPE_PID].pid;
1435}
1436
1437/*
1438 * Without tasklist or rcu lock it is not safe to dereference
1439 * the result of task_pgrp/task_session even if task == current,
1440 * we can race with another thread doing sys_setsid/sys_setpgid.
1441 */
1442static inline struct pid *task_pgrp(struct task_struct *task)
1443{
1444	return task->group_leader->pids[PIDTYPE_PGID].pid;
1445}
1446
1447static inline struct pid *task_session(struct task_struct *task)
1448{
1449	return task->group_leader->pids[PIDTYPE_SID].pid;
1450}
1451
1452struct pid_namespace;
1453
1454/*
1455 * the helpers to get the task's different pids as they are seen
1456 * from various namespaces
1457 *
1458 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1459 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1460 *                     current.
1461 * task_xid_nr_ns()  : id seen from the ns specified;
1462 *
1463 * set_task_vxid()   : assigns a virtual id to a task;
1464 *
1465 * see also pid_nr() etc in include/linux/pid.h
1466 */
1467pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1468			struct pid_namespace *ns);
1469
1470static inline pid_t task_pid_nr(struct task_struct *tsk)
1471{
1472	return tsk->pid;
1473}
1474
1475static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1476					struct pid_namespace *ns)
1477{
1478	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1479}
1480
1481static inline pid_t task_pid_vnr(struct task_struct *tsk)
1482{
1483	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1484}
1485
1486
1487static inline pid_t task_tgid_nr(struct task_struct *tsk)
1488{
1489	return tsk->tgid;
1490}
1491
1492pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1493
1494static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1495{
1496	return pid_vnr(task_tgid(tsk));
1497}
1498
1499
1500static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1501					struct pid_namespace *ns)
1502{
1503	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1504}
1505
1506static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1507{
1508	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1509}
1510
1511
1512static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1513					struct pid_namespace *ns)
1514{
1515	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1516}
1517
1518static inline pid_t task_session_vnr(struct task_struct *tsk)
1519{
1520	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1521}
1522
1523/* obsolete, do not use */
1524static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1525{
1526	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1527}
1528
1529/**
1530 * pid_alive - check that a task structure is not stale
1531 * @p: Task structure to be checked.
1532 *
1533 * Test if a process is not yet dead (at most zombie state)
1534 * If pid_alive fails, then pointers within the task structure
1535 * can be stale and must not be dereferenced.
1536 */
1537static inline int pid_alive(struct task_struct *p)
1538{
1539	return p->pids[PIDTYPE_PID].pid != NULL;
1540}
1541
1542/**
1543 * is_global_init - check if a task structure is init
1544 * @tsk: Task structure to be checked.
1545 *
1546 * Check if a task structure is the first user space task the kernel created.
1547 */
1548static inline int is_global_init(struct task_struct *tsk)
1549{
1550	return tsk->pid == 1;
1551}
1552
1553extern struct pid *cad_pid;
1554
1555extern void free_task(struct task_struct *tsk);
1556#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1557
1558extern void __put_task_struct(struct task_struct *t);
1559
1560static inline void put_task_struct(struct task_struct *t)
1561{
1562	if (atomic_dec_and_test(&t->usage))
1563		__put_task_struct(t);
1564}
1565
1566#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1567extern void task_cputime(struct task_struct *t,
1568			 cputime_t *utime, cputime_t *stime);
1569extern void task_cputime_scaled(struct task_struct *t,
1570				cputime_t *utimescaled, cputime_t *stimescaled);
1571extern cputime_t task_gtime(struct task_struct *t);
1572#else
1573static inline void task_cputime(struct task_struct *t,
1574				cputime_t *utime, cputime_t *stime)
1575{
1576	if (utime)
1577		*utime = t->utime;
1578	if (stime)
1579		*stime = t->stime;
1580}
1581
1582static inline void task_cputime_scaled(struct task_struct *t,
1583				       cputime_t *utimescaled,
1584				       cputime_t *stimescaled)
1585{
1586	if (utimescaled)
1587		*utimescaled = t->utimescaled;
1588	if (stimescaled)
1589		*stimescaled = t->stimescaled;
1590}
1591
1592static inline cputime_t task_gtime(struct task_struct *t)
1593{
1594	return t->gtime;
1595}
1596#endif
1597extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1598extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1599
1600/*
1601 * Per process flags
1602 */
1603#define PF_EXITING	0x00000004	/* getting shut down */
1604#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1605#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1606#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1607#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1608#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1609#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1610#define PF_DUMPCORE	0x00000200	/* dumped core */
1611#define PF_SIGNALED	0x00000400	/* killed by a signal */
1612#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1613#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1614#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1615#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1616#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1617#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1618#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1619#define PF_KSWAPD	0x00040000	/* I am kswapd */
1620#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1621#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1622#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1623#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1624#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1625#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1626#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1627#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1628#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1629#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1630#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1631#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1632#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1633
1634/*
1635 * Only the _current_ task can read/write to tsk->flags, but other
1636 * tasks can access tsk->flags in readonly mode for example
1637 * with tsk_used_math (like during threaded core dumping).
1638 * There is however an exception to this rule during ptrace
1639 * or during fork: the ptracer task is allowed to write to the
1640 * child->flags of its traced child (same goes for fork, the parent
1641 * can write to the child->flags), because we're guaranteed the
1642 * child is not running and in turn not changing child->flags
1643 * at the same time the parent does it.
1644 */
1645#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1646#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1647#define clear_used_math() clear_stopped_child_used_math(current)
1648#define set_used_math() set_stopped_child_used_math(current)
1649#define conditional_stopped_child_used_math(condition, child) \
1650	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1651#define conditional_used_math(condition) \
1652	conditional_stopped_child_used_math(condition, current)
1653#define copy_to_stopped_child_used_math(child) \
1654	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1655/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1656#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1657#define used_math() tsk_used_math(current)
1658
1659/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1660static inline gfp_t memalloc_noio_flags(gfp_t flags)
1661{
1662	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1663		flags &= ~__GFP_IO;
1664	return flags;
1665}
1666
1667static inline unsigned int memalloc_noio_save(void)
1668{
1669	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1670	current->flags |= PF_MEMALLOC_NOIO;
1671	return flags;
1672}
1673
1674static inline void memalloc_noio_restore(unsigned int flags)
1675{
1676	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1677}
1678
1679/*
1680 * task->jobctl flags
1681 */
1682#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1683
1684#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1685#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1686#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1687#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1688#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1689#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1690#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1691
1692#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1693#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1694#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1695#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1696#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1697#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1698#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1699
1700#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1701#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1702
1703extern bool task_set_jobctl_pending(struct task_struct *task,
1704				    unsigned int mask);
1705extern void task_clear_jobctl_trapping(struct task_struct *task);
1706extern void task_clear_jobctl_pending(struct task_struct *task,
1707				      unsigned int mask);
1708
1709#ifdef CONFIG_PREEMPT_RCU
1710
1711#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1712#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1713
1714static inline void rcu_copy_process(struct task_struct *p)
1715{
1716	p->rcu_read_lock_nesting = 0;
1717	p->rcu_read_unlock_special = 0;
1718#ifdef CONFIG_TREE_PREEMPT_RCU
1719	p->rcu_blocked_node = NULL;
1720#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1721#ifdef CONFIG_RCU_BOOST
1722	p->rcu_boost_mutex = NULL;
1723#endif /* #ifdef CONFIG_RCU_BOOST */
1724	INIT_LIST_HEAD(&p->rcu_node_entry);
1725}
1726
1727#else
1728
1729static inline void rcu_copy_process(struct task_struct *p)
1730{
1731}
1732
1733#endif
1734
1735static inline void tsk_restore_flags(struct task_struct *task,
1736				unsigned long orig_flags, unsigned long flags)
1737{
1738	task->flags &= ~flags;
1739	task->flags |= orig_flags & flags;
1740}
1741
1742#ifdef CONFIG_SMP
1743extern void do_set_cpus_allowed(struct task_struct *p,
1744			       const struct cpumask *new_mask);
1745
1746extern int set_cpus_allowed_ptr(struct task_struct *p,
1747				const struct cpumask *new_mask);
1748#else
1749static inline void do_set_cpus_allowed(struct task_struct *p,
1750				      const struct cpumask *new_mask)
1751{
1752}
1753static inline int set_cpus_allowed_ptr(struct task_struct *p,
1754				       const struct cpumask *new_mask)
1755{
1756	if (!cpumask_test_cpu(0, new_mask))
1757		return -EINVAL;
1758	return 0;
1759}
1760#endif
1761
1762#ifdef CONFIG_NO_HZ_COMMON
1763void calc_load_enter_idle(void);
1764void calc_load_exit_idle(void);
1765#else
1766static inline void calc_load_enter_idle(void) { }
1767static inline void calc_load_exit_idle(void) { }
1768#endif /* CONFIG_NO_HZ_COMMON */
1769
1770#ifndef CONFIG_CPUMASK_OFFSTACK
1771static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1772{
1773	return set_cpus_allowed_ptr(p, &new_mask);
1774}
1775#endif
1776
1777/*
1778 * Do not use outside of architecture code which knows its limitations.
1779 *
1780 * sched_clock() has no promise of monotonicity or bounded drift between
1781 * CPUs, use (which you should not) requires disabling IRQs.
1782 *
1783 * Please use one of the three interfaces below.
1784 */
1785extern unsigned long long notrace sched_clock(void);
1786/*
1787 * See the comment in kernel/sched/clock.c
1788 */
1789extern u64 cpu_clock(int cpu);
1790extern u64 local_clock(void);
1791extern u64 sched_clock_cpu(int cpu);
1792
1793
1794extern void sched_clock_init(void);
1795
1796#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1797static inline void sched_clock_tick(void)
1798{
1799}
1800
1801static inline void sched_clock_idle_sleep_event(void)
1802{
1803}
1804
1805static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1806{
1807}
1808#else
1809/*
1810 * Architectures can set this to 1 if they have specified
1811 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1812 * but then during bootup it turns out that sched_clock()
1813 * is reliable after all:
1814 */
1815extern int sched_clock_stable;
1816
1817extern void sched_clock_tick(void);
1818extern void sched_clock_idle_sleep_event(void);
1819extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1820#endif
1821
1822#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1823/*
1824 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1825 * The reason for this explicit opt-in is not to have perf penalty with
1826 * slow sched_clocks.
1827 */
1828extern void enable_sched_clock_irqtime(void);
1829extern void disable_sched_clock_irqtime(void);
1830#else
1831static inline void enable_sched_clock_irqtime(void) {}
1832static inline void disable_sched_clock_irqtime(void) {}
1833#endif
1834
1835extern unsigned long long
1836task_sched_runtime(struct task_struct *task);
1837
1838/* sched_exec is called by processes performing an exec */
1839#ifdef CONFIG_SMP
1840extern void sched_exec(void);
1841#else
1842#define sched_exec()   {}
1843#endif
1844
1845extern void sched_clock_idle_sleep_event(void);
1846extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1847
1848#ifdef CONFIG_HOTPLUG_CPU
1849extern void idle_task_exit(void);
1850#else
1851static inline void idle_task_exit(void) {}
1852#endif
1853
1854#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1855extern void wake_up_nohz_cpu(int cpu);
1856#else
1857static inline void wake_up_nohz_cpu(int cpu) { }
1858#endif
1859
1860#ifdef CONFIG_NO_HZ_FULL
1861extern bool sched_can_stop_tick(void);
1862extern u64 scheduler_tick_max_deferment(void);
1863#else
1864static inline bool sched_can_stop_tick(void) { return false; }
1865#endif
1866
1867#ifdef CONFIG_SCHED_AUTOGROUP
1868extern void sched_autogroup_create_attach(struct task_struct *p);
1869extern void sched_autogroup_detach(struct task_struct *p);
1870extern void sched_autogroup_fork(struct signal_struct *sig);
1871extern void sched_autogroup_exit(struct signal_struct *sig);
1872#ifdef CONFIG_PROC_FS
1873extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1874extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1875#endif
1876#else
1877static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1878static inline void sched_autogroup_detach(struct task_struct *p) { }
1879static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1880static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1881#endif
1882
1883extern bool yield_to(struct task_struct *p, bool preempt);
1884extern void set_user_nice(struct task_struct *p, long nice);
1885extern int task_prio(const struct task_struct *p);
1886extern int task_nice(const struct task_struct *p);
1887extern int can_nice(const struct task_struct *p, const int nice);
1888extern int task_curr(const struct task_struct *p);
1889extern int idle_cpu(int cpu);
1890extern int sched_setscheduler(struct task_struct *, int,
1891			      const struct sched_param *);
1892extern int sched_setscheduler_nocheck(struct task_struct *, int,
1893				      const struct sched_param *);
1894extern struct task_struct *idle_task(int cpu);
1895/**
1896 * is_idle_task - is the specified task an idle task?
1897 * @p: the task in question.
1898 */
1899static inline bool is_idle_task(const struct task_struct *p)
1900{
1901	return p->pid == 0;
1902}
1903extern struct task_struct *curr_task(int cpu);
1904extern void set_curr_task(int cpu, struct task_struct *p);
1905
1906void yield(void);
1907
1908/*
1909 * The default (Linux) execution domain.
1910 */
1911extern struct exec_domain	default_exec_domain;
1912
1913union thread_union {
1914	struct thread_info thread_info;
1915	unsigned long stack[THREAD_SIZE/sizeof(long)];
1916};
1917
1918#ifndef __HAVE_ARCH_KSTACK_END
1919static inline int kstack_end(void *addr)
1920{
1921	/* Reliable end of stack detection:
1922	 * Some APM bios versions misalign the stack
1923	 */
1924	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1925}
1926#endif
1927
1928extern union thread_union init_thread_union;
1929extern struct task_struct init_task;
1930
1931extern struct   mm_struct init_mm;
1932
1933extern struct pid_namespace init_pid_ns;
1934
1935/*
1936 * find a task by one of its numerical ids
1937 *
1938 * find_task_by_pid_ns():
1939 *      finds a task by its pid in the specified namespace
1940 * find_task_by_vpid():
1941 *      finds a task by its virtual pid
1942 *
1943 * see also find_vpid() etc in include/linux/pid.h
1944 */
1945
1946extern struct task_struct *find_task_by_vpid(pid_t nr);
1947extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1948		struct pid_namespace *ns);
1949
1950/* per-UID process charging. */
1951extern struct user_struct * alloc_uid(kuid_t);
1952static inline struct user_struct *get_uid(struct user_struct *u)
1953{
1954	atomic_inc(&u->__count);
1955	return u;
1956}
1957extern void free_uid(struct user_struct *);
1958
1959#include <asm/current.h>
1960
1961extern void xtime_update(unsigned long ticks);
1962
1963extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1964extern int wake_up_process(struct task_struct *tsk);
1965extern void wake_up_new_task(struct task_struct *tsk);
1966#ifdef CONFIG_SMP
1967 extern void kick_process(struct task_struct *tsk);
1968#else
1969 static inline void kick_process(struct task_struct *tsk) { }
1970#endif
1971extern void sched_fork(struct task_struct *p);
1972extern void sched_dead(struct task_struct *p);
1973
1974extern void proc_caches_init(void);
1975extern void flush_signals(struct task_struct *);
1976extern void __flush_signals(struct task_struct *);
1977extern void ignore_signals(struct task_struct *);
1978extern void flush_signal_handlers(struct task_struct *, int force_default);
1979extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1980
1981static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1982{
1983	unsigned long flags;
1984	int ret;
1985
1986	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1987	ret = dequeue_signal(tsk, mask, info);
1988	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1989
1990	return ret;
1991}
1992
1993extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1994			      sigset_t *mask);
1995extern void unblock_all_signals(void);
1996extern void release_task(struct task_struct * p);
1997extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1998extern int force_sigsegv(int, struct task_struct *);
1999extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2000extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2001extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2002extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2003				const struct cred *, u32);
2004extern int kill_pgrp(struct pid *pid, int sig, int priv);
2005extern int kill_pid(struct pid *pid, int sig, int priv);
2006extern int kill_proc_info(int, struct siginfo *, pid_t);
2007extern __must_check bool do_notify_parent(struct task_struct *, int);
2008extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2009extern void force_sig(int, struct task_struct *);
2010extern int send_sig(int, struct task_struct *, int);
2011extern int zap_other_threads(struct task_struct *p);
2012extern struct sigqueue *sigqueue_alloc(void);
2013extern void sigqueue_free(struct sigqueue *);
2014extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2015extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2016
2017static inline void restore_saved_sigmask(void)
2018{
2019	if (test_and_clear_restore_sigmask())
2020		__set_current_blocked(&current->saved_sigmask);
2021}
2022
2023static inline sigset_t *sigmask_to_save(void)
2024{
2025	sigset_t *res = &current->blocked;
2026	if (unlikely(test_restore_sigmask()))
2027		res = &current->saved_sigmask;
2028	return res;
2029}
2030
2031static inline int kill_cad_pid(int sig, int priv)
2032{
2033	return kill_pid(cad_pid, sig, priv);
2034}
2035
2036/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2037#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2038#define SEND_SIG_PRIV	((struct siginfo *) 1)
2039#define SEND_SIG_FORCED	((struct siginfo *) 2)
2040
2041/*
2042 * True if we are on the alternate signal stack.
2043 */
2044static inline int on_sig_stack(unsigned long sp)
2045{
2046#ifdef CONFIG_STACK_GROWSUP
2047	return sp >= current->sas_ss_sp &&
2048		sp - current->sas_ss_sp < current->sas_ss_size;
2049#else
2050	return sp > current->sas_ss_sp &&
2051		sp - current->sas_ss_sp <= current->sas_ss_size;
2052#endif
2053}
2054
2055static inline int sas_ss_flags(unsigned long sp)
2056{
2057	return (current->sas_ss_size == 0 ? SS_DISABLE
2058		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2059}
2060
2061static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2062{
2063	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2064#ifdef CONFIG_STACK_GROWSUP
2065		return current->sas_ss_sp;
2066#else
2067		return current->sas_ss_sp + current->sas_ss_size;
2068#endif
2069	return sp;
2070}
2071
2072/*
2073 * Routines for handling mm_structs
2074 */
2075extern struct mm_struct * mm_alloc(void);
2076
2077/* mmdrop drops the mm and the page tables */
2078extern void __mmdrop(struct mm_struct *);
2079static inline void mmdrop(struct mm_struct * mm)
2080{
2081	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2082		__mmdrop(mm);
2083}
2084
2085/* mmput gets rid of the mappings and all user-space */
2086extern void mmput(struct mm_struct *);
2087/* Grab a reference to a task's mm, if it is not already going away */
2088extern struct mm_struct *get_task_mm(struct task_struct *task);
2089/*
2090 * Grab a reference to a task's mm, if it is not already going away
2091 * and ptrace_may_access with the mode parameter passed to it
2092 * succeeds.
2093 */
2094extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2095/* Remove the current tasks stale references to the old mm_struct */
2096extern void mm_release(struct task_struct *, struct mm_struct *);
2097/* Allocate a new mm structure and copy contents from tsk->mm */
2098extern struct mm_struct *dup_mm(struct task_struct *tsk);
2099
2100extern int copy_thread(unsigned long, unsigned long, unsigned long,
2101			struct task_struct *);
2102extern void flush_thread(void);
2103extern void exit_thread(void);
2104
2105extern void exit_files(struct task_struct *);
2106extern void __cleanup_sighand(struct sighand_struct *);
2107
2108extern void exit_itimers(struct signal_struct *);
2109extern void flush_itimer_signals(void);
2110
2111extern void do_group_exit(int);
2112
2113extern int allow_signal(int);
2114extern int disallow_signal(int);
2115
2116extern int do_execve(const char *,
2117		     const char __user * const __user *,
2118		     const char __user * const __user *);
2119extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2120struct task_struct *fork_idle(int);
2121extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2122
2123extern void set_task_comm(struct task_struct *tsk, char *from);
2124extern char *get_task_comm(char *to, struct task_struct *tsk);
2125
2126#ifdef CONFIG_SMP
2127void scheduler_ipi(void);
2128extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2129#else
2130static inline void scheduler_ipi(void) { }
2131static inline unsigned long wait_task_inactive(struct task_struct *p,
2132					       long match_state)
2133{
2134	return 1;
2135}
2136#endif
2137
2138#define next_task(p) \
2139	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2140
2141#define for_each_process(p) \
2142	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2143
2144extern bool current_is_single_threaded(void);
2145
2146/*
2147 * Careful: do_each_thread/while_each_thread is a double loop so
2148 *          'break' will not work as expected - use goto instead.
2149 */
2150#define do_each_thread(g, t) \
2151	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2152
2153#define while_each_thread(g, t) \
2154	while ((t = next_thread(t)) != g)
2155
2156static inline int get_nr_threads(struct task_struct *tsk)
2157{
2158	return tsk->signal->nr_threads;
2159}
2160
2161static inline bool thread_group_leader(struct task_struct *p)
2162{
2163	return p->exit_signal >= 0;
2164}
2165
2166/* Do to the insanities of de_thread it is possible for a process
2167 * to have the pid of the thread group leader without actually being
2168 * the thread group leader.  For iteration through the pids in proc
2169 * all we care about is that we have a task with the appropriate
2170 * pid, we don't actually care if we have the right task.
2171 */
2172static inline int has_group_leader_pid(struct task_struct *p)
2173{
2174	return p->pid == p->tgid;
2175}
2176
2177static inline
2178int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2179{
2180	return p1->tgid == p2->tgid;
2181}
2182
2183static inline struct task_struct *next_thread(const struct task_struct *p)
2184{
2185	return list_entry_rcu(p->thread_group.next,
2186			      struct task_struct, thread_group);
2187}
2188
2189static inline int thread_group_empty(struct task_struct *p)
2190{
2191	return list_empty(&p->thread_group);
2192}
2193
2194#define delay_group_leader(p) \
2195		(thread_group_leader(p) && !thread_group_empty(p))
2196
2197/*
2198 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2199 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2200 * pins the final release of task.io_context.  Also protects ->cpuset and
2201 * ->cgroup.subsys[]. And ->vfork_done.
2202 *
2203 * Nests both inside and outside of read_lock(&tasklist_lock).
2204 * It must not be nested with write_lock_irq(&tasklist_lock),
2205 * neither inside nor outside.
2206 */
2207static inline void task_lock(struct task_struct *p)
2208{
2209	spin_lock(&p->alloc_lock);
2210}
2211
2212static inline void task_unlock(struct task_struct *p)
2213{
2214	spin_unlock(&p->alloc_lock);
2215}
2216
2217extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2218							unsigned long *flags);
2219
2220static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2221						       unsigned long *flags)
2222{
2223	struct sighand_struct *ret;
2224
2225	ret = __lock_task_sighand(tsk, flags);
2226	(void)__cond_lock(&tsk->sighand->siglock, ret);
2227	return ret;
2228}
2229
2230static inline void unlock_task_sighand(struct task_struct *tsk,
2231						unsigned long *flags)
2232{
2233	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2234}
2235
2236#ifdef CONFIG_CGROUPS
2237static inline void threadgroup_change_begin(struct task_struct *tsk)
2238{
2239	down_read(&tsk->signal->group_rwsem);
2240}
2241static inline void threadgroup_change_end(struct task_struct *tsk)
2242{
2243	up_read(&tsk->signal->group_rwsem);
2244}
2245
2246/**
2247 * threadgroup_lock - lock threadgroup
2248 * @tsk: member task of the threadgroup to lock
2249 *
2250 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2251 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2252 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2253 * needs to stay stable across blockable operations.
2254 *
2255 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2256 * synchronization.  While held, no new task will be added to threadgroup
2257 * and no existing live task will have its PF_EXITING set.
2258 *
2259 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2260 * sub-thread becomes a new leader.
2261 */
2262static inline void threadgroup_lock(struct task_struct *tsk)
2263{
2264	down_write(&tsk->signal->group_rwsem);
2265}
2266
2267/**
2268 * threadgroup_unlock - unlock threadgroup
2269 * @tsk: member task of the threadgroup to unlock
2270 *
2271 * Reverse threadgroup_lock().
2272 */
2273static inline void threadgroup_unlock(struct task_struct *tsk)
2274{
2275	up_write(&tsk->signal->group_rwsem);
2276}
2277#else
2278static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2279static inline void threadgroup_change_end(struct task_struct *tsk) {}
2280static inline void threadgroup_lock(struct task_struct *tsk) {}
2281static inline void threadgroup_unlock(struct task_struct *tsk) {}
2282#endif
2283
2284#ifndef __HAVE_THREAD_FUNCTIONS
2285
2286#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2287#define task_stack_page(task)	((task)->stack)
2288
2289static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2290{
2291	*task_thread_info(p) = *task_thread_info(org);
2292	task_thread_info(p)->task = p;
2293}
2294
2295static inline unsigned long *end_of_stack(struct task_struct *p)
2296{
2297	return (unsigned long *)(task_thread_info(p) + 1);
2298}
2299
2300#endif
2301
2302static inline int object_is_on_stack(void *obj)
2303{
2304	void *stack = task_stack_page(current);
2305
2306	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2307}
2308
2309extern void thread_info_cache_init(void);
2310
2311#ifdef CONFIG_DEBUG_STACK_USAGE
2312static inline unsigned long stack_not_used(struct task_struct *p)
2313{
2314	unsigned long *n = end_of_stack(p);
2315
2316	do { 	/* Skip over canary */
2317		n++;
2318	} while (!*n);
2319
2320	return (unsigned long)n - (unsigned long)end_of_stack(p);
2321}
2322#endif
2323
2324/* set thread flags in other task's structures
2325 * - see asm/thread_info.h for TIF_xxxx flags available
2326 */
2327static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2328{
2329	set_ti_thread_flag(task_thread_info(tsk), flag);
2330}
2331
2332static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2333{
2334	clear_ti_thread_flag(task_thread_info(tsk), flag);
2335}
2336
2337static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343{
2344	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2345}
2346
2347static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2348{
2349	return test_ti_thread_flag(task_thread_info(tsk), flag);
2350}
2351
2352static inline void set_tsk_need_resched(struct task_struct *tsk)
2353{
2354	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355}
2356
2357static inline void clear_tsk_need_resched(struct task_struct *tsk)
2358{
2359	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360}
2361
2362static inline int test_tsk_need_resched(struct task_struct *tsk)
2363{
2364	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2365}
2366
2367static inline int restart_syscall(void)
2368{
2369	set_tsk_thread_flag(current, TIF_SIGPENDING);
2370	return -ERESTARTNOINTR;
2371}
2372
2373static inline int signal_pending(struct task_struct *p)
2374{
2375	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2376}
2377
2378static inline int __fatal_signal_pending(struct task_struct *p)
2379{
2380	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2381}
2382
2383static inline int fatal_signal_pending(struct task_struct *p)
2384{
2385	return signal_pending(p) && __fatal_signal_pending(p);
2386}
2387
2388static inline int signal_pending_state(long state, struct task_struct *p)
2389{
2390	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2391		return 0;
2392	if (!signal_pending(p))
2393		return 0;
2394
2395	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2396}
2397
2398static inline int need_resched(void)
2399{
2400	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2401}
2402
2403/*
2404 * cond_resched() and cond_resched_lock(): latency reduction via
2405 * explicit rescheduling in places that are safe. The return
2406 * value indicates whether a reschedule was done in fact.
2407 * cond_resched_lock() will drop the spinlock before scheduling,
2408 * cond_resched_softirq() will enable bhs before scheduling.
2409 */
2410extern int _cond_resched(void);
2411
2412#define cond_resched() ({			\
2413	__might_sleep(__FILE__, __LINE__, 0);	\
2414	_cond_resched();			\
2415})
2416
2417extern int __cond_resched_lock(spinlock_t *lock);
2418
2419#ifdef CONFIG_PREEMPT_COUNT
2420#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2421#else
2422#define PREEMPT_LOCK_OFFSET	0
2423#endif
2424
2425#define cond_resched_lock(lock) ({				\
2426	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2427	__cond_resched_lock(lock);				\
2428})
2429
2430extern int __cond_resched_softirq(void);
2431
2432#define cond_resched_softirq() ({					\
2433	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2434	__cond_resched_softirq();					\
2435})
2436
2437static inline void cond_resched_rcu(void)
2438{
2439#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2440	rcu_read_unlock();
2441	cond_resched();
2442	rcu_read_lock();
2443#endif
2444}
2445
2446/*
2447 * Does a critical section need to be broken due to another
2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449 * but a general need for low latency)
2450 */
2451static inline int spin_needbreak(spinlock_t *lock)
2452{
2453#ifdef CONFIG_PREEMPT
2454	return spin_is_contended(lock);
2455#else
2456	return 0;
2457#endif
2458}
2459
2460/*
2461 * Idle thread specific functions to determine the need_resched
2462 * polling state. We have two versions, one based on TS_POLLING in
2463 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2464 * thread_info.flags
2465 */
2466#ifdef TS_POLLING
2467static inline int tsk_is_polling(struct task_struct *p)
2468{
2469	return task_thread_info(p)->status & TS_POLLING;
2470}
2471static inline void current_set_polling(void)
2472{
2473	current_thread_info()->status |= TS_POLLING;
2474}
2475
2476static inline void current_clr_polling(void)
2477{
2478	current_thread_info()->status &= ~TS_POLLING;
2479	smp_mb__after_clear_bit();
2480}
2481#elif defined(TIF_POLLING_NRFLAG)
2482static inline int tsk_is_polling(struct task_struct *p)
2483{
2484	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2485}
2486static inline void current_set_polling(void)
2487{
2488	set_thread_flag(TIF_POLLING_NRFLAG);
2489}
2490
2491static inline void current_clr_polling(void)
2492{
2493	clear_thread_flag(TIF_POLLING_NRFLAG);
2494}
2495#else
2496static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2497static inline void current_set_polling(void) { }
2498static inline void current_clr_polling(void) { }
2499#endif
2500
2501/*
2502 * Thread group CPU time accounting.
2503 */
2504void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2505void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2506
2507static inline void thread_group_cputime_init(struct signal_struct *sig)
2508{
2509	raw_spin_lock_init(&sig->cputimer.lock);
2510}
2511
2512/*
2513 * Reevaluate whether the task has signals pending delivery.
2514 * Wake the task if so.
2515 * This is required every time the blocked sigset_t changes.
2516 * callers must hold sighand->siglock.
2517 */
2518extern void recalc_sigpending_and_wake(struct task_struct *t);
2519extern void recalc_sigpending(void);
2520
2521extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2522
2523static inline void signal_wake_up(struct task_struct *t, bool resume)
2524{
2525	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2526}
2527static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2528{
2529	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2530}
2531
2532/*
2533 * Wrappers for p->thread_info->cpu access. No-op on UP.
2534 */
2535#ifdef CONFIG_SMP
2536
2537static inline unsigned int task_cpu(const struct task_struct *p)
2538{
2539	return task_thread_info(p)->cpu;
2540}
2541
2542extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2543
2544#else
2545
2546static inline unsigned int task_cpu(const struct task_struct *p)
2547{
2548	return 0;
2549}
2550
2551static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2552{
2553}
2554
2555#endif /* CONFIG_SMP */
2556
2557extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2558extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2559
2560#ifdef CONFIG_CGROUP_SCHED
2561extern struct task_group root_task_group;
2562#endif /* CONFIG_CGROUP_SCHED */
2563
2564extern int task_can_switch_user(struct user_struct *up,
2565					struct task_struct *tsk);
2566
2567#ifdef CONFIG_TASK_XACCT
2568static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2569{
2570	tsk->ioac.rchar += amt;
2571}
2572
2573static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2574{
2575	tsk->ioac.wchar += amt;
2576}
2577
2578static inline void inc_syscr(struct task_struct *tsk)
2579{
2580	tsk->ioac.syscr++;
2581}
2582
2583static inline void inc_syscw(struct task_struct *tsk)
2584{
2585	tsk->ioac.syscw++;
2586}
2587#else
2588static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2589{
2590}
2591
2592static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2593{
2594}
2595
2596static inline void inc_syscr(struct task_struct *tsk)
2597{
2598}
2599
2600static inline void inc_syscw(struct task_struct *tsk)
2601{
2602}
2603#endif
2604
2605#ifndef TASK_SIZE_OF
2606#define TASK_SIZE_OF(tsk)	TASK_SIZE
2607#endif
2608
2609#ifdef CONFIG_MM_OWNER
2610extern void mm_update_next_owner(struct mm_struct *mm);
2611extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2612#else
2613static inline void mm_update_next_owner(struct mm_struct *mm)
2614{
2615}
2616
2617static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2618{
2619}
2620#endif /* CONFIG_MM_OWNER */
2621
2622static inline unsigned long task_rlimit(const struct task_struct *tsk,
2623		unsigned int limit)
2624{
2625	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2626}
2627
2628static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2629		unsigned int limit)
2630{
2631	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2632}
2633
2634static inline unsigned long rlimit(unsigned int limit)
2635{
2636	return task_rlimit(current, limit);
2637}
2638
2639static inline unsigned long rlimit_max(unsigned int limit)
2640{
2641	return task_rlimit_max(current, limit);
2642}
2643
2644#endif
2645