mac80211.h revision 2b874e83c970b45c328ab12239b066a43505454c
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/wireless.h>
23#include <net/cfg80211.h>
24
25/**
26 * DOC: Introduction
27 *
28 * mac80211 is the Linux stack for 802.11 hardware that implements
29 * only partial functionality in hard- or firmware. This document
30 * defines the interface between mac80211 and low-level hardware
31 * drivers.
32 */
33
34/**
35 * DOC: Calling mac80211 from interrupts
36 *
37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
38 * called in hardware interrupt context. The low-level driver must not call any
39 * other functions in hardware interrupt context. If there is a need for such
40 * call, the low-level driver should first ACK the interrupt and perform the
41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
42 * tasklet function.
43 *
44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
45 *	 use the non-IRQ-safe functions!
46 */
47
48/**
49 * DOC: Warning
50 *
51 * If you're reading this document and not the header file itself, it will
52 * be incomplete because not all documentation has been converted yet.
53 */
54
55/**
56 * DOC: Frame format
57 *
58 * As a general rule, when frames are passed between mac80211 and the driver,
59 * they start with the IEEE 802.11 header and include the same octets that are
60 * sent over the air except for the FCS which should be calculated by the
61 * hardware.
62 *
63 * There are, however, various exceptions to this rule for advanced features:
64 *
65 * The first exception is for hardware encryption and decryption offload
66 * where the IV/ICV may or may not be generated in hardware.
67 *
68 * Secondly, when the hardware handles fragmentation, the frame handed to
69 * the driver from mac80211 is the MSDU, not the MPDU.
70 *
71 * Finally, for received frames, the driver is able to indicate that it has
72 * filled a radiotap header and put that in front of the frame; if it does
73 * not do so then mac80211 may add this under certain circumstances.
74 */
75
76/**
77 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
78 *
79 * This structure describes most essential parameters needed
80 * to describe 802.11n HT characteristics in a BSS.
81 *
82 * @primary_channel: channel number of primery channel
83 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
84 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
85 */
86struct ieee80211_ht_bss_info {
87	u8 primary_channel;
88	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
89	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
90};
91
92/**
93 * enum ieee80211_max_queues - maximum number of queues
94 *
95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
96 * @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable
97 *	for A-MPDU operation.
98 */
99enum ieee80211_max_queues {
100	IEEE80211_MAX_QUEUES =		4,
101	IEEE80211_MAX_AMPDU_QUEUES =	16,
102};
103
104/**
105 * struct ieee80211_tx_queue_params - transmit queue configuration
106 *
107 * The information provided in this structure is required for QoS
108 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
109 *
110 * @aifs: arbitration interframe space [0..255]
111 * @cw_min: minimum contention window [a value of the form
112 *	2^n-1 in the range 1..32767]
113 * @cw_max: maximum contention window [like @cw_min]
114 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
115 */
116struct ieee80211_tx_queue_params {
117	u16 txop;
118	u16 cw_min;
119	u16 cw_max;
120	u8 aifs;
121};
122
123/**
124 * struct ieee80211_tx_queue_stats - transmit queue statistics
125 *
126 * @len: number of packets in queue
127 * @limit: queue length limit
128 * @count: number of frames sent
129 */
130struct ieee80211_tx_queue_stats {
131	unsigned int len;
132	unsigned int limit;
133	unsigned int count;
134};
135
136struct ieee80211_low_level_stats {
137	unsigned int dot11ACKFailureCount;
138	unsigned int dot11RTSFailureCount;
139	unsigned int dot11FCSErrorCount;
140	unsigned int dot11RTSSuccessCount;
141};
142
143/**
144 * enum ieee80211_bss_change - BSS change notification flags
145 *
146 * These flags are used with the bss_info_changed() callback
147 * to indicate which BSS parameter changed.
148 *
149 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
150 *	also implies a change in the AID.
151 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
152 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
153 * @BSS_CHANGED_ERP_SLOT: slot timing changed
154 * @BSS_CHANGED_HT: 802.11n parameters changed
155 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
156 */
157enum ieee80211_bss_change {
158	BSS_CHANGED_ASSOC		= 1<<0,
159	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
160	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
161	BSS_CHANGED_ERP_SLOT		= 1<<3,
162	BSS_CHANGED_HT                  = 1<<4,
163	BSS_CHANGED_BASIC_RATES		= 1<<5,
164};
165
166/**
167 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
168 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
169 */
170struct ieee80211_bss_ht_conf {
171	u16 operation_mode;
172};
173
174/**
175 * struct ieee80211_bss_conf - holds the BSS's changing parameters
176 *
177 * This structure keeps information about a BSS (and an association
178 * to that BSS) that can change during the lifetime of the BSS.
179 *
180 * @assoc: association status
181 * @aid: association ID number, valid only when @assoc is true
182 * @use_cts_prot: use CTS protection
183 * @use_short_preamble: use 802.11b short preamble;
184 *	if the hardware cannot handle this it must set the
185 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
186 * @use_short_slot: use short slot time (only relevant for ERP);
187 *	if the hardware cannot handle this it must set the
188 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
189 * @dtim_period: num of beacons before the next DTIM, for PSM
190 * @timestamp: beacon timestamp
191 * @beacon_int: beacon interval
192 * @assoc_capability: capabilities taken from assoc resp
193 * @ht: BSS's HT configuration
194 * @basic_rates: bitmap of basic rates, each bit stands for an
195 *	index into the rate table configured by the driver in
196 *	the current band.
197 */
198struct ieee80211_bss_conf {
199	/* association related data */
200	bool assoc;
201	u16 aid;
202	/* erp related data */
203	bool use_cts_prot;
204	bool use_short_preamble;
205	bool use_short_slot;
206	u8 dtim_period;
207	u16 beacon_int;
208	u16 assoc_capability;
209	u64 timestamp;
210	u32 basic_rates;
211	struct ieee80211_bss_ht_conf ht;
212};
213
214/**
215 * enum mac80211_tx_control_flags - flags to describe transmission information/status
216 *
217 * These flags are used with the @flags member of &ieee80211_tx_info.
218 *
219 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
220 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
221 *	number to this frame, taking care of not overwriting the fragment
222 *	number and increasing the sequence number only when the
223 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
224 *	assign sequence numbers to QoS-data frames but cannot do so correctly
225 *	for non-QoS-data and management frames because beacons need them from
226 *	that counter as well and mac80211 cannot guarantee proper sequencing.
227 *	If this flag is set, the driver should instruct the hardware to
228 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
229 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
230 *	beacons and always be clear for frames without a sequence number field.
231 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
232 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
233 *	station
234 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
235 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
236 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
237 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
238 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
239 *	because the destination STA was in powersave mode.
240 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
241 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
242 * 	is for the whole aggregation.
243 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
244 * 	so consider using block ack request (BAR).
245 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
246 *	set by rate control algorithms to indicate probe rate, will
247 *	be cleared for fragmented frames (except on the last fragment)
248 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
249 *	set this flag in the driver; indicates that the rate control
250 *	algorithm was used and should be notified of TX status
251 */
252enum mac80211_tx_control_flags {
253	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
254	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
255	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
256	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
257	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
258	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
259	IEEE80211_TX_CTL_AMPDU			= BIT(6),
260	IEEE80211_TX_CTL_INJECTED		= BIT(7),
261	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
262	IEEE80211_TX_STAT_ACK			= BIT(9),
263	IEEE80211_TX_STAT_AMPDU			= BIT(10),
264	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
265	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
266	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
267};
268
269/**
270 * enum mac80211_rate_control_flags - per-rate flags set by the
271 *	Rate Control algorithm.
272 *
273 * These flags are set by the Rate control algorithm for each rate during tx,
274 * in the @flags member of struct ieee80211_tx_rate.
275 *
276 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
277 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
278 *	This is set if the current BSS requires ERP protection.
279 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
280 * @IEEE80211_TX_RC_MCS: HT rate.
281 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
282 *	Greenfield mode.
283 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
284 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
285 *	adjacent 20 MHz channels, if the current channel type is
286 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
287 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
288 */
289enum mac80211_rate_control_flags {
290	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
291	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
292	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
293
294	/* rate index is an MCS rate number instead of an index */
295	IEEE80211_TX_RC_MCS			= BIT(3),
296	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
297	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
298	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
299	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
300};
301
302
303/* there are 40 bytes if you don't need the rateset to be kept */
304#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
305
306/* if you do need the rateset, then you have less space */
307#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
308
309/* maximum number of rate stages */
310#define IEEE80211_TX_MAX_RATES	5
311
312/**
313 * struct ieee80211_tx_rate - rate selection/status
314 *
315 * @idx: rate index to attempt to send with
316 * @flags: rate control flags (&enum mac80211_rate_control_flags)
317 * @count: number of tries in this rate before going to the next rate
318 *
319 * A value of -1 for @idx indicates an invalid rate and, if used
320 * in an array of retry rates, that no more rates should be tried.
321 *
322 * When used for transmit status reporting, the driver should
323 * always report the rate along with the flags it used.
324 */
325struct ieee80211_tx_rate {
326	s8 idx;
327	u8 count;
328	u8 flags;
329} __attribute__((packed));
330
331/**
332 * struct ieee80211_tx_info - skb transmit information
333 *
334 * This structure is placed in skb->cb for three uses:
335 *  (1) mac80211 TX control - mac80211 tells the driver what to do
336 *  (2) driver internal use (if applicable)
337 *  (3) TX status information - driver tells mac80211 what happened
338 *
339 * The TX control's sta pointer is only valid during the ->tx call,
340 * it may be NULL.
341 *
342 * @flags: transmit info flags, defined above
343 * @band: the band to transmit on (use for checking for races)
344 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
345 * @pad: padding, ignore
346 * @control: union for control data
347 * @status: union for status data
348 * @driver_data: array of driver_data pointers
349 * @ampdu_ack_len: number of aggregated frames.
350 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
351 * @ampdu_ack_map: block ack bit map for the aggregation.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ack_signal: signal strength of the ACK frame
354 */
355struct ieee80211_tx_info {
356	/* common information */
357	u32 flags;
358	u8 band;
359
360	u8 antenna_sel_tx;
361
362	/* 2 byte hole */
363	u8 pad[2];
364
365	union {
366		struct {
367			union {
368				/* rate control */
369				struct {
370					struct ieee80211_tx_rate rates[
371						IEEE80211_TX_MAX_RATES];
372					s8 rts_cts_rate_idx;
373				};
374				/* only needed before rate control */
375				unsigned long jiffies;
376			};
377			/* NB: vif can be NULL for injected frames */
378			struct ieee80211_vif *vif;
379			struct ieee80211_key_conf *hw_key;
380			struct ieee80211_sta *sta;
381		} control;
382		struct {
383			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
384			u8 ampdu_ack_len;
385			u64 ampdu_ack_map;
386			int ack_signal;
387			/* 8 bytes free */
388		} status;
389		struct {
390			struct ieee80211_tx_rate driver_rates[
391				IEEE80211_TX_MAX_RATES];
392			void *rate_driver_data[
393				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
394		};
395		void *driver_data[
396			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
397	};
398};
399
400static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
401{
402	return (struct ieee80211_tx_info *)skb->cb;
403}
404
405/**
406 * ieee80211_tx_info_clear_status - clear TX status
407 *
408 * @info: The &struct ieee80211_tx_info to be cleared.
409 *
410 * When the driver passes an skb back to mac80211, it must report
411 * a number of things in TX status. This function clears everything
412 * in the TX status but the rate control information (it does clear
413 * the count since you need to fill that in anyway).
414 *
415 * NOTE: You can only use this function if you do NOT use
416 *	 info->driver_data! Use info->rate_driver_data
417 *	 instead if you need only the less space that allows.
418 */
419static inline void
420ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
421{
422	int i;
423
424	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
425		     offsetof(struct ieee80211_tx_info, control.rates));
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, driver_rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
429	/* clear the rate counts */
430	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
431		info->status.rates[i].count = 0;
432
433	BUILD_BUG_ON(
434	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
435	memset(&info->status.ampdu_ack_len, 0,
436	       sizeof(struct ieee80211_tx_info) -
437	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
438}
439
440
441/**
442 * enum mac80211_rx_flags - receive flags
443 *
444 * These flags are used with the @flag member of &struct ieee80211_rx_status.
445 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
446 *	Use together with %RX_FLAG_MMIC_STRIPPED.
447 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
448 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
449 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
450 *	verification has been done by the hardware.
451 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
452 *	If this flag is set, the stack cannot do any replay detection
453 *	hence the driver or hardware will have to do that.
454 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
455 *	the frame.
456 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
457 *	the frame.
458 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
459 *	is valid. This is useful in monitor mode and necessary for beacon frames
460 *	to enable IBSS merging.
461 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
462 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
463 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
464 * @RX_FLAG_SHORT_GI: Short guard interval was used
465 */
466enum mac80211_rx_flags {
467	RX_FLAG_MMIC_ERROR	= 1<<0,
468	RX_FLAG_DECRYPTED	= 1<<1,
469	RX_FLAG_RADIOTAP	= 1<<2,
470	RX_FLAG_MMIC_STRIPPED	= 1<<3,
471	RX_FLAG_IV_STRIPPED	= 1<<4,
472	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
473	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
474	RX_FLAG_TSFT		= 1<<7,
475	RX_FLAG_SHORTPRE	= 1<<8,
476	RX_FLAG_HT		= 1<<9,
477	RX_FLAG_40MHZ		= 1<<10,
478	RX_FLAG_SHORT_GI	= 1<<11,
479};
480
481/**
482 * struct ieee80211_rx_status - receive status
483 *
484 * The low-level driver should provide this information (the subset
485 * supported by hardware) to the 802.11 code with each received
486 * frame.
487 *
488 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
489 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
490 * @band: the active band when this frame was received
491 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
492 * @signal: signal strength when receiving this frame, either in dBm, in dB or
493 *	unspecified depending on the hardware capabilities flags
494 *	@IEEE80211_HW_SIGNAL_*
495 * @noise: noise when receiving this frame, in dBm.
496 * @qual: overall signal quality indication, in percent (0-100).
497 * @antenna: antenna used
498 * @rate_idx: index of data rate into band's supported rates or MCS index if
499 *	HT rates are use (RX_FLAG_HT)
500 * @flag: %RX_FLAG_*
501 */
502struct ieee80211_rx_status {
503	u64 mactime;
504	enum ieee80211_band band;
505	int freq;
506	int signal;
507	int noise;
508	int qual;
509	int antenna;
510	int rate_idx;
511	int flag;
512};
513
514/**
515 * enum ieee80211_conf_flags - configuration flags
516 *
517 * Flags to define PHY configuration options
518 *
519 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
520 * @IEEE80211_CONF_PS: Enable 802.11 power save mode
521 */
522enum ieee80211_conf_flags {
523	IEEE80211_CONF_RADIOTAP		= (1<<0),
524	IEEE80211_CONF_PS		= (1<<1),
525};
526
527
528/**
529 * enum ieee80211_conf_changed - denotes which configuration changed
530 *
531 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
532 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
533 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
534 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
535 * @IEEE80211_CONF_CHANGE_PS: the PS flag changed
536 * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed
537 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
538 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
539 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
540 */
541enum ieee80211_conf_changed {
542	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
543	IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
544	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
545	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
546	IEEE80211_CONF_CHANGE_PS		= BIT(4),
547	IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT	= BIT(5),
548	IEEE80211_CONF_CHANGE_POWER		= BIT(6),
549	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(7),
550	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(8),
551};
552
553/**
554 * struct ieee80211_conf - configuration of the device
555 *
556 * This struct indicates how the driver shall configure the hardware.
557 *
558 * @radio_enabled: when zero, driver is required to switch off the radio.
559 * @beacon_int: beacon interval (TODO make interface config)
560 * @listen_interval: listen interval in units of beacon interval
561 * @flags: configuration flags defined above
562 * @power_level: requested transmit power (in dBm)
563 * @dynamic_ps_timeout: dynamic powersave timeout (in ms)
564 * @channel: the channel to tune to
565 * @channel_type: the channel (HT) type
566 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
567 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
568 *    but actually means the number of transmissions not the number of retries
569 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
570 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
571 *    number of transmissions not the number of retries
572 */
573struct ieee80211_conf {
574	int beacon_int;
575	u32 flags;
576	int power_level, dynamic_ps_timeout;
577
578	u16 listen_interval;
579	bool radio_enabled;
580
581	u8 long_frame_max_tx_count, short_frame_max_tx_count;
582
583	struct ieee80211_channel *channel;
584	enum nl80211_channel_type channel_type;
585};
586
587/**
588 * struct ieee80211_vif - per-interface data
589 *
590 * Data in this structure is continually present for driver
591 * use during the life of a virtual interface.
592 *
593 * @type: type of this virtual interface
594 * @bss_conf: BSS configuration for this interface, either our own
595 *	or the BSS we're associated to
596 * @drv_priv: data area for driver use, will always be aligned to
597 *	sizeof(void *).
598 */
599struct ieee80211_vif {
600	enum nl80211_iftype type;
601	struct ieee80211_bss_conf bss_conf;
602	/* must be last */
603	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
604};
605
606static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
607{
608#ifdef CONFIG_MAC80211_MESH
609	return vif->type == NL80211_IFTYPE_MESH_POINT;
610#endif
611	return false;
612}
613
614/**
615 * struct ieee80211_if_init_conf - initial configuration of an interface
616 *
617 * @vif: pointer to a driver-use per-interface structure. The pointer
618 *	itself is also used for various functions including
619 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
620 * @type: one of &enum nl80211_iftype constants. Determines the type of
621 *	added/removed interface.
622 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
623 *	until the interface is removed (i.e. it cannot be used after
624 *	remove_interface() callback was called for this interface).
625 *
626 * This structure is used in add_interface() and remove_interface()
627 * callbacks of &struct ieee80211_hw.
628 *
629 * When you allow multiple interfaces to be added to your PHY, take care
630 * that the hardware can actually handle multiple MAC addresses. However,
631 * also take care that when there's no interface left with mac_addr != %NULL
632 * you remove the MAC address from the device to avoid acknowledging packets
633 * in pure monitor mode.
634 */
635struct ieee80211_if_init_conf {
636	enum nl80211_iftype type;
637	struct ieee80211_vif *vif;
638	void *mac_addr;
639};
640
641/**
642 * enum ieee80211_if_conf_change - interface config change flags
643 *
644 * @IEEE80211_IFCC_BSSID: The BSSID changed.
645 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
646 *	(currently AP and MESH only), use ieee80211_beacon_get().
647 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
648 */
649enum ieee80211_if_conf_change {
650	IEEE80211_IFCC_BSSID		= BIT(0),
651	IEEE80211_IFCC_BEACON		= BIT(1),
652	IEEE80211_IFCC_BEACON_ENABLED	= BIT(2),
653};
654
655/**
656 * struct ieee80211_if_conf - configuration of an interface
657 *
658 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
659 * @bssid: BSSID of the network we are associated to/creating.
660 * @enable_beacon: Indicates whether beacons can be sent.
661 *	This is valid only for AP/IBSS/MESH modes.
662 *
663 * This structure is passed to the config_interface() callback of
664 * &struct ieee80211_hw.
665 */
666struct ieee80211_if_conf {
667	u32 changed;
668	const u8 *bssid;
669	bool enable_beacon;
670};
671
672/**
673 * enum ieee80211_key_alg - key algorithm
674 * @ALG_WEP: WEP40 or WEP104
675 * @ALG_TKIP: TKIP
676 * @ALG_CCMP: CCMP (AES)
677 * @ALG_AES_CMAC: AES-128-CMAC
678 */
679enum ieee80211_key_alg {
680	ALG_WEP,
681	ALG_TKIP,
682	ALG_CCMP,
683	ALG_AES_CMAC,
684};
685
686/**
687 * enum ieee80211_key_len - key length
688 * @LEN_WEP40: WEP 5-byte long key
689 * @LEN_WEP104: WEP 13-byte long key
690 */
691enum ieee80211_key_len {
692	LEN_WEP40 = 5,
693	LEN_WEP104 = 13,
694};
695
696/**
697 * enum ieee80211_key_flags - key flags
698 *
699 * These flags are used for communication about keys between the driver
700 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
701 *
702 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
703 *	that the STA this key will be used with could be using QoS.
704 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
705 *	driver to indicate that it requires IV generation for this
706 *	particular key.
707 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
708 *	the driver for a TKIP key if it requires Michael MIC
709 *	generation in software.
710 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
711 *	that the key is pairwise rather then a shared key.
712 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
713 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
714 *	be done in software.
715 */
716enum ieee80211_key_flags {
717	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
718	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
719	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
720	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
721	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
722};
723
724/**
725 * struct ieee80211_key_conf - key information
726 *
727 * This key information is given by mac80211 to the driver by
728 * the set_key() callback in &struct ieee80211_ops.
729 *
730 * @hw_key_idx: To be set by the driver, this is the key index the driver
731 *	wants to be given when a frame is transmitted and needs to be
732 *	encrypted in hardware.
733 * @alg: The key algorithm.
734 * @flags: key flags, see &enum ieee80211_key_flags.
735 * @keyidx: the key index (0-3)
736 * @keylen: key material length
737 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
738 * 	data block:
739 * 	- Temporal Encryption Key (128 bits)
740 * 	- Temporal Authenticator Tx MIC Key (64 bits)
741 * 	- Temporal Authenticator Rx MIC Key (64 bits)
742 * @icv_len: The ICV length for this key type
743 * @iv_len: The IV length for this key type
744 */
745struct ieee80211_key_conf {
746	enum ieee80211_key_alg alg;
747	u8 icv_len;
748	u8 iv_len;
749	u8 hw_key_idx;
750	u8 flags;
751	s8 keyidx;
752	u8 keylen;
753	u8 key[0];
754};
755
756/**
757 * enum set_key_cmd - key command
758 *
759 * Used with the set_key() callback in &struct ieee80211_ops, this
760 * indicates whether a key is being removed or added.
761 *
762 * @SET_KEY: a key is set
763 * @DISABLE_KEY: a key must be disabled
764 */
765enum set_key_cmd {
766	SET_KEY, DISABLE_KEY,
767};
768
769/**
770 * struct ieee80211_sta - station table entry
771 *
772 * A station table entry represents a station we are possibly
773 * communicating with. Since stations are RCU-managed in
774 * mac80211, any ieee80211_sta pointer you get access to must
775 * either be protected by rcu_read_lock() explicitly or implicitly,
776 * or you must take good care to not use such a pointer after a
777 * call to your sta_notify callback that removed it.
778 *
779 * @addr: MAC address
780 * @aid: AID we assigned to the station if we're an AP
781 * @supp_rates: Bitmap of supported rates (per band)
782 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
783 * @drv_priv: data area for driver use, will always be aligned to
784 *	sizeof(void *), size is determined in hw information.
785 */
786struct ieee80211_sta {
787	u32 supp_rates[IEEE80211_NUM_BANDS];
788	u8 addr[ETH_ALEN];
789	u16 aid;
790	struct ieee80211_sta_ht_cap ht_cap;
791
792	/* must be last */
793	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
794};
795
796/**
797 * enum sta_notify_cmd - sta notify command
798 *
799 * Used with the sta_notify() callback in &struct ieee80211_ops, this
800 * indicates addition and removal of a station to station table,
801 * or if a associated station made a power state transition.
802 *
803 * @STA_NOTIFY_ADD: a station was added to the station table
804 * @STA_NOTIFY_REMOVE: a station being removed from the station table
805 * @STA_NOTIFY_SLEEP: a station is now sleeping
806 * @STA_NOTIFY_AWAKE: a sleeping station woke up
807 */
808enum sta_notify_cmd {
809	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
810	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
811};
812
813/**
814 * enum ieee80211_tkip_key_type - get tkip key
815 *
816 * Used by drivers which need to get a tkip key for skb. Some drivers need a
817 * phase 1 key, others need a phase 2 key. A single function allows the driver
818 * to get the key, this enum indicates what type of key is required.
819 *
820 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
821 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
822 */
823enum ieee80211_tkip_key_type {
824	IEEE80211_TKIP_P1_KEY,
825	IEEE80211_TKIP_P2_KEY,
826};
827
828/**
829 * enum ieee80211_hw_flags - hardware flags
830 *
831 * These flags are used to indicate hardware capabilities to
832 * the stack. Generally, flags here should have their meaning
833 * done in a way that the simplest hardware doesn't need setting
834 * any particular flags. There are some exceptions to this rule,
835 * however, so you are advised to review these flags carefully.
836 *
837 * @IEEE80211_HW_RX_INCLUDES_FCS:
838 *	Indicates that received frames passed to the stack include
839 *	the FCS at the end.
840 *
841 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
842 *	Some wireless LAN chipsets buffer broadcast/multicast frames
843 *	for power saving stations in the hardware/firmware and others
844 *	rely on the host system for such buffering. This option is used
845 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
846 *	multicast frames when there are power saving stations so that
847 *	the driver can fetch them with ieee80211_get_buffered_bc().
848 *
849 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
850 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
851 *
852 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
853 *	Hardware is not capable of receiving frames with short preamble on
854 *	the 2.4 GHz band.
855 *
856 * @IEEE80211_HW_SIGNAL_UNSPEC:
857 *	Hardware can provide signal values but we don't know its units. We
858 *	expect values between 0 and @max_signal.
859 *	If possible please provide dB or dBm instead.
860 *
861 * @IEEE80211_HW_SIGNAL_DBM:
862 *	Hardware gives signal values in dBm, decibel difference from
863 *	one milliwatt. This is the preferred method since it is standardized
864 *	between different devices. @max_signal does not need to be set.
865 *
866 * @IEEE80211_HW_NOISE_DBM:
867 *	Hardware can provide noise (radio interference) values in units dBm,
868 *      decibel difference from one milliwatt.
869 *
870 * @IEEE80211_HW_SPECTRUM_MGMT:
871 * 	Hardware supports spectrum management defined in 802.11h
872 * 	Measurement, Channel Switch, Quieting, TPC
873 *
874 * @IEEE80211_HW_AMPDU_AGGREGATION:
875 *	Hardware supports 11n A-MPDU aggregation.
876 *
877 * @IEEE80211_HW_SUPPORTS_PS:
878 *	Hardware has power save support (i.e. can go to sleep).
879 *
880 * @IEEE80211_HW_PS_NULLFUNC_STACK:
881 *	Hardware requires nullfunc frame handling in stack, implies
882 *	stack support for dynamic PS.
883 *
884 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
885 *	Hardware has support for dynamic PS.
886 *
887 * @IEEE80211_HW_MFP_CAPABLE:
888 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
889 *
890 * @IEEE80211_HW_BEACON_FILTER:
891 *	Hardware supports dropping of irrelevant beacon frames to
892 *	avoid waking up cpu.
893 */
894enum ieee80211_hw_flags {
895	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
896	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
897	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
898	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
899	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
900	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
901	IEEE80211_HW_NOISE_DBM				= 1<<7,
902	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
903	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
904	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
905	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
906	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
907	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
908	IEEE80211_HW_BEACON_FILTER			= 1<<14,
909};
910
911/**
912 * struct ieee80211_hw - hardware information and state
913 *
914 * This structure contains the configuration and hardware
915 * information for an 802.11 PHY.
916 *
917 * @wiphy: This points to the &struct wiphy allocated for this
918 *	802.11 PHY. You must fill in the @perm_addr and @dev
919 *	members of this structure using SET_IEEE80211_DEV()
920 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
921 *	bands (with channels, bitrates) are registered here.
922 *
923 * @conf: &struct ieee80211_conf, device configuration, don't use.
924 *
925 * @workqueue: single threaded workqueue available for driver use,
926 *	allocated by mac80211 on registration and flushed when an
927 *	interface is removed.
928 *	NOTICE: All work performed on this workqueue must not
929 *	acquire the RTNL lock.
930 *
931 * @priv: pointer to private area that was allocated for driver use
932 *	along with this structure.
933 *
934 * @flags: hardware flags, see &enum ieee80211_hw_flags.
935 *
936 * @extra_tx_headroom: headroom to reserve in each transmit skb
937 *	for use by the driver (e.g. for transmit headers.)
938 *
939 * @channel_change_time: time (in microseconds) it takes to change channels.
940 *
941 * @max_signal: Maximum value for signal (rssi) in RX information, used
942 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
943 *
944 * @max_listen_interval: max listen interval in units of beacon interval
945 *     that HW supports
946 *
947 * @queues: number of available hardware transmit queues for
948 *	data packets. WMM/QoS requires at least four, these
949 *	queues need to have configurable access parameters.
950 *
951 * @ampdu_queues: number of available hardware transmit queues
952 *	for A-MPDU packets, these have no access parameters
953 *	because they're used only for A-MPDU frames. Note that
954 *	mac80211 will not currently use any of the regular queues
955 *	for aggregation.
956 *
957 * @rate_control_algorithm: rate control algorithm for this hardware.
958 *	If unset (NULL), the default algorithm will be used. Must be
959 *	set before calling ieee80211_register_hw().
960 *
961 * @vif_data_size: size (in bytes) of the drv_priv data area
962 *	within &struct ieee80211_vif.
963 * @sta_data_size: size (in bytes) of the drv_priv data area
964 *	within &struct ieee80211_sta.
965 *
966 * @max_rates: maximum number of alternate rate retry stages
967 * @max_rate_tries: maximum number of tries for each stage
968 */
969struct ieee80211_hw {
970	struct ieee80211_conf conf;
971	struct wiphy *wiphy;
972	struct workqueue_struct *workqueue;
973	const char *rate_control_algorithm;
974	void *priv;
975	u32 flags;
976	unsigned int extra_tx_headroom;
977	int channel_change_time;
978	int vif_data_size;
979	int sta_data_size;
980	u16 queues;
981	u16 ampdu_queues;
982	u16 max_listen_interval;
983	s8 max_signal;
984	u8 max_rates;
985	u8 max_rate_tries;
986};
987
988/**
989 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
990 *
991 * @wiphy: the &struct wiphy which we want to query
992 *
993 * mac80211 drivers can use this to get to their respective
994 * &struct ieee80211_hw. Drivers wishing to get to their own private
995 * structure can then access it via hw->priv. Note that mac802111 drivers should
996 * not use wiphy_priv() to try to get their private driver structure as this
997 * is already used internally by mac80211.
998 */
999struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1000
1001/**
1002 * SET_IEEE80211_DEV - set device for 802.11 hardware
1003 *
1004 * @hw: the &struct ieee80211_hw to set the device for
1005 * @dev: the &struct device of this 802.11 device
1006 */
1007static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1008{
1009	set_wiphy_dev(hw->wiphy, dev);
1010}
1011
1012/**
1013 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1014 *
1015 * @hw: the &struct ieee80211_hw to set the MAC address for
1016 * @addr: the address to set
1017 */
1018static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1019{
1020	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1021}
1022
1023static inline struct ieee80211_rate *
1024ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1025		      const struct ieee80211_tx_info *c)
1026{
1027	if (WARN_ON(c->control.rates[0].idx < 0))
1028		return NULL;
1029	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1030}
1031
1032static inline struct ieee80211_rate *
1033ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1034			   const struct ieee80211_tx_info *c)
1035{
1036	if (c->control.rts_cts_rate_idx < 0)
1037		return NULL;
1038	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1039}
1040
1041static inline struct ieee80211_rate *
1042ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1043			     const struct ieee80211_tx_info *c, int idx)
1044{
1045	if (c->control.rates[idx + 1].idx < 0)
1046		return NULL;
1047	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1048}
1049
1050/**
1051 * DOC: Hardware crypto acceleration
1052 *
1053 * mac80211 is capable of taking advantage of many hardware
1054 * acceleration designs for encryption and decryption operations.
1055 *
1056 * The set_key() callback in the &struct ieee80211_ops for a given
1057 * device is called to enable hardware acceleration of encryption and
1058 * decryption. The callback takes a @sta parameter that will be NULL
1059 * for default keys or keys used for transmission only, or point to
1060 * the station information for the peer for individual keys.
1061 * Multiple transmission keys with the same key index may be used when
1062 * VLANs are configured for an access point.
1063 *
1064 * When transmitting, the TX control data will use the @hw_key_idx
1065 * selected by the driver by modifying the &struct ieee80211_key_conf
1066 * pointed to by the @key parameter to the set_key() function.
1067 *
1068 * The set_key() call for the %SET_KEY command should return 0 if
1069 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1070 * added; if you return 0 then hw_key_idx must be assigned to the
1071 * hardware key index, you are free to use the full u8 range.
1072 *
1073 * When the cmd is %DISABLE_KEY then it must succeed.
1074 *
1075 * Note that it is permissible to not decrypt a frame even if a key
1076 * for it has been uploaded to hardware, the stack will not make any
1077 * decision based on whether a key has been uploaded or not but rather
1078 * based on the receive flags.
1079 *
1080 * The &struct ieee80211_key_conf structure pointed to by the @key
1081 * parameter is guaranteed to be valid until another call to set_key()
1082 * removes it, but it can only be used as a cookie to differentiate
1083 * keys.
1084 *
1085 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1086 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1087 * handler.
1088 * The update_tkip_key() call updates the driver with the new phase 1 key.
1089 * This happens everytime the iv16 wraps around (every 65536 packets). The
1090 * set_key() call will happen only once for each key (unless the AP did
1091 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1092 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1093 * handler is software decryption with wrap around of iv16.
1094 */
1095
1096/**
1097 * DOC: Powersave support
1098 *
1099 * mac80211 has support for various powersave implementations.
1100 *
1101 * First, it can support hardware that handles all powersaving by
1102 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1103 * hardware flag. In that case, it will be told about the desired
1104 * powersave mode depending on the association status, and the driver
1105 * must take care of sending nullfunc frames when necessary, i.e. when
1106 * entering and leaving powersave mode. The driver is required to look at
1107 * the AID in beacons and signal to the AP that it woke up when it finds
1108 * traffic directed to it. This mode supports dynamic PS by simply
1109 * enabling/disabling PS.
1110 *
1111 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1112 * flag to indicate that it can support dynamic PS mode itself (see below).
1113 *
1114 * Other hardware designs cannot send nullfunc frames by themselves and also
1115 * need software support for parsing the TIM bitmap. This is also supported
1116 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1117 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1118 * required to pass up beacons. Additionally, in this case, mac80211 will
1119 * wake up the hardware when multicast traffic is announced in the beacon.
1120 *
1121 * FIXME: I don't think we can be fast enough in software when we want to
1122 *	  receive multicast traffic?
1123 *
1124 * Dynamic powersave mode is an extension to normal powersave mode in which
1125 * the hardware stays awake for a user-specified period of time after sending
1126 * a frame so that reply frames need not be buffered and therefore delayed
1127 * to the next wakeup. This can either be supported by hardware, in which case
1128 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1129 * value, or by the stack if all nullfunc handling is in the stack.
1130 */
1131
1132/**
1133 * DOC: Beacon filter support
1134 *
1135 * Some hardware have beacon filter support to reduce host cpu wakeups
1136 * which will reduce system power consumption. It usuallly works so that
1137 * the firmware creates a checksum of the beacon but omits all constantly
1138 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1139 * beacon is forwarded to the host, otherwise it will be just dropped. That
1140 * way the host will only receive beacons where some relevant information
1141 * (for example ERP protection or WMM settings) have changed.
1142 *
1143 * Beacon filter support is informed with %IEEE80211_HW_BEACON_FILTER flag.
1144 * The driver needs to enable beacon filter support whenever power save is
1145 * enabled, that is %IEEE80211_CONF_PS is set. When power save is enabled,
1146 * the stack will not check for beacon miss at all and the driver needs to
1147 * notify about complete loss of beacons with ieee80211_beacon_loss().
1148 */
1149
1150/**
1151 * DOC: Frame filtering
1152 *
1153 * mac80211 requires to see many management frames for proper
1154 * operation, and users may want to see many more frames when
1155 * in monitor mode. However, for best CPU usage and power consumption,
1156 * having as few frames as possible percolate through the stack is
1157 * desirable. Hence, the hardware should filter as much as possible.
1158 *
1159 * To achieve this, mac80211 uses filter flags (see below) to tell
1160 * the driver's configure_filter() function which frames should be
1161 * passed to mac80211 and which should be filtered out.
1162 *
1163 * The configure_filter() callback is invoked with the parameters
1164 * @mc_count and @mc_list for the combined multicast address list
1165 * of all virtual interfaces, @changed_flags telling which flags
1166 * were changed and @total_flags with the new flag states.
1167 *
1168 * If your device has no multicast address filters your driver will
1169 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1170 * parameter to see whether multicast frames should be accepted
1171 * or dropped.
1172 *
1173 * All unsupported flags in @total_flags must be cleared.
1174 * Hardware does not support a flag if it is incapable of _passing_
1175 * the frame to the stack. Otherwise the driver must ignore
1176 * the flag, but not clear it.
1177 * You must _only_ clear the flag (announce no support for the
1178 * flag to mac80211) if you are not able to pass the packet type
1179 * to the stack (so the hardware always filters it).
1180 * So for example, you should clear @FIF_CONTROL, if your hardware
1181 * always filters control frames. If your hardware always passes
1182 * control frames to the kernel and is incapable of filtering them,
1183 * you do _not_ clear the @FIF_CONTROL flag.
1184 * This rule applies to all other FIF flags as well.
1185 */
1186
1187/**
1188 * enum ieee80211_filter_flags - hardware filter flags
1189 *
1190 * These flags determine what the filter in hardware should be
1191 * programmed to let through and what should not be passed to the
1192 * stack. It is always safe to pass more frames than requested,
1193 * but this has negative impact on power consumption.
1194 *
1195 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1196 *	think of the BSS as your network segment and then this corresponds
1197 *	to the regular ethernet device promiscuous mode.
1198 *
1199 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1200 *	by the user or if the hardware is not capable of filtering by
1201 *	multicast address.
1202 *
1203 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1204 *	%RX_FLAG_FAILED_FCS_CRC for them)
1205 *
1206 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1207 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1208 *
1209 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1210 *	to the hardware that it should not filter beacons or probe responses
1211 *	by BSSID. Filtering them can greatly reduce the amount of processing
1212 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1213 *	honour this flag if possible.
1214 *
1215 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1216 *	only those addressed to this station
1217 *
1218 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1219 */
1220enum ieee80211_filter_flags {
1221	FIF_PROMISC_IN_BSS	= 1<<0,
1222	FIF_ALLMULTI		= 1<<1,
1223	FIF_FCSFAIL		= 1<<2,
1224	FIF_PLCPFAIL		= 1<<3,
1225	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1226	FIF_CONTROL		= 1<<5,
1227	FIF_OTHER_BSS		= 1<<6,
1228};
1229
1230/**
1231 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1232 *
1233 * These flags are used with the ampdu_action() callback in
1234 * &struct ieee80211_ops to indicate which action is needed.
1235 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1236 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1237 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1238 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1239 * @IEEE80211_AMPDU_TX_RESUME: resume TX aggregation
1240 */
1241enum ieee80211_ampdu_mlme_action {
1242	IEEE80211_AMPDU_RX_START,
1243	IEEE80211_AMPDU_RX_STOP,
1244	IEEE80211_AMPDU_TX_START,
1245	IEEE80211_AMPDU_TX_STOP,
1246	IEEE80211_AMPDU_TX_RESUME,
1247};
1248
1249/**
1250 * struct ieee80211_ops - callbacks from mac80211 to the driver
1251 *
1252 * This structure contains various callbacks that the driver may
1253 * handle or, in some cases, must handle, for example to configure
1254 * the hardware to a new channel or to transmit a frame.
1255 *
1256 * @tx: Handler that 802.11 module calls for each transmitted frame.
1257 *	skb contains the buffer starting from the IEEE 802.11 header.
1258 *	The low-level driver should send the frame out based on
1259 *	configuration in the TX control data. This handler should,
1260 *	preferably, never fail and stop queues appropriately, more
1261 *	importantly, however, it must never fail for A-MPDU-queues.
1262 *	This function should return NETDEV_TX_OK except in very
1263 *	limited cases.
1264 *	Must be implemented and atomic.
1265 *
1266 * @start: Called before the first netdevice attached to the hardware
1267 *	is enabled. This should turn on the hardware and must turn on
1268 *	frame reception (for possibly enabled monitor interfaces.)
1269 *	Returns negative error codes, these may be seen in userspace,
1270 *	or zero.
1271 *	When the device is started it should not have a MAC address
1272 *	to avoid acknowledging frames before a non-monitor device
1273 *	is added.
1274 *	Must be implemented.
1275 *
1276 * @stop: Called after last netdevice attached to the hardware
1277 *	is disabled. This should turn off the hardware (at least
1278 *	it must turn off frame reception.)
1279 *	May be called right after add_interface if that rejects
1280 *	an interface.
1281 *	Must be implemented.
1282 *
1283 * @add_interface: Called when a netdevice attached to the hardware is
1284 *	enabled. Because it is not called for monitor mode devices, @start
1285 *	and @stop must be implemented.
1286 *	The driver should perform any initialization it needs before
1287 *	the device can be enabled. The initial configuration for the
1288 *	interface is given in the conf parameter.
1289 *	The callback may refuse to add an interface by returning a
1290 *	negative error code (which will be seen in userspace.)
1291 *	Must be implemented.
1292 *
1293 * @remove_interface: Notifies a driver that an interface is going down.
1294 *	The @stop callback is called after this if it is the last interface
1295 *	and no monitor interfaces are present.
1296 *	When all interfaces are removed, the MAC address in the hardware
1297 *	must be cleared so the device no longer acknowledges packets,
1298 *	the mac_addr member of the conf structure is, however, set to the
1299 *	MAC address of the device going away.
1300 *	Hence, this callback must be implemented.
1301 *
1302 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1303 *	function to change hardware configuration, e.g., channel.
1304 *	This function should never fail but returns a negative error code
1305 *	if it does.
1306 *
1307 * @config_interface: Handler for configuration requests related to interfaces
1308 *	(e.g. BSSID changes.)
1309 *	Returns a negative error code which will be seen in userspace.
1310 *
1311 * @bss_info_changed: Handler for configuration requests related to BSS
1312 *	parameters that may vary during BSS's lifespan, and may affect low
1313 *	level driver (e.g. assoc/disassoc status, erp parameters).
1314 *	This function should not be used if no BSS has been set, unless
1315 *	for association indication. The @changed parameter indicates which
1316 *	of the bss parameters has changed when a call is made.
1317 *
1318 * @configure_filter: Configure the device's RX filter.
1319 *	See the section "Frame filtering" for more information.
1320 *	This callback must be implemented and atomic.
1321 *
1322 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1323 * 	must be set or cleared for a given STA. Must be atomic.
1324 *
1325 * @set_key: See the section "Hardware crypto acceleration"
1326 *	This callback can sleep, and is only called between add_interface
1327 *	and remove_interface calls, i.e. while the given virtual interface
1328 *	is enabled.
1329 *	Returns a negative error code if the key can't be added.
1330 *
1331 * @update_tkip_key: See the section "Hardware crypto acceleration"
1332 * 	This callback will be called in the context of Rx. Called for drivers
1333 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1334 *
1335 * @hw_scan: Ask the hardware to service the scan request, no need to start
1336 *	the scan state machine in stack. The scan must honour the channel
1337 *	configuration done by the regulatory agent in the wiphy's
1338 *	registered bands. The hardware (or the driver) needs to make sure
1339 *	that power save is disabled. When the scan finishes,
1340 *	ieee80211_scan_completed() must be called; note that it also must
1341 *	be called when the scan cannot finish because the hardware is
1342 *	turned off! Anything else is a bug! Returns a negative error code
1343 *	which will be seen in userspace.
1344 *
1345 * @sw_scan_start: Notifier function that is called just before a software scan
1346 *	is started. Can be NULL, if the driver doesn't need this notification.
1347 *
1348 * @sw_scan_complete: Notifier function that is called just after a software scan
1349 *	finished. Can be NULL, if the driver doesn't need this notification.
1350 *
1351 * @get_stats: Return low-level statistics.
1352 * 	Returns zero if statistics are available.
1353 *
1354 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1355 *	callback should be provided to read the TKIP transmit IVs (both IV32
1356 *	and IV16) for the given key from hardware.
1357 *
1358 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1359 *
1360 * @sta_notify: Notifies low level driver about addition, removal or power
1361 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1362 *	Must be atomic.
1363 *
1364 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1365 *	bursting) for a hardware TX queue.
1366 *	Returns a negative error code on failure.
1367 *
1368 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1369 *	to get number of currently queued packets (queue length), maximum queue
1370 *	size (limit), and total number of packets sent using each TX queue
1371 *	(count). The 'stats' pointer points to an array that has hw->queues +
1372 *	hw->ampdu_queues items.
1373 *
1374 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1375 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1376 *	required function.
1377 *
1378 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1379 *      Currently, this is only used for IBSS mode debugging. Is not a
1380 *	required function.
1381 *
1382 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1383 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1384 *	function is optional if the firmware/hardware takes full care of
1385 *	TSF synchronization.
1386 *
1387 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1388 *	This is needed only for IBSS mode and the result of this function is
1389 *	used to determine whether to reply to Probe Requests.
1390 *	Returns non-zero if this device sent the last beacon.
1391 *
1392 * @ampdu_action: Perform a certain A-MPDU action
1393 * 	The RA/TID combination determines the destination and TID we want
1394 * 	the ampdu action to be performed for. The action is defined through
1395 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1396 * 	is the first frame we expect to perform the action on. Notice
1397 * 	that TX/RX_STOP can pass NULL for this parameter.
1398 *	Returns a negative error code on failure.
1399 */
1400struct ieee80211_ops {
1401	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1402	int (*start)(struct ieee80211_hw *hw);
1403	void (*stop)(struct ieee80211_hw *hw);
1404	int (*add_interface)(struct ieee80211_hw *hw,
1405			     struct ieee80211_if_init_conf *conf);
1406	void (*remove_interface)(struct ieee80211_hw *hw,
1407				 struct ieee80211_if_init_conf *conf);
1408	int (*config)(struct ieee80211_hw *hw, u32 changed);
1409	int (*config_interface)(struct ieee80211_hw *hw,
1410				struct ieee80211_vif *vif,
1411				struct ieee80211_if_conf *conf);
1412	void (*bss_info_changed)(struct ieee80211_hw *hw,
1413				 struct ieee80211_vif *vif,
1414				 struct ieee80211_bss_conf *info,
1415				 u32 changed);
1416	void (*configure_filter)(struct ieee80211_hw *hw,
1417				 unsigned int changed_flags,
1418				 unsigned int *total_flags,
1419				 int mc_count, struct dev_addr_list *mc_list);
1420	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1421		       bool set);
1422	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1423		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1424		       struct ieee80211_key_conf *key);
1425	void (*update_tkip_key)(struct ieee80211_hw *hw,
1426			struct ieee80211_key_conf *conf, const u8 *address,
1427			u32 iv32, u16 *phase1key);
1428	int (*hw_scan)(struct ieee80211_hw *hw,
1429		       struct cfg80211_scan_request *req);
1430	void (*sw_scan_start)(struct ieee80211_hw *hw);
1431	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1432	int (*get_stats)(struct ieee80211_hw *hw,
1433			 struct ieee80211_low_level_stats *stats);
1434	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1435			     u32 *iv32, u16 *iv16);
1436	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1437	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1438			enum sta_notify_cmd, struct ieee80211_sta *sta);
1439	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1440		       const struct ieee80211_tx_queue_params *params);
1441	int (*get_tx_stats)(struct ieee80211_hw *hw,
1442			    struct ieee80211_tx_queue_stats *stats);
1443	u64 (*get_tsf)(struct ieee80211_hw *hw);
1444	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1445	void (*reset_tsf)(struct ieee80211_hw *hw);
1446	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1447	int (*ampdu_action)(struct ieee80211_hw *hw,
1448			    enum ieee80211_ampdu_mlme_action action,
1449			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1450};
1451
1452/**
1453 * ieee80211_alloc_hw -  Allocate a new hardware device
1454 *
1455 * This must be called once for each hardware device. The returned pointer
1456 * must be used to refer to this device when calling other functions.
1457 * mac80211 allocates a private data area for the driver pointed to by
1458 * @priv in &struct ieee80211_hw, the size of this area is given as
1459 * @priv_data_len.
1460 *
1461 * @priv_data_len: length of private data
1462 * @ops: callbacks for this device
1463 */
1464struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1465					const struct ieee80211_ops *ops);
1466
1467/**
1468 * ieee80211_register_hw - Register hardware device
1469 *
1470 * You must call this function before any other functions in
1471 * mac80211. Note that before a hardware can be registered, you
1472 * need to fill the contained wiphy's information.
1473 *
1474 * @hw: the device to register as returned by ieee80211_alloc_hw()
1475 */
1476int ieee80211_register_hw(struct ieee80211_hw *hw);
1477
1478#ifdef CONFIG_MAC80211_LEDS
1479extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1480extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1481extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1482extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1483#endif
1484/**
1485 * ieee80211_get_tx_led_name - get name of TX LED
1486 *
1487 * mac80211 creates a transmit LED trigger for each wireless hardware
1488 * that can be used to drive LEDs if your driver registers a LED device.
1489 * This function returns the name (or %NULL if not configured for LEDs)
1490 * of the trigger so you can automatically link the LED device.
1491 *
1492 * @hw: the hardware to get the LED trigger name for
1493 */
1494static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1495{
1496#ifdef CONFIG_MAC80211_LEDS
1497	return __ieee80211_get_tx_led_name(hw);
1498#else
1499	return NULL;
1500#endif
1501}
1502
1503/**
1504 * ieee80211_get_rx_led_name - get name of RX LED
1505 *
1506 * mac80211 creates a receive LED trigger for each wireless hardware
1507 * that can be used to drive LEDs if your driver registers a LED device.
1508 * This function returns the name (or %NULL if not configured for LEDs)
1509 * of the trigger so you can automatically link the LED device.
1510 *
1511 * @hw: the hardware to get the LED trigger name for
1512 */
1513static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1514{
1515#ifdef CONFIG_MAC80211_LEDS
1516	return __ieee80211_get_rx_led_name(hw);
1517#else
1518	return NULL;
1519#endif
1520}
1521
1522/**
1523 * ieee80211_get_assoc_led_name - get name of association LED
1524 *
1525 * mac80211 creates a association LED trigger for each wireless hardware
1526 * that can be used to drive LEDs if your driver registers a LED device.
1527 * This function returns the name (or %NULL if not configured for LEDs)
1528 * of the trigger so you can automatically link the LED device.
1529 *
1530 * @hw: the hardware to get the LED trigger name for
1531 */
1532static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1533{
1534#ifdef CONFIG_MAC80211_LEDS
1535	return __ieee80211_get_assoc_led_name(hw);
1536#else
1537	return NULL;
1538#endif
1539}
1540
1541/**
1542 * ieee80211_get_radio_led_name - get name of radio LED
1543 *
1544 * mac80211 creates a radio change LED trigger for each wireless hardware
1545 * that can be used to drive LEDs if your driver registers a LED device.
1546 * This function returns the name (or %NULL if not configured for LEDs)
1547 * of the trigger so you can automatically link the LED device.
1548 *
1549 * @hw: the hardware to get the LED trigger name for
1550 */
1551static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1552{
1553#ifdef CONFIG_MAC80211_LEDS
1554	return __ieee80211_get_radio_led_name(hw);
1555#else
1556	return NULL;
1557#endif
1558}
1559
1560/**
1561 * ieee80211_unregister_hw - Unregister a hardware device
1562 *
1563 * This function instructs mac80211 to free allocated resources
1564 * and unregister netdevices from the networking subsystem.
1565 *
1566 * @hw: the hardware to unregister
1567 */
1568void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1569
1570/**
1571 * ieee80211_free_hw - free hardware descriptor
1572 *
1573 * This function frees everything that was allocated, including the
1574 * private data for the driver. You must call ieee80211_unregister_hw()
1575 * before calling this function.
1576 *
1577 * @hw: the hardware to free
1578 */
1579void ieee80211_free_hw(struct ieee80211_hw *hw);
1580
1581/* trick to avoid symbol clashes with the ieee80211 subsystem */
1582void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1583		    struct ieee80211_rx_status *status);
1584
1585/**
1586 * ieee80211_rx - receive frame
1587 *
1588 * Use this function to hand received frames to mac80211. The receive
1589 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1590 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1591 *
1592 * This function may not be called in IRQ context. Calls to this function
1593 * for a single hardware must be synchronized against each other. Calls
1594 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1595 * single hardware.
1596 *
1597 * @hw: the hardware this frame came in on
1598 * @skb: the buffer to receive, owned by mac80211 after this call
1599 * @status: status of this frame; the status pointer need not be valid
1600 *	after this function returns
1601 */
1602static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1603				struct ieee80211_rx_status *status)
1604{
1605	__ieee80211_rx(hw, skb, status);
1606}
1607
1608/**
1609 * ieee80211_rx_irqsafe - receive frame
1610 *
1611 * Like ieee80211_rx() but can be called in IRQ context
1612 * (internally defers to a tasklet.)
1613 *
1614 * Calls to this function and ieee80211_rx() may not be mixed for a
1615 * single hardware.
1616 *
1617 * @hw: the hardware this frame came in on
1618 * @skb: the buffer to receive, owned by mac80211 after this call
1619 * @status: status of this frame; the status pointer need not be valid
1620 *	after this function returns and is not freed by mac80211,
1621 *	it is recommended that it points to a stack area
1622 */
1623void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1624			  struct sk_buff *skb,
1625			  struct ieee80211_rx_status *status);
1626
1627/**
1628 * ieee80211_tx_status - transmit status callback
1629 *
1630 * Call this function for all transmitted frames after they have been
1631 * transmitted. It is permissible to not call this function for
1632 * multicast frames but this can affect statistics.
1633 *
1634 * This function may not be called in IRQ context. Calls to this function
1635 * for a single hardware must be synchronized against each other. Calls
1636 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1637 * for a single hardware.
1638 *
1639 * @hw: the hardware the frame was transmitted by
1640 * @skb: the frame that was transmitted, owned by mac80211 after this call
1641 */
1642void ieee80211_tx_status(struct ieee80211_hw *hw,
1643			 struct sk_buff *skb);
1644
1645/**
1646 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1647 *
1648 * Like ieee80211_tx_status() but can be called in IRQ context
1649 * (internally defers to a tasklet.)
1650 *
1651 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1652 * single hardware.
1653 *
1654 * @hw: the hardware the frame was transmitted by
1655 * @skb: the frame that was transmitted, owned by mac80211 after this call
1656 */
1657void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1658				 struct sk_buff *skb);
1659
1660/**
1661 * ieee80211_beacon_get - beacon generation function
1662 * @hw: pointer obtained from ieee80211_alloc_hw().
1663 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1664 *
1665 * If the beacon frames are generated by the host system (i.e., not in
1666 * hardware/firmware), the low-level driver uses this function to receive
1667 * the next beacon frame from the 802.11 code. The low-level is responsible
1668 * for calling this function before beacon data is needed (e.g., based on
1669 * hardware interrupt). Returned skb is used only once and low-level driver
1670 * is responsible for freeing it.
1671 */
1672struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1673				     struct ieee80211_vif *vif);
1674
1675/**
1676 * ieee80211_rts_get - RTS frame generation function
1677 * @hw: pointer obtained from ieee80211_alloc_hw().
1678 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1679 * @frame: pointer to the frame that is going to be protected by the RTS.
1680 * @frame_len: the frame length (in octets).
1681 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1682 * @rts: The buffer where to store the RTS frame.
1683 *
1684 * If the RTS frames are generated by the host system (i.e., not in
1685 * hardware/firmware), the low-level driver uses this function to receive
1686 * the next RTS frame from the 802.11 code. The low-level is responsible
1687 * for calling this function before and RTS frame is needed.
1688 */
1689void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1690		       const void *frame, size_t frame_len,
1691		       const struct ieee80211_tx_info *frame_txctl,
1692		       struct ieee80211_rts *rts);
1693
1694/**
1695 * ieee80211_rts_duration - Get the duration field for an RTS frame
1696 * @hw: pointer obtained from ieee80211_alloc_hw().
1697 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1698 * @frame_len: the length of the frame that is going to be protected by the RTS.
1699 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1700 *
1701 * If the RTS is generated in firmware, but the host system must provide
1702 * the duration field, the low-level driver uses this function to receive
1703 * the duration field value in little-endian byteorder.
1704 */
1705__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1706			      struct ieee80211_vif *vif, size_t frame_len,
1707			      const struct ieee80211_tx_info *frame_txctl);
1708
1709/**
1710 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1711 * @hw: pointer obtained from ieee80211_alloc_hw().
1712 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1713 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1714 * @frame_len: the frame length (in octets).
1715 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1716 * @cts: The buffer where to store the CTS-to-self frame.
1717 *
1718 * If the CTS-to-self frames are generated by the host system (i.e., not in
1719 * hardware/firmware), the low-level driver uses this function to receive
1720 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1721 * for calling this function before and CTS-to-self frame is needed.
1722 */
1723void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1724			     struct ieee80211_vif *vif,
1725			     const void *frame, size_t frame_len,
1726			     const struct ieee80211_tx_info *frame_txctl,
1727			     struct ieee80211_cts *cts);
1728
1729/**
1730 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1731 * @hw: pointer obtained from ieee80211_alloc_hw().
1732 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1733 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1734 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1735 *
1736 * If the CTS-to-self is generated in firmware, but the host system must provide
1737 * the duration field, the low-level driver uses this function to receive
1738 * the duration field value in little-endian byteorder.
1739 */
1740__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1741				    struct ieee80211_vif *vif,
1742				    size_t frame_len,
1743				    const struct ieee80211_tx_info *frame_txctl);
1744
1745/**
1746 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1747 * @hw: pointer obtained from ieee80211_alloc_hw().
1748 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1749 * @frame_len: the length of the frame.
1750 * @rate: the rate at which the frame is going to be transmitted.
1751 *
1752 * Calculate the duration field of some generic frame, given its
1753 * length and transmission rate (in 100kbps).
1754 */
1755__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1756					struct ieee80211_vif *vif,
1757					size_t frame_len,
1758					struct ieee80211_rate *rate);
1759
1760/**
1761 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1762 * @hw: pointer as obtained from ieee80211_alloc_hw().
1763 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1764 *
1765 * Function for accessing buffered broadcast and multicast frames. If
1766 * hardware/firmware does not implement buffering of broadcast/multicast
1767 * frames when power saving is used, 802.11 code buffers them in the host
1768 * memory. The low-level driver uses this function to fetch next buffered
1769 * frame. In most cases, this is used when generating beacon frame. This
1770 * function returns a pointer to the next buffered skb or NULL if no more
1771 * buffered frames are available.
1772 *
1773 * Note: buffered frames are returned only after DTIM beacon frame was
1774 * generated with ieee80211_beacon_get() and the low-level driver must thus
1775 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1776 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1777 * does not need to check for DTIM beacons separately and should be able to
1778 * use common code for all beacons.
1779 */
1780struct sk_buff *
1781ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1782
1783/**
1784 * ieee80211_get_hdrlen_from_skb - get header length from data
1785 *
1786 * Given an skb with a raw 802.11 header at the data pointer this function
1787 * returns the 802.11 header length in bytes (not including encryption
1788 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1789 * header the function returns 0.
1790 *
1791 * @skb: the frame
1792 */
1793unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1794
1795/**
1796 * ieee80211_hdrlen - get header length in bytes from frame control
1797 * @fc: frame control field in little-endian format
1798 */
1799unsigned int ieee80211_hdrlen(__le16 fc);
1800
1801/**
1802 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1803 *
1804 * This function computes a TKIP rc4 key for an skb. It computes
1805 * a phase 1 key if needed (iv16 wraps around). This function is to
1806 * be used by drivers which can do HW encryption but need to compute
1807 * to phase 1/2 key in SW.
1808 *
1809 * @keyconf: the parameter passed with the set key
1810 * @skb: the skb for which the key is needed
1811 * @type: TBD
1812 * @key: a buffer to which the key will be written
1813 */
1814void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1815				struct sk_buff *skb,
1816				enum ieee80211_tkip_key_type type, u8 *key);
1817/**
1818 * ieee80211_wake_queue - wake specific queue
1819 * @hw: pointer as obtained from ieee80211_alloc_hw().
1820 * @queue: queue number (counted from zero).
1821 *
1822 * Drivers should use this function instead of netif_wake_queue.
1823 */
1824void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1825
1826/**
1827 * ieee80211_stop_queue - stop specific queue
1828 * @hw: pointer as obtained from ieee80211_alloc_hw().
1829 * @queue: queue number (counted from zero).
1830 *
1831 * Drivers should use this function instead of netif_stop_queue.
1832 */
1833void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1834
1835/**
1836 * ieee80211_queue_stopped - test status of the queue
1837 * @hw: pointer as obtained from ieee80211_alloc_hw().
1838 * @queue: queue number (counted from zero).
1839 *
1840 * Drivers should use this function instead of netif_stop_queue.
1841 */
1842
1843int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1844
1845/**
1846 * ieee80211_stop_queues - stop all queues
1847 * @hw: pointer as obtained from ieee80211_alloc_hw().
1848 *
1849 * Drivers should use this function instead of netif_stop_queue.
1850 */
1851void ieee80211_stop_queues(struct ieee80211_hw *hw);
1852
1853/**
1854 * ieee80211_wake_queues - wake all queues
1855 * @hw: pointer as obtained from ieee80211_alloc_hw().
1856 *
1857 * Drivers should use this function instead of netif_wake_queue.
1858 */
1859void ieee80211_wake_queues(struct ieee80211_hw *hw);
1860
1861/**
1862 * ieee80211_scan_completed - completed hardware scan
1863 *
1864 * When hardware scan offload is used (i.e. the hw_scan() callback is
1865 * assigned) this function needs to be called by the driver to notify
1866 * mac80211 that the scan finished.
1867 *
1868 * @hw: the hardware that finished the scan
1869 * @aborted: set to true if scan was aborted
1870 */
1871void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1872
1873/**
1874 * ieee80211_iterate_active_interfaces - iterate active interfaces
1875 *
1876 * This function iterates over the interfaces associated with a given
1877 * hardware that are currently active and calls the callback for them.
1878 * This function allows the iterator function to sleep, when the iterator
1879 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1880 * be used.
1881 *
1882 * @hw: the hardware struct of which the interfaces should be iterated over
1883 * @iterator: the iterator function to call
1884 * @data: first argument of the iterator function
1885 */
1886void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1887					 void (*iterator)(void *data, u8 *mac,
1888						struct ieee80211_vif *vif),
1889					 void *data);
1890
1891/**
1892 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1893 *
1894 * This function iterates over the interfaces associated with a given
1895 * hardware that are currently active and calls the callback for them.
1896 * This function requires the iterator callback function to be atomic,
1897 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1898 *
1899 * @hw: the hardware struct of which the interfaces should be iterated over
1900 * @iterator: the iterator function to call, cannot sleep
1901 * @data: first argument of the iterator function
1902 */
1903void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1904						void (*iterator)(void *data,
1905						    u8 *mac,
1906						    struct ieee80211_vif *vif),
1907						void *data);
1908
1909/**
1910 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1911 * @hw: pointer as obtained from ieee80211_alloc_hw().
1912 * @ra: receiver address of the BA session recipient
1913 * @tid: the TID to BA on.
1914 *
1915 * Return: success if addBA request was sent, failure otherwise
1916 *
1917 * Although mac80211/low level driver/user space application can estimate
1918 * the need to start aggregation on a certain RA/TID, the session level
1919 * will be managed by the mac80211.
1920 */
1921int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1922
1923/**
1924 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1925 * @hw: pointer as obtained from ieee80211_alloc_hw().
1926 * @ra: receiver address of the BA session recipient.
1927 * @tid: the TID to BA on.
1928 *
1929 * This function must be called by low level driver once it has
1930 * finished with preparations for the BA session.
1931 */
1932void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1933
1934/**
1935 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1936 * @hw: pointer as obtained from ieee80211_alloc_hw().
1937 * @ra: receiver address of the BA session recipient.
1938 * @tid: the TID to BA on.
1939 *
1940 * This function must be called by low level driver once it has
1941 * finished with preparations for the BA session.
1942 * This version of the function is IRQ-safe.
1943 */
1944void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1945				      u16 tid);
1946
1947/**
1948 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1949 * @hw: pointer as obtained from ieee80211_alloc_hw().
1950 * @ra: receiver address of the BA session recipient
1951 * @tid: the TID to stop BA.
1952 * @initiator: if indicates initiator DELBA frame will be sent.
1953 *
1954 * Return: error if no sta with matching da found, success otherwise
1955 *
1956 * Although mac80211/low level driver/user space application can estimate
1957 * the need to stop aggregation on a certain RA/TID, the session level
1958 * will be managed by the mac80211.
1959 */
1960int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1961				 u8 *ra, u16 tid,
1962				 enum ieee80211_back_parties initiator);
1963
1964/**
1965 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1966 * @hw: pointer as obtained from ieee80211_alloc_hw().
1967 * @ra: receiver address of the BA session recipient.
1968 * @tid: the desired TID to BA on.
1969 *
1970 * This function must be called by low level driver once it has
1971 * finished with preparations for the BA session tear down.
1972 */
1973void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1974
1975/**
1976 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1977 * @hw: pointer as obtained from ieee80211_alloc_hw().
1978 * @ra: receiver address of the BA session recipient.
1979 * @tid: the desired TID to BA on.
1980 *
1981 * This function must be called by low level driver once it has
1982 * finished with preparations for the BA session tear down.
1983 * This version of the function is IRQ-safe.
1984 */
1985void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1986				     u16 tid);
1987
1988/**
1989 * ieee80211_find_sta - find a station
1990 *
1991 * @hw: pointer as obtained from ieee80211_alloc_hw()
1992 * @addr: station's address
1993 *
1994 * This function must be called under RCU lock and the
1995 * resulting pointer is only valid under RCU lock as well.
1996 */
1997struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
1998					 const u8 *addr);
1999
2000/**
2001 * ieee80211_beacon_loss - inform hardware does not receive beacons
2002 *
2003 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2004 *
2005 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2006 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2007 * hardware is not receiving beacons with this function.
2008 */
2009void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2010
2011/* Rate control API */
2012
2013/**
2014 * enum rate_control_changed - flags to indicate which parameter changed
2015 *
2016 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2017 *	changed, rate control algorithm can update its internal state if needed.
2018 */
2019enum rate_control_changed {
2020	IEEE80211_RC_HT_CHANGED = BIT(0)
2021};
2022
2023/**
2024 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2025 *
2026 * @hw: The hardware the algorithm is invoked for.
2027 * @sband: The band this frame is being transmitted on.
2028 * @bss_conf: the current BSS configuration
2029 * @reported_rate: The rate control algorithm can fill this in to indicate
2030 *	which rate should be reported to userspace as the current rate and
2031 *	used for rate calculations in the mesh network.
2032 * @rts: whether RTS will be used for this frame because it is longer than the
2033 *	RTS threshold
2034 * @short_preamble: whether mac80211 will request short-preamble transmission
2035 *	if the selected rate supports it
2036 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2037 * @skb: the skb that will be transmitted, the control information in it needs
2038 *	to be filled in
2039 */
2040struct ieee80211_tx_rate_control {
2041	struct ieee80211_hw *hw;
2042	struct ieee80211_supported_band *sband;
2043	struct ieee80211_bss_conf *bss_conf;
2044	struct sk_buff *skb;
2045	struct ieee80211_tx_rate reported_rate;
2046	bool rts, short_preamble;
2047	u8 max_rate_idx;
2048};
2049
2050struct rate_control_ops {
2051	struct module *module;
2052	const char *name;
2053	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2054	void (*free)(void *priv);
2055
2056	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2057	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2058			  struct ieee80211_sta *sta, void *priv_sta);
2059	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2060			    struct ieee80211_sta *sta,
2061			    void *priv_sta, u32 changed);
2062	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2063			 void *priv_sta);
2064
2065	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2066			  struct ieee80211_sta *sta, void *priv_sta,
2067			  struct sk_buff *skb);
2068	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2069			 struct ieee80211_tx_rate_control *txrc);
2070
2071	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2072				struct dentry *dir);
2073	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2074};
2075
2076static inline int rate_supported(struct ieee80211_sta *sta,
2077				 enum ieee80211_band band,
2078				 int index)
2079{
2080	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2081}
2082
2083static inline s8
2084rate_lowest_index(struct ieee80211_supported_band *sband,
2085		  struct ieee80211_sta *sta)
2086{
2087	int i;
2088
2089	for (i = 0; i < sband->n_bitrates; i++)
2090		if (rate_supported(sta, sband->band, i))
2091			return i;
2092
2093	/* warn when we cannot find a rate. */
2094	WARN_ON(1);
2095
2096	return 0;
2097}
2098
2099
2100int ieee80211_rate_control_register(struct rate_control_ops *ops);
2101void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2102
2103static inline bool
2104conf_is_ht20(struct ieee80211_conf *conf)
2105{
2106	return conf->channel_type == NL80211_CHAN_HT20;
2107}
2108
2109static inline bool
2110conf_is_ht40_minus(struct ieee80211_conf *conf)
2111{
2112	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2113}
2114
2115static inline bool
2116conf_is_ht40_plus(struct ieee80211_conf *conf)
2117{
2118	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2119}
2120
2121static inline bool
2122conf_is_ht40(struct ieee80211_conf *conf)
2123{
2124	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2125}
2126
2127static inline bool
2128conf_is_ht(struct ieee80211_conf *conf)
2129{
2130	return conf->channel_type != NL80211_CHAN_NO_HT;
2131}
2132
2133#endif /* MAC80211_H */
2134