sched.h revision e1781538cf5c870ab696e9b8f0a5c498d3900f2f
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42#define SCHED_RESET_ON_FORK     0x40000000
43
44#ifdef __KERNEL__
45
46struct sched_param {
47	int sched_priority;
48};
49
50#include <asm/param.h>	/* for HZ */
51
52#include <linux/capability.h>
53#include <linux/threads.h>
54#include <linux/kernel.h>
55#include <linux/types.h>
56#include <linux/timex.h>
57#include <linux/jiffies.h>
58#include <linux/rbtree.h>
59#include <linux/thread_info.h>
60#include <linux/cpumask.h>
61#include <linux/errno.h>
62#include <linux/nodemask.h>
63#include <linux/mm_types.h>
64
65#include <asm/system.h>
66#include <asm/page.h>
67#include <asm/ptrace.h>
68#include <asm/cputime.h>
69
70#include <linux/smp.h>
71#include <linux/sem.h>
72#include <linux/signal.h>
73#include <linux/path.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/kobject.h>
92#include <linux/latencytop.h>
93#include <linux/cred.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio;
101struct fs_struct;
102struct bts_context;
103struct perf_event_context;
104
105/*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111/*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 *    a load-average precision of 10 bits integer + 11 bits fractional
116 *  - if you want to count load-averages more often, you need more
117 *    precision, or rounding will get you. With 2-second counting freq,
118 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119 *    11 bit fractions.
120 */
121extern unsigned long avenrun[];		/* Load averages */
122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124#define FSHIFT		11		/* nr of bits of precision */
125#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
126#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
127#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
128#define EXP_5		2014		/* 1/exp(5sec/5min) */
129#define EXP_15		2037		/* 1/exp(5sec/15min) */
130
131#define CALC_LOAD(load,exp,n) \
132	load *= exp; \
133	load += n*(FIXED_1-exp); \
134	load >>= FSHIFT;
135
136extern unsigned long total_forks;
137extern int nr_threads;
138DECLARE_PER_CPU(unsigned long, process_counts);
139extern int nr_processes(void);
140extern unsigned long nr_running(void);
141extern unsigned long nr_uninterruptible(void);
142extern unsigned long nr_iowait(void);
143extern unsigned long nr_iowait_cpu(void);
144extern unsigned long this_cpu_load(void);
145
146
147extern void calc_global_load(void);
148
149extern unsigned long get_parent_ip(unsigned long addr);
150
151struct seq_file;
152struct cfs_rq;
153struct task_group;
154#ifdef CONFIG_SCHED_DEBUG
155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156extern void proc_sched_set_task(struct task_struct *p);
157extern void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159#else
160static inline void
161proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162{
163}
164static inline void proc_sched_set_task(struct task_struct *p)
165{
166}
167static inline void
168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169{
170}
171#endif
172
173/*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183#define TASK_RUNNING		0
184#define TASK_INTERRUPTIBLE	1
185#define TASK_UNINTERRUPTIBLE	2
186#define __TASK_STOPPED		4
187#define __TASK_TRACED		8
188/* in tsk->exit_state */
189#define EXIT_ZOMBIE		16
190#define EXIT_DEAD		32
191/* in tsk->state again */
192#define TASK_DEAD		64
193#define TASK_WAKEKILL		128
194#define TASK_WAKING		256
195#define TASK_STATE_MAX		512
196
197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199extern char ___assert_task_state[1 - 2*!!(
200		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202/* Convenience macros for the sake of set_task_state */
203#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
205#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
206
207/* Convenience macros for the sake of wake_up */
208#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211/* get_task_state() */
212#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
213				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214				 __TASK_TRACED)
215
216#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
217#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
218#define task_is_stopped_or_traced(task)	\
219			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220#define task_contributes_to_load(task)	\
221				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222				 (task->flags & PF_FREEZING) == 0)
223
224#define __set_task_state(tsk, state_value)		\
225	do { (tsk)->state = (state_value); } while (0)
226#define set_task_state(tsk, state_value)		\
227	set_mb((tsk)->state, (state_value))
228
229/*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 *	set_current_state(TASK_UNINTERRUPTIBLE);
235 *	if (do_i_need_to_sleep())
236 *		schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240#define __set_current_state(state_value)			\
241	do { current->state = (state_value); } while (0)
242#define set_current_state(state_value)		\
243	set_mb(current->state, (state_value))
244
245/* Task command name length */
246#define TASK_COMM_LEN 16
247
248#include <linux/spinlock.h>
249
250/*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256extern rwlock_t tasklist_lock;
257extern spinlock_t mmlist_lock;
258
259struct task_struct;
260
261extern void sched_init(void);
262extern void sched_init_smp(void);
263extern asmlinkage void schedule_tail(struct task_struct *prev);
264extern void init_idle(struct task_struct *idle, int cpu);
265extern void init_idle_bootup_task(struct task_struct *idle);
266
267extern int runqueue_is_locked(int cpu);
268extern void task_rq_unlock_wait(struct task_struct *p);
269
270extern cpumask_var_t nohz_cpu_mask;
271#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272extern int select_nohz_load_balancer(int cpu);
273extern int get_nohz_load_balancer(void);
274#else
275static inline int select_nohz_load_balancer(int cpu)
276{
277	return 0;
278}
279#endif
280
281/*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284extern void show_state_filter(unsigned long state_filter);
285
286static inline void show_state(void)
287{
288	show_state_filter(0);
289}
290
291extern void show_regs(struct pt_regs *);
292
293/*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300void io_schedule(void);
301long io_schedule_timeout(long timeout);
302
303extern void cpu_init (void);
304extern void trap_init(void);
305extern void update_process_times(int user);
306extern void scheduler_tick(void);
307
308extern void sched_show_task(struct task_struct *p);
309
310#ifdef CONFIG_DETECT_SOFTLOCKUP
311extern void softlockup_tick(void);
312extern void touch_softlockup_watchdog(void);
313extern void touch_all_softlockup_watchdogs(void);
314extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
315				    void __user *buffer,
316				    size_t *lenp, loff_t *ppos);
317extern unsigned int  softlockup_panic;
318extern int softlockup_thresh;
319#else
320static inline void softlockup_tick(void)
321{
322}
323static inline void touch_softlockup_watchdog(void)
324{
325}
326static inline void touch_all_softlockup_watchdogs(void)
327{
328}
329#endif
330
331#ifdef CONFIG_DETECT_HUNG_TASK
332extern unsigned int  sysctl_hung_task_panic;
333extern unsigned long sysctl_hung_task_check_count;
334extern unsigned long sysctl_hung_task_timeout_secs;
335extern unsigned long sysctl_hung_task_warnings;
336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337					 void __user *buffer,
338					 size_t *lenp, loff_t *ppos);
339#endif
340
341/* Attach to any functions which should be ignored in wchan output. */
342#define __sched		__attribute__((__section__(".sched.text")))
343
344/* Linker adds these: start and end of __sched functions */
345extern char __sched_text_start[], __sched_text_end[];
346
347/* Is this address in the __sched functions? */
348extern int in_sched_functions(unsigned long addr);
349
350#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
351extern signed long schedule_timeout(signed long timeout);
352extern signed long schedule_timeout_interruptible(signed long timeout);
353extern signed long schedule_timeout_killable(signed long timeout);
354extern signed long schedule_timeout_uninterruptible(signed long timeout);
355asmlinkage void schedule(void);
356extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358struct nsproxy;
359struct user_namespace;
360
361/*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373#define MAPCOUNT_ELF_CORE_MARGIN	(5)
374#define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376extern int sysctl_max_map_count;
377
378#include <linux/aio.h>
379
380extern unsigned long
381arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
382		       unsigned long, unsigned long);
383extern unsigned long
384arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
385			  unsigned long len, unsigned long pgoff,
386			  unsigned long flags);
387extern void arch_unmap_area(struct mm_struct *, unsigned long);
388extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
389
390#if USE_SPLIT_PTLOCKS
391/*
392 * The mm counters are not protected by its page_table_lock,
393 * so must be incremented atomically.
394 */
395#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
396#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
397#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
398#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
399#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
400
401#else  /* !USE_SPLIT_PTLOCKS */
402/*
403 * The mm counters are protected by its page_table_lock,
404 * so can be incremented directly.
405 */
406#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
407#define get_mm_counter(mm, member) ((mm)->_##member)
408#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
409#define inc_mm_counter(mm, member) (mm)->_##member++
410#define dec_mm_counter(mm, member) (mm)->_##member--
411
412#endif /* !USE_SPLIT_PTLOCKS */
413
414#define get_mm_rss(mm)					\
415	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
416#define update_hiwater_rss(mm)	do {			\
417	unsigned long _rss = get_mm_rss(mm);		\
418	if ((mm)->hiwater_rss < _rss)			\
419		(mm)->hiwater_rss = _rss;		\
420} while (0)
421#define update_hiwater_vm(mm)	do {			\
422	if ((mm)->hiwater_vm < (mm)->total_vm)		\
423		(mm)->hiwater_vm = (mm)->total_vm;	\
424} while (0)
425
426static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
427{
428	return max(mm->hiwater_rss, get_mm_rss(mm));
429}
430
431static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
432					 struct mm_struct *mm)
433{
434	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
435
436	if (*maxrss < hiwater_rss)
437		*maxrss = hiwater_rss;
438}
439
440static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
441{
442	return max(mm->hiwater_vm, mm->total_vm);
443}
444
445extern void set_dumpable(struct mm_struct *mm, int value);
446extern int get_dumpable(struct mm_struct *mm);
447
448/* mm flags */
449/* dumpable bits */
450#define MMF_DUMPABLE      0  /* core dump is permitted */
451#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
452
453#define MMF_DUMPABLE_BITS 2
454#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
455
456/* coredump filter bits */
457#define MMF_DUMP_ANON_PRIVATE	2
458#define MMF_DUMP_ANON_SHARED	3
459#define MMF_DUMP_MAPPED_PRIVATE	4
460#define MMF_DUMP_MAPPED_SHARED	5
461#define MMF_DUMP_ELF_HEADERS	6
462#define MMF_DUMP_HUGETLB_PRIVATE 7
463#define MMF_DUMP_HUGETLB_SHARED  8
464
465#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
466#define MMF_DUMP_FILTER_BITS	7
467#define MMF_DUMP_FILTER_MASK \
468	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
469#define MMF_DUMP_FILTER_DEFAULT \
470	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
471	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
472
473#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
474# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
475#else
476# define MMF_DUMP_MASK_DEFAULT_ELF	0
477#endif
478					/* leave room for more dump flags */
479#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
480
481#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
482
483struct sighand_struct {
484	atomic_t		count;
485	struct k_sigaction	action[_NSIG];
486	spinlock_t		siglock;
487	wait_queue_head_t	signalfd_wqh;
488};
489
490struct pacct_struct {
491	int			ac_flag;
492	long			ac_exitcode;
493	unsigned long		ac_mem;
494	cputime_t		ac_utime, ac_stime;
495	unsigned long		ac_minflt, ac_majflt;
496};
497
498struct cpu_itimer {
499	cputime_t expires;
500	cputime_t incr;
501	u32 error;
502	u32 incr_error;
503};
504
505/**
506 * struct task_cputime - collected CPU time counts
507 * @utime:		time spent in user mode, in &cputime_t units
508 * @stime:		time spent in kernel mode, in &cputime_t units
509 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
510 *
511 * This structure groups together three kinds of CPU time that are
512 * tracked for threads and thread groups.  Most things considering
513 * CPU time want to group these counts together and treat all three
514 * of them in parallel.
515 */
516struct task_cputime {
517	cputime_t utime;
518	cputime_t stime;
519	unsigned long long sum_exec_runtime;
520};
521/* Alternate field names when used to cache expirations. */
522#define prof_exp	stime
523#define virt_exp	utime
524#define sched_exp	sum_exec_runtime
525
526#define INIT_CPUTIME	\
527	(struct task_cputime) {					\
528		.utime = cputime_zero,				\
529		.stime = cputime_zero,				\
530		.sum_exec_runtime = 0,				\
531	}
532
533/*
534 * Disable preemption until the scheduler is running.
535 * Reset by start_kernel()->sched_init()->init_idle().
536 *
537 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
538 * before the scheduler is active -- see should_resched().
539 */
540#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
541
542/**
543 * struct thread_group_cputimer - thread group interval timer counts
544 * @cputime:		thread group interval timers.
545 * @running:		non-zero when there are timers running and
546 * 			@cputime receives updates.
547 * @lock:		lock for fields in this struct.
548 *
549 * This structure contains the version of task_cputime, above, that is
550 * used for thread group CPU timer calculations.
551 */
552struct thread_group_cputimer {
553	struct task_cputime cputime;
554	int running;
555	spinlock_t lock;
556};
557
558/*
559 * NOTE! "signal_struct" does not have it's own
560 * locking, because a shared signal_struct always
561 * implies a shared sighand_struct, so locking
562 * sighand_struct is always a proper superset of
563 * the locking of signal_struct.
564 */
565struct signal_struct {
566	atomic_t		count;
567	atomic_t		live;
568
569	wait_queue_head_t	wait_chldexit;	/* for wait4() */
570
571	/* current thread group signal load-balancing target: */
572	struct task_struct	*curr_target;
573
574	/* shared signal handling: */
575	struct sigpending	shared_pending;
576
577	/* thread group exit support */
578	int			group_exit_code;
579	/* overloaded:
580	 * - notify group_exit_task when ->count is equal to notify_count
581	 * - everyone except group_exit_task is stopped during signal delivery
582	 *   of fatal signals, group_exit_task processes the signal.
583	 */
584	int			notify_count;
585	struct task_struct	*group_exit_task;
586
587	/* thread group stop support, overloads group_exit_code too */
588	int			group_stop_count;
589	unsigned int		flags; /* see SIGNAL_* flags below */
590
591	/* POSIX.1b Interval Timers */
592	struct list_head posix_timers;
593
594	/* ITIMER_REAL timer for the process */
595	struct hrtimer real_timer;
596	struct pid *leader_pid;
597	ktime_t it_real_incr;
598
599	/*
600	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
601	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
602	 * values are defined to 0 and 1 respectively
603	 */
604	struct cpu_itimer it[2];
605
606	/*
607	 * Thread group totals for process CPU timers.
608	 * See thread_group_cputimer(), et al, for details.
609	 */
610	struct thread_group_cputimer cputimer;
611
612	/* Earliest-expiration cache. */
613	struct task_cputime cputime_expires;
614
615	struct list_head cpu_timers[3];
616
617	struct pid *tty_old_pgrp;
618
619	/* boolean value for session group leader */
620	int leader;
621
622	struct tty_struct *tty; /* NULL if no tty */
623
624	/*
625	 * Cumulative resource counters for dead threads in the group,
626	 * and for reaped dead child processes forked by this group.
627	 * Live threads maintain their own counters and add to these
628	 * in __exit_signal, except for the group leader.
629	 */
630	cputime_t utime, stime, cutime, cstime;
631	cputime_t gtime;
632	cputime_t cgtime;
633#ifndef CONFIG_VIRT_CPU_ACCOUNTING
634	cputime_t prev_utime, prev_stime;
635#endif
636	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
637	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
638	unsigned long inblock, oublock, cinblock, coublock;
639	unsigned long maxrss, cmaxrss;
640	struct task_io_accounting ioac;
641
642	/*
643	 * Cumulative ns of schedule CPU time fo dead threads in the
644	 * group, not including a zombie group leader, (This only differs
645	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
646	 * other than jiffies.)
647	 */
648	unsigned long long sum_sched_runtime;
649
650	/*
651	 * We don't bother to synchronize most readers of this at all,
652	 * because there is no reader checking a limit that actually needs
653	 * to get both rlim_cur and rlim_max atomically, and either one
654	 * alone is a single word that can safely be read normally.
655	 * getrlimit/setrlimit use task_lock(current->group_leader) to
656	 * protect this instead of the siglock, because they really
657	 * have no need to disable irqs.
658	 */
659	struct rlimit rlim[RLIM_NLIMITS];
660
661#ifdef CONFIG_BSD_PROCESS_ACCT
662	struct pacct_struct pacct;	/* per-process accounting information */
663#endif
664#ifdef CONFIG_TASKSTATS
665	struct taskstats *stats;
666#endif
667#ifdef CONFIG_AUDIT
668	unsigned audit_tty;
669	struct tty_audit_buf *tty_audit_buf;
670#endif
671
672	int oom_adj;	/* OOM kill score adjustment (bit shift) */
673};
674
675/* Context switch must be unlocked if interrupts are to be enabled */
676#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
677# define __ARCH_WANT_UNLOCKED_CTXSW
678#endif
679
680/*
681 * Bits in flags field of signal_struct.
682 */
683#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
684#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
685#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
686#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
687/*
688 * Pending notifications to parent.
689 */
690#define SIGNAL_CLD_STOPPED	0x00000010
691#define SIGNAL_CLD_CONTINUED	0x00000020
692#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693
694#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
695
696/* If true, all threads except ->group_exit_task have pending SIGKILL */
697static inline int signal_group_exit(const struct signal_struct *sig)
698{
699	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
700		(sig->group_exit_task != NULL);
701}
702
703/*
704 * Some day this will be a full-fledged user tracking system..
705 */
706struct user_struct {
707	atomic_t __count;	/* reference count */
708	atomic_t processes;	/* How many processes does this user have? */
709	atomic_t files;		/* How many open files does this user have? */
710	atomic_t sigpending;	/* How many pending signals does this user have? */
711#ifdef CONFIG_INOTIFY_USER
712	atomic_t inotify_watches; /* How many inotify watches does this user have? */
713	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
714#endif
715#ifdef CONFIG_EPOLL
716	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
717#endif
718#ifdef CONFIG_POSIX_MQUEUE
719	/* protected by mq_lock	*/
720	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
721#endif
722	unsigned long locked_shm; /* How many pages of mlocked shm ? */
723
724#ifdef CONFIG_KEYS
725	struct key *uid_keyring;	/* UID specific keyring */
726	struct key *session_keyring;	/* UID's default session keyring */
727#endif
728
729	/* Hash table maintenance information */
730	struct hlist_node uidhash_node;
731	uid_t uid;
732	struct user_namespace *user_ns;
733
734#ifdef CONFIG_USER_SCHED
735	struct task_group *tg;
736#ifdef CONFIG_SYSFS
737	struct kobject kobj;
738	struct delayed_work work;
739#endif
740#endif
741
742#ifdef CONFIG_PERF_EVENTS
743	atomic_long_t locked_vm;
744#endif
745};
746
747extern int uids_sysfs_init(void);
748
749extern struct user_struct *find_user(uid_t);
750
751extern struct user_struct root_user;
752#define INIT_USER (&root_user)
753
754
755struct backing_dev_info;
756struct reclaim_state;
757
758#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
759struct sched_info {
760	/* cumulative counters */
761	unsigned long pcount;	      /* # of times run on this cpu */
762	unsigned long long run_delay; /* time spent waiting on a runqueue */
763
764	/* timestamps */
765	unsigned long long last_arrival,/* when we last ran on a cpu */
766			   last_queued;	/* when we were last queued to run */
767#ifdef CONFIG_SCHEDSTATS
768	/* BKL stats */
769	unsigned int bkl_count;
770#endif
771};
772#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
773
774#ifdef CONFIG_TASK_DELAY_ACCT
775struct task_delay_info {
776	spinlock_t	lock;
777	unsigned int	flags;	/* Private per-task flags */
778
779	/* For each stat XXX, add following, aligned appropriately
780	 *
781	 * struct timespec XXX_start, XXX_end;
782	 * u64 XXX_delay;
783	 * u32 XXX_count;
784	 *
785	 * Atomicity of updates to XXX_delay, XXX_count protected by
786	 * single lock above (split into XXX_lock if contention is an issue).
787	 */
788
789	/*
790	 * XXX_count is incremented on every XXX operation, the delay
791	 * associated with the operation is added to XXX_delay.
792	 * XXX_delay contains the accumulated delay time in nanoseconds.
793	 */
794	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
795	u64 blkio_delay;	/* wait for sync block io completion */
796	u64 swapin_delay;	/* wait for swapin block io completion */
797	u32 blkio_count;	/* total count of the number of sync block */
798				/* io operations performed */
799	u32 swapin_count;	/* total count of the number of swapin block */
800				/* io operations performed */
801
802	struct timespec freepages_start, freepages_end;
803	u64 freepages_delay;	/* wait for memory reclaim */
804	u32 freepages_count;	/* total count of memory reclaim */
805};
806#endif	/* CONFIG_TASK_DELAY_ACCT */
807
808static inline int sched_info_on(void)
809{
810#ifdef CONFIG_SCHEDSTATS
811	return 1;
812#elif defined(CONFIG_TASK_DELAY_ACCT)
813	extern int delayacct_on;
814	return delayacct_on;
815#else
816	return 0;
817#endif
818}
819
820enum cpu_idle_type {
821	CPU_IDLE,
822	CPU_NOT_IDLE,
823	CPU_NEWLY_IDLE,
824	CPU_MAX_IDLE_TYPES
825};
826
827/*
828 * sched-domains (multiprocessor balancing) declarations:
829 */
830
831/*
832 * Increase resolution of nice-level calculations:
833 */
834#define SCHED_LOAD_SHIFT	10
835#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
836
837#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
838
839#ifdef CONFIG_SMP
840#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
841#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
842#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
843#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
844#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
845#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
846#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
847#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
848#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
849#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
850#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
851
852#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
853
854enum powersavings_balance_level {
855	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
856	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
857					 * first for long running threads
858					 */
859	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
860					 * cpu package for power savings
861					 */
862	MAX_POWERSAVINGS_BALANCE_LEVELS
863};
864
865extern int sched_mc_power_savings, sched_smt_power_savings;
866
867static inline int sd_balance_for_mc_power(void)
868{
869	if (sched_smt_power_savings)
870		return SD_POWERSAVINGS_BALANCE;
871
872	return SD_PREFER_SIBLING;
873}
874
875static inline int sd_balance_for_package_power(void)
876{
877	if (sched_mc_power_savings | sched_smt_power_savings)
878		return SD_POWERSAVINGS_BALANCE;
879
880	return SD_PREFER_SIBLING;
881}
882
883/*
884 * Optimise SD flags for power savings:
885 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
887 */
888
889static inline int sd_power_saving_flags(void)
890{
891	if (sched_mc_power_savings | sched_smt_power_savings)
892		return SD_BALANCE_NEWIDLE;
893
894	return 0;
895}
896
897struct sched_group {
898	struct sched_group *next;	/* Must be a circular list */
899
900	/*
901	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
902	 * single CPU.
903	 */
904	unsigned int cpu_power;
905
906	/*
907	 * The CPUs this group covers.
908	 *
909	 * NOTE: this field is variable length. (Allocated dynamically
910	 * by attaching extra space to the end of the structure,
911	 * depending on how many CPUs the kernel has booted up with)
912	 *
913	 * It is also be embedded into static data structures at build
914	 * time. (See 'struct static_sched_group' in kernel/sched.c)
915	 */
916	unsigned long cpumask[0];
917};
918
919static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
920{
921	return to_cpumask(sg->cpumask);
922}
923
924enum sched_domain_level {
925	SD_LV_NONE = 0,
926	SD_LV_SIBLING,
927	SD_LV_MC,
928	SD_LV_CPU,
929	SD_LV_NODE,
930	SD_LV_ALLNODES,
931	SD_LV_MAX
932};
933
934struct sched_domain_attr {
935	int relax_domain_level;
936};
937
938#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
939	.relax_domain_level = -1,			\
940}
941
942struct sched_domain {
943	/* These fields must be setup */
944	struct sched_domain *parent;	/* top domain must be null terminated */
945	struct sched_domain *child;	/* bottom domain must be null terminated */
946	struct sched_group *groups;	/* the balancing groups of the domain */
947	unsigned long min_interval;	/* Minimum balance interval ms */
948	unsigned long max_interval;	/* Maximum balance interval ms */
949	unsigned int busy_factor;	/* less balancing by factor if busy */
950	unsigned int imbalance_pct;	/* No balance until over watermark */
951	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
952	unsigned int busy_idx;
953	unsigned int idle_idx;
954	unsigned int newidle_idx;
955	unsigned int wake_idx;
956	unsigned int forkexec_idx;
957	unsigned int smt_gain;
958	int flags;			/* See SD_* */
959	enum sched_domain_level level;
960
961	/* Runtime fields. */
962	unsigned long last_balance;	/* init to jiffies. units in jiffies */
963	unsigned int balance_interval;	/* initialise to 1. units in ms. */
964	unsigned int nr_balance_failed; /* initialise to 0 */
965
966	u64 last_update;
967
968#ifdef CONFIG_SCHEDSTATS
969	/* load_balance() stats */
970	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
971	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
972	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
973	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
974	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
975	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
976	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
977	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
978
979	/* Active load balancing */
980	unsigned int alb_count;
981	unsigned int alb_failed;
982	unsigned int alb_pushed;
983
984	/* SD_BALANCE_EXEC stats */
985	unsigned int sbe_count;
986	unsigned int sbe_balanced;
987	unsigned int sbe_pushed;
988
989	/* SD_BALANCE_FORK stats */
990	unsigned int sbf_count;
991	unsigned int sbf_balanced;
992	unsigned int sbf_pushed;
993
994	/* try_to_wake_up() stats */
995	unsigned int ttwu_wake_remote;
996	unsigned int ttwu_move_affine;
997	unsigned int ttwu_move_balance;
998#endif
999#ifdef CONFIG_SCHED_DEBUG
1000	char *name;
1001#endif
1002
1003	/*
1004	 * Span of all CPUs in this domain.
1005	 *
1006	 * NOTE: this field is variable length. (Allocated dynamically
1007	 * by attaching extra space to the end of the structure,
1008	 * depending on how many CPUs the kernel has booted up with)
1009	 *
1010	 * It is also be embedded into static data structures at build
1011	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1012	 */
1013	unsigned long span[0];
1014};
1015
1016static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1017{
1018	return to_cpumask(sd->span);
1019}
1020
1021extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1022				    struct sched_domain_attr *dattr_new);
1023
1024/* Allocate an array of sched domains, for partition_sched_domains(). */
1025cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1026void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1027
1028/* Test a flag in parent sched domain */
1029static inline int test_sd_parent(struct sched_domain *sd, int flag)
1030{
1031	if (sd->parent && (sd->parent->flags & flag))
1032		return 1;
1033
1034	return 0;
1035}
1036
1037unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1038unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1039
1040#else /* CONFIG_SMP */
1041
1042struct sched_domain_attr;
1043
1044static inline void
1045partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1046			struct sched_domain_attr *dattr_new)
1047{
1048}
1049#endif	/* !CONFIG_SMP */
1050
1051
1052struct io_context;			/* See blkdev.h */
1053
1054
1055#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1056extern void prefetch_stack(struct task_struct *t);
1057#else
1058static inline void prefetch_stack(struct task_struct *t) { }
1059#endif
1060
1061struct audit_context;		/* See audit.c */
1062struct mempolicy;
1063struct pipe_inode_info;
1064struct uts_namespace;
1065
1066struct rq;
1067struct sched_domain;
1068
1069/*
1070 * wake flags
1071 */
1072#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1073#define WF_FORK		0x02		/* child wakeup after fork */
1074
1075struct sched_class {
1076	const struct sched_class *next;
1077
1078	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1079	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1080	void (*yield_task) (struct rq *rq);
1081
1082	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1083
1084	struct task_struct * (*pick_next_task) (struct rq *rq);
1085	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1086
1087#ifdef CONFIG_SMP
1088	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1089
1090	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1091			struct rq *busiest, unsigned long max_load_move,
1092			struct sched_domain *sd, enum cpu_idle_type idle,
1093			int *all_pinned, int *this_best_prio);
1094
1095	int (*move_one_task) (struct rq *this_rq, int this_cpu,
1096			      struct rq *busiest, struct sched_domain *sd,
1097			      enum cpu_idle_type idle);
1098	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1099	void (*post_schedule) (struct rq *this_rq);
1100	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1101	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1102
1103	void (*set_cpus_allowed)(struct task_struct *p,
1104				 const struct cpumask *newmask);
1105
1106	void (*rq_online)(struct rq *rq);
1107	void (*rq_offline)(struct rq *rq);
1108#endif
1109
1110	void (*set_curr_task) (struct rq *rq);
1111	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1112	void (*task_fork) (struct task_struct *p);
1113
1114	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1115			       int running);
1116	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1117			     int running);
1118	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119			     int oldprio, int running);
1120
1121	unsigned int (*get_rr_interval) (struct rq *rq,
1122					 struct task_struct *task);
1123
1124#ifdef CONFIG_FAIR_GROUP_SCHED
1125	void (*moved_group) (struct task_struct *p, int on_rq);
1126#endif
1127};
1128
1129struct load_weight {
1130	unsigned long weight, inv_weight;
1131};
1132
1133/*
1134 * CFS stats for a schedulable entity (task, task-group etc)
1135 *
1136 * Current field usage histogram:
1137 *
1138 *     4 se->block_start
1139 *     4 se->run_node
1140 *     4 se->sleep_start
1141 *     6 se->load.weight
1142 */
1143struct sched_entity {
1144	struct load_weight	load;		/* for load-balancing */
1145	struct rb_node		run_node;
1146	struct list_head	group_node;
1147	unsigned int		on_rq;
1148
1149	u64			exec_start;
1150	u64			sum_exec_runtime;
1151	u64			vruntime;
1152	u64			prev_sum_exec_runtime;
1153
1154	u64			last_wakeup;
1155	u64			avg_overlap;
1156
1157	u64			nr_migrations;
1158
1159	u64			start_runtime;
1160	u64			avg_wakeup;
1161
1162#ifdef CONFIG_SCHEDSTATS
1163	u64			wait_start;
1164	u64			wait_max;
1165	u64			wait_count;
1166	u64			wait_sum;
1167	u64			iowait_count;
1168	u64			iowait_sum;
1169
1170	u64			sleep_start;
1171	u64			sleep_max;
1172	s64			sum_sleep_runtime;
1173
1174	u64			block_start;
1175	u64			block_max;
1176	u64			exec_max;
1177	u64			slice_max;
1178
1179	u64			nr_migrations_cold;
1180	u64			nr_failed_migrations_affine;
1181	u64			nr_failed_migrations_running;
1182	u64			nr_failed_migrations_hot;
1183	u64			nr_forced_migrations;
1184
1185	u64			nr_wakeups;
1186	u64			nr_wakeups_sync;
1187	u64			nr_wakeups_migrate;
1188	u64			nr_wakeups_local;
1189	u64			nr_wakeups_remote;
1190	u64			nr_wakeups_affine;
1191	u64			nr_wakeups_affine_attempts;
1192	u64			nr_wakeups_passive;
1193	u64			nr_wakeups_idle;
1194#endif
1195
1196#ifdef CONFIG_FAIR_GROUP_SCHED
1197	struct sched_entity	*parent;
1198	/* rq on which this entity is (to be) queued: */
1199	struct cfs_rq		*cfs_rq;
1200	/* rq "owned" by this entity/group: */
1201	struct cfs_rq		*my_q;
1202#endif
1203};
1204
1205struct sched_rt_entity {
1206	struct list_head run_list;
1207	unsigned long timeout;
1208	unsigned int time_slice;
1209	int nr_cpus_allowed;
1210
1211	struct sched_rt_entity *back;
1212#ifdef CONFIG_RT_GROUP_SCHED
1213	struct sched_rt_entity	*parent;
1214	/* rq on which this entity is (to be) queued: */
1215	struct rt_rq		*rt_rq;
1216	/* rq "owned" by this entity/group: */
1217	struct rt_rq		*my_q;
1218#endif
1219};
1220
1221struct rcu_node;
1222
1223struct task_struct {
1224	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1225	void *stack;
1226	atomic_t usage;
1227	unsigned int flags;	/* per process flags, defined below */
1228	unsigned int ptrace;
1229
1230	int lock_depth;		/* BKL lock depth */
1231
1232#ifdef CONFIG_SMP
1233#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1234	int oncpu;
1235#endif
1236#endif
1237
1238	int prio, static_prio, normal_prio;
1239	unsigned int rt_priority;
1240	const struct sched_class *sched_class;
1241	struct sched_entity se;
1242	struct sched_rt_entity rt;
1243
1244#ifdef CONFIG_PREEMPT_NOTIFIERS
1245	/* list of struct preempt_notifier: */
1246	struct hlist_head preempt_notifiers;
1247#endif
1248
1249	/*
1250	 * fpu_counter contains the number of consecutive context switches
1251	 * that the FPU is used. If this is over a threshold, the lazy fpu
1252	 * saving becomes unlazy to save the trap. This is an unsigned char
1253	 * so that after 256 times the counter wraps and the behavior turns
1254	 * lazy again; this to deal with bursty apps that only use FPU for
1255	 * a short time
1256	 */
1257	unsigned char fpu_counter;
1258#ifdef CONFIG_BLK_DEV_IO_TRACE
1259	unsigned int btrace_seq;
1260#endif
1261
1262	unsigned int policy;
1263	cpumask_t cpus_allowed;
1264
1265#ifdef CONFIG_TREE_PREEMPT_RCU
1266	int rcu_read_lock_nesting;
1267	char rcu_read_unlock_special;
1268	struct rcu_node *rcu_blocked_node;
1269	struct list_head rcu_node_entry;
1270#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1271
1272#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1273	struct sched_info sched_info;
1274#endif
1275
1276	struct list_head tasks;
1277	struct plist_node pushable_tasks;
1278
1279	struct mm_struct *mm, *active_mm;
1280
1281/* task state */
1282	int exit_state;
1283	int exit_code, exit_signal;
1284	int pdeath_signal;  /*  The signal sent when the parent dies  */
1285	/* ??? */
1286	unsigned int personality;
1287	unsigned did_exec:1;
1288	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1289				 * execve */
1290	unsigned in_iowait:1;
1291
1292
1293	/* Revert to default priority/policy when forking */
1294	unsigned sched_reset_on_fork:1;
1295
1296	pid_t pid;
1297	pid_t tgid;
1298
1299#ifdef CONFIG_CC_STACKPROTECTOR
1300	/* Canary value for the -fstack-protector gcc feature */
1301	unsigned long stack_canary;
1302#endif
1303
1304	/*
1305	 * pointers to (original) parent process, youngest child, younger sibling,
1306	 * older sibling, respectively.  (p->father can be replaced with
1307	 * p->real_parent->pid)
1308	 */
1309	struct task_struct *real_parent; /* real parent process */
1310	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1311	/*
1312	 * children/sibling forms the list of my natural children
1313	 */
1314	struct list_head children;	/* list of my children */
1315	struct list_head sibling;	/* linkage in my parent's children list */
1316	struct task_struct *group_leader;	/* threadgroup leader */
1317
1318	/*
1319	 * ptraced is the list of tasks this task is using ptrace on.
1320	 * This includes both natural children and PTRACE_ATTACH targets.
1321	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1322	 */
1323	struct list_head ptraced;
1324	struct list_head ptrace_entry;
1325
1326	/*
1327	 * This is the tracer handle for the ptrace BTS extension.
1328	 * This field actually belongs to the ptracer task.
1329	 */
1330	struct bts_context *bts;
1331
1332	/* PID/PID hash table linkage. */
1333	struct pid_link pids[PIDTYPE_MAX];
1334	struct list_head thread_group;
1335
1336	struct completion *vfork_done;		/* for vfork() */
1337	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1338	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1339
1340	cputime_t utime, stime, utimescaled, stimescaled;
1341	cputime_t gtime;
1342#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1343	cputime_t prev_utime, prev_stime;
1344#endif
1345	unsigned long nvcsw, nivcsw; /* context switch counts */
1346	struct timespec start_time; 		/* monotonic time */
1347	struct timespec real_start_time;	/* boot based time */
1348/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1349	unsigned long min_flt, maj_flt;
1350
1351	struct task_cputime cputime_expires;
1352	struct list_head cpu_timers[3];
1353
1354/* process credentials */
1355	const struct cred *real_cred;	/* objective and real subjective task
1356					 * credentials (COW) */
1357	const struct cred *cred;	/* effective (overridable) subjective task
1358					 * credentials (COW) */
1359	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1360					 * credential calculations
1361					 * (notably. ptrace) */
1362	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1363
1364	char comm[TASK_COMM_LEN]; /* executable name excluding path
1365				     - access with [gs]et_task_comm (which lock
1366				       it with task_lock())
1367				     - initialized normally by flush_old_exec */
1368/* file system info */
1369	int link_count, total_link_count;
1370#ifdef CONFIG_SYSVIPC
1371/* ipc stuff */
1372	struct sysv_sem sysvsem;
1373#endif
1374#ifdef CONFIG_DETECT_HUNG_TASK
1375/* hung task detection */
1376	unsigned long last_switch_count;
1377#endif
1378/* CPU-specific state of this task */
1379	struct thread_struct thread;
1380/* filesystem information */
1381	struct fs_struct *fs;
1382/* open file information */
1383	struct files_struct *files;
1384/* namespaces */
1385	struct nsproxy *nsproxy;
1386/* signal handlers */
1387	struct signal_struct *signal;
1388	struct sighand_struct *sighand;
1389
1390	sigset_t blocked, real_blocked;
1391	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1392	struct sigpending pending;
1393
1394	unsigned long sas_ss_sp;
1395	size_t sas_ss_size;
1396	int (*notifier)(void *priv);
1397	void *notifier_data;
1398	sigset_t *notifier_mask;
1399	struct audit_context *audit_context;
1400#ifdef CONFIG_AUDITSYSCALL
1401	uid_t loginuid;
1402	unsigned int sessionid;
1403#endif
1404	seccomp_t seccomp;
1405
1406/* Thread group tracking */
1407   	u32 parent_exec_id;
1408   	u32 self_exec_id;
1409/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1410 * mempolicy */
1411	spinlock_t alloc_lock;
1412
1413#ifdef CONFIG_GENERIC_HARDIRQS
1414	/* IRQ handler threads */
1415	struct irqaction *irqaction;
1416#endif
1417
1418	/* Protection of the PI data structures: */
1419	raw_spinlock_t pi_lock;
1420
1421#ifdef CONFIG_RT_MUTEXES
1422	/* PI waiters blocked on a rt_mutex held by this task */
1423	struct plist_head pi_waiters;
1424	/* Deadlock detection and priority inheritance handling */
1425	struct rt_mutex_waiter *pi_blocked_on;
1426#endif
1427
1428#ifdef CONFIG_DEBUG_MUTEXES
1429	/* mutex deadlock detection */
1430	struct mutex_waiter *blocked_on;
1431#endif
1432#ifdef CONFIG_TRACE_IRQFLAGS
1433	unsigned int irq_events;
1434	unsigned long hardirq_enable_ip;
1435	unsigned long hardirq_disable_ip;
1436	unsigned int hardirq_enable_event;
1437	unsigned int hardirq_disable_event;
1438	int hardirqs_enabled;
1439	int hardirq_context;
1440	unsigned long softirq_disable_ip;
1441	unsigned long softirq_enable_ip;
1442	unsigned int softirq_disable_event;
1443	unsigned int softirq_enable_event;
1444	int softirqs_enabled;
1445	int softirq_context;
1446#endif
1447#ifdef CONFIG_LOCKDEP
1448# define MAX_LOCK_DEPTH 48UL
1449	u64 curr_chain_key;
1450	int lockdep_depth;
1451	unsigned int lockdep_recursion;
1452	struct held_lock held_locks[MAX_LOCK_DEPTH];
1453	gfp_t lockdep_reclaim_gfp;
1454#endif
1455
1456#ifdef CONFIG_FS_JOURNAL_INFO
1457/* journalling filesystem info */
1458	void *journal_info;
1459#endif
1460
1461/* stacked block device info */
1462	struct bio *bio_list, **bio_tail;
1463
1464/* VM state */
1465	struct reclaim_state *reclaim_state;
1466
1467	struct backing_dev_info *backing_dev_info;
1468
1469	struct io_context *io_context;
1470
1471	unsigned long ptrace_message;
1472	siginfo_t *last_siginfo; /* For ptrace use.  */
1473	struct task_io_accounting ioac;
1474#if defined(CONFIG_TASK_XACCT)
1475	u64 acct_rss_mem1;	/* accumulated rss usage */
1476	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1477	cputime_t acct_timexpd;	/* stime + utime since last update */
1478#endif
1479#ifdef CONFIG_CPUSETS
1480	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1481	int cpuset_mem_spread_rotor;
1482#endif
1483#ifdef CONFIG_CGROUPS
1484	/* Control Group info protected by css_set_lock */
1485	struct css_set *cgroups;
1486	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1487	struct list_head cg_list;
1488#endif
1489#ifdef CONFIG_FUTEX
1490	struct robust_list_head __user *robust_list;
1491#ifdef CONFIG_COMPAT
1492	struct compat_robust_list_head __user *compat_robust_list;
1493#endif
1494	struct list_head pi_state_list;
1495	struct futex_pi_state *pi_state_cache;
1496#endif
1497#ifdef CONFIG_PERF_EVENTS
1498	struct perf_event_context *perf_event_ctxp;
1499	struct mutex perf_event_mutex;
1500	struct list_head perf_event_list;
1501#endif
1502#ifdef CONFIG_NUMA
1503	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1504	short il_next;
1505#endif
1506	atomic_t fs_excl;	/* holding fs exclusive resources */
1507	struct rcu_head rcu;
1508
1509	/*
1510	 * cache last used pipe for splice
1511	 */
1512	struct pipe_inode_info *splice_pipe;
1513#ifdef	CONFIG_TASK_DELAY_ACCT
1514	struct task_delay_info *delays;
1515#endif
1516#ifdef CONFIG_FAULT_INJECTION
1517	int make_it_fail;
1518#endif
1519	struct prop_local_single dirties;
1520#ifdef CONFIG_LATENCYTOP
1521	int latency_record_count;
1522	struct latency_record latency_record[LT_SAVECOUNT];
1523#endif
1524	/*
1525	 * time slack values; these are used to round up poll() and
1526	 * select() etc timeout values. These are in nanoseconds.
1527	 */
1528	unsigned long timer_slack_ns;
1529	unsigned long default_timer_slack_ns;
1530
1531	struct list_head	*scm_work_list;
1532#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1533	/* Index of current stored adress in ret_stack */
1534	int curr_ret_stack;
1535	/* Stack of return addresses for return function tracing */
1536	struct ftrace_ret_stack	*ret_stack;
1537	/* time stamp for last schedule */
1538	unsigned long long ftrace_timestamp;
1539	/*
1540	 * Number of functions that haven't been traced
1541	 * because of depth overrun.
1542	 */
1543	atomic_t trace_overrun;
1544	/* Pause for the tracing */
1545	atomic_t tracing_graph_pause;
1546#endif
1547#ifdef CONFIG_TRACING
1548	/* state flags for use by tracers */
1549	unsigned long trace;
1550	/* bitmask of trace recursion */
1551	unsigned long trace_recursion;
1552#endif /* CONFIG_TRACING */
1553	unsigned long stack_start;
1554};
1555
1556/* Future-safe accessor for struct task_struct's cpus_allowed. */
1557#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1558
1559/*
1560 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1561 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1562 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1563 * values are inverted: lower p->prio value means higher priority.
1564 *
1565 * The MAX_USER_RT_PRIO value allows the actual maximum
1566 * RT priority to be separate from the value exported to
1567 * user-space.  This allows kernel threads to set their
1568 * priority to a value higher than any user task. Note:
1569 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1570 */
1571
1572#define MAX_USER_RT_PRIO	100
1573#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1574
1575#define MAX_PRIO		(MAX_RT_PRIO + 40)
1576#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1577
1578static inline int rt_prio(int prio)
1579{
1580	if (unlikely(prio < MAX_RT_PRIO))
1581		return 1;
1582	return 0;
1583}
1584
1585static inline int rt_task(struct task_struct *p)
1586{
1587	return rt_prio(p->prio);
1588}
1589
1590static inline struct pid *task_pid(struct task_struct *task)
1591{
1592	return task->pids[PIDTYPE_PID].pid;
1593}
1594
1595static inline struct pid *task_tgid(struct task_struct *task)
1596{
1597	return task->group_leader->pids[PIDTYPE_PID].pid;
1598}
1599
1600/*
1601 * Without tasklist or rcu lock it is not safe to dereference
1602 * the result of task_pgrp/task_session even if task == current,
1603 * we can race with another thread doing sys_setsid/sys_setpgid.
1604 */
1605static inline struct pid *task_pgrp(struct task_struct *task)
1606{
1607	return task->group_leader->pids[PIDTYPE_PGID].pid;
1608}
1609
1610static inline struct pid *task_session(struct task_struct *task)
1611{
1612	return task->group_leader->pids[PIDTYPE_SID].pid;
1613}
1614
1615struct pid_namespace;
1616
1617/*
1618 * the helpers to get the task's different pids as they are seen
1619 * from various namespaces
1620 *
1621 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1622 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1623 *                     current.
1624 * task_xid_nr_ns()  : id seen from the ns specified;
1625 *
1626 * set_task_vxid()   : assigns a virtual id to a task;
1627 *
1628 * see also pid_nr() etc in include/linux/pid.h
1629 */
1630pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1631			struct pid_namespace *ns);
1632
1633static inline pid_t task_pid_nr(struct task_struct *tsk)
1634{
1635	return tsk->pid;
1636}
1637
1638static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1639					struct pid_namespace *ns)
1640{
1641	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1642}
1643
1644static inline pid_t task_pid_vnr(struct task_struct *tsk)
1645{
1646	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1647}
1648
1649
1650static inline pid_t task_tgid_nr(struct task_struct *tsk)
1651{
1652	return tsk->tgid;
1653}
1654
1655pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1656
1657static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1658{
1659	return pid_vnr(task_tgid(tsk));
1660}
1661
1662
1663static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1664					struct pid_namespace *ns)
1665{
1666	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1667}
1668
1669static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1670{
1671	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1672}
1673
1674
1675static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1676					struct pid_namespace *ns)
1677{
1678	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1679}
1680
1681static inline pid_t task_session_vnr(struct task_struct *tsk)
1682{
1683	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1684}
1685
1686/* obsolete, do not use */
1687static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1688{
1689	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1690}
1691
1692/**
1693 * pid_alive - check that a task structure is not stale
1694 * @p: Task structure to be checked.
1695 *
1696 * Test if a process is not yet dead (at most zombie state)
1697 * If pid_alive fails, then pointers within the task structure
1698 * can be stale and must not be dereferenced.
1699 */
1700static inline int pid_alive(struct task_struct *p)
1701{
1702	return p->pids[PIDTYPE_PID].pid != NULL;
1703}
1704
1705/**
1706 * is_global_init - check if a task structure is init
1707 * @tsk: Task structure to be checked.
1708 *
1709 * Check if a task structure is the first user space task the kernel created.
1710 */
1711static inline int is_global_init(struct task_struct *tsk)
1712{
1713	return tsk->pid == 1;
1714}
1715
1716/*
1717 * is_container_init:
1718 * check whether in the task is init in its own pid namespace.
1719 */
1720extern int is_container_init(struct task_struct *tsk);
1721
1722extern struct pid *cad_pid;
1723
1724extern void free_task(struct task_struct *tsk);
1725#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1726
1727extern void __put_task_struct(struct task_struct *t);
1728
1729static inline void put_task_struct(struct task_struct *t)
1730{
1731	if (atomic_dec_and_test(&t->usage))
1732		__put_task_struct(t);
1733}
1734
1735extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1736extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1737
1738/*
1739 * Per process flags
1740 */
1741#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1742					/* Not implemented yet, only for 486*/
1743#define PF_STARTING	0x00000002	/* being created */
1744#define PF_EXITING	0x00000004	/* getting shut down */
1745#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1746#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1747#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1748#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1749#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1750#define PF_DUMPCORE	0x00000200	/* dumped core */
1751#define PF_SIGNALED	0x00000400	/* killed by a signal */
1752#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1753#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1754#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1755#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1756#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1757#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1758#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1759#define PF_KSWAPD	0x00040000	/* I am kswapd */
1760#define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1761#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1762#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1763#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1764#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1765#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1766#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1767#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1768#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1769#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1770#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1771#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1772#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1773
1774/*
1775 * Only the _current_ task can read/write to tsk->flags, but other
1776 * tasks can access tsk->flags in readonly mode for example
1777 * with tsk_used_math (like during threaded core dumping).
1778 * There is however an exception to this rule during ptrace
1779 * or during fork: the ptracer task is allowed to write to the
1780 * child->flags of its traced child (same goes for fork, the parent
1781 * can write to the child->flags), because we're guaranteed the
1782 * child is not running and in turn not changing child->flags
1783 * at the same time the parent does it.
1784 */
1785#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1786#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1787#define clear_used_math() clear_stopped_child_used_math(current)
1788#define set_used_math() set_stopped_child_used_math(current)
1789#define conditional_stopped_child_used_math(condition, child) \
1790	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1791#define conditional_used_math(condition) \
1792	conditional_stopped_child_used_math(condition, current)
1793#define copy_to_stopped_child_used_math(child) \
1794	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1795/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1796#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1797#define used_math() tsk_used_math(current)
1798
1799#ifdef CONFIG_TREE_PREEMPT_RCU
1800
1801#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1802#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1803
1804static inline void rcu_copy_process(struct task_struct *p)
1805{
1806	p->rcu_read_lock_nesting = 0;
1807	p->rcu_read_unlock_special = 0;
1808	p->rcu_blocked_node = NULL;
1809	INIT_LIST_HEAD(&p->rcu_node_entry);
1810}
1811
1812#else
1813
1814static inline void rcu_copy_process(struct task_struct *p)
1815{
1816}
1817
1818#endif
1819
1820#ifdef CONFIG_SMP
1821extern int set_cpus_allowed_ptr(struct task_struct *p,
1822				const struct cpumask *new_mask);
1823#else
1824static inline int set_cpus_allowed_ptr(struct task_struct *p,
1825				       const struct cpumask *new_mask)
1826{
1827	if (!cpumask_test_cpu(0, new_mask))
1828		return -EINVAL;
1829	return 0;
1830}
1831#endif
1832
1833#ifndef CONFIG_CPUMASK_OFFSTACK
1834static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1835{
1836	return set_cpus_allowed_ptr(p, &new_mask);
1837}
1838#endif
1839
1840/*
1841 * Architectures can set this to 1 if they have specified
1842 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1843 * but then during bootup it turns out that sched_clock()
1844 * is reliable after all:
1845 */
1846#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1847extern int sched_clock_stable;
1848#endif
1849
1850/* ftrace calls sched_clock() directly */
1851extern unsigned long long notrace sched_clock(void);
1852
1853extern void sched_clock_init(void);
1854extern u64 sched_clock_cpu(int cpu);
1855
1856#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1857static inline void sched_clock_tick(void)
1858{
1859}
1860
1861static inline void sched_clock_idle_sleep_event(void)
1862{
1863}
1864
1865static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1866{
1867}
1868#else
1869extern void sched_clock_tick(void);
1870extern void sched_clock_idle_sleep_event(void);
1871extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1872#endif
1873
1874/*
1875 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1876 * clock constructed from sched_clock():
1877 */
1878extern unsigned long long cpu_clock(int cpu);
1879
1880extern unsigned long long
1881task_sched_runtime(struct task_struct *task);
1882extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1883
1884/* sched_exec is called by processes performing an exec */
1885#ifdef CONFIG_SMP
1886extern void sched_exec(void);
1887#else
1888#define sched_exec()   {}
1889#endif
1890
1891extern void sched_clock_idle_sleep_event(void);
1892extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1893
1894#ifdef CONFIG_HOTPLUG_CPU
1895extern void idle_task_exit(void);
1896#else
1897static inline void idle_task_exit(void) {}
1898#endif
1899
1900extern void sched_idle_next(void);
1901
1902#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1903extern void wake_up_idle_cpu(int cpu);
1904#else
1905static inline void wake_up_idle_cpu(int cpu) { }
1906#endif
1907
1908extern unsigned int sysctl_sched_latency;
1909extern unsigned int sysctl_sched_min_granularity;
1910extern unsigned int sysctl_sched_wakeup_granularity;
1911extern unsigned int sysctl_sched_shares_ratelimit;
1912extern unsigned int sysctl_sched_shares_thresh;
1913extern unsigned int sysctl_sched_child_runs_first;
1914
1915enum sched_tunable_scaling {
1916	SCHED_TUNABLESCALING_NONE,
1917	SCHED_TUNABLESCALING_LOG,
1918	SCHED_TUNABLESCALING_LINEAR,
1919	SCHED_TUNABLESCALING_END,
1920};
1921extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1922
1923#ifdef CONFIG_SCHED_DEBUG
1924extern unsigned int sysctl_sched_migration_cost;
1925extern unsigned int sysctl_sched_nr_migrate;
1926extern unsigned int sysctl_sched_time_avg;
1927extern unsigned int sysctl_timer_migration;
1928
1929int sched_proc_update_handler(struct ctl_table *table, int write,
1930		void __user *buffer, size_t *length,
1931		loff_t *ppos);
1932#endif
1933#ifdef CONFIG_SCHED_DEBUG
1934static inline unsigned int get_sysctl_timer_migration(void)
1935{
1936	return sysctl_timer_migration;
1937}
1938#else
1939static inline unsigned int get_sysctl_timer_migration(void)
1940{
1941	return 1;
1942}
1943#endif
1944extern unsigned int sysctl_sched_rt_period;
1945extern int sysctl_sched_rt_runtime;
1946
1947int sched_rt_handler(struct ctl_table *table, int write,
1948		void __user *buffer, size_t *lenp,
1949		loff_t *ppos);
1950
1951extern unsigned int sysctl_sched_compat_yield;
1952
1953#ifdef CONFIG_RT_MUTEXES
1954extern int rt_mutex_getprio(struct task_struct *p);
1955extern void rt_mutex_setprio(struct task_struct *p, int prio);
1956extern void rt_mutex_adjust_pi(struct task_struct *p);
1957#else
1958static inline int rt_mutex_getprio(struct task_struct *p)
1959{
1960	return p->normal_prio;
1961}
1962# define rt_mutex_adjust_pi(p)		do { } while (0)
1963#endif
1964
1965extern void set_user_nice(struct task_struct *p, long nice);
1966extern int task_prio(const struct task_struct *p);
1967extern int task_nice(const struct task_struct *p);
1968extern int can_nice(const struct task_struct *p, const int nice);
1969extern int task_curr(const struct task_struct *p);
1970extern int idle_cpu(int cpu);
1971extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1972extern int sched_setscheduler_nocheck(struct task_struct *, int,
1973				      struct sched_param *);
1974extern struct task_struct *idle_task(int cpu);
1975extern struct task_struct *curr_task(int cpu);
1976extern void set_curr_task(int cpu, struct task_struct *p);
1977
1978void yield(void);
1979
1980/*
1981 * The default (Linux) execution domain.
1982 */
1983extern struct exec_domain	default_exec_domain;
1984
1985union thread_union {
1986	struct thread_info thread_info;
1987	unsigned long stack[THREAD_SIZE/sizeof(long)];
1988};
1989
1990#ifndef __HAVE_ARCH_KSTACK_END
1991static inline int kstack_end(void *addr)
1992{
1993	/* Reliable end of stack detection:
1994	 * Some APM bios versions misalign the stack
1995	 */
1996	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1997}
1998#endif
1999
2000extern union thread_union init_thread_union;
2001extern struct task_struct init_task;
2002
2003extern struct   mm_struct init_mm;
2004
2005extern struct pid_namespace init_pid_ns;
2006
2007/*
2008 * find a task by one of its numerical ids
2009 *
2010 * find_task_by_pid_ns():
2011 *      finds a task by its pid in the specified namespace
2012 * find_task_by_vpid():
2013 *      finds a task by its virtual pid
2014 *
2015 * see also find_vpid() etc in include/linux/pid.h
2016 */
2017
2018extern struct task_struct *find_task_by_vpid(pid_t nr);
2019extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2020		struct pid_namespace *ns);
2021
2022extern void __set_special_pids(struct pid *pid);
2023
2024/* per-UID process charging. */
2025extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2026static inline struct user_struct *get_uid(struct user_struct *u)
2027{
2028	atomic_inc(&u->__count);
2029	return u;
2030}
2031extern void free_uid(struct user_struct *);
2032extern void release_uids(struct user_namespace *ns);
2033
2034#include <asm/current.h>
2035
2036extern void do_timer(unsigned long ticks);
2037
2038extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2039extern int wake_up_process(struct task_struct *tsk);
2040extern void wake_up_new_task(struct task_struct *tsk,
2041				unsigned long clone_flags);
2042#ifdef CONFIG_SMP
2043 extern void kick_process(struct task_struct *tsk);
2044#else
2045 static inline void kick_process(struct task_struct *tsk) { }
2046#endif
2047extern void sched_fork(struct task_struct *p, int clone_flags);
2048extern void sched_dead(struct task_struct *p);
2049
2050extern void proc_caches_init(void);
2051extern void flush_signals(struct task_struct *);
2052extern void __flush_signals(struct task_struct *);
2053extern void ignore_signals(struct task_struct *);
2054extern void flush_signal_handlers(struct task_struct *, int force_default);
2055extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2056
2057static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2058{
2059	unsigned long flags;
2060	int ret;
2061
2062	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2063	ret = dequeue_signal(tsk, mask, info);
2064	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2065
2066	return ret;
2067}
2068
2069extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2070			      sigset_t *mask);
2071extern void unblock_all_signals(void);
2072extern void release_task(struct task_struct * p);
2073extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2074extern int force_sigsegv(int, struct task_struct *);
2075extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2076extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2077extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2078extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2079extern int kill_pgrp(struct pid *pid, int sig, int priv);
2080extern int kill_pid(struct pid *pid, int sig, int priv);
2081extern int kill_proc_info(int, struct siginfo *, pid_t);
2082extern int do_notify_parent(struct task_struct *, int);
2083extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2084extern void force_sig(int, struct task_struct *);
2085extern void force_sig_specific(int, struct task_struct *);
2086extern int send_sig(int, struct task_struct *, int);
2087extern void zap_other_threads(struct task_struct *p);
2088extern struct sigqueue *sigqueue_alloc(void);
2089extern void sigqueue_free(struct sigqueue *);
2090extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2091extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2092extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2093
2094static inline int kill_cad_pid(int sig, int priv)
2095{
2096	return kill_pid(cad_pid, sig, priv);
2097}
2098
2099/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2100#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2101#define SEND_SIG_PRIV	((struct siginfo *) 1)
2102#define SEND_SIG_FORCED	((struct siginfo *) 2)
2103
2104static inline int is_si_special(const struct siginfo *info)
2105{
2106	return info <= SEND_SIG_FORCED;
2107}
2108
2109/*
2110 * True if we are on the alternate signal stack.
2111 */
2112static inline int on_sig_stack(unsigned long sp)
2113{
2114#ifdef CONFIG_STACK_GROWSUP
2115	return sp >= current->sas_ss_sp &&
2116		sp - current->sas_ss_sp < current->sas_ss_size;
2117#else
2118	return sp > current->sas_ss_sp &&
2119		sp - current->sas_ss_sp <= current->sas_ss_size;
2120#endif
2121}
2122
2123static inline int sas_ss_flags(unsigned long sp)
2124{
2125	return (current->sas_ss_size == 0 ? SS_DISABLE
2126		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2127}
2128
2129/*
2130 * Routines for handling mm_structs
2131 */
2132extern struct mm_struct * mm_alloc(void);
2133
2134/* mmdrop drops the mm and the page tables */
2135extern void __mmdrop(struct mm_struct *);
2136static inline void mmdrop(struct mm_struct * mm)
2137{
2138	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2139		__mmdrop(mm);
2140}
2141
2142/* mmput gets rid of the mappings and all user-space */
2143extern void mmput(struct mm_struct *);
2144/* Grab a reference to a task's mm, if it is not already going away */
2145extern struct mm_struct *get_task_mm(struct task_struct *task);
2146/* Remove the current tasks stale references to the old mm_struct */
2147extern void mm_release(struct task_struct *, struct mm_struct *);
2148/* Allocate a new mm structure and copy contents from tsk->mm */
2149extern struct mm_struct *dup_mm(struct task_struct *tsk);
2150
2151extern int copy_thread(unsigned long, unsigned long, unsigned long,
2152			struct task_struct *, struct pt_regs *);
2153extern void flush_thread(void);
2154extern void exit_thread(void);
2155
2156extern void exit_files(struct task_struct *);
2157extern void __cleanup_signal(struct signal_struct *);
2158extern void __cleanup_sighand(struct sighand_struct *);
2159
2160extern void exit_itimers(struct signal_struct *);
2161extern void flush_itimer_signals(void);
2162
2163extern NORET_TYPE void do_group_exit(int);
2164
2165extern void daemonize(const char *, ...);
2166extern int allow_signal(int);
2167extern int disallow_signal(int);
2168
2169extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2170extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2171struct task_struct *fork_idle(int);
2172
2173extern void set_task_comm(struct task_struct *tsk, char *from);
2174extern char *get_task_comm(char *to, struct task_struct *tsk);
2175
2176#ifdef CONFIG_SMP
2177extern void wait_task_context_switch(struct task_struct *p);
2178extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2179#else
2180static inline void wait_task_context_switch(struct task_struct *p) {}
2181static inline unsigned long wait_task_inactive(struct task_struct *p,
2182					       long match_state)
2183{
2184	return 1;
2185}
2186#endif
2187
2188#define next_task(p) \
2189	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2190
2191#define for_each_process(p) \
2192	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2193
2194extern bool current_is_single_threaded(void);
2195
2196/*
2197 * Careful: do_each_thread/while_each_thread is a double loop so
2198 *          'break' will not work as expected - use goto instead.
2199 */
2200#define do_each_thread(g, t) \
2201	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2202
2203#define while_each_thread(g, t) \
2204	while ((t = next_thread(t)) != g)
2205
2206/* de_thread depends on thread_group_leader not being a pid based check */
2207#define thread_group_leader(p)	(p == p->group_leader)
2208
2209/* Do to the insanities of de_thread it is possible for a process
2210 * to have the pid of the thread group leader without actually being
2211 * the thread group leader.  For iteration through the pids in proc
2212 * all we care about is that we have a task with the appropriate
2213 * pid, we don't actually care if we have the right task.
2214 */
2215static inline int has_group_leader_pid(struct task_struct *p)
2216{
2217	return p->pid == p->tgid;
2218}
2219
2220static inline
2221int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2222{
2223	return p1->tgid == p2->tgid;
2224}
2225
2226static inline struct task_struct *next_thread(const struct task_struct *p)
2227{
2228	return list_entry_rcu(p->thread_group.next,
2229			      struct task_struct, thread_group);
2230}
2231
2232static inline int thread_group_empty(struct task_struct *p)
2233{
2234	return list_empty(&p->thread_group);
2235}
2236
2237#define delay_group_leader(p) \
2238		(thread_group_leader(p) && !thread_group_empty(p))
2239
2240static inline int task_detached(struct task_struct *p)
2241{
2242	return p->exit_signal == -1;
2243}
2244
2245/*
2246 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2247 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2248 * pins the final release of task.io_context.  Also protects ->cpuset and
2249 * ->cgroup.subsys[].
2250 *
2251 * Nests both inside and outside of read_lock(&tasklist_lock).
2252 * It must not be nested with write_lock_irq(&tasklist_lock),
2253 * neither inside nor outside.
2254 */
2255static inline void task_lock(struct task_struct *p)
2256{
2257	spin_lock(&p->alloc_lock);
2258}
2259
2260static inline void task_unlock(struct task_struct *p)
2261{
2262	spin_unlock(&p->alloc_lock);
2263}
2264
2265extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2266							unsigned long *flags);
2267
2268static inline void unlock_task_sighand(struct task_struct *tsk,
2269						unsigned long *flags)
2270{
2271	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2272}
2273
2274#ifndef __HAVE_THREAD_FUNCTIONS
2275
2276#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2277#define task_stack_page(task)	((task)->stack)
2278
2279static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2280{
2281	*task_thread_info(p) = *task_thread_info(org);
2282	task_thread_info(p)->task = p;
2283}
2284
2285static inline unsigned long *end_of_stack(struct task_struct *p)
2286{
2287	return (unsigned long *)(task_thread_info(p) + 1);
2288}
2289
2290#endif
2291
2292static inline int object_is_on_stack(void *obj)
2293{
2294	void *stack = task_stack_page(current);
2295
2296	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2297}
2298
2299extern void thread_info_cache_init(void);
2300
2301#ifdef CONFIG_DEBUG_STACK_USAGE
2302static inline unsigned long stack_not_used(struct task_struct *p)
2303{
2304	unsigned long *n = end_of_stack(p);
2305
2306	do { 	/* Skip over canary */
2307		n++;
2308	} while (!*n);
2309
2310	return (unsigned long)n - (unsigned long)end_of_stack(p);
2311}
2312#endif
2313
2314/* set thread flags in other task's structures
2315 * - see asm/thread_info.h for TIF_xxxx flags available
2316 */
2317static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2318{
2319	set_ti_thread_flag(task_thread_info(tsk), flag);
2320}
2321
2322static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2323{
2324	clear_ti_thread_flag(task_thread_info(tsk), flag);
2325}
2326
2327static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2328{
2329	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2330}
2331
2332static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2333{
2334	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2335}
2336
2337static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339	return test_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline void set_tsk_need_resched(struct task_struct *tsk)
2343{
2344	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2345}
2346
2347static inline void clear_tsk_need_resched(struct task_struct *tsk)
2348{
2349	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2350}
2351
2352static inline int test_tsk_need_resched(struct task_struct *tsk)
2353{
2354	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2355}
2356
2357static inline int restart_syscall(void)
2358{
2359	set_tsk_thread_flag(current, TIF_SIGPENDING);
2360	return -ERESTARTNOINTR;
2361}
2362
2363static inline int signal_pending(struct task_struct *p)
2364{
2365	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2366}
2367
2368static inline int __fatal_signal_pending(struct task_struct *p)
2369{
2370	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2371}
2372
2373static inline int fatal_signal_pending(struct task_struct *p)
2374{
2375	return signal_pending(p) && __fatal_signal_pending(p);
2376}
2377
2378static inline int signal_pending_state(long state, struct task_struct *p)
2379{
2380	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2381		return 0;
2382	if (!signal_pending(p))
2383		return 0;
2384
2385	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2386}
2387
2388static inline int need_resched(void)
2389{
2390	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2391}
2392
2393/*
2394 * cond_resched() and cond_resched_lock(): latency reduction via
2395 * explicit rescheduling in places that are safe. The return
2396 * value indicates whether a reschedule was done in fact.
2397 * cond_resched_lock() will drop the spinlock before scheduling,
2398 * cond_resched_softirq() will enable bhs before scheduling.
2399 */
2400extern int _cond_resched(void);
2401
2402#define cond_resched() ({			\
2403	__might_sleep(__FILE__, __LINE__, 0);	\
2404	_cond_resched();			\
2405})
2406
2407extern int __cond_resched_lock(spinlock_t *lock);
2408
2409#ifdef CONFIG_PREEMPT
2410#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2411#else
2412#define PREEMPT_LOCK_OFFSET	0
2413#endif
2414
2415#define cond_resched_lock(lock) ({				\
2416	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2417	__cond_resched_lock(lock);				\
2418})
2419
2420extern int __cond_resched_softirq(void);
2421
2422#define cond_resched_softirq() ({				\
2423	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2424	__cond_resched_softirq();				\
2425})
2426
2427/*
2428 * Does a critical section need to be broken due to another
2429 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2430 * but a general need for low latency)
2431 */
2432static inline int spin_needbreak(spinlock_t *lock)
2433{
2434#ifdef CONFIG_PREEMPT
2435	return spin_is_contended(lock);
2436#else
2437	return 0;
2438#endif
2439}
2440
2441/*
2442 * Thread group CPU time accounting.
2443 */
2444void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2445void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2446
2447static inline void thread_group_cputime_init(struct signal_struct *sig)
2448{
2449	sig->cputimer.cputime = INIT_CPUTIME;
2450	spin_lock_init(&sig->cputimer.lock);
2451	sig->cputimer.running = 0;
2452}
2453
2454static inline void thread_group_cputime_free(struct signal_struct *sig)
2455{
2456}
2457
2458/*
2459 * Reevaluate whether the task has signals pending delivery.
2460 * Wake the task if so.
2461 * This is required every time the blocked sigset_t changes.
2462 * callers must hold sighand->siglock.
2463 */
2464extern void recalc_sigpending_and_wake(struct task_struct *t);
2465extern void recalc_sigpending(void);
2466
2467extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2468
2469/*
2470 * Wrappers for p->thread_info->cpu access. No-op on UP.
2471 */
2472#ifdef CONFIG_SMP
2473
2474static inline unsigned int task_cpu(const struct task_struct *p)
2475{
2476	return task_thread_info(p)->cpu;
2477}
2478
2479extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2480
2481#else
2482
2483static inline unsigned int task_cpu(const struct task_struct *p)
2484{
2485	return 0;
2486}
2487
2488static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2489{
2490}
2491
2492#endif /* CONFIG_SMP */
2493
2494extern void arch_pick_mmap_layout(struct mm_struct *mm);
2495
2496#ifdef CONFIG_TRACING
2497extern void
2498__trace_special(void *__tr, void *__data,
2499		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2500#else
2501static inline void
2502__trace_special(void *__tr, void *__data,
2503		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2504{
2505}
2506#endif
2507
2508extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2509extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2510
2511extern void normalize_rt_tasks(void);
2512
2513#ifdef CONFIG_GROUP_SCHED
2514
2515extern struct task_group init_task_group;
2516#ifdef CONFIG_USER_SCHED
2517extern struct task_group root_task_group;
2518extern void set_tg_uid(struct user_struct *user);
2519#endif
2520
2521extern struct task_group *sched_create_group(struct task_group *parent);
2522extern void sched_destroy_group(struct task_group *tg);
2523extern void sched_move_task(struct task_struct *tsk);
2524#ifdef CONFIG_FAIR_GROUP_SCHED
2525extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2526extern unsigned long sched_group_shares(struct task_group *tg);
2527#endif
2528#ifdef CONFIG_RT_GROUP_SCHED
2529extern int sched_group_set_rt_runtime(struct task_group *tg,
2530				      long rt_runtime_us);
2531extern long sched_group_rt_runtime(struct task_group *tg);
2532extern int sched_group_set_rt_period(struct task_group *tg,
2533				      long rt_period_us);
2534extern long sched_group_rt_period(struct task_group *tg);
2535extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2536#endif
2537#endif
2538
2539extern int task_can_switch_user(struct user_struct *up,
2540					struct task_struct *tsk);
2541
2542#ifdef CONFIG_TASK_XACCT
2543static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2544{
2545	tsk->ioac.rchar += amt;
2546}
2547
2548static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2549{
2550	tsk->ioac.wchar += amt;
2551}
2552
2553static inline void inc_syscr(struct task_struct *tsk)
2554{
2555	tsk->ioac.syscr++;
2556}
2557
2558static inline void inc_syscw(struct task_struct *tsk)
2559{
2560	tsk->ioac.syscw++;
2561}
2562#else
2563static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2564{
2565}
2566
2567static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2568{
2569}
2570
2571static inline void inc_syscr(struct task_struct *tsk)
2572{
2573}
2574
2575static inline void inc_syscw(struct task_struct *tsk)
2576{
2577}
2578#endif
2579
2580#ifndef TASK_SIZE_OF
2581#define TASK_SIZE_OF(tsk)	TASK_SIZE
2582#endif
2583
2584/*
2585 * Call the function if the target task is executing on a CPU right now:
2586 */
2587extern void task_oncpu_function_call(struct task_struct *p,
2588				     void (*func) (void *info), void *info);
2589
2590
2591#ifdef CONFIG_MM_OWNER
2592extern void mm_update_next_owner(struct mm_struct *mm);
2593extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2594#else
2595static inline void mm_update_next_owner(struct mm_struct *mm)
2596{
2597}
2598
2599static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2600{
2601}
2602#endif /* CONFIG_MM_OWNER */
2603
2604#endif /* __KERNEL__ */
2605
2606#endif
2607