sched.h revision f201ae2356c74bcae130b2177b3dca903ea98071
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45	int sched_priority;
46};
47
48#include <asm/param.h>	/* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/page.h>
65#include <asm/ptrace.h>
66#include <asm/cputime.h>
67
68#include <linux/smp.h>
69#include <linux/sem.h>
70#include <linux/signal.h>
71#include <linux/fs_struct.h>
72#include <linux/compiler.h>
73#include <linux/completion.h>
74#include <linux/pid.h>
75#include <linux/percpu.h>
76#include <linux/topology.h>
77#include <linux/proportions.h>
78#include <linux/seccomp.h>
79#include <linux/rcupdate.h>
80#include <linux/rtmutex.h>
81
82#include <linux/time.h>
83#include <linux/param.h>
84#include <linux/resource.h>
85#include <linux/timer.h>
86#include <linux/hrtimer.h>
87#include <linux/task_io_accounting.h>
88#include <linux/kobject.h>
89#include <linux/latencytop.h>
90#include <linux/cred.h>
91
92#include <asm/processor.h>
93
94struct mem_cgroup;
95struct exec_domain;
96struct futex_pi_state;
97struct robust_list_head;
98struct bio;
99
100/*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106/*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 *    a load-average precision of 10 bits integer + 11 bits fractional
111 *  - if you want to count load-averages more often, you need more
112 *    precision, or rounding will get you. With 2-second counting freq,
113 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
114 *    11 bit fractions.
115 */
116extern unsigned long avenrun[];		/* Load averages */
117
118#define FSHIFT		11		/* nr of bits of precision */
119#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
120#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
121#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
122#define EXP_5		2014		/* 1/exp(5sec/5min) */
123#define EXP_15		2037		/* 1/exp(5sec/15min) */
124
125#define CALC_LOAD(load,exp,n) \
126	load *= exp; \
127	load += n*(FIXED_1-exp); \
128	load >>= FSHIFT;
129
130extern unsigned long total_forks;
131extern int nr_threads;
132DECLARE_PER_CPU(unsigned long, process_counts);
133extern int nr_processes(void);
134extern unsigned long nr_running(void);
135extern unsigned long nr_uninterruptible(void);
136extern unsigned long nr_active(void);
137extern unsigned long nr_iowait(void);
138
139struct seq_file;
140struct cfs_rq;
141struct task_group;
142#ifdef CONFIG_SCHED_DEBUG
143extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144extern void proc_sched_set_task(struct task_struct *p);
145extern void
146print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147#else
148static inline void
149proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150{
151}
152static inline void proc_sched_set_task(struct task_struct *p)
153{
154}
155static inline void
156print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157{
158}
159#endif
160
161extern unsigned long long time_sync_thresh;
162
163/*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173#define TASK_RUNNING		0
174#define TASK_INTERRUPTIBLE	1
175#define TASK_UNINTERRUPTIBLE	2
176#define __TASK_STOPPED		4
177#define __TASK_TRACED		8
178/* in tsk->exit_state */
179#define EXIT_ZOMBIE		16
180#define EXIT_DEAD		32
181/* in tsk->state again */
182#define TASK_DEAD		64
183#define TASK_WAKEKILL		128
184
185/* Convenience macros for the sake of set_task_state */
186#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
188#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
189
190/* Convenience macros for the sake of wake_up */
191#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194/* get_task_state() */
195#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
196				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197				 __TASK_TRACED)
198
199#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
200#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
201#define task_is_stopped_or_traced(task)	\
202			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203#define task_contributes_to_load(task)	\
204				((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206#define __set_task_state(tsk, state_value)		\
207	do { (tsk)->state = (state_value); } while (0)
208#define set_task_state(tsk, state_value)		\
209	set_mb((tsk)->state, (state_value))
210
211/*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 *	set_current_state(TASK_UNINTERRUPTIBLE);
217 *	if (do_i_need_to_sleep())
218 *		schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222#define __set_current_state(state_value)			\
223	do { current->state = (state_value); } while (0)
224#define set_current_state(state_value)		\
225	set_mb(current->state, (state_value))
226
227/* Task command name length */
228#define TASK_COMM_LEN 16
229
230#include <linux/spinlock.h>
231
232/*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238extern rwlock_t tasklist_lock;
239extern spinlock_t mmlist_lock;
240
241struct task_struct;
242
243extern void sched_init(void);
244extern void sched_init_smp(void);
245extern asmlinkage void schedule_tail(struct task_struct *prev);
246extern void init_idle(struct task_struct *idle, int cpu);
247extern void init_idle_bootup_task(struct task_struct *idle);
248
249extern int runqueue_is_locked(void);
250extern void task_rq_unlock_wait(struct task_struct *p);
251
252extern cpumask_t nohz_cpu_mask;
253#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254extern int select_nohz_load_balancer(int cpu);
255#else
256static inline int select_nohz_load_balancer(int cpu)
257{
258	return 0;
259}
260#endif
261
262extern unsigned long rt_needs_cpu(int cpu);
263
264/*
265 * Only dump TASK_* tasks. (0 for all tasks)
266 */
267extern void show_state_filter(unsigned long state_filter);
268
269static inline void show_state(void)
270{
271	show_state_filter(0);
272}
273
274extern void show_regs(struct pt_regs *);
275
276/*
277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
278 * task), SP is the stack pointer of the first frame that should be shown in the back
279 * trace (or NULL if the entire call-chain of the task should be shown).
280 */
281extern void show_stack(struct task_struct *task, unsigned long *sp);
282
283void io_schedule(void);
284long io_schedule_timeout(long timeout);
285
286extern void cpu_init (void);
287extern void trap_init(void);
288extern void account_process_tick(struct task_struct *task, int user);
289extern void update_process_times(int user);
290extern void scheduler_tick(void);
291
292extern void sched_show_task(struct task_struct *p);
293
294#ifdef CONFIG_DETECT_SOFTLOCKUP
295extern void softlockup_tick(void);
296extern void touch_softlockup_watchdog(void);
297extern void touch_all_softlockup_watchdogs(void);
298extern unsigned int  softlockup_panic;
299extern unsigned long sysctl_hung_task_check_count;
300extern unsigned long sysctl_hung_task_timeout_secs;
301extern unsigned long sysctl_hung_task_warnings;
302extern int softlockup_thresh;
303#else
304static inline void softlockup_tick(void)
305{
306}
307static inline void spawn_softlockup_task(void)
308{
309}
310static inline void touch_softlockup_watchdog(void)
311{
312}
313static inline void touch_all_softlockup_watchdogs(void)
314{
315}
316#endif
317
318
319/* Attach to any functions which should be ignored in wchan output. */
320#define __sched		__attribute__((__section__(".sched.text")))
321
322/* Linker adds these: start and end of __sched functions */
323extern char __sched_text_start[], __sched_text_end[];
324
325/* Is this address in the __sched functions? */
326extern int in_sched_functions(unsigned long addr);
327
328#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
329extern signed long schedule_timeout(signed long timeout);
330extern signed long schedule_timeout_interruptible(signed long timeout);
331extern signed long schedule_timeout_killable(signed long timeout);
332extern signed long schedule_timeout_uninterruptible(signed long timeout);
333asmlinkage void schedule(void);
334
335struct nsproxy;
336struct user_namespace;
337
338/* Maximum number of active map areas.. This is a random (large) number */
339#define DEFAULT_MAX_MAP_COUNT	65536
340
341extern int sysctl_max_map_count;
342
343#include <linux/aio.h>
344
345extern unsigned long
346arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347		       unsigned long, unsigned long);
348extern unsigned long
349arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350			  unsigned long len, unsigned long pgoff,
351			  unsigned long flags);
352extern void arch_unmap_area(struct mm_struct *, unsigned long);
353extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355#if USE_SPLIT_PTLOCKS
356/*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366#else  /* !USE_SPLIT_PTLOCKS */
367/*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372#define get_mm_counter(mm, member) ((mm)->_##member)
373#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374#define inc_mm_counter(mm, member) (mm)->_##member++
375#define dec_mm_counter(mm, member) (mm)->_##member--
376
377#endif /* !USE_SPLIT_PTLOCKS */
378
379#define get_mm_rss(mm)					\
380	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381#define update_hiwater_rss(mm)	do {			\
382	unsigned long _rss = get_mm_rss(mm);		\
383	if ((mm)->hiwater_rss < _rss)			\
384		(mm)->hiwater_rss = _rss;		\
385} while (0)
386#define update_hiwater_vm(mm)	do {			\
387	if ((mm)->hiwater_vm < (mm)->total_vm)		\
388		(mm)->hiwater_vm = (mm)->total_vm;	\
389} while (0)
390
391extern void set_dumpable(struct mm_struct *mm, int value);
392extern int get_dumpable(struct mm_struct *mm);
393
394/* mm flags */
395/* dumpable bits */
396#define MMF_DUMPABLE      0  /* core dump is permitted */
397#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
398#define MMF_DUMPABLE_BITS 2
399
400/* coredump filter bits */
401#define MMF_DUMP_ANON_PRIVATE	2
402#define MMF_DUMP_ANON_SHARED	3
403#define MMF_DUMP_MAPPED_PRIVATE	4
404#define MMF_DUMP_MAPPED_SHARED	5
405#define MMF_DUMP_ELF_HEADERS	6
406#define MMF_DUMP_HUGETLB_PRIVATE 7
407#define MMF_DUMP_HUGETLB_SHARED  8
408#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
409#define MMF_DUMP_FILTER_BITS	7
410#define MMF_DUMP_FILTER_MASK \
411	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
412#define MMF_DUMP_FILTER_DEFAULT \
413	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
414	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
415
416#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
417# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
418#else
419# define MMF_DUMP_MASK_DEFAULT_ELF	0
420#endif
421
422struct sighand_struct {
423	atomic_t		count;
424	struct k_sigaction	action[_NSIG];
425	spinlock_t		siglock;
426	wait_queue_head_t	signalfd_wqh;
427};
428
429struct pacct_struct {
430	int			ac_flag;
431	long			ac_exitcode;
432	unsigned long		ac_mem;
433	cputime_t		ac_utime, ac_stime;
434	unsigned long		ac_minflt, ac_majflt;
435};
436
437/**
438 * struct task_cputime - collected CPU time counts
439 * @utime:		time spent in user mode, in &cputime_t units
440 * @stime:		time spent in kernel mode, in &cputime_t units
441 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
442 *
443 * This structure groups together three kinds of CPU time that are
444 * tracked for threads and thread groups.  Most things considering
445 * CPU time want to group these counts together and treat all three
446 * of them in parallel.
447 */
448struct task_cputime {
449	cputime_t utime;
450	cputime_t stime;
451	unsigned long long sum_exec_runtime;
452};
453/* Alternate field names when used to cache expirations. */
454#define prof_exp	stime
455#define virt_exp	utime
456#define sched_exp	sum_exec_runtime
457
458/**
459 * struct thread_group_cputime - thread group interval timer counts
460 * @totals:		thread group interval timers; substructure for
461 *			uniprocessor kernel, per-cpu for SMP kernel.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU clock calculations.
465 */
466struct thread_group_cputime {
467	struct task_cputime *totals;
468};
469
470/*
471 * NOTE! "signal_struct" does not have it's own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477struct signal_struct {
478	atomic_t		count;
479	atomic_t		live;
480
481	wait_queue_head_t	wait_chldexit;	/* for wait4() */
482
483	/* current thread group signal load-balancing target: */
484	struct task_struct	*curr_target;
485
486	/* shared signal handling: */
487	struct sigpending	shared_pending;
488
489	/* thread group exit support */
490	int			group_exit_code;
491	/* overloaded:
492	 * - notify group_exit_task when ->count is equal to notify_count
493	 * - everyone except group_exit_task is stopped during signal delivery
494	 *   of fatal signals, group_exit_task processes the signal.
495	 */
496	int			notify_count;
497	struct task_struct	*group_exit_task;
498
499	/* thread group stop support, overloads group_exit_code too */
500	int			group_stop_count;
501	unsigned int		flags; /* see SIGNAL_* flags below */
502
503	/* POSIX.1b Interval Timers */
504	struct list_head posix_timers;
505
506	/* ITIMER_REAL timer for the process */
507	struct hrtimer real_timer;
508	struct pid *leader_pid;
509	ktime_t it_real_incr;
510
511	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
512	cputime_t it_prof_expires, it_virt_expires;
513	cputime_t it_prof_incr, it_virt_incr;
514
515	/*
516	 * Thread group totals for process CPU clocks.
517	 * See thread_group_cputime(), et al, for details.
518	 */
519	struct thread_group_cputime cputime;
520
521	/* Earliest-expiration cache. */
522	struct task_cputime cputime_expires;
523
524	struct list_head cpu_timers[3];
525
526	/* job control IDs */
527
528	/*
529	 * pgrp and session fields are deprecated.
530	 * use the task_session_Xnr and task_pgrp_Xnr routines below
531	 */
532
533	union {
534		pid_t pgrp __deprecated;
535		pid_t __pgrp;
536	};
537
538	struct pid *tty_old_pgrp;
539
540	union {
541		pid_t session __deprecated;
542		pid_t __session;
543	};
544
545	/* boolean value for session group leader */
546	int leader;
547
548	struct tty_struct *tty; /* NULL if no tty */
549
550	/*
551	 * Cumulative resource counters for dead threads in the group,
552	 * and for reaped dead child processes forked by this group.
553	 * Live threads maintain their own counters and add to these
554	 * in __exit_signal, except for the group leader.
555	 */
556	cputime_t cutime, cstime;
557	cputime_t gtime;
558	cputime_t cgtime;
559	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
560	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
561	unsigned long inblock, oublock, cinblock, coublock;
562	struct task_io_accounting ioac;
563
564	/*
565	 * We don't bother to synchronize most readers of this at all,
566	 * because there is no reader checking a limit that actually needs
567	 * to get both rlim_cur and rlim_max atomically, and either one
568	 * alone is a single word that can safely be read normally.
569	 * getrlimit/setrlimit use task_lock(current->group_leader) to
570	 * protect this instead of the siglock, because they really
571	 * have no need to disable irqs.
572	 */
573	struct rlimit rlim[RLIM_NLIMITS];
574
575	/* keep the process-shared keyrings here so that they do the right
576	 * thing in threads created with CLONE_THREAD */
577#ifdef CONFIG_KEYS
578	struct key *session_keyring;	/* keyring inherited over fork */
579	struct key *process_keyring;	/* keyring private to this process */
580#endif
581#ifdef CONFIG_BSD_PROCESS_ACCT
582	struct pacct_struct pacct;	/* per-process accounting information */
583#endif
584#ifdef CONFIG_TASKSTATS
585	struct taskstats *stats;
586#endif
587#ifdef CONFIG_AUDIT
588	unsigned audit_tty;
589	struct tty_audit_buf *tty_audit_buf;
590#endif
591};
592
593/* Context switch must be unlocked if interrupts are to be enabled */
594#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
595# define __ARCH_WANT_UNLOCKED_CTXSW
596#endif
597
598/*
599 * Bits in flags field of signal_struct.
600 */
601#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
602#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
603#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
604#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
605/*
606 * Pending notifications to parent.
607 */
608#define SIGNAL_CLD_STOPPED	0x00000010
609#define SIGNAL_CLD_CONTINUED	0x00000020
610#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
611
612#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
613
614/* If true, all threads except ->group_exit_task have pending SIGKILL */
615static inline int signal_group_exit(const struct signal_struct *sig)
616{
617	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
618		(sig->group_exit_task != NULL);
619}
620
621/*
622 * Some day this will be a full-fledged user tracking system..
623 */
624struct user_struct {
625	atomic_t __count;	/* reference count */
626	atomic_t processes;	/* How many processes does this user have? */
627	atomic_t files;		/* How many open files does this user have? */
628	atomic_t sigpending;	/* How many pending signals does this user have? */
629#ifdef CONFIG_INOTIFY_USER
630	atomic_t inotify_watches; /* How many inotify watches does this user have? */
631	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
632#endif
633#ifdef CONFIG_POSIX_MQUEUE
634	/* protected by mq_lock	*/
635	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
636#endif
637	unsigned long locked_shm; /* How many pages of mlocked shm ? */
638
639#ifdef CONFIG_KEYS
640	struct key *uid_keyring;	/* UID specific keyring */
641	struct key *session_keyring;	/* UID's default session keyring */
642#endif
643
644	/* Hash table maintenance information */
645	struct hlist_node uidhash_node;
646	uid_t uid;
647
648#ifdef CONFIG_USER_SCHED
649	struct task_group *tg;
650#ifdef CONFIG_SYSFS
651	struct kobject kobj;
652	struct work_struct work;
653#endif
654#endif
655};
656
657extern int uids_sysfs_init(void);
658
659extern struct user_struct *find_user(uid_t);
660
661extern struct user_struct root_user;
662#define INIT_USER (&root_user)
663
664struct backing_dev_info;
665struct reclaim_state;
666
667#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
668struct sched_info {
669	/* cumulative counters */
670	unsigned long pcount;	      /* # of times run on this cpu */
671	unsigned long long cpu_time,  /* time spent on the cpu */
672			   run_delay; /* time spent waiting on a runqueue */
673
674	/* timestamps */
675	unsigned long long last_arrival,/* when we last ran on a cpu */
676			   last_queued;	/* when we were last queued to run */
677#ifdef CONFIG_SCHEDSTATS
678	/* BKL stats */
679	unsigned int bkl_count;
680#endif
681};
682#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
683
684#ifdef CONFIG_TASK_DELAY_ACCT
685struct task_delay_info {
686	spinlock_t	lock;
687	unsigned int	flags;	/* Private per-task flags */
688
689	/* For each stat XXX, add following, aligned appropriately
690	 *
691	 * struct timespec XXX_start, XXX_end;
692	 * u64 XXX_delay;
693	 * u32 XXX_count;
694	 *
695	 * Atomicity of updates to XXX_delay, XXX_count protected by
696	 * single lock above (split into XXX_lock if contention is an issue).
697	 */
698
699	/*
700	 * XXX_count is incremented on every XXX operation, the delay
701	 * associated with the operation is added to XXX_delay.
702	 * XXX_delay contains the accumulated delay time in nanoseconds.
703	 */
704	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
705	u64 blkio_delay;	/* wait for sync block io completion */
706	u64 swapin_delay;	/* wait for swapin block io completion */
707	u32 blkio_count;	/* total count of the number of sync block */
708				/* io operations performed */
709	u32 swapin_count;	/* total count of the number of swapin block */
710				/* io operations performed */
711
712	struct timespec freepages_start, freepages_end;
713	u64 freepages_delay;	/* wait for memory reclaim */
714	u32 freepages_count;	/* total count of memory reclaim */
715};
716#endif	/* CONFIG_TASK_DELAY_ACCT */
717
718static inline int sched_info_on(void)
719{
720#ifdef CONFIG_SCHEDSTATS
721	return 1;
722#elif defined(CONFIG_TASK_DELAY_ACCT)
723	extern int delayacct_on;
724	return delayacct_on;
725#else
726	return 0;
727#endif
728}
729
730enum cpu_idle_type {
731	CPU_IDLE,
732	CPU_NOT_IDLE,
733	CPU_NEWLY_IDLE,
734	CPU_MAX_IDLE_TYPES
735};
736
737/*
738 * sched-domains (multiprocessor balancing) declarations:
739 */
740
741/*
742 * Increase resolution of nice-level calculations:
743 */
744#define SCHED_LOAD_SHIFT	10
745#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
746
747#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
748
749#ifdef CONFIG_SMP
750#define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
751#define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
752#define SD_BALANCE_EXEC		4	/* Balance on exec */
753#define SD_BALANCE_FORK		8	/* Balance on fork, clone */
754#define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
755#define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
756#define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
757#define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
758#define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
759#define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
760#define SD_SERIALIZE		1024	/* Only a single load balancing instance */
761#define SD_WAKE_IDLE_FAR	2048	/* Gain latency sacrificing cache hit */
762
763#define BALANCE_FOR_MC_POWER	\
764	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
765
766#define BALANCE_FOR_PKG_POWER	\
767	((sched_mc_power_savings || sched_smt_power_savings) ?	\
768	 SD_POWERSAVINGS_BALANCE : 0)
769
770#define test_sd_parent(sd, flag)	((sd->parent &&		\
771					 (sd->parent->flags & flag)) ? 1 : 0)
772
773
774struct sched_group {
775	struct sched_group *next;	/* Must be a circular list */
776	cpumask_t cpumask;
777
778	/*
779	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
780	 * single CPU. This is read only (except for setup, hotplug CPU).
781	 * Note : Never change cpu_power without recompute its reciprocal
782	 */
783	unsigned int __cpu_power;
784	/*
785	 * reciprocal value of cpu_power to avoid expensive divides
786	 * (see include/linux/reciprocal_div.h)
787	 */
788	u32 reciprocal_cpu_power;
789};
790
791enum sched_domain_level {
792	SD_LV_NONE = 0,
793	SD_LV_SIBLING,
794	SD_LV_MC,
795	SD_LV_CPU,
796	SD_LV_NODE,
797	SD_LV_ALLNODES,
798	SD_LV_MAX
799};
800
801struct sched_domain_attr {
802	int relax_domain_level;
803};
804
805#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
806	.relax_domain_level = -1,			\
807}
808
809struct sched_domain {
810	/* These fields must be setup */
811	struct sched_domain *parent;	/* top domain must be null terminated */
812	struct sched_domain *child;	/* bottom domain must be null terminated */
813	struct sched_group *groups;	/* the balancing groups of the domain */
814	cpumask_t span;			/* span of all CPUs in this domain */
815	unsigned long min_interval;	/* Minimum balance interval ms */
816	unsigned long max_interval;	/* Maximum balance interval ms */
817	unsigned int busy_factor;	/* less balancing by factor if busy */
818	unsigned int imbalance_pct;	/* No balance until over watermark */
819	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
820	unsigned int busy_idx;
821	unsigned int idle_idx;
822	unsigned int newidle_idx;
823	unsigned int wake_idx;
824	unsigned int forkexec_idx;
825	int flags;			/* See SD_* */
826	enum sched_domain_level level;
827
828	/* Runtime fields. */
829	unsigned long last_balance;	/* init to jiffies. units in jiffies */
830	unsigned int balance_interval;	/* initialise to 1. units in ms. */
831	unsigned int nr_balance_failed; /* initialise to 0 */
832
833	u64 last_update;
834
835#ifdef CONFIG_SCHEDSTATS
836	/* load_balance() stats */
837	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
838	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
839	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
840	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
841	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
842	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
843	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
844	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
845
846	/* Active load balancing */
847	unsigned int alb_count;
848	unsigned int alb_failed;
849	unsigned int alb_pushed;
850
851	/* SD_BALANCE_EXEC stats */
852	unsigned int sbe_count;
853	unsigned int sbe_balanced;
854	unsigned int sbe_pushed;
855
856	/* SD_BALANCE_FORK stats */
857	unsigned int sbf_count;
858	unsigned int sbf_balanced;
859	unsigned int sbf_pushed;
860
861	/* try_to_wake_up() stats */
862	unsigned int ttwu_wake_remote;
863	unsigned int ttwu_move_affine;
864	unsigned int ttwu_move_balance;
865#endif
866#ifdef CONFIG_SCHED_DEBUG
867	char *name;
868#endif
869};
870
871extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
872				    struct sched_domain_attr *dattr_new);
873extern int arch_reinit_sched_domains(void);
874
875#else /* CONFIG_SMP */
876
877struct sched_domain_attr;
878
879static inline void
880partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
881			struct sched_domain_attr *dattr_new)
882{
883}
884#endif	/* !CONFIG_SMP */
885
886struct io_context;			/* See blkdev.h */
887#define NGROUPS_SMALL		32
888#define NGROUPS_PER_BLOCK	((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
889struct group_info {
890	int ngroups;
891	atomic_t usage;
892	gid_t small_block[NGROUPS_SMALL];
893	int nblocks;
894	gid_t *blocks[0];
895};
896
897/*
898 * get_group_info() must be called with the owning task locked (via task_lock())
899 * when task != current.  The reason being that the vast majority of callers are
900 * looking at current->group_info, which can not be changed except by the
901 * current task.  Changing current->group_info requires the task lock, too.
902 */
903#define get_group_info(group_info) do { \
904	atomic_inc(&(group_info)->usage); \
905} while (0)
906
907#define put_group_info(group_info) do { \
908	if (atomic_dec_and_test(&(group_info)->usage)) \
909		groups_free(group_info); \
910} while (0)
911
912extern struct group_info *groups_alloc(int gidsetsize);
913extern void groups_free(struct group_info *group_info);
914extern int set_current_groups(struct group_info *group_info);
915extern int groups_search(struct group_info *group_info, gid_t grp);
916/* access the groups "array" with this macro */
917#define GROUP_AT(gi, i) \
918    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
919
920#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
921extern void prefetch_stack(struct task_struct *t);
922#else
923static inline void prefetch_stack(struct task_struct *t) { }
924#endif
925
926struct audit_context;		/* See audit.c */
927struct mempolicy;
928struct pipe_inode_info;
929struct uts_namespace;
930
931struct rq;
932struct sched_domain;
933
934struct sched_class {
935	const struct sched_class *next;
936
937	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
938	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
939	void (*yield_task) (struct rq *rq);
940
941	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
942
943	struct task_struct * (*pick_next_task) (struct rq *rq);
944	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
945
946#ifdef CONFIG_SMP
947	int  (*select_task_rq)(struct task_struct *p, int sync);
948
949	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
950			struct rq *busiest, unsigned long max_load_move,
951			struct sched_domain *sd, enum cpu_idle_type idle,
952			int *all_pinned, int *this_best_prio);
953
954	int (*move_one_task) (struct rq *this_rq, int this_cpu,
955			      struct rq *busiest, struct sched_domain *sd,
956			      enum cpu_idle_type idle);
957	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
958	void (*post_schedule) (struct rq *this_rq);
959	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
960
961	void (*set_cpus_allowed)(struct task_struct *p,
962				 const cpumask_t *newmask);
963
964	void (*rq_online)(struct rq *rq);
965	void (*rq_offline)(struct rq *rq);
966#endif
967
968	void (*set_curr_task) (struct rq *rq);
969	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
970	void (*task_new) (struct rq *rq, struct task_struct *p);
971
972	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
973			       int running);
974	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
975			     int running);
976	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
977			     int oldprio, int running);
978
979#ifdef CONFIG_FAIR_GROUP_SCHED
980	void (*moved_group) (struct task_struct *p);
981#endif
982};
983
984struct load_weight {
985	unsigned long weight, inv_weight;
986};
987
988/*
989 * CFS stats for a schedulable entity (task, task-group etc)
990 *
991 * Current field usage histogram:
992 *
993 *     4 se->block_start
994 *     4 se->run_node
995 *     4 se->sleep_start
996 *     6 se->load.weight
997 */
998struct sched_entity {
999	struct load_weight	load;		/* for load-balancing */
1000	struct rb_node		run_node;
1001	struct list_head	group_node;
1002	unsigned int		on_rq;
1003
1004	u64			exec_start;
1005	u64			sum_exec_runtime;
1006	u64			vruntime;
1007	u64			prev_sum_exec_runtime;
1008
1009	u64			last_wakeup;
1010	u64			avg_overlap;
1011
1012#ifdef CONFIG_SCHEDSTATS
1013	u64			wait_start;
1014	u64			wait_max;
1015	u64			wait_count;
1016	u64			wait_sum;
1017
1018	u64			sleep_start;
1019	u64			sleep_max;
1020	s64			sum_sleep_runtime;
1021
1022	u64			block_start;
1023	u64			block_max;
1024	u64			exec_max;
1025	u64			slice_max;
1026
1027	u64			nr_migrations;
1028	u64			nr_migrations_cold;
1029	u64			nr_failed_migrations_affine;
1030	u64			nr_failed_migrations_running;
1031	u64			nr_failed_migrations_hot;
1032	u64			nr_forced_migrations;
1033	u64			nr_forced2_migrations;
1034
1035	u64			nr_wakeups;
1036	u64			nr_wakeups_sync;
1037	u64			nr_wakeups_migrate;
1038	u64			nr_wakeups_local;
1039	u64			nr_wakeups_remote;
1040	u64			nr_wakeups_affine;
1041	u64			nr_wakeups_affine_attempts;
1042	u64			nr_wakeups_passive;
1043	u64			nr_wakeups_idle;
1044#endif
1045
1046#ifdef CONFIG_FAIR_GROUP_SCHED
1047	struct sched_entity	*parent;
1048	/* rq on which this entity is (to be) queued: */
1049	struct cfs_rq		*cfs_rq;
1050	/* rq "owned" by this entity/group: */
1051	struct cfs_rq		*my_q;
1052#endif
1053};
1054
1055struct sched_rt_entity {
1056	struct list_head run_list;
1057	unsigned long timeout;
1058	unsigned int time_slice;
1059	int nr_cpus_allowed;
1060
1061	struct sched_rt_entity *back;
1062#ifdef CONFIG_RT_GROUP_SCHED
1063	struct sched_rt_entity	*parent;
1064	/* rq on which this entity is (to be) queued: */
1065	struct rt_rq		*rt_rq;
1066	/* rq "owned" by this entity/group: */
1067	struct rt_rq		*my_q;
1068#endif
1069};
1070
1071struct task_struct {
1072	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1073	void *stack;
1074	atomic_t usage;
1075	unsigned int flags;	/* per process flags, defined below */
1076	unsigned int ptrace;
1077
1078	int lock_depth;		/* BKL lock depth */
1079
1080#ifdef CONFIG_SMP
1081#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1082	int oncpu;
1083#endif
1084#endif
1085
1086	int prio, static_prio, normal_prio;
1087	unsigned int rt_priority;
1088	const struct sched_class *sched_class;
1089	struct sched_entity se;
1090	struct sched_rt_entity rt;
1091
1092#ifdef CONFIG_PREEMPT_NOTIFIERS
1093	/* list of struct preempt_notifier: */
1094	struct hlist_head preempt_notifiers;
1095#endif
1096
1097	/*
1098	 * fpu_counter contains the number of consecutive context switches
1099	 * that the FPU is used. If this is over a threshold, the lazy fpu
1100	 * saving becomes unlazy to save the trap. This is an unsigned char
1101	 * so that after 256 times the counter wraps and the behavior turns
1102	 * lazy again; this to deal with bursty apps that only use FPU for
1103	 * a short time
1104	 */
1105	unsigned char fpu_counter;
1106	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1107#ifdef CONFIG_BLK_DEV_IO_TRACE
1108	unsigned int btrace_seq;
1109#endif
1110
1111	unsigned int policy;
1112	cpumask_t cpus_allowed;
1113
1114#ifdef CONFIG_PREEMPT_RCU
1115	int rcu_read_lock_nesting;
1116	int rcu_flipctr_idx;
1117#endif /* #ifdef CONFIG_PREEMPT_RCU */
1118
1119#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1120	struct sched_info sched_info;
1121#endif
1122
1123	struct list_head tasks;
1124
1125	struct mm_struct *mm, *active_mm;
1126
1127/* task state */
1128	struct linux_binfmt *binfmt;
1129	int exit_state;
1130	int exit_code, exit_signal;
1131	int pdeath_signal;  /*  The signal sent when the parent dies  */
1132	/* ??? */
1133	unsigned int personality;
1134	unsigned did_exec:1;
1135	pid_t pid;
1136	pid_t tgid;
1137
1138#ifdef CONFIG_CC_STACKPROTECTOR
1139	/* Canary value for the -fstack-protector gcc feature */
1140	unsigned long stack_canary;
1141#endif
1142	/*
1143	 * pointers to (original) parent process, youngest child, younger sibling,
1144	 * older sibling, respectively.  (p->father can be replaced with
1145	 * p->real_parent->pid)
1146	 */
1147	struct task_struct *real_parent; /* real parent process */
1148	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1149	/*
1150	 * children/sibling forms the list of my natural children
1151	 */
1152	struct list_head children;	/* list of my children */
1153	struct list_head sibling;	/* linkage in my parent's children list */
1154	struct task_struct *group_leader;	/* threadgroup leader */
1155
1156	/*
1157	 * ptraced is the list of tasks this task is using ptrace on.
1158	 * This includes both natural children and PTRACE_ATTACH targets.
1159	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1160	 */
1161	struct list_head ptraced;
1162	struct list_head ptrace_entry;
1163
1164	/* PID/PID hash table linkage. */
1165	struct pid_link pids[PIDTYPE_MAX];
1166	struct list_head thread_group;
1167
1168	struct completion *vfork_done;		/* for vfork() */
1169	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1170	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1171
1172	cputime_t utime, stime, utimescaled, stimescaled;
1173	cputime_t gtime;
1174	cputime_t prev_utime, prev_stime;
1175	unsigned long nvcsw, nivcsw; /* context switch counts */
1176	struct timespec start_time; 		/* monotonic time */
1177	struct timespec real_start_time;	/* boot based time */
1178/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1179	unsigned long min_flt, maj_flt;
1180
1181	struct task_cputime cputime_expires;
1182	struct list_head cpu_timers[3];
1183
1184/* process credentials */
1185	uid_t uid,euid,suid,fsuid;
1186	gid_t gid,egid,sgid,fsgid;
1187	struct group_info *group_info;
1188	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1189	struct user_struct *user;
1190	unsigned securebits;
1191#ifdef CONFIG_KEYS
1192	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1193	struct key *request_key_auth;	/* assumed request_key authority */
1194	struct key *thread_keyring;	/* keyring private to this thread */
1195#endif
1196	char comm[TASK_COMM_LEN]; /* executable name excluding path
1197				     - access with [gs]et_task_comm (which lock
1198				       it with task_lock())
1199				     - initialized normally by flush_old_exec */
1200/* file system info */
1201	int link_count, total_link_count;
1202#ifdef CONFIG_SYSVIPC
1203/* ipc stuff */
1204	struct sysv_sem sysvsem;
1205#endif
1206#ifdef CONFIG_DETECT_SOFTLOCKUP
1207/* hung task detection */
1208	unsigned long last_switch_timestamp;
1209	unsigned long last_switch_count;
1210#endif
1211/* CPU-specific state of this task */
1212	struct thread_struct thread;
1213/* filesystem information */
1214	struct fs_struct *fs;
1215/* open file information */
1216	struct files_struct *files;
1217/* namespaces */
1218	struct nsproxy *nsproxy;
1219/* signal handlers */
1220	struct signal_struct *signal;
1221	struct sighand_struct *sighand;
1222
1223	sigset_t blocked, real_blocked;
1224	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1225	struct sigpending pending;
1226
1227	unsigned long sas_ss_sp;
1228	size_t sas_ss_size;
1229	int (*notifier)(void *priv);
1230	void *notifier_data;
1231	sigset_t *notifier_mask;
1232#ifdef CONFIG_SECURITY
1233	void *security;
1234#endif
1235	struct audit_context *audit_context;
1236#ifdef CONFIG_AUDITSYSCALL
1237	uid_t loginuid;
1238	unsigned int sessionid;
1239#endif
1240	seccomp_t seccomp;
1241
1242/* Thread group tracking */
1243   	u32 parent_exec_id;
1244   	u32 self_exec_id;
1245/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1246	spinlock_t alloc_lock;
1247
1248	/* Protection of the PI data structures: */
1249	spinlock_t pi_lock;
1250
1251#ifdef CONFIG_RT_MUTEXES
1252	/* PI waiters blocked on a rt_mutex held by this task */
1253	struct plist_head pi_waiters;
1254	/* Deadlock detection and priority inheritance handling */
1255	struct rt_mutex_waiter *pi_blocked_on;
1256#endif
1257
1258#ifdef CONFIG_DEBUG_MUTEXES
1259	/* mutex deadlock detection */
1260	struct mutex_waiter *blocked_on;
1261#endif
1262#ifdef CONFIG_TRACE_IRQFLAGS
1263	unsigned int irq_events;
1264	int hardirqs_enabled;
1265	unsigned long hardirq_enable_ip;
1266	unsigned int hardirq_enable_event;
1267	unsigned long hardirq_disable_ip;
1268	unsigned int hardirq_disable_event;
1269	int softirqs_enabled;
1270	unsigned long softirq_disable_ip;
1271	unsigned int softirq_disable_event;
1272	unsigned long softirq_enable_ip;
1273	unsigned int softirq_enable_event;
1274	int hardirq_context;
1275	int softirq_context;
1276#endif
1277#ifdef CONFIG_LOCKDEP
1278# define MAX_LOCK_DEPTH 48UL
1279	u64 curr_chain_key;
1280	int lockdep_depth;
1281	unsigned int lockdep_recursion;
1282	struct held_lock held_locks[MAX_LOCK_DEPTH];
1283#endif
1284
1285/* journalling filesystem info */
1286	void *journal_info;
1287
1288/* stacked block device info */
1289	struct bio *bio_list, **bio_tail;
1290
1291/* VM state */
1292	struct reclaim_state *reclaim_state;
1293
1294	struct backing_dev_info *backing_dev_info;
1295
1296	struct io_context *io_context;
1297
1298	unsigned long ptrace_message;
1299	siginfo_t *last_siginfo; /* For ptrace use.  */
1300	struct task_io_accounting ioac;
1301#if defined(CONFIG_TASK_XACCT)
1302	u64 acct_rss_mem1;	/* accumulated rss usage */
1303	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1304	cputime_t acct_timexpd;	/* stime + utime since last update */
1305#endif
1306#ifdef CONFIG_CPUSETS
1307	nodemask_t mems_allowed;
1308	int cpuset_mems_generation;
1309	int cpuset_mem_spread_rotor;
1310#endif
1311#ifdef CONFIG_CGROUPS
1312	/* Control Group info protected by css_set_lock */
1313	struct css_set *cgroups;
1314	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1315	struct list_head cg_list;
1316#endif
1317#ifdef CONFIG_FUTEX
1318	struct robust_list_head __user *robust_list;
1319#ifdef CONFIG_COMPAT
1320	struct compat_robust_list_head __user *compat_robust_list;
1321#endif
1322	struct list_head pi_state_list;
1323	struct futex_pi_state *pi_state_cache;
1324#endif
1325#ifdef CONFIG_NUMA
1326	struct mempolicy *mempolicy;
1327	short il_next;
1328#endif
1329	atomic_t fs_excl;	/* holding fs exclusive resources */
1330	struct rcu_head rcu;
1331
1332	/*
1333	 * cache last used pipe for splice
1334	 */
1335	struct pipe_inode_info *splice_pipe;
1336#ifdef	CONFIG_TASK_DELAY_ACCT
1337	struct task_delay_info *delays;
1338#endif
1339#ifdef CONFIG_FAULT_INJECTION
1340	int make_it_fail;
1341#endif
1342	struct prop_local_single dirties;
1343#ifdef CONFIG_LATENCYTOP
1344	int latency_record_count;
1345	struct latency_record latency_record[LT_SAVECOUNT];
1346#endif
1347	/*
1348	 * time slack values; these are used to round up poll() and
1349	 * select() etc timeout values. These are in nanoseconds.
1350	 */
1351	unsigned long timer_slack_ns;
1352	unsigned long default_timer_slack_ns;
1353
1354	struct list_head	*scm_work_list;
1355#ifdef CONFIG_FUNCTION_RET_TRACER
1356	/* Index of current stored adress in ret_stack */
1357	int curr_ret_stack;
1358	/* Stack of return addresses for return function tracing */
1359	struct ftrace_ret_stack	*ret_stack;
1360	/*
1361	 * Number of functions that haven't been traced
1362	 * because of depth overrun.
1363	 */
1364	atomic_t trace_overrun;
1365#endif
1366};
1367
1368/*
1369 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1370 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1371 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1372 * values are inverted: lower p->prio value means higher priority.
1373 *
1374 * The MAX_USER_RT_PRIO value allows the actual maximum
1375 * RT priority to be separate from the value exported to
1376 * user-space.  This allows kernel threads to set their
1377 * priority to a value higher than any user task. Note:
1378 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1379 */
1380
1381#define MAX_USER_RT_PRIO	100
1382#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1383
1384#define MAX_PRIO		(MAX_RT_PRIO + 40)
1385#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1386
1387static inline int rt_prio(int prio)
1388{
1389	if (unlikely(prio < MAX_RT_PRIO))
1390		return 1;
1391	return 0;
1392}
1393
1394static inline int rt_task(struct task_struct *p)
1395{
1396	return rt_prio(p->prio);
1397}
1398
1399static inline void set_task_session(struct task_struct *tsk, pid_t session)
1400{
1401	tsk->signal->__session = session;
1402}
1403
1404static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1405{
1406	tsk->signal->__pgrp = pgrp;
1407}
1408
1409static inline struct pid *task_pid(struct task_struct *task)
1410{
1411	return task->pids[PIDTYPE_PID].pid;
1412}
1413
1414static inline struct pid *task_tgid(struct task_struct *task)
1415{
1416	return task->group_leader->pids[PIDTYPE_PID].pid;
1417}
1418
1419static inline struct pid *task_pgrp(struct task_struct *task)
1420{
1421	return task->group_leader->pids[PIDTYPE_PGID].pid;
1422}
1423
1424static inline struct pid *task_session(struct task_struct *task)
1425{
1426	return task->group_leader->pids[PIDTYPE_SID].pid;
1427}
1428
1429struct pid_namespace;
1430
1431/*
1432 * the helpers to get the task's different pids as they are seen
1433 * from various namespaces
1434 *
1435 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1436 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1437 *                     current.
1438 * task_xid_nr_ns()  : id seen from the ns specified;
1439 *
1440 * set_task_vxid()   : assigns a virtual id to a task;
1441 *
1442 * see also pid_nr() etc in include/linux/pid.h
1443 */
1444
1445static inline pid_t task_pid_nr(struct task_struct *tsk)
1446{
1447	return tsk->pid;
1448}
1449
1450pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1451
1452static inline pid_t task_pid_vnr(struct task_struct *tsk)
1453{
1454	return pid_vnr(task_pid(tsk));
1455}
1456
1457
1458static inline pid_t task_tgid_nr(struct task_struct *tsk)
1459{
1460	return tsk->tgid;
1461}
1462
1463pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1464
1465static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1466{
1467	return pid_vnr(task_tgid(tsk));
1468}
1469
1470
1471static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1472{
1473	return tsk->signal->__pgrp;
1474}
1475
1476pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1477
1478static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1479{
1480	return pid_vnr(task_pgrp(tsk));
1481}
1482
1483
1484static inline pid_t task_session_nr(struct task_struct *tsk)
1485{
1486	return tsk->signal->__session;
1487}
1488
1489pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1490
1491static inline pid_t task_session_vnr(struct task_struct *tsk)
1492{
1493	return pid_vnr(task_session(tsk));
1494}
1495
1496
1497/**
1498 * pid_alive - check that a task structure is not stale
1499 * @p: Task structure to be checked.
1500 *
1501 * Test if a process is not yet dead (at most zombie state)
1502 * If pid_alive fails, then pointers within the task structure
1503 * can be stale and must not be dereferenced.
1504 */
1505static inline int pid_alive(struct task_struct *p)
1506{
1507	return p->pids[PIDTYPE_PID].pid != NULL;
1508}
1509
1510/**
1511 * is_global_init - check if a task structure is init
1512 * @tsk: Task structure to be checked.
1513 *
1514 * Check if a task structure is the first user space task the kernel created.
1515 */
1516static inline int is_global_init(struct task_struct *tsk)
1517{
1518	return tsk->pid == 1;
1519}
1520
1521/*
1522 * is_container_init:
1523 * check whether in the task is init in its own pid namespace.
1524 */
1525extern int is_container_init(struct task_struct *tsk);
1526
1527extern struct pid *cad_pid;
1528
1529extern void free_task(struct task_struct *tsk);
1530#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1531
1532extern void __put_task_struct(struct task_struct *t);
1533
1534static inline void put_task_struct(struct task_struct *t)
1535{
1536	if (atomic_dec_and_test(&t->usage))
1537		__put_task_struct(t);
1538}
1539
1540extern cputime_t task_utime(struct task_struct *p);
1541extern cputime_t task_stime(struct task_struct *p);
1542extern cputime_t task_gtime(struct task_struct *p);
1543
1544/*
1545 * Per process flags
1546 */
1547#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1548					/* Not implemented yet, only for 486*/
1549#define PF_STARTING	0x00000002	/* being created */
1550#define PF_EXITING	0x00000004	/* getting shut down */
1551#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1552#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1553#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1554#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1555#define PF_DUMPCORE	0x00000200	/* dumped core */
1556#define PF_SIGNALED	0x00000400	/* killed by a signal */
1557#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1558#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1559#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1560#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1561#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1562#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1563#define PF_KSWAPD	0x00040000	/* I am kswapd */
1564#define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1565#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1566#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1567#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1568#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1569#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1570#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1571#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1572#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1573#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1574#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1575#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1576
1577/*
1578 * Only the _current_ task can read/write to tsk->flags, but other
1579 * tasks can access tsk->flags in readonly mode for example
1580 * with tsk_used_math (like during threaded core dumping).
1581 * There is however an exception to this rule during ptrace
1582 * or during fork: the ptracer task is allowed to write to the
1583 * child->flags of its traced child (same goes for fork, the parent
1584 * can write to the child->flags), because we're guaranteed the
1585 * child is not running and in turn not changing child->flags
1586 * at the same time the parent does it.
1587 */
1588#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1589#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1590#define clear_used_math() clear_stopped_child_used_math(current)
1591#define set_used_math() set_stopped_child_used_math(current)
1592#define conditional_stopped_child_used_math(condition, child) \
1593	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1594#define conditional_used_math(condition) \
1595	conditional_stopped_child_used_math(condition, current)
1596#define copy_to_stopped_child_used_math(child) \
1597	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1598/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1599#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1600#define used_math() tsk_used_math(current)
1601
1602#ifdef CONFIG_SMP
1603extern int set_cpus_allowed_ptr(struct task_struct *p,
1604				const cpumask_t *new_mask);
1605#else
1606static inline int set_cpus_allowed_ptr(struct task_struct *p,
1607				       const cpumask_t *new_mask)
1608{
1609	if (!cpu_isset(0, *new_mask))
1610		return -EINVAL;
1611	return 0;
1612}
1613#endif
1614static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1615{
1616	return set_cpus_allowed_ptr(p, &new_mask);
1617}
1618
1619extern unsigned long long sched_clock(void);
1620
1621extern void sched_clock_init(void);
1622extern u64 sched_clock_cpu(int cpu);
1623
1624#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1625static inline void sched_clock_tick(void)
1626{
1627}
1628
1629static inline void sched_clock_idle_sleep_event(void)
1630{
1631}
1632
1633static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1634{
1635}
1636#else
1637extern void sched_clock_tick(void);
1638extern void sched_clock_idle_sleep_event(void);
1639extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1640#endif
1641
1642/*
1643 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1644 * clock constructed from sched_clock():
1645 */
1646extern unsigned long long cpu_clock(int cpu);
1647
1648extern unsigned long long
1649task_sched_runtime(struct task_struct *task);
1650extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1651
1652/* sched_exec is called by processes performing an exec */
1653#ifdef CONFIG_SMP
1654extern void sched_exec(void);
1655#else
1656#define sched_exec()   {}
1657#endif
1658
1659extern void sched_clock_idle_sleep_event(void);
1660extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1661
1662#ifdef CONFIG_HOTPLUG_CPU
1663extern void idle_task_exit(void);
1664#else
1665static inline void idle_task_exit(void) {}
1666#endif
1667
1668extern void sched_idle_next(void);
1669
1670#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1671extern void wake_up_idle_cpu(int cpu);
1672#else
1673static inline void wake_up_idle_cpu(int cpu) { }
1674#endif
1675
1676#ifdef CONFIG_SCHED_DEBUG
1677extern unsigned int sysctl_sched_latency;
1678extern unsigned int sysctl_sched_min_granularity;
1679extern unsigned int sysctl_sched_wakeup_granularity;
1680extern unsigned int sysctl_sched_child_runs_first;
1681extern unsigned int sysctl_sched_features;
1682extern unsigned int sysctl_sched_migration_cost;
1683extern unsigned int sysctl_sched_nr_migrate;
1684extern unsigned int sysctl_sched_shares_ratelimit;
1685extern unsigned int sysctl_sched_shares_thresh;
1686
1687int sched_nr_latency_handler(struct ctl_table *table, int write,
1688		struct file *file, void __user *buffer, size_t *length,
1689		loff_t *ppos);
1690#endif
1691extern unsigned int sysctl_sched_rt_period;
1692extern int sysctl_sched_rt_runtime;
1693
1694int sched_rt_handler(struct ctl_table *table, int write,
1695		struct file *filp, void __user *buffer, size_t *lenp,
1696		loff_t *ppos);
1697
1698extern unsigned int sysctl_sched_compat_yield;
1699
1700#ifdef CONFIG_RT_MUTEXES
1701extern int rt_mutex_getprio(struct task_struct *p);
1702extern void rt_mutex_setprio(struct task_struct *p, int prio);
1703extern void rt_mutex_adjust_pi(struct task_struct *p);
1704#else
1705static inline int rt_mutex_getprio(struct task_struct *p)
1706{
1707	return p->normal_prio;
1708}
1709# define rt_mutex_adjust_pi(p)		do { } while (0)
1710#endif
1711
1712extern void set_user_nice(struct task_struct *p, long nice);
1713extern int task_prio(const struct task_struct *p);
1714extern int task_nice(const struct task_struct *p);
1715extern int can_nice(const struct task_struct *p, const int nice);
1716extern int task_curr(const struct task_struct *p);
1717extern int idle_cpu(int cpu);
1718extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1719extern int sched_setscheduler_nocheck(struct task_struct *, int,
1720				      struct sched_param *);
1721extern struct task_struct *idle_task(int cpu);
1722extern struct task_struct *curr_task(int cpu);
1723extern void set_curr_task(int cpu, struct task_struct *p);
1724
1725void yield(void);
1726
1727/*
1728 * The default (Linux) execution domain.
1729 */
1730extern struct exec_domain	default_exec_domain;
1731
1732union thread_union {
1733	struct thread_info thread_info;
1734	unsigned long stack[THREAD_SIZE/sizeof(long)];
1735};
1736
1737#ifndef __HAVE_ARCH_KSTACK_END
1738static inline int kstack_end(void *addr)
1739{
1740	/* Reliable end of stack detection:
1741	 * Some APM bios versions misalign the stack
1742	 */
1743	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1744}
1745#endif
1746
1747extern union thread_union init_thread_union;
1748extern struct task_struct init_task;
1749
1750extern struct   mm_struct init_mm;
1751
1752extern struct pid_namespace init_pid_ns;
1753
1754/*
1755 * find a task by one of its numerical ids
1756 *
1757 * find_task_by_pid_type_ns():
1758 *      it is the most generic call - it finds a task by all id,
1759 *      type and namespace specified
1760 * find_task_by_pid_ns():
1761 *      finds a task by its pid in the specified namespace
1762 * find_task_by_vpid():
1763 *      finds a task by its virtual pid
1764 *
1765 * see also find_vpid() etc in include/linux/pid.h
1766 */
1767
1768extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1769		struct pid_namespace *ns);
1770
1771extern struct task_struct *find_task_by_vpid(pid_t nr);
1772extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1773		struct pid_namespace *ns);
1774
1775extern void __set_special_pids(struct pid *pid);
1776
1777/* per-UID process charging. */
1778extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1779static inline struct user_struct *get_uid(struct user_struct *u)
1780{
1781	atomic_inc(&u->__count);
1782	return u;
1783}
1784extern void free_uid(struct user_struct *);
1785extern void switch_uid(struct user_struct *);
1786extern void release_uids(struct user_namespace *ns);
1787
1788#include <asm/current.h>
1789
1790extern void do_timer(unsigned long ticks);
1791
1792extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1793extern int wake_up_process(struct task_struct *tsk);
1794extern void wake_up_new_task(struct task_struct *tsk,
1795				unsigned long clone_flags);
1796#ifdef CONFIG_SMP
1797 extern void kick_process(struct task_struct *tsk);
1798#else
1799 static inline void kick_process(struct task_struct *tsk) { }
1800#endif
1801extern void sched_fork(struct task_struct *p, int clone_flags);
1802extern void sched_dead(struct task_struct *p);
1803
1804extern int in_group_p(gid_t);
1805extern int in_egroup_p(gid_t);
1806
1807extern void proc_caches_init(void);
1808extern void flush_signals(struct task_struct *);
1809extern void ignore_signals(struct task_struct *);
1810extern void flush_signal_handlers(struct task_struct *, int force_default);
1811extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1812
1813static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1814{
1815	unsigned long flags;
1816	int ret;
1817
1818	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1819	ret = dequeue_signal(tsk, mask, info);
1820	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1821
1822	return ret;
1823}
1824
1825extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1826			      sigset_t *mask);
1827extern void unblock_all_signals(void);
1828extern void release_task(struct task_struct * p);
1829extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1830extern int force_sigsegv(int, struct task_struct *);
1831extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1832extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1833extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1834extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1835extern int kill_pgrp(struct pid *pid, int sig, int priv);
1836extern int kill_pid(struct pid *pid, int sig, int priv);
1837extern int kill_proc_info(int, struct siginfo *, pid_t);
1838extern int do_notify_parent(struct task_struct *, int);
1839extern void force_sig(int, struct task_struct *);
1840extern void force_sig_specific(int, struct task_struct *);
1841extern int send_sig(int, struct task_struct *, int);
1842extern void zap_other_threads(struct task_struct *p);
1843extern struct sigqueue *sigqueue_alloc(void);
1844extern void sigqueue_free(struct sigqueue *);
1845extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1846extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1847extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1848
1849static inline int kill_cad_pid(int sig, int priv)
1850{
1851	return kill_pid(cad_pid, sig, priv);
1852}
1853
1854/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1855#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1856#define SEND_SIG_PRIV	((struct siginfo *) 1)
1857#define SEND_SIG_FORCED	((struct siginfo *) 2)
1858
1859static inline int is_si_special(const struct siginfo *info)
1860{
1861	return info <= SEND_SIG_FORCED;
1862}
1863
1864/* True if we are on the alternate signal stack.  */
1865
1866static inline int on_sig_stack(unsigned long sp)
1867{
1868	return (sp - current->sas_ss_sp < current->sas_ss_size);
1869}
1870
1871static inline int sas_ss_flags(unsigned long sp)
1872{
1873	return (current->sas_ss_size == 0 ? SS_DISABLE
1874		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1875}
1876
1877/*
1878 * Routines for handling mm_structs
1879 */
1880extern struct mm_struct * mm_alloc(void);
1881
1882/* mmdrop drops the mm and the page tables */
1883extern void __mmdrop(struct mm_struct *);
1884static inline void mmdrop(struct mm_struct * mm)
1885{
1886	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1887		__mmdrop(mm);
1888}
1889
1890/* mmput gets rid of the mappings and all user-space */
1891extern void mmput(struct mm_struct *);
1892/* Grab a reference to a task's mm, if it is not already going away */
1893extern struct mm_struct *get_task_mm(struct task_struct *task);
1894/* Remove the current tasks stale references to the old mm_struct */
1895extern void mm_release(struct task_struct *, struct mm_struct *);
1896/* Allocate a new mm structure and copy contents from tsk->mm */
1897extern struct mm_struct *dup_mm(struct task_struct *tsk);
1898
1899extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1900extern void flush_thread(void);
1901extern void exit_thread(void);
1902
1903extern void exit_files(struct task_struct *);
1904extern void __cleanup_signal(struct signal_struct *);
1905extern void __cleanup_sighand(struct sighand_struct *);
1906
1907extern void exit_itimers(struct signal_struct *);
1908extern void flush_itimer_signals(void);
1909
1910extern NORET_TYPE void do_group_exit(int);
1911
1912extern void daemonize(const char *, ...);
1913extern int allow_signal(int);
1914extern int disallow_signal(int);
1915
1916extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1917extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1918struct task_struct *fork_idle(int);
1919
1920extern void set_task_comm(struct task_struct *tsk, char *from);
1921extern char *get_task_comm(char *to, struct task_struct *tsk);
1922
1923#ifdef CONFIG_SMP
1924extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1925#else
1926static inline unsigned long wait_task_inactive(struct task_struct *p,
1927					       long match_state)
1928{
1929	return 1;
1930}
1931#endif
1932
1933#define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1934
1935#define for_each_process(p) \
1936	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1937
1938/*
1939 * Careful: do_each_thread/while_each_thread is a double loop so
1940 *          'break' will not work as expected - use goto instead.
1941 */
1942#define do_each_thread(g, t) \
1943	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1944
1945#define while_each_thread(g, t) \
1946	while ((t = next_thread(t)) != g)
1947
1948/* de_thread depends on thread_group_leader not being a pid based check */
1949#define thread_group_leader(p)	(p == p->group_leader)
1950
1951/* Do to the insanities of de_thread it is possible for a process
1952 * to have the pid of the thread group leader without actually being
1953 * the thread group leader.  For iteration through the pids in proc
1954 * all we care about is that we have a task with the appropriate
1955 * pid, we don't actually care if we have the right task.
1956 */
1957static inline int has_group_leader_pid(struct task_struct *p)
1958{
1959	return p->pid == p->tgid;
1960}
1961
1962static inline
1963int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1964{
1965	return p1->tgid == p2->tgid;
1966}
1967
1968static inline struct task_struct *next_thread(const struct task_struct *p)
1969{
1970	return list_entry(rcu_dereference(p->thread_group.next),
1971			  struct task_struct, thread_group);
1972}
1973
1974static inline int thread_group_empty(struct task_struct *p)
1975{
1976	return list_empty(&p->thread_group);
1977}
1978
1979#define delay_group_leader(p) \
1980		(thread_group_leader(p) && !thread_group_empty(p))
1981
1982/*
1983 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1984 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1985 * pins the final release of task.io_context.  Also protects ->cpuset and
1986 * ->cgroup.subsys[].
1987 *
1988 * Nests both inside and outside of read_lock(&tasklist_lock).
1989 * It must not be nested with write_lock_irq(&tasklist_lock),
1990 * neither inside nor outside.
1991 */
1992static inline void task_lock(struct task_struct *p)
1993{
1994	spin_lock(&p->alloc_lock);
1995}
1996
1997static inline void task_unlock(struct task_struct *p)
1998{
1999	spin_unlock(&p->alloc_lock);
2000}
2001
2002extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2003							unsigned long *flags);
2004
2005static inline void unlock_task_sighand(struct task_struct *tsk,
2006						unsigned long *flags)
2007{
2008	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2009}
2010
2011#ifndef __HAVE_THREAD_FUNCTIONS
2012
2013#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2014#define task_stack_page(task)	((task)->stack)
2015
2016static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2017{
2018	*task_thread_info(p) = *task_thread_info(org);
2019	task_thread_info(p)->task = p;
2020}
2021
2022static inline unsigned long *end_of_stack(struct task_struct *p)
2023{
2024	return (unsigned long *)(task_thread_info(p) + 1);
2025}
2026
2027#endif
2028
2029static inline int object_is_on_stack(void *obj)
2030{
2031	void *stack = task_stack_page(current);
2032
2033	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2034}
2035
2036extern void thread_info_cache_init(void);
2037
2038/* set thread flags in other task's structures
2039 * - see asm/thread_info.h for TIF_xxxx flags available
2040 */
2041static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2042{
2043	set_ti_thread_flag(task_thread_info(tsk), flag);
2044}
2045
2046static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2047{
2048	clear_ti_thread_flag(task_thread_info(tsk), flag);
2049}
2050
2051static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2052{
2053	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2054}
2055
2056static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2057{
2058	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2059}
2060
2061static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2062{
2063	return test_ti_thread_flag(task_thread_info(tsk), flag);
2064}
2065
2066static inline void set_tsk_need_resched(struct task_struct *tsk)
2067{
2068	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2069}
2070
2071static inline void clear_tsk_need_resched(struct task_struct *tsk)
2072{
2073	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2074}
2075
2076static inline int test_tsk_need_resched(struct task_struct *tsk)
2077{
2078	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2079}
2080
2081static inline int signal_pending(struct task_struct *p)
2082{
2083	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2084}
2085
2086extern int __fatal_signal_pending(struct task_struct *p);
2087
2088static inline int fatal_signal_pending(struct task_struct *p)
2089{
2090	return signal_pending(p) && __fatal_signal_pending(p);
2091}
2092
2093static inline int signal_pending_state(long state, struct task_struct *p)
2094{
2095	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2096		return 0;
2097	if (!signal_pending(p))
2098		return 0;
2099
2100	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2101}
2102
2103static inline int need_resched(void)
2104{
2105	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2106}
2107
2108/*
2109 * cond_resched() and cond_resched_lock(): latency reduction via
2110 * explicit rescheduling in places that are safe. The return
2111 * value indicates whether a reschedule was done in fact.
2112 * cond_resched_lock() will drop the spinlock before scheduling,
2113 * cond_resched_softirq() will enable bhs before scheduling.
2114 */
2115extern int _cond_resched(void);
2116#ifdef CONFIG_PREEMPT_BKL
2117static inline int cond_resched(void)
2118{
2119	return 0;
2120}
2121#else
2122static inline int cond_resched(void)
2123{
2124	return _cond_resched();
2125}
2126#endif
2127extern int cond_resched_lock(spinlock_t * lock);
2128extern int cond_resched_softirq(void);
2129static inline int cond_resched_bkl(void)
2130{
2131	return _cond_resched();
2132}
2133
2134/*
2135 * Does a critical section need to be broken due to another
2136 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2137 * but a general need for low latency)
2138 */
2139static inline int spin_needbreak(spinlock_t *lock)
2140{
2141#ifdef CONFIG_PREEMPT
2142	return spin_is_contended(lock);
2143#else
2144	return 0;
2145#endif
2146}
2147
2148/*
2149 * Thread group CPU time accounting.
2150 */
2151
2152extern int thread_group_cputime_alloc(struct task_struct *);
2153extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2154
2155static inline void thread_group_cputime_init(struct signal_struct *sig)
2156{
2157	sig->cputime.totals = NULL;
2158}
2159
2160static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2161{
2162	if (curr->signal->cputime.totals)
2163		return 0;
2164	return thread_group_cputime_alloc(curr);
2165}
2166
2167static inline void thread_group_cputime_free(struct signal_struct *sig)
2168{
2169	free_percpu(sig->cputime.totals);
2170}
2171
2172/*
2173 * Reevaluate whether the task has signals pending delivery.
2174 * Wake the task if so.
2175 * This is required every time the blocked sigset_t changes.
2176 * callers must hold sighand->siglock.
2177 */
2178extern void recalc_sigpending_and_wake(struct task_struct *t);
2179extern void recalc_sigpending(void);
2180
2181extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2182
2183/*
2184 * Wrappers for p->thread_info->cpu access. No-op on UP.
2185 */
2186#ifdef CONFIG_SMP
2187
2188static inline unsigned int task_cpu(const struct task_struct *p)
2189{
2190	return task_thread_info(p)->cpu;
2191}
2192
2193extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2194
2195#else
2196
2197static inline unsigned int task_cpu(const struct task_struct *p)
2198{
2199	return 0;
2200}
2201
2202static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2203{
2204}
2205
2206#endif /* CONFIG_SMP */
2207
2208extern void arch_pick_mmap_layout(struct mm_struct *mm);
2209
2210#ifdef CONFIG_TRACING
2211extern void
2212__trace_special(void *__tr, void *__data,
2213		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2214#else
2215static inline void
2216__trace_special(void *__tr, void *__data,
2217		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2218{
2219}
2220#endif
2221
2222extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2223extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2224
2225extern int sched_mc_power_savings, sched_smt_power_savings;
2226
2227extern void normalize_rt_tasks(void);
2228
2229#ifdef CONFIG_GROUP_SCHED
2230
2231extern struct task_group init_task_group;
2232#ifdef CONFIG_USER_SCHED
2233extern struct task_group root_task_group;
2234#endif
2235
2236extern struct task_group *sched_create_group(struct task_group *parent);
2237extern void sched_destroy_group(struct task_group *tg);
2238extern void sched_move_task(struct task_struct *tsk);
2239#ifdef CONFIG_FAIR_GROUP_SCHED
2240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2241extern unsigned long sched_group_shares(struct task_group *tg);
2242#endif
2243#ifdef CONFIG_RT_GROUP_SCHED
2244extern int sched_group_set_rt_runtime(struct task_group *tg,
2245				      long rt_runtime_us);
2246extern long sched_group_rt_runtime(struct task_group *tg);
2247extern int sched_group_set_rt_period(struct task_group *tg,
2248				      long rt_period_us);
2249extern long sched_group_rt_period(struct task_group *tg);
2250#endif
2251#endif
2252
2253#ifdef CONFIG_TASK_XACCT
2254static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2255{
2256	tsk->ioac.rchar += amt;
2257}
2258
2259static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2260{
2261	tsk->ioac.wchar += amt;
2262}
2263
2264static inline void inc_syscr(struct task_struct *tsk)
2265{
2266	tsk->ioac.syscr++;
2267}
2268
2269static inline void inc_syscw(struct task_struct *tsk)
2270{
2271	tsk->ioac.syscw++;
2272}
2273#else
2274static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2275{
2276}
2277
2278static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2279{
2280}
2281
2282static inline void inc_syscr(struct task_struct *tsk)
2283{
2284}
2285
2286static inline void inc_syscw(struct task_struct *tsk)
2287{
2288}
2289#endif
2290
2291#ifndef TASK_SIZE_OF
2292#define TASK_SIZE_OF(tsk)	TASK_SIZE
2293#endif
2294
2295#ifdef CONFIG_MM_OWNER
2296extern void mm_update_next_owner(struct mm_struct *mm);
2297extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2298#else
2299static inline void mm_update_next_owner(struct mm_struct *mm)
2300{
2301}
2302
2303static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2304{
2305}
2306#endif /* CONFIG_MM_OWNER */
2307
2308#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2309
2310#endif /* __KERNEL__ */
2311
2312#endif
2313