mac80211.h revision 04fe20372e70685d9f15966216cdffd3795fe590
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85struct ieee80211_ht_bss_info {
86	u8 primary_channel;
87	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
88	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89};
90
91/**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96enum ieee80211_max_queues {
97	IEEE80211_MAX_QUEUES =		4,
98};
99
100/**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 *	2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112struct ieee80211_tx_queue_params {
113	u16 txop;
114	u16 cw_min;
115	u16 cw_max;
116	u8 aifs;
117};
118
119/**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126struct ieee80211_tx_queue_stats {
127	unsigned int len;
128	unsigned int limit;
129	unsigned int count;
130};
131
132struct ieee80211_low_level_stats {
133	unsigned int dot11ACKFailureCount;
134	unsigned int dot11RTSFailureCount;
135	unsigned int dot11FCSErrorCount;
136	unsigned int dot11RTSSuccessCount;
137};
138
139/**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 *	also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 */
153enum ieee80211_bss_change {
154	BSS_CHANGED_ASSOC		= 1<<0,
155	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
156	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
157	BSS_CHANGED_ERP_SLOT		= 1<<3,
158	BSS_CHANGED_HT                  = 1<<4,
159	BSS_CHANGED_BASIC_RATES		= 1<<5,
160};
161
162/**
163 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
164 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
165 */
166struct ieee80211_bss_ht_conf {
167	u16 operation_mode;
168};
169
170/**
171 * struct ieee80211_bss_conf - holds the BSS's changing parameters
172 *
173 * This structure keeps information about a BSS (and an association
174 * to that BSS) that can change during the lifetime of the BSS.
175 *
176 * @assoc: association status
177 * @aid: association ID number, valid only when @assoc is true
178 * @use_cts_prot: use CTS protection
179 * @use_short_preamble: use 802.11b short preamble;
180 *	if the hardware cannot handle this it must set the
181 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
182 * @use_short_slot: use short slot time (only relevant for ERP);
183 *	if the hardware cannot handle this it must set the
184 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
185 * @dtim_period: num of beacons before the next DTIM, for PSM
186 * @timestamp: beacon timestamp
187 * @beacon_int: beacon interval
188 * @assoc_capability: capabilities taken from assoc resp
189 * @ht: BSS's HT configuration
190 * @basic_rates: bitmap of basic rates, each bit stands for an
191 *	index into the rate table configured by the driver in
192 *	the current band.
193 */
194struct ieee80211_bss_conf {
195	/* association related data */
196	bool assoc;
197	u16 aid;
198	/* erp related data */
199	bool use_cts_prot;
200	bool use_short_preamble;
201	bool use_short_slot;
202	u8 dtim_period;
203	u16 beacon_int;
204	u16 assoc_capability;
205	u64 timestamp;
206	u32 basic_rates;
207	struct ieee80211_bss_ht_conf ht;
208};
209
210/**
211 * enum mac80211_tx_control_flags - flags to describe transmission information/status
212 *
213 * These flags are used with the @flags member of &ieee80211_tx_info.
214 *
215 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
216 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
217 *	number to this frame, taking care of not overwriting the fragment
218 *	number and increasing the sequence number only when the
219 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
220 *	assign sequence numbers to QoS-data frames but cannot do so correctly
221 *	for non-QoS-data and management frames because beacons need them from
222 *	that counter as well and mac80211 cannot guarantee proper sequencing.
223 *	If this flag is set, the driver should instruct the hardware to
224 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
225 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
226 *	beacons and always be clear for frames without a sequence number field.
227 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
228 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
229 *	station
230 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
231 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
232 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
233 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
234 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
235 *	because the destination STA was in powersave mode.
236 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
237 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
238 * 	is for the whole aggregation.
239 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
240 * 	so consider using block ack request (BAR).
241 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
242 *	set by rate control algorithms to indicate probe rate, will
243 *	be cleared for fragmented frames (except on the last fragment)
244 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
245 *	set this flag in the driver; indicates that the rate control
246 *	algorithm was used and should be notified of TX status
247 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
248 *	used to indicate that a pending frame requires TX processing before
249 *	it can be sent out.
250 */
251enum mac80211_tx_control_flags {
252	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
253	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
254	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
255	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
256	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
257	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
258	IEEE80211_TX_CTL_AMPDU			= BIT(6),
259	IEEE80211_TX_CTL_INJECTED		= BIT(7),
260	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
261	IEEE80211_TX_STAT_ACK			= BIT(9),
262	IEEE80211_TX_STAT_AMPDU			= BIT(10),
263	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
264	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
265	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
266	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
267};
268
269/**
270 * enum mac80211_rate_control_flags - per-rate flags set by the
271 *	Rate Control algorithm.
272 *
273 * These flags are set by the Rate control algorithm for each rate during tx,
274 * in the @flags member of struct ieee80211_tx_rate.
275 *
276 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
277 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
278 *	This is set if the current BSS requires ERP protection.
279 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
280 * @IEEE80211_TX_RC_MCS: HT rate.
281 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
282 *	Greenfield mode.
283 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
284 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
285 *	adjacent 20 MHz channels, if the current channel type is
286 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
287 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
288 */
289enum mac80211_rate_control_flags {
290	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
291	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
292	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
293
294	/* rate index is an MCS rate number instead of an index */
295	IEEE80211_TX_RC_MCS			= BIT(3),
296	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
297	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
298	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
299	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
300};
301
302
303/* there are 40 bytes if you don't need the rateset to be kept */
304#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
305
306/* if you do need the rateset, then you have less space */
307#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
308
309/* maximum number of rate stages */
310#define IEEE80211_TX_MAX_RATES	5
311
312/**
313 * struct ieee80211_tx_rate - rate selection/status
314 *
315 * @idx: rate index to attempt to send with
316 * @flags: rate control flags (&enum mac80211_rate_control_flags)
317 * @count: number of tries in this rate before going to the next rate
318 *
319 * A value of -1 for @idx indicates an invalid rate and, if used
320 * in an array of retry rates, that no more rates should be tried.
321 *
322 * When used for transmit status reporting, the driver should
323 * always report the rate along with the flags it used.
324 */
325struct ieee80211_tx_rate {
326	s8 idx;
327	u8 count;
328	u8 flags;
329} __attribute__((packed));
330
331/**
332 * struct ieee80211_tx_info - skb transmit information
333 *
334 * This structure is placed in skb->cb for three uses:
335 *  (1) mac80211 TX control - mac80211 tells the driver what to do
336 *  (2) driver internal use (if applicable)
337 *  (3) TX status information - driver tells mac80211 what happened
338 *
339 * The TX control's sta pointer is only valid during the ->tx call,
340 * it may be NULL.
341 *
342 * @flags: transmit info flags, defined above
343 * @band: the band to transmit on (use for checking for races)
344 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
345 * @pad: padding, ignore
346 * @control: union for control data
347 * @status: union for status data
348 * @driver_data: array of driver_data pointers
349 * @ampdu_ack_len: number of aggregated frames.
350 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
351 * @ampdu_ack_map: block ack bit map for the aggregation.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ack_signal: signal strength of the ACK frame
354 */
355struct ieee80211_tx_info {
356	/* common information */
357	u32 flags;
358	u8 band;
359
360	u8 antenna_sel_tx;
361
362	/* 2 byte hole */
363	u8 pad[2];
364
365	union {
366		struct {
367			union {
368				/* rate control */
369				struct {
370					struct ieee80211_tx_rate rates[
371						IEEE80211_TX_MAX_RATES];
372					s8 rts_cts_rate_idx;
373				};
374				/* only needed before rate control */
375				unsigned long jiffies;
376			};
377			/* NB: vif can be NULL for injected frames */
378			struct ieee80211_vif *vif;
379			struct ieee80211_key_conf *hw_key;
380			struct ieee80211_sta *sta;
381		} control;
382		struct {
383			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
384			u8 ampdu_ack_len;
385			u64 ampdu_ack_map;
386			int ack_signal;
387			/* 8 bytes free */
388		} status;
389		struct {
390			struct ieee80211_tx_rate driver_rates[
391				IEEE80211_TX_MAX_RATES];
392			void *rate_driver_data[
393				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
394		};
395		void *driver_data[
396			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
397	};
398};
399
400static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
401{
402	return (struct ieee80211_tx_info *)skb->cb;
403}
404
405/**
406 * ieee80211_tx_info_clear_status - clear TX status
407 *
408 * @info: The &struct ieee80211_tx_info to be cleared.
409 *
410 * When the driver passes an skb back to mac80211, it must report
411 * a number of things in TX status. This function clears everything
412 * in the TX status but the rate control information (it does clear
413 * the count since you need to fill that in anyway).
414 *
415 * NOTE: You can only use this function if you do NOT use
416 *	 info->driver_data! Use info->rate_driver_data
417 *	 instead if you need only the less space that allows.
418 */
419static inline void
420ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
421{
422	int i;
423
424	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
425		     offsetof(struct ieee80211_tx_info, control.rates));
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, driver_rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
429	/* clear the rate counts */
430	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
431		info->status.rates[i].count = 0;
432
433	BUILD_BUG_ON(
434	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
435	memset(&info->status.ampdu_ack_len, 0,
436	       sizeof(struct ieee80211_tx_info) -
437	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
438}
439
440
441/**
442 * enum mac80211_rx_flags - receive flags
443 *
444 * These flags are used with the @flag member of &struct ieee80211_rx_status.
445 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
446 *	Use together with %RX_FLAG_MMIC_STRIPPED.
447 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
448 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
449 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
450 *	verification has been done by the hardware.
451 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
452 *	If this flag is set, the stack cannot do any replay detection
453 *	hence the driver or hardware will have to do that.
454 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
455 *	the frame.
456 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
457 *	the frame.
458 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
459 *	is valid. This is useful in monitor mode and necessary for beacon frames
460 *	to enable IBSS merging.
461 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
462 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
463 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
464 * @RX_FLAG_SHORT_GI: Short guard interval was used
465 */
466enum mac80211_rx_flags {
467	RX_FLAG_MMIC_ERROR	= 1<<0,
468	RX_FLAG_DECRYPTED	= 1<<1,
469	RX_FLAG_RADIOTAP	= 1<<2,
470	RX_FLAG_MMIC_STRIPPED	= 1<<3,
471	RX_FLAG_IV_STRIPPED	= 1<<4,
472	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
473	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
474	RX_FLAG_TSFT		= 1<<7,
475	RX_FLAG_SHORTPRE	= 1<<8,
476	RX_FLAG_HT		= 1<<9,
477	RX_FLAG_40MHZ		= 1<<10,
478	RX_FLAG_SHORT_GI	= 1<<11,
479};
480
481/**
482 * struct ieee80211_rx_status - receive status
483 *
484 * The low-level driver should provide this information (the subset
485 * supported by hardware) to the 802.11 code with each received
486 * frame.
487 *
488 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
489 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
490 * @band: the active band when this frame was received
491 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
492 * @signal: signal strength when receiving this frame, either in dBm, in dB or
493 *	unspecified depending on the hardware capabilities flags
494 *	@IEEE80211_HW_SIGNAL_*
495 * @noise: noise when receiving this frame, in dBm.
496 * @qual: overall signal quality indication, in percent (0-100).
497 * @antenna: antenna used
498 * @rate_idx: index of data rate into band's supported rates or MCS index if
499 *	HT rates are use (RX_FLAG_HT)
500 * @flag: %RX_FLAG_*
501 */
502struct ieee80211_rx_status {
503	u64 mactime;
504	enum ieee80211_band band;
505	int freq;
506	int signal;
507	int noise;
508	int qual;
509	int antenna;
510	int rate_idx;
511	int flag;
512};
513
514/**
515 * enum ieee80211_conf_flags - configuration flags
516 *
517 * Flags to define PHY configuration options
518 *
519 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
520 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
521 */
522enum ieee80211_conf_flags {
523	IEEE80211_CONF_RADIOTAP		= (1<<0),
524	IEEE80211_CONF_PS		= (1<<1),
525};
526
527
528/**
529 * enum ieee80211_conf_changed - denotes which configuration changed
530 *
531 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
532 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
533 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
534 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
535 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
536 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
537 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
538 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
539 */
540enum ieee80211_conf_changed {
541	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
542	IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
543	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
544	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
545	IEEE80211_CONF_CHANGE_PS		= BIT(4),
546	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
547	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
548	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
549};
550
551/**
552 * struct ieee80211_conf - configuration of the device
553 *
554 * This struct indicates how the driver shall configure the hardware.
555 *
556 * @flags: configuration flags defined above
557 *
558 * @radio_enabled: when zero, driver is required to switch off the radio.
559 * @beacon_int: beacon interval (TODO make interface config)
560 *
561 * @listen_interval: listen interval in units of beacon interval
562 * @max_sleep_interval: the maximum number of beacon intervals to sleep for
563 *	before checking the beacon for a TIM bit (managed mode only); this
564 *	value will be only achievable between DTIM frames, the hardware
565 *	needs to check for the multicast traffic bit in DTIM beacons.
566 *	This variable is valid only when the CONF_PS flag is set.
567 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
568 *	powersave documentation below. This variable is valid only when
569 *	the CONF_PS flag is set.
570 *
571 * @power_level: requested transmit power (in dBm)
572 *
573 * @channel: the channel to tune to
574 * @channel_type: the channel (HT) type
575 *
576 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
577 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
578 *    but actually means the number of transmissions not the number of retries
579 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
580 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
581 *    number of transmissions not the number of retries
582 */
583struct ieee80211_conf {
584	int beacon_int;
585	u32 flags;
586	int power_level, dynamic_ps_timeout;
587	int max_sleep_interval;
588
589	u16 listen_interval;
590	bool radio_enabled;
591
592	u8 long_frame_max_tx_count, short_frame_max_tx_count;
593
594	struct ieee80211_channel *channel;
595	enum nl80211_channel_type channel_type;
596};
597
598/**
599 * struct ieee80211_vif - per-interface data
600 *
601 * Data in this structure is continually present for driver
602 * use during the life of a virtual interface.
603 *
604 * @type: type of this virtual interface
605 * @bss_conf: BSS configuration for this interface, either our own
606 *	or the BSS we're associated to
607 * @drv_priv: data area for driver use, will always be aligned to
608 *	sizeof(void *).
609 */
610struct ieee80211_vif {
611	enum nl80211_iftype type;
612	struct ieee80211_bss_conf bss_conf;
613	/* must be last */
614	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
615};
616
617static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
618{
619#ifdef CONFIG_MAC80211_MESH
620	return vif->type == NL80211_IFTYPE_MESH_POINT;
621#endif
622	return false;
623}
624
625/**
626 * struct ieee80211_if_init_conf - initial configuration of an interface
627 *
628 * @vif: pointer to a driver-use per-interface structure. The pointer
629 *	itself is also used for various functions including
630 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
631 * @type: one of &enum nl80211_iftype constants. Determines the type of
632 *	added/removed interface.
633 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
634 *	until the interface is removed (i.e. it cannot be used after
635 *	remove_interface() callback was called for this interface).
636 *
637 * This structure is used in add_interface() and remove_interface()
638 * callbacks of &struct ieee80211_hw.
639 *
640 * When you allow multiple interfaces to be added to your PHY, take care
641 * that the hardware can actually handle multiple MAC addresses. However,
642 * also take care that when there's no interface left with mac_addr != %NULL
643 * you remove the MAC address from the device to avoid acknowledging packets
644 * in pure monitor mode.
645 */
646struct ieee80211_if_init_conf {
647	enum nl80211_iftype type;
648	struct ieee80211_vif *vif;
649	void *mac_addr;
650};
651
652/**
653 * enum ieee80211_if_conf_change - interface config change flags
654 *
655 * @IEEE80211_IFCC_BSSID: The BSSID changed.
656 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
657 *	(currently AP and MESH only), use ieee80211_beacon_get().
658 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
659 */
660enum ieee80211_if_conf_change {
661	IEEE80211_IFCC_BSSID		= BIT(0),
662	IEEE80211_IFCC_BEACON		= BIT(1),
663	IEEE80211_IFCC_BEACON_ENABLED	= BIT(2),
664};
665
666/**
667 * struct ieee80211_if_conf - configuration of an interface
668 *
669 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
670 * @bssid: BSSID of the network we are associated to/creating.
671 * @enable_beacon: Indicates whether beacons can be sent.
672 *	This is valid only for AP/IBSS/MESH modes.
673 *
674 * This structure is passed to the config_interface() callback of
675 * &struct ieee80211_hw.
676 */
677struct ieee80211_if_conf {
678	u32 changed;
679	const u8 *bssid;
680	bool enable_beacon;
681};
682
683/**
684 * enum ieee80211_key_alg - key algorithm
685 * @ALG_WEP: WEP40 or WEP104
686 * @ALG_TKIP: TKIP
687 * @ALG_CCMP: CCMP (AES)
688 * @ALG_AES_CMAC: AES-128-CMAC
689 */
690enum ieee80211_key_alg {
691	ALG_WEP,
692	ALG_TKIP,
693	ALG_CCMP,
694	ALG_AES_CMAC,
695};
696
697/**
698 * enum ieee80211_key_len - key length
699 * @LEN_WEP40: WEP 5-byte long key
700 * @LEN_WEP104: WEP 13-byte long key
701 */
702enum ieee80211_key_len {
703	LEN_WEP40 = 5,
704	LEN_WEP104 = 13,
705};
706
707/**
708 * enum ieee80211_key_flags - key flags
709 *
710 * These flags are used for communication about keys between the driver
711 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
712 *
713 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
714 *	that the STA this key will be used with could be using QoS.
715 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
716 *	driver to indicate that it requires IV generation for this
717 *	particular key.
718 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
719 *	the driver for a TKIP key if it requires Michael MIC
720 *	generation in software.
721 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
722 *	that the key is pairwise rather then a shared key.
723 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
724 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
725 *	be done in software.
726 */
727enum ieee80211_key_flags {
728	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
729	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
730	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
731	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
732	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
733};
734
735/**
736 * struct ieee80211_key_conf - key information
737 *
738 * This key information is given by mac80211 to the driver by
739 * the set_key() callback in &struct ieee80211_ops.
740 *
741 * @hw_key_idx: To be set by the driver, this is the key index the driver
742 *	wants to be given when a frame is transmitted and needs to be
743 *	encrypted in hardware.
744 * @alg: The key algorithm.
745 * @flags: key flags, see &enum ieee80211_key_flags.
746 * @keyidx: the key index (0-3)
747 * @keylen: key material length
748 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
749 * 	data block:
750 * 	- Temporal Encryption Key (128 bits)
751 * 	- Temporal Authenticator Tx MIC Key (64 bits)
752 * 	- Temporal Authenticator Rx MIC Key (64 bits)
753 * @icv_len: The ICV length for this key type
754 * @iv_len: The IV length for this key type
755 */
756struct ieee80211_key_conf {
757	enum ieee80211_key_alg alg;
758	u8 icv_len;
759	u8 iv_len;
760	u8 hw_key_idx;
761	u8 flags;
762	s8 keyidx;
763	u8 keylen;
764	u8 key[0];
765};
766
767/**
768 * enum set_key_cmd - key command
769 *
770 * Used with the set_key() callback in &struct ieee80211_ops, this
771 * indicates whether a key is being removed or added.
772 *
773 * @SET_KEY: a key is set
774 * @DISABLE_KEY: a key must be disabled
775 */
776enum set_key_cmd {
777	SET_KEY, DISABLE_KEY,
778};
779
780/**
781 * struct ieee80211_sta - station table entry
782 *
783 * A station table entry represents a station we are possibly
784 * communicating with. Since stations are RCU-managed in
785 * mac80211, any ieee80211_sta pointer you get access to must
786 * either be protected by rcu_read_lock() explicitly or implicitly,
787 * or you must take good care to not use such a pointer after a
788 * call to your sta_notify callback that removed it.
789 *
790 * @addr: MAC address
791 * @aid: AID we assigned to the station if we're an AP
792 * @supp_rates: Bitmap of supported rates (per band)
793 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
794 * @drv_priv: data area for driver use, will always be aligned to
795 *	sizeof(void *), size is determined in hw information.
796 */
797struct ieee80211_sta {
798	u32 supp_rates[IEEE80211_NUM_BANDS];
799	u8 addr[ETH_ALEN];
800	u16 aid;
801	struct ieee80211_sta_ht_cap ht_cap;
802
803	/* must be last */
804	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
805};
806
807/**
808 * enum sta_notify_cmd - sta notify command
809 *
810 * Used with the sta_notify() callback in &struct ieee80211_ops, this
811 * indicates addition and removal of a station to station table,
812 * or if a associated station made a power state transition.
813 *
814 * @STA_NOTIFY_ADD: a station was added to the station table
815 * @STA_NOTIFY_REMOVE: a station being removed from the station table
816 * @STA_NOTIFY_SLEEP: a station is now sleeping
817 * @STA_NOTIFY_AWAKE: a sleeping station woke up
818 */
819enum sta_notify_cmd {
820	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
821	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
822};
823
824/**
825 * enum ieee80211_tkip_key_type - get tkip key
826 *
827 * Used by drivers which need to get a tkip key for skb. Some drivers need a
828 * phase 1 key, others need a phase 2 key. A single function allows the driver
829 * to get the key, this enum indicates what type of key is required.
830 *
831 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
832 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
833 */
834enum ieee80211_tkip_key_type {
835	IEEE80211_TKIP_P1_KEY,
836	IEEE80211_TKIP_P2_KEY,
837};
838
839/**
840 * enum ieee80211_hw_flags - hardware flags
841 *
842 * These flags are used to indicate hardware capabilities to
843 * the stack. Generally, flags here should have their meaning
844 * done in a way that the simplest hardware doesn't need setting
845 * any particular flags. There are some exceptions to this rule,
846 * however, so you are advised to review these flags carefully.
847 *
848 * @IEEE80211_HW_RX_INCLUDES_FCS:
849 *	Indicates that received frames passed to the stack include
850 *	the FCS at the end.
851 *
852 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
853 *	Some wireless LAN chipsets buffer broadcast/multicast frames
854 *	for power saving stations in the hardware/firmware and others
855 *	rely on the host system for such buffering. This option is used
856 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
857 *	multicast frames when there are power saving stations so that
858 *	the driver can fetch them with ieee80211_get_buffered_bc().
859 *
860 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
861 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
862 *
863 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
864 *	Hardware is not capable of receiving frames with short preamble on
865 *	the 2.4 GHz band.
866 *
867 * @IEEE80211_HW_SIGNAL_UNSPEC:
868 *	Hardware can provide signal values but we don't know its units. We
869 *	expect values between 0 and @max_signal.
870 *	If possible please provide dB or dBm instead.
871 *
872 * @IEEE80211_HW_SIGNAL_DBM:
873 *	Hardware gives signal values in dBm, decibel difference from
874 *	one milliwatt. This is the preferred method since it is standardized
875 *	between different devices. @max_signal does not need to be set.
876 *
877 * @IEEE80211_HW_NOISE_DBM:
878 *	Hardware can provide noise (radio interference) values in units dBm,
879 *      decibel difference from one milliwatt.
880 *
881 * @IEEE80211_HW_SPECTRUM_MGMT:
882 * 	Hardware supports spectrum management defined in 802.11h
883 * 	Measurement, Channel Switch, Quieting, TPC
884 *
885 * @IEEE80211_HW_AMPDU_AGGREGATION:
886 *	Hardware supports 11n A-MPDU aggregation.
887 *
888 * @IEEE80211_HW_SUPPORTS_PS:
889 *	Hardware has power save support (i.e. can go to sleep).
890 *
891 * @IEEE80211_HW_PS_NULLFUNC_STACK:
892 *	Hardware requires nullfunc frame handling in stack, implies
893 *	stack support for dynamic PS.
894 *
895 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
896 *	Hardware has support for dynamic PS.
897 *
898 * @IEEE80211_HW_MFP_CAPABLE:
899 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
900 *
901 * @IEEE80211_HW_BEACON_FILTER:
902 *	Hardware supports dropping of irrelevant beacon frames to
903 *	avoid waking up cpu.
904 */
905enum ieee80211_hw_flags {
906	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
907	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
908	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
909	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
910	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
911	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
912	IEEE80211_HW_NOISE_DBM				= 1<<7,
913	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
914	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
915	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
916	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
917	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
918	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
919	IEEE80211_HW_BEACON_FILTER			= 1<<14,
920};
921
922/**
923 * struct ieee80211_hw - hardware information and state
924 *
925 * This structure contains the configuration and hardware
926 * information for an 802.11 PHY.
927 *
928 * @wiphy: This points to the &struct wiphy allocated for this
929 *	802.11 PHY. You must fill in the @perm_addr and @dev
930 *	members of this structure using SET_IEEE80211_DEV()
931 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
932 *	bands (with channels, bitrates) are registered here.
933 *
934 * @conf: &struct ieee80211_conf, device configuration, don't use.
935 *
936 * @workqueue: single threaded workqueue available for driver use,
937 *	allocated by mac80211 on registration and flushed when an
938 *	interface is removed.
939 *	NOTICE: All work performed on this workqueue must not
940 *	acquire the RTNL lock.
941 *
942 * @priv: pointer to private area that was allocated for driver use
943 *	along with this structure.
944 *
945 * @flags: hardware flags, see &enum ieee80211_hw_flags.
946 *
947 * @extra_tx_headroom: headroom to reserve in each transmit skb
948 *	for use by the driver (e.g. for transmit headers.)
949 *
950 * @channel_change_time: time (in microseconds) it takes to change channels.
951 *
952 * @max_signal: Maximum value for signal (rssi) in RX information, used
953 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
954 *
955 * @max_listen_interval: max listen interval in units of beacon interval
956 *     that HW supports
957 *
958 * @queues: number of available hardware transmit queues for
959 *	data packets. WMM/QoS requires at least four, these
960 *	queues need to have configurable access parameters.
961 *
962 * @rate_control_algorithm: rate control algorithm for this hardware.
963 *	If unset (NULL), the default algorithm will be used. Must be
964 *	set before calling ieee80211_register_hw().
965 *
966 * @vif_data_size: size (in bytes) of the drv_priv data area
967 *	within &struct ieee80211_vif.
968 * @sta_data_size: size (in bytes) of the drv_priv data area
969 *	within &struct ieee80211_sta.
970 *
971 * @max_rates: maximum number of alternate rate retry stages
972 * @max_rate_tries: maximum number of tries for each stage
973 */
974struct ieee80211_hw {
975	struct ieee80211_conf conf;
976	struct wiphy *wiphy;
977	struct workqueue_struct *workqueue;
978	const char *rate_control_algorithm;
979	void *priv;
980	u32 flags;
981	unsigned int extra_tx_headroom;
982	int channel_change_time;
983	int vif_data_size;
984	int sta_data_size;
985	u16 queues;
986	u16 max_listen_interval;
987	s8 max_signal;
988	u8 max_rates;
989	u8 max_rate_tries;
990};
991
992/**
993 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
994 *
995 * @wiphy: the &struct wiphy which we want to query
996 *
997 * mac80211 drivers can use this to get to their respective
998 * &struct ieee80211_hw. Drivers wishing to get to their own private
999 * structure can then access it via hw->priv. Note that mac802111 drivers should
1000 * not use wiphy_priv() to try to get their private driver structure as this
1001 * is already used internally by mac80211.
1002 */
1003struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1004
1005/**
1006 * SET_IEEE80211_DEV - set device for 802.11 hardware
1007 *
1008 * @hw: the &struct ieee80211_hw to set the device for
1009 * @dev: the &struct device of this 802.11 device
1010 */
1011static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1012{
1013	set_wiphy_dev(hw->wiphy, dev);
1014}
1015
1016/**
1017 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1018 *
1019 * @hw: the &struct ieee80211_hw to set the MAC address for
1020 * @addr: the address to set
1021 */
1022static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1023{
1024	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1025}
1026
1027static inline struct ieee80211_rate *
1028ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1029		      const struct ieee80211_tx_info *c)
1030{
1031	if (WARN_ON(c->control.rates[0].idx < 0))
1032		return NULL;
1033	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1034}
1035
1036static inline struct ieee80211_rate *
1037ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1038			   const struct ieee80211_tx_info *c)
1039{
1040	if (c->control.rts_cts_rate_idx < 0)
1041		return NULL;
1042	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1043}
1044
1045static inline struct ieee80211_rate *
1046ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1047			     const struct ieee80211_tx_info *c, int idx)
1048{
1049	if (c->control.rates[idx + 1].idx < 0)
1050		return NULL;
1051	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1052}
1053
1054/**
1055 * DOC: Hardware crypto acceleration
1056 *
1057 * mac80211 is capable of taking advantage of many hardware
1058 * acceleration designs for encryption and decryption operations.
1059 *
1060 * The set_key() callback in the &struct ieee80211_ops for a given
1061 * device is called to enable hardware acceleration of encryption and
1062 * decryption. The callback takes a @sta parameter that will be NULL
1063 * for default keys or keys used for transmission only, or point to
1064 * the station information for the peer for individual keys.
1065 * Multiple transmission keys with the same key index may be used when
1066 * VLANs are configured for an access point.
1067 *
1068 * When transmitting, the TX control data will use the @hw_key_idx
1069 * selected by the driver by modifying the &struct ieee80211_key_conf
1070 * pointed to by the @key parameter to the set_key() function.
1071 *
1072 * The set_key() call for the %SET_KEY command should return 0 if
1073 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1074 * added; if you return 0 then hw_key_idx must be assigned to the
1075 * hardware key index, you are free to use the full u8 range.
1076 *
1077 * When the cmd is %DISABLE_KEY then it must succeed.
1078 *
1079 * Note that it is permissible to not decrypt a frame even if a key
1080 * for it has been uploaded to hardware, the stack will not make any
1081 * decision based on whether a key has been uploaded or not but rather
1082 * based on the receive flags.
1083 *
1084 * The &struct ieee80211_key_conf structure pointed to by the @key
1085 * parameter is guaranteed to be valid until another call to set_key()
1086 * removes it, but it can only be used as a cookie to differentiate
1087 * keys.
1088 *
1089 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1090 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1091 * handler.
1092 * The update_tkip_key() call updates the driver with the new phase 1 key.
1093 * This happens everytime the iv16 wraps around (every 65536 packets). The
1094 * set_key() call will happen only once for each key (unless the AP did
1095 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1096 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1097 * handler is software decryption with wrap around of iv16.
1098 */
1099
1100/**
1101 * DOC: Powersave support
1102 *
1103 * mac80211 has support for various powersave implementations.
1104 *
1105 * First, it can support hardware that handles all powersaving by
1106 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1107 * hardware flag. In that case, it will be told about the desired
1108 * powersave mode depending on the association status, and the driver
1109 * must take care of sending nullfunc frames when necessary, i.e. when
1110 * entering and leaving powersave mode. The driver is required to look at
1111 * the AID in beacons and signal to the AP that it woke up when it finds
1112 * traffic directed to it. This mode supports dynamic PS by simply
1113 * enabling/disabling PS.
1114 *
1115 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1116 * flag to indicate that it can support dynamic PS mode itself (see below).
1117 *
1118 * Other hardware designs cannot send nullfunc frames by themselves and also
1119 * need software support for parsing the TIM bitmap. This is also supported
1120 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1121 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1122 * required to pass up beacons. The hardware is still required to handle
1123 * waking up for multicast traffic; if it cannot the driver must handle that
1124 * as best as it can, mac80211 is too slow.
1125 *
1126 * Dynamic powersave mode is an extension to normal powersave mode in which
1127 * the hardware stays awake for a user-specified period of time after sending
1128 * a frame so that reply frames need not be buffered and therefore delayed
1129 * to the next wakeup. This can either be supported by hardware, in which case
1130 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1131 * value, or by the stack if all nullfunc handling is in the stack.
1132 */
1133
1134/**
1135 * DOC: Beacon filter support
1136 *
1137 * Some hardware have beacon filter support to reduce host cpu wakeups
1138 * which will reduce system power consumption. It usuallly works so that
1139 * the firmware creates a checksum of the beacon but omits all constantly
1140 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1141 * beacon is forwarded to the host, otherwise it will be just dropped. That
1142 * way the host will only receive beacons where some relevant information
1143 * (for example ERP protection or WMM settings) have changed.
1144 *
1145 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1146 * hardware capability. The driver needs to enable beacon filter support
1147 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1148 * power save is enabled, the stack will not check for beacon loss and the
1149 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1150 *
1151 * The time (or number of beacons missed) until the firmware notifies the
1152 * driver of a beacon loss event (which in turn causes the driver to call
1153 * ieee80211_beacon_loss()) should be configurable and will be controlled
1154 * by mac80211 and the roaming algorithm in the future.
1155 *
1156 * Since there may be constantly changing information elements that nothing
1157 * in the software stack cares about, we will, in the future, have mac80211
1158 * tell the driver which information elements are interesting in the sense
1159 * that we want to see changes in them. This will include
1160 *  - a list of information element IDs
1161 *  - a list of OUIs for the vendor information element
1162 *
1163 * Ideally, the hardware would filter out any beacons without changes in the
1164 * requested elements, but if it cannot support that it may, at the expense
1165 * of some efficiency, filter out only a subset. For example, if the device
1166 * doesn't support checking for OUIs it should pass up all changes in all
1167 * vendor information elements.
1168 *
1169 * Note that change, for the sake of simplification, also includes information
1170 * elements appearing or disappearing from the beacon.
1171 *
1172 * Some hardware supports an "ignore list" instead, just make sure nothing
1173 * that was requested is on the ignore list, and include commonly changing
1174 * information element IDs in the ignore list, for example 11 (BSS load) and
1175 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1176 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1177 * it could also include some currently unused IDs.
1178 *
1179 *
1180 * In addition to these capabilities, hardware should support notifying the
1181 * host of changes in the beacon RSSI. This is relevant to implement roaming
1182 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1183 * the received data packets). This can consist in notifying the host when
1184 * the RSSI changes significantly or when it drops below or rises above
1185 * configurable thresholds. In the future these thresholds will also be
1186 * configured by mac80211 (which gets them from userspace) to implement
1187 * them as the roaming algorithm requires.
1188 *
1189 * If the hardware cannot implement this, the driver should ask it to
1190 * periodically pass beacon frames to the host so that software can do the
1191 * signal strength threshold checking.
1192 */
1193
1194/**
1195 * DOC: Frame filtering
1196 *
1197 * mac80211 requires to see many management frames for proper
1198 * operation, and users may want to see many more frames when
1199 * in monitor mode. However, for best CPU usage and power consumption,
1200 * having as few frames as possible percolate through the stack is
1201 * desirable. Hence, the hardware should filter as much as possible.
1202 *
1203 * To achieve this, mac80211 uses filter flags (see below) to tell
1204 * the driver's configure_filter() function which frames should be
1205 * passed to mac80211 and which should be filtered out.
1206 *
1207 * The configure_filter() callback is invoked with the parameters
1208 * @mc_count and @mc_list for the combined multicast address list
1209 * of all virtual interfaces, @changed_flags telling which flags
1210 * were changed and @total_flags with the new flag states.
1211 *
1212 * If your device has no multicast address filters your driver will
1213 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1214 * parameter to see whether multicast frames should be accepted
1215 * or dropped.
1216 *
1217 * All unsupported flags in @total_flags must be cleared.
1218 * Hardware does not support a flag if it is incapable of _passing_
1219 * the frame to the stack. Otherwise the driver must ignore
1220 * the flag, but not clear it.
1221 * You must _only_ clear the flag (announce no support for the
1222 * flag to mac80211) if you are not able to pass the packet type
1223 * to the stack (so the hardware always filters it).
1224 * So for example, you should clear @FIF_CONTROL, if your hardware
1225 * always filters control frames. If your hardware always passes
1226 * control frames to the kernel and is incapable of filtering them,
1227 * you do _not_ clear the @FIF_CONTROL flag.
1228 * This rule applies to all other FIF flags as well.
1229 */
1230
1231/**
1232 * enum ieee80211_filter_flags - hardware filter flags
1233 *
1234 * These flags determine what the filter in hardware should be
1235 * programmed to let through and what should not be passed to the
1236 * stack. It is always safe to pass more frames than requested,
1237 * but this has negative impact on power consumption.
1238 *
1239 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1240 *	think of the BSS as your network segment and then this corresponds
1241 *	to the regular ethernet device promiscuous mode.
1242 *
1243 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1244 *	by the user or if the hardware is not capable of filtering by
1245 *	multicast address.
1246 *
1247 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1248 *	%RX_FLAG_FAILED_FCS_CRC for them)
1249 *
1250 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1251 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1252 *
1253 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1254 *	to the hardware that it should not filter beacons or probe responses
1255 *	by BSSID. Filtering them can greatly reduce the amount of processing
1256 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1257 *	honour this flag if possible.
1258 *
1259 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1260 *	only those addressed to this station
1261 *
1262 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1263 */
1264enum ieee80211_filter_flags {
1265	FIF_PROMISC_IN_BSS	= 1<<0,
1266	FIF_ALLMULTI		= 1<<1,
1267	FIF_FCSFAIL		= 1<<2,
1268	FIF_PLCPFAIL		= 1<<3,
1269	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1270	FIF_CONTROL		= 1<<5,
1271	FIF_OTHER_BSS		= 1<<6,
1272};
1273
1274/**
1275 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1276 *
1277 * These flags are used with the ampdu_action() callback in
1278 * &struct ieee80211_ops to indicate which action is needed.
1279 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1280 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1281 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1282 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1283 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1284 */
1285enum ieee80211_ampdu_mlme_action {
1286	IEEE80211_AMPDU_RX_START,
1287	IEEE80211_AMPDU_RX_STOP,
1288	IEEE80211_AMPDU_TX_START,
1289	IEEE80211_AMPDU_TX_STOP,
1290	IEEE80211_AMPDU_TX_OPERATIONAL,
1291};
1292
1293/**
1294 * struct ieee80211_ops - callbacks from mac80211 to the driver
1295 *
1296 * This structure contains various callbacks that the driver may
1297 * handle or, in some cases, must handle, for example to configure
1298 * the hardware to a new channel or to transmit a frame.
1299 *
1300 * @tx: Handler that 802.11 module calls for each transmitted frame.
1301 *	skb contains the buffer starting from the IEEE 802.11 header.
1302 *	The low-level driver should send the frame out based on
1303 *	configuration in the TX control data. This handler should,
1304 *	preferably, never fail and stop queues appropriately, more
1305 *	importantly, however, it must never fail for A-MPDU-queues.
1306 *	This function should return NETDEV_TX_OK except in very
1307 *	limited cases.
1308 *	Must be implemented and atomic.
1309 *
1310 * @start: Called before the first netdevice attached to the hardware
1311 *	is enabled. This should turn on the hardware and must turn on
1312 *	frame reception (for possibly enabled monitor interfaces.)
1313 *	Returns negative error codes, these may be seen in userspace,
1314 *	or zero.
1315 *	When the device is started it should not have a MAC address
1316 *	to avoid acknowledging frames before a non-monitor device
1317 *	is added.
1318 *	Must be implemented.
1319 *
1320 * @stop: Called after last netdevice attached to the hardware
1321 *	is disabled. This should turn off the hardware (at least
1322 *	it must turn off frame reception.)
1323 *	May be called right after add_interface if that rejects
1324 *	an interface.
1325 *	Must be implemented.
1326 *
1327 * @add_interface: Called when a netdevice attached to the hardware is
1328 *	enabled. Because it is not called for monitor mode devices, @start
1329 *	and @stop must be implemented.
1330 *	The driver should perform any initialization it needs before
1331 *	the device can be enabled. The initial configuration for the
1332 *	interface is given in the conf parameter.
1333 *	The callback may refuse to add an interface by returning a
1334 *	negative error code (which will be seen in userspace.)
1335 *	Must be implemented.
1336 *
1337 * @remove_interface: Notifies a driver that an interface is going down.
1338 *	The @stop callback is called after this if it is the last interface
1339 *	and no monitor interfaces are present.
1340 *	When all interfaces are removed, the MAC address in the hardware
1341 *	must be cleared so the device no longer acknowledges packets,
1342 *	the mac_addr member of the conf structure is, however, set to the
1343 *	MAC address of the device going away.
1344 *	Hence, this callback must be implemented.
1345 *
1346 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1347 *	function to change hardware configuration, e.g., channel.
1348 *	This function should never fail but returns a negative error code
1349 *	if it does.
1350 *
1351 * @config_interface: Handler for configuration requests related to interfaces
1352 *	(e.g. BSSID changes.)
1353 *	Returns a negative error code which will be seen in userspace.
1354 *
1355 * @bss_info_changed: Handler for configuration requests related to BSS
1356 *	parameters that may vary during BSS's lifespan, and may affect low
1357 *	level driver (e.g. assoc/disassoc status, erp parameters).
1358 *	This function should not be used if no BSS has been set, unless
1359 *	for association indication. The @changed parameter indicates which
1360 *	of the bss parameters has changed when a call is made.
1361 *
1362 * @configure_filter: Configure the device's RX filter.
1363 *	See the section "Frame filtering" for more information.
1364 *	This callback must be implemented and atomic.
1365 *
1366 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1367 * 	must be set or cleared for a given STA. Must be atomic.
1368 *
1369 * @set_key: See the section "Hardware crypto acceleration"
1370 *	This callback can sleep, and is only called between add_interface
1371 *	and remove_interface calls, i.e. while the given virtual interface
1372 *	is enabled.
1373 *	Returns a negative error code if the key can't be added.
1374 *
1375 * @update_tkip_key: See the section "Hardware crypto acceleration"
1376 * 	This callback will be called in the context of Rx. Called for drivers
1377 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1378 *
1379 * @hw_scan: Ask the hardware to service the scan request, no need to start
1380 *	the scan state machine in stack. The scan must honour the channel
1381 *	configuration done by the regulatory agent in the wiphy's
1382 *	registered bands. The hardware (or the driver) needs to make sure
1383 *	that power save is disabled.
1384 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1385 *	entire IEs after the SSID, so that drivers need not look at these
1386 *	at all but just send them after the SSID -- mac80211 includes the
1387 *	(extended) supported rates and HT information (where applicable).
1388 *	When the scan finishes, ieee80211_scan_completed() must be called;
1389 *	note that it also must be called when the scan cannot finish due to
1390 *	any error unless this callback returned a negative error code.
1391 *
1392 * @sw_scan_start: Notifier function that is called just before a software scan
1393 *	is started. Can be NULL, if the driver doesn't need this notification.
1394 *
1395 * @sw_scan_complete: Notifier function that is called just after a software scan
1396 *	finished. Can be NULL, if the driver doesn't need this notification.
1397 *
1398 * @get_stats: Return low-level statistics.
1399 * 	Returns zero if statistics are available.
1400 *
1401 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1402 *	callback should be provided to read the TKIP transmit IVs (both IV32
1403 *	and IV16) for the given key from hardware.
1404 *
1405 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1406 *
1407 * @sta_notify: Notifies low level driver about addition, removal or power
1408 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1409 *	Must be atomic.
1410 *
1411 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1412 *	bursting) for a hardware TX queue.
1413 *	Returns a negative error code on failure.
1414 *
1415 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1416 *	to get number of currently queued packets (queue length), maximum queue
1417 *	size (limit), and total number of packets sent using each TX queue
1418 *	(count). The 'stats' pointer points to an array that has hw->queues
1419 *	items.
1420 *
1421 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1422 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1423 *	required function.
1424 *
1425 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1426 *      Currently, this is only used for IBSS mode debugging. Is not a
1427 *	required function.
1428 *
1429 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1430 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1431 *	function is optional if the firmware/hardware takes full care of
1432 *	TSF synchronization.
1433 *
1434 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1435 *	This is needed only for IBSS mode and the result of this function is
1436 *	used to determine whether to reply to Probe Requests.
1437 *	Returns non-zero if this device sent the last beacon.
1438 *
1439 * @ampdu_action: Perform a certain A-MPDU action
1440 * 	The RA/TID combination determines the destination and TID we want
1441 * 	the ampdu action to be performed for. The action is defined through
1442 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1443 * 	is the first frame we expect to perform the action on. Notice
1444 * 	that TX/RX_STOP can pass NULL for this parameter.
1445 *	Returns a negative error code on failure.
1446 */
1447struct ieee80211_ops {
1448	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1449	int (*start)(struct ieee80211_hw *hw);
1450	void (*stop)(struct ieee80211_hw *hw);
1451	int (*add_interface)(struct ieee80211_hw *hw,
1452			     struct ieee80211_if_init_conf *conf);
1453	void (*remove_interface)(struct ieee80211_hw *hw,
1454				 struct ieee80211_if_init_conf *conf);
1455	int (*config)(struct ieee80211_hw *hw, u32 changed);
1456	int (*config_interface)(struct ieee80211_hw *hw,
1457				struct ieee80211_vif *vif,
1458				struct ieee80211_if_conf *conf);
1459	void (*bss_info_changed)(struct ieee80211_hw *hw,
1460				 struct ieee80211_vif *vif,
1461				 struct ieee80211_bss_conf *info,
1462				 u32 changed);
1463	void (*configure_filter)(struct ieee80211_hw *hw,
1464				 unsigned int changed_flags,
1465				 unsigned int *total_flags,
1466				 int mc_count, struct dev_addr_list *mc_list);
1467	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1468		       bool set);
1469	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1470		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1471		       struct ieee80211_key_conf *key);
1472	void (*update_tkip_key)(struct ieee80211_hw *hw,
1473			struct ieee80211_key_conf *conf, const u8 *address,
1474			u32 iv32, u16 *phase1key);
1475	int (*hw_scan)(struct ieee80211_hw *hw,
1476		       struct cfg80211_scan_request *req);
1477	void (*sw_scan_start)(struct ieee80211_hw *hw);
1478	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1479	int (*get_stats)(struct ieee80211_hw *hw,
1480			 struct ieee80211_low_level_stats *stats);
1481	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1482			     u32 *iv32, u16 *iv16);
1483	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1484	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1485			enum sta_notify_cmd, struct ieee80211_sta *sta);
1486	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1487		       const struct ieee80211_tx_queue_params *params);
1488	int (*get_tx_stats)(struct ieee80211_hw *hw,
1489			    struct ieee80211_tx_queue_stats *stats);
1490	u64 (*get_tsf)(struct ieee80211_hw *hw);
1491	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1492	void (*reset_tsf)(struct ieee80211_hw *hw);
1493	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1494	int (*ampdu_action)(struct ieee80211_hw *hw,
1495			    enum ieee80211_ampdu_mlme_action action,
1496			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1497};
1498
1499/**
1500 * ieee80211_alloc_hw -  Allocate a new hardware device
1501 *
1502 * This must be called once for each hardware device. The returned pointer
1503 * must be used to refer to this device when calling other functions.
1504 * mac80211 allocates a private data area for the driver pointed to by
1505 * @priv in &struct ieee80211_hw, the size of this area is given as
1506 * @priv_data_len.
1507 *
1508 * @priv_data_len: length of private data
1509 * @ops: callbacks for this device
1510 */
1511struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1512					const struct ieee80211_ops *ops);
1513
1514/**
1515 * ieee80211_register_hw - Register hardware device
1516 *
1517 * You must call this function before any other functions in
1518 * mac80211. Note that before a hardware can be registered, you
1519 * need to fill the contained wiphy's information.
1520 *
1521 * @hw: the device to register as returned by ieee80211_alloc_hw()
1522 */
1523int ieee80211_register_hw(struct ieee80211_hw *hw);
1524
1525#ifdef CONFIG_MAC80211_LEDS
1526extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1527extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1528extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1529extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1530#endif
1531/**
1532 * ieee80211_get_tx_led_name - get name of TX LED
1533 *
1534 * mac80211 creates a transmit LED trigger for each wireless hardware
1535 * that can be used to drive LEDs if your driver registers a LED device.
1536 * This function returns the name (or %NULL if not configured for LEDs)
1537 * of the trigger so you can automatically link the LED device.
1538 *
1539 * @hw: the hardware to get the LED trigger name for
1540 */
1541static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1542{
1543#ifdef CONFIG_MAC80211_LEDS
1544	return __ieee80211_get_tx_led_name(hw);
1545#else
1546	return NULL;
1547#endif
1548}
1549
1550/**
1551 * ieee80211_get_rx_led_name - get name of RX LED
1552 *
1553 * mac80211 creates a receive LED trigger for each wireless hardware
1554 * that can be used to drive LEDs if your driver registers a LED device.
1555 * This function returns the name (or %NULL if not configured for LEDs)
1556 * of the trigger so you can automatically link the LED device.
1557 *
1558 * @hw: the hardware to get the LED trigger name for
1559 */
1560static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1561{
1562#ifdef CONFIG_MAC80211_LEDS
1563	return __ieee80211_get_rx_led_name(hw);
1564#else
1565	return NULL;
1566#endif
1567}
1568
1569/**
1570 * ieee80211_get_assoc_led_name - get name of association LED
1571 *
1572 * mac80211 creates a association LED trigger for each wireless hardware
1573 * that can be used to drive LEDs if your driver registers a LED device.
1574 * This function returns the name (or %NULL if not configured for LEDs)
1575 * of the trigger so you can automatically link the LED device.
1576 *
1577 * @hw: the hardware to get the LED trigger name for
1578 */
1579static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1580{
1581#ifdef CONFIG_MAC80211_LEDS
1582	return __ieee80211_get_assoc_led_name(hw);
1583#else
1584	return NULL;
1585#endif
1586}
1587
1588/**
1589 * ieee80211_get_radio_led_name - get name of radio LED
1590 *
1591 * mac80211 creates a radio change LED trigger for each wireless hardware
1592 * that can be used to drive LEDs if your driver registers a LED device.
1593 * This function returns the name (or %NULL if not configured for LEDs)
1594 * of the trigger so you can automatically link the LED device.
1595 *
1596 * @hw: the hardware to get the LED trigger name for
1597 */
1598static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1599{
1600#ifdef CONFIG_MAC80211_LEDS
1601	return __ieee80211_get_radio_led_name(hw);
1602#else
1603	return NULL;
1604#endif
1605}
1606
1607/**
1608 * ieee80211_unregister_hw - Unregister a hardware device
1609 *
1610 * This function instructs mac80211 to free allocated resources
1611 * and unregister netdevices from the networking subsystem.
1612 *
1613 * @hw: the hardware to unregister
1614 */
1615void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1616
1617/**
1618 * ieee80211_free_hw - free hardware descriptor
1619 *
1620 * This function frees everything that was allocated, including the
1621 * private data for the driver. You must call ieee80211_unregister_hw()
1622 * before calling this function.
1623 *
1624 * @hw: the hardware to free
1625 */
1626void ieee80211_free_hw(struct ieee80211_hw *hw);
1627
1628/**
1629 * ieee80211_restart_hw - restart hardware completely
1630 *
1631 * Call this function when the hardware was restarted for some reason
1632 * (hardware error, ...) and the driver is unable to restore its state
1633 * by itself. mac80211 assumes that at this point the driver/hardware
1634 * is completely uninitialised and stopped, it starts the process by
1635 * calling the ->start() operation. The driver will need to reset all
1636 * internal state that it has prior to calling this function.
1637 *
1638 * @hw: the hardware to restart
1639 */
1640void ieee80211_restart_hw(struct ieee80211_hw *hw);
1641
1642/* trick to avoid symbol clashes with the ieee80211 subsystem */
1643void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1644		    struct ieee80211_rx_status *status);
1645
1646/**
1647 * ieee80211_rx - receive frame
1648 *
1649 * Use this function to hand received frames to mac80211. The receive
1650 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1651 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1652 *
1653 * This function may not be called in IRQ context. Calls to this function
1654 * for a single hardware must be synchronized against each other. Calls
1655 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1656 * single hardware.
1657 *
1658 * @hw: the hardware this frame came in on
1659 * @skb: the buffer to receive, owned by mac80211 after this call
1660 * @status: status of this frame; the status pointer need not be valid
1661 *	after this function returns
1662 */
1663static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1664				struct ieee80211_rx_status *status)
1665{
1666	__ieee80211_rx(hw, skb, status);
1667}
1668
1669/**
1670 * ieee80211_rx_irqsafe - receive frame
1671 *
1672 * Like ieee80211_rx() but can be called in IRQ context
1673 * (internally defers to a tasklet.)
1674 *
1675 * Calls to this function and ieee80211_rx() may not be mixed for a
1676 * single hardware.
1677 *
1678 * @hw: the hardware this frame came in on
1679 * @skb: the buffer to receive, owned by mac80211 after this call
1680 * @status: status of this frame; the status pointer need not be valid
1681 *	after this function returns and is not freed by mac80211,
1682 *	it is recommended that it points to a stack area
1683 */
1684void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1685			  struct sk_buff *skb,
1686			  struct ieee80211_rx_status *status);
1687
1688/**
1689 * ieee80211_tx_status - transmit status callback
1690 *
1691 * Call this function for all transmitted frames after they have been
1692 * transmitted. It is permissible to not call this function for
1693 * multicast frames but this can affect statistics.
1694 *
1695 * This function may not be called in IRQ context. Calls to this function
1696 * for a single hardware must be synchronized against each other. Calls
1697 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1698 * for a single hardware.
1699 *
1700 * @hw: the hardware the frame was transmitted by
1701 * @skb: the frame that was transmitted, owned by mac80211 after this call
1702 */
1703void ieee80211_tx_status(struct ieee80211_hw *hw,
1704			 struct sk_buff *skb);
1705
1706/**
1707 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1708 *
1709 * Like ieee80211_tx_status() but can be called in IRQ context
1710 * (internally defers to a tasklet.)
1711 *
1712 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1713 * single hardware.
1714 *
1715 * @hw: the hardware the frame was transmitted by
1716 * @skb: the frame that was transmitted, owned by mac80211 after this call
1717 */
1718void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1719				 struct sk_buff *skb);
1720
1721/**
1722 * ieee80211_beacon_get - beacon generation function
1723 * @hw: pointer obtained from ieee80211_alloc_hw().
1724 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1725 *
1726 * If the beacon frames are generated by the host system (i.e., not in
1727 * hardware/firmware), the low-level driver uses this function to receive
1728 * the next beacon frame from the 802.11 code. The low-level is responsible
1729 * for calling this function before beacon data is needed (e.g., based on
1730 * hardware interrupt). Returned skb is used only once and low-level driver
1731 * is responsible for freeing it.
1732 */
1733struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1734				     struct ieee80211_vif *vif);
1735
1736/**
1737 * ieee80211_rts_get - RTS frame generation function
1738 * @hw: pointer obtained from ieee80211_alloc_hw().
1739 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1740 * @frame: pointer to the frame that is going to be protected by the RTS.
1741 * @frame_len: the frame length (in octets).
1742 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1743 * @rts: The buffer where to store the RTS frame.
1744 *
1745 * If the RTS frames are generated by the host system (i.e., not in
1746 * hardware/firmware), the low-level driver uses this function to receive
1747 * the next RTS frame from the 802.11 code. The low-level is responsible
1748 * for calling this function before and RTS frame is needed.
1749 */
1750void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1751		       const void *frame, size_t frame_len,
1752		       const struct ieee80211_tx_info *frame_txctl,
1753		       struct ieee80211_rts *rts);
1754
1755/**
1756 * ieee80211_rts_duration - Get the duration field for an RTS frame
1757 * @hw: pointer obtained from ieee80211_alloc_hw().
1758 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1759 * @frame_len: the length of the frame that is going to be protected by the RTS.
1760 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1761 *
1762 * If the RTS is generated in firmware, but the host system must provide
1763 * the duration field, the low-level driver uses this function to receive
1764 * the duration field value in little-endian byteorder.
1765 */
1766__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1767			      struct ieee80211_vif *vif, size_t frame_len,
1768			      const struct ieee80211_tx_info *frame_txctl);
1769
1770/**
1771 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1772 * @hw: pointer obtained from ieee80211_alloc_hw().
1773 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1774 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1775 * @frame_len: the frame length (in octets).
1776 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1777 * @cts: The buffer where to store the CTS-to-self frame.
1778 *
1779 * If the CTS-to-self frames are generated by the host system (i.e., not in
1780 * hardware/firmware), the low-level driver uses this function to receive
1781 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1782 * for calling this function before and CTS-to-self frame is needed.
1783 */
1784void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1785			     struct ieee80211_vif *vif,
1786			     const void *frame, size_t frame_len,
1787			     const struct ieee80211_tx_info *frame_txctl,
1788			     struct ieee80211_cts *cts);
1789
1790/**
1791 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1792 * @hw: pointer obtained from ieee80211_alloc_hw().
1793 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1794 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1795 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1796 *
1797 * If the CTS-to-self is generated in firmware, but the host system must provide
1798 * the duration field, the low-level driver uses this function to receive
1799 * the duration field value in little-endian byteorder.
1800 */
1801__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1802				    struct ieee80211_vif *vif,
1803				    size_t frame_len,
1804				    const struct ieee80211_tx_info *frame_txctl);
1805
1806/**
1807 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1808 * @hw: pointer obtained from ieee80211_alloc_hw().
1809 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1810 * @frame_len: the length of the frame.
1811 * @rate: the rate at which the frame is going to be transmitted.
1812 *
1813 * Calculate the duration field of some generic frame, given its
1814 * length and transmission rate (in 100kbps).
1815 */
1816__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1817					struct ieee80211_vif *vif,
1818					size_t frame_len,
1819					struct ieee80211_rate *rate);
1820
1821/**
1822 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1823 * @hw: pointer as obtained from ieee80211_alloc_hw().
1824 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1825 *
1826 * Function for accessing buffered broadcast and multicast frames. If
1827 * hardware/firmware does not implement buffering of broadcast/multicast
1828 * frames when power saving is used, 802.11 code buffers them in the host
1829 * memory. The low-level driver uses this function to fetch next buffered
1830 * frame. In most cases, this is used when generating beacon frame. This
1831 * function returns a pointer to the next buffered skb or NULL if no more
1832 * buffered frames are available.
1833 *
1834 * Note: buffered frames are returned only after DTIM beacon frame was
1835 * generated with ieee80211_beacon_get() and the low-level driver must thus
1836 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1837 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1838 * does not need to check for DTIM beacons separately and should be able to
1839 * use common code for all beacons.
1840 */
1841struct sk_buff *
1842ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1843
1844/**
1845 * ieee80211_get_hdrlen_from_skb - get header length from data
1846 *
1847 * Given an skb with a raw 802.11 header at the data pointer this function
1848 * returns the 802.11 header length in bytes (not including encryption
1849 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1850 * header the function returns 0.
1851 *
1852 * @skb: the frame
1853 */
1854unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1855
1856/**
1857 * ieee80211_hdrlen - get header length in bytes from frame control
1858 * @fc: frame control field in little-endian format
1859 */
1860unsigned int ieee80211_hdrlen(__le16 fc);
1861
1862/**
1863 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1864 *
1865 * This function computes a TKIP rc4 key for an skb. It computes
1866 * a phase 1 key if needed (iv16 wraps around). This function is to
1867 * be used by drivers which can do HW encryption but need to compute
1868 * to phase 1/2 key in SW.
1869 *
1870 * @keyconf: the parameter passed with the set key
1871 * @skb: the skb for which the key is needed
1872 * @type: TBD
1873 * @key: a buffer to which the key will be written
1874 */
1875void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1876				struct sk_buff *skb,
1877				enum ieee80211_tkip_key_type type, u8 *key);
1878/**
1879 * ieee80211_wake_queue - wake specific queue
1880 * @hw: pointer as obtained from ieee80211_alloc_hw().
1881 * @queue: queue number (counted from zero).
1882 *
1883 * Drivers should use this function instead of netif_wake_queue.
1884 */
1885void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1886
1887/**
1888 * ieee80211_stop_queue - stop specific queue
1889 * @hw: pointer as obtained from ieee80211_alloc_hw().
1890 * @queue: queue number (counted from zero).
1891 *
1892 * Drivers should use this function instead of netif_stop_queue.
1893 */
1894void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1895
1896/**
1897 * ieee80211_queue_stopped - test status of the queue
1898 * @hw: pointer as obtained from ieee80211_alloc_hw().
1899 * @queue: queue number (counted from zero).
1900 *
1901 * Drivers should use this function instead of netif_stop_queue.
1902 */
1903
1904int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1905
1906/**
1907 * ieee80211_stop_queues - stop all queues
1908 * @hw: pointer as obtained from ieee80211_alloc_hw().
1909 *
1910 * Drivers should use this function instead of netif_stop_queue.
1911 */
1912void ieee80211_stop_queues(struct ieee80211_hw *hw);
1913
1914/**
1915 * ieee80211_wake_queues - wake all queues
1916 * @hw: pointer as obtained from ieee80211_alloc_hw().
1917 *
1918 * Drivers should use this function instead of netif_wake_queue.
1919 */
1920void ieee80211_wake_queues(struct ieee80211_hw *hw);
1921
1922/**
1923 * ieee80211_scan_completed - completed hardware scan
1924 *
1925 * When hardware scan offload is used (i.e. the hw_scan() callback is
1926 * assigned) this function needs to be called by the driver to notify
1927 * mac80211 that the scan finished.
1928 *
1929 * @hw: the hardware that finished the scan
1930 * @aborted: set to true if scan was aborted
1931 */
1932void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1933
1934/**
1935 * ieee80211_iterate_active_interfaces - iterate active interfaces
1936 *
1937 * This function iterates over the interfaces associated with a given
1938 * hardware that are currently active and calls the callback for them.
1939 * This function allows the iterator function to sleep, when the iterator
1940 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1941 * be used.
1942 *
1943 * @hw: the hardware struct of which the interfaces should be iterated over
1944 * @iterator: the iterator function to call
1945 * @data: first argument of the iterator function
1946 */
1947void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1948					 void (*iterator)(void *data, u8 *mac,
1949						struct ieee80211_vif *vif),
1950					 void *data);
1951
1952/**
1953 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1954 *
1955 * This function iterates over the interfaces associated with a given
1956 * hardware that are currently active and calls the callback for them.
1957 * This function requires the iterator callback function to be atomic,
1958 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1959 *
1960 * @hw: the hardware struct of which the interfaces should be iterated over
1961 * @iterator: the iterator function to call, cannot sleep
1962 * @data: first argument of the iterator function
1963 */
1964void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1965						void (*iterator)(void *data,
1966						    u8 *mac,
1967						    struct ieee80211_vif *vif),
1968						void *data);
1969
1970/**
1971 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1972 * @hw: pointer as obtained from ieee80211_alloc_hw().
1973 * @ra: receiver address of the BA session recipient
1974 * @tid: the TID to BA on.
1975 *
1976 * Return: success if addBA request was sent, failure otherwise
1977 *
1978 * Although mac80211/low level driver/user space application can estimate
1979 * the need to start aggregation on a certain RA/TID, the session level
1980 * will be managed by the mac80211.
1981 */
1982int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1983
1984/**
1985 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1986 * @hw: pointer as obtained from ieee80211_alloc_hw().
1987 * @ra: receiver address of the BA session recipient.
1988 * @tid: the TID to BA on.
1989 *
1990 * This function must be called by low level driver once it has
1991 * finished with preparations for the BA session.
1992 */
1993void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1994
1995/**
1996 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1997 * @hw: pointer as obtained from ieee80211_alloc_hw().
1998 * @ra: receiver address of the BA session recipient.
1999 * @tid: the TID to BA on.
2000 *
2001 * This function must be called by low level driver once it has
2002 * finished with preparations for the BA session.
2003 * This version of the function is IRQ-safe.
2004 */
2005void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2006				      u16 tid);
2007
2008/**
2009 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2010 * @hw: pointer as obtained from ieee80211_alloc_hw().
2011 * @ra: receiver address of the BA session recipient
2012 * @tid: the TID to stop BA.
2013 * @initiator: if indicates initiator DELBA frame will be sent.
2014 *
2015 * Return: error if no sta with matching da found, success otherwise
2016 *
2017 * Although mac80211/low level driver/user space application can estimate
2018 * the need to stop aggregation on a certain RA/TID, the session level
2019 * will be managed by the mac80211.
2020 */
2021int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2022				 u8 *ra, u16 tid,
2023				 enum ieee80211_back_parties initiator);
2024
2025/**
2026 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2027 * @hw: pointer as obtained from ieee80211_alloc_hw().
2028 * @ra: receiver address of the BA session recipient.
2029 * @tid: the desired TID to BA on.
2030 *
2031 * This function must be called by low level driver once it has
2032 * finished with preparations for the BA session tear down.
2033 */
2034void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2035
2036/**
2037 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2038 * @hw: pointer as obtained from ieee80211_alloc_hw().
2039 * @ra: receiver address of the BA session recipient.
2040 * @tid: the desired TID to BA on.
2041 *
2042 * This function must be called by low level driver once it has
2043 * finished with preparations for the BA session tear down.
2044 * This version of the function is IRQ-safe.
2045 */
2046void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2047				     u16 tid);
2048
2049/**
2050 * ieee80211_find_sta - find a station
2051 *
2052 * @hw: pointer as obtained from ieee80211_alloc_hw()
2053 * @addr: station's address
2054 *
2055 * This function must be called under RCU lock and the
2056 * resulting pointer is only valid under RCU lock as well.
2057 */
2058struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2059					 const u8 *addr);
2060
2061/**
2062 * ieee80211_beacon_loss - inform hardware does not receive beacons
2063 *
2064 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2065 *
2066 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2067 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2068 * hardware is not receiving beacons with this function.
2069 */
2070void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2071
2072/* Rate control API */
2073
2074/**
2075 * enum rate_control_changed - flags to indicate which parameter changed
2076 *
2077 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2078 *	changed, rate control algorithm can update its internal state if needed.
2079 */
2080enum rate_control_changed {
2081	IEEE80211_RC_HT_CHANGED = BIT(0)
2082};
2083
2084/**
2085 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2086 *
2087 * @hw: The hardware the algorithm is invoked for.
2088 * @sband: The band this frame is being transmitted on.
2089 * @bss_conf: the current BSS configuration
2090 * @reported_rate: The rate control algorithm can fill this in to indicate
2091 *	which rate should be reported to userspace as the current rate and
2092 *	used for rate calculations in the mesh network.
2093 * @rts: whether RTS will be used for this frame because it is longer than the
2094 *	RTS threshold
2095 * @short_preamble: whether mac80211 will request short-preamble transmission
2096 *	if the selected rate supports it
2097 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2098 * @skb: the skb that will be transmitted, the control information in it needs
2099 *	to be filled in
2100 */
2101struct ieee80211_tx_rate_control {
2102	struct ieee80211_hw *hw;
2103	struct ieee80211_supported_band *sband;
2104	struct ieee80211_bss_conf *bss_conf;
2105	struct sk_buff *skb;
2106	struct ieee80211_tx_rate reported_rate;
2107	bool rts, short_preamble;
2108	u8 max_rate_idx;
2109};
2110
2111struct rate_control_ops {
2112	struct module *module;
2113	const char *name;
2114	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2115	void (*free)(void *priv);
2116
2117	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2118	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2119			  struct ieee80211_sta *sta, void *priv_sta);
2120	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2121			    struct ieee80211_sta *sta,
2122			    void *priv_sta, u32 changed);
2123	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2124			 void *priv_sta);
2125
2126	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2127			  struct ieee80211_sta *sta, void *priv_sta,
2128			  struct sk_buff *skb);
2129	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2130			 struct ieee80211_tx_rate_control *txrc);
2131
2132	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2133				struct dentry *dir);
2134	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2135};
2136
2137static inline int rate_supported(struct ieee80211_sta *sta,
2138				 enum ieee80211_band band,
2139				 int index)
2140{
2141	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2142}
2143
2144static inline s8
2145rate_lowest_index(struct ieee80211_supported_band *sband,
2146		  struct ieee80211_sta *sta)
2147{
2148	int i;
2149
2150	for (i = 0; i < sband->n_bitrates; i++)
2151		if (rate_supported(sta, sband->band, i))
2152			return i;
2153
2154	/* warn when we cannot find a rate. */
2155	WARN_ON(1);
2156
2157	return 0;
2158}
2159
2160
2161int ieee80211_rate_control_register(struct rate_control_ops *ops);
2162void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2163
2164static inline bool
2165conf_is_ht20(struct ieee80211_conf *conf)
2166{
2167	return conf->channel_type == NL80211_CHAN_HT20;
2168}
2169
2170static inline bool
2171conf_is_ht40_minus(struct ieee80211_conf *conf)
2172{
2173	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2174}
2175
2176static inline bool
2177conf_is_ht40_plus(struct ieee80211_conf *conf)
2178{
2179	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2180}
2181
2182static inline bool
2183conf_is_ht40(struct ieee80211_conf *conf)
2184{
2185	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2186}
2187
2188static inline bool
2189conf_is_ht(struct ieee80211_conf *conf)
2190{
2191	return conf->channel_type != NL80211_CHAN_NO_HT;
2192}
2193
2194#endif /* MAC80211_H */
2195