mac80211.h revision 3ac64beecd27400d12cc7afb4108eef26c499f6a
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * DOC: mac80211 workqueue
77 *
78 * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79 * The workqueue is a single threaded workqueue and can only be accessed by
80 * helpers for sanity checking. Drivers must ensure all work added onto the
81 * mac80211 workqueue should be cancelled on the driver stop() callback.
82 *
83 * mac80211 will flushed the workqueue upon interface removal and during
84 * suspend.
85 *
86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87 *
88 */
89
90/**
91 * enum ieee80211_max_queues - maximum number of queues
92 *
93 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94 */
95enum ieee80211_max_queues {
96	IEEE80211_MAX_QUEUES =		4,
97};
98
99/**
100 * struct ieee80211_tx_queue_params - transmit queue configuration
101 *
102 * The information provided in this structure is required for QoS
103 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104 *
105 * @aifs: arbitration interframe space [0..255]
106 * @cw_min: minimum contention window [a value of the form
107 *	2^n-1 in the range 1..32767]
108 * @cw_max: maximum contention window [like @cw_min]
109 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110 */
111struct ieee80211_tx_queue_params {
112	u16 txop;
113	u16 cw_min;
114	u16 cw_max;
115	u8 aifs;
116};
117
118/**
119 * struct ieee80211_tx_queue_stats - transmit queue statistics
120 *
121 * @len: number of packets in queue
122 * @limit: queue length limit
123 * @count: number of frames sent
124 */
125struct ieee80211_tx_queue_stats {
126	unsigned int len;
127	unsigned int limit;
128	unsigned int count;
129};
130
131struct ieee80211_low_level_stats {
132	unsigned int dot11ACKFailureCount;
133	unsigned int dot11RTSFailureCount;
134	unsigned int dot11FCSErrorCount;
135	unsigned int dot11RTSSuccessCount;
136};
137
138/**
139 * enum ieee80211_bss_change - BSS change notification flags
140 *
141 * These flags are used with the bss_info_changed() callback
142 * to indicate which BSS parameter changed.
143 *
144 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
145 *	also implies a change in the AID.
146 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
147 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
148 * @BSS_CHANGED_ERP_SLOT: slot timing changed
149 * @BSS_CHANGED_HT: 802.11n parameters changed
150 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
151 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
152 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
153 *	reason (IBSS and managed mode)
154 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
155 *	new beacon (beaconing modes)
156 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
157 *	enabled/disabled (beaconing modes)
158 */
159enum ieee80211_bss_change {
160	BSS_CHANGED_ASSOC		= 1<<0,
161	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
162	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
163	BSS_CHANGED_ERP_SLOT		= 1<<3,
164	BSS_CHANGED_HT                  = 1<<4,
165	BSS_CHANGED_BASIC_RATES		= 1<<5,
166	BSS_CHANGED_BEACON_INT		= 1<<6,
167	BSS_CHANGED_BSSID		= 1<<7,
168	BSS_CHANGED_BEACON		= 1<<8,
169	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
170};
171
172/**
173 * struct ieee80211_bss_conf - holds the BSS's changing parameters
174 *
175 * This structure keeps information about a BSS (and an association
176 * to that BSS) that can change during the lifetime of the BSS.
177 *
178 * @assoc: association status
179 * @aid: association ID number, valid only when @assoc is true
180 * @use_cts_prot: use CTS protection
181 * @use_short_preamble: use 802.11b short preamble;
182 *	if the hardware cannot handle this it must set the
183 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184 * @use_short_slot: use short slot time (only relevant for ERP);
185 *	if the hardware cannot handle this it must set the
186 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187 * @dtim_period: num of beacons before the next DTIM, for PSM
188 * @timestamp: beacon timestamp
189 * @beacon_int: beacon interval
190 * @assoc_capability: capabilities taken from assoc resp
191 * @basic_rates: bitmap of basic rates, each bit stands for an
192 *	index into the rate table configured by the driver in
193 *	the current band.
194 * @bssid: The BSSID for this BSS
195 * @enable_beacon: whether beaconing should be enabled or not
196 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
197 *	This field is only valid when the channel type is one of the HT types.
198 */
199struct ieee80211_bss_conf {
200	const u8 *bssid;
201	/* association related data */
202	bool assoc;
203	u16 aid;
204	/* erp related data */
205	bool use_cts_prot;
206	bool use_short_preamble;
207	bool use_short_slot;
208	bool enable_beacon;
209	u8 dtim_period;
210	u16 beacon_int;
211	u16 assoc_capability;
212	u64 timestamp;
213	u32 basic_rates;
214	u16 ht_operation_mode;
215};
216
217/**
218 * enum mac80211_tx_control_flags - flags to describe transmission information/status
219 *
220 * These flags are used with the @flags member of &ieee80211_tx_info.
221 *
222 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
223 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
224 *	number to this frame, taking care of not overwriting the fragment
225 *	number and increasing the sequence number only when the
226 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
227 *	assign sequence numbers to QoS-data frames but cannot do so correctly
228 *	for non-QoS-data and management frames because beacons need them from
229 *	that counter as well and mac80211 cannot guarantee proper sequencing.
230 *	If this flag is set, the driver should instruct the hardware to
231 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
232 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
233 *	beacons and always be clear for frames without a sequence number field.
234 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
235 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
236 *	station
237 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
238 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
239 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
240 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
241 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
242 *	because the destination STA was in powersave mode. Note that to
243 *	avoid race conditions, the filter must be set by the hardware or
244 *	firmware upon receiving a frame that indicates that the station
245 *	went to sleep (must be done on device to filter frames already on
246 *	the queue) and may only be unset after mac80211 gives the OK for
247 *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
248 *	since only then is it guaranteed that no more frames are in the
249 *	hardware queue.
250 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
251 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
252 * 	is for the whole aggregation.
253 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
254 * 	so consider using block ack request (BAR).
255 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
256 *	set by rate control algorithms to indicate probe rate, will
257 *	be cleared for fragmented frames (except on the last fragment)
258 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
259 *	set this flag in the driver; indicates that the rate control
260 *	algorithm was used and should be notified of TX status
261 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
262 *	used to indicate that a pending frame requires TX processing before
263 *	it can be sent out.
264 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
265 *	used to indicate that a frame was already retried due to PS
266 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
267 *	used to indicate frame should not be encrypted
268 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
269 *	This frame is a response to a PS-poll frame and should be sent
270 *	although the station is in powersave mode.
271 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
272 *	transmit function after the current frame, this can be used
273 *	by drivers to kick the DMA queue only if unset or when the
274 *	queue gets full.
275 */
276enum mac80211_tx_control_flags {
277	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
278	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
279	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
280	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
281	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
282	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
283	IEEE80211_TX_CTL_AMPDU			= BIT(6),
284	IEEE80211_TX_CTL_INJECTED		= BIT(7),
285	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
286	IEEE80211_TX_STAT_ACK			= BIT(9),
287	IEEE80211_TX_STAT_AMPDU			= BIT(10),
288	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
289	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
290	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
291	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
292	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
293	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
294	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
295	IEEE80211_TX_CTL_MORE_FRAMES		= BIT(18),
296};
297
298/**
299 * enum mac80211_rate_control_flags - per-rate flags set by the
300 *	Rate Control algorithm.
301 *
302 * These flags are set by the Rate control algorithm for each rate during tx,
303 * in the @flags member of struct ieee80211_tx_rate.
304 *
305 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
306 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
307 *	This is set if the current BSS requires ERP protection.
308 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
309 * @IEEE80211_TX_RC_MCS: HT rate.
310 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
311 *	Greenfield mode.
312 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
313 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
314 *	adjacent 20 MHz channels, if the current channel type is
315 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
316 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
317 */
318enum mac80211_rate_control_flags {
319	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
320	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
321	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
322
323	/* rate index is an MCS rate number instead of an index */
324	IEEE80211_TX_RC_MCS			= BIT(3),
325	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
326	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
327	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
328	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
329};
330
331
332/* there are 40 bytes if you don't need the rateset to be kept */
333#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
334
335/* if you do need the rateset, then you have less space */
336#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
337
338/* maximum number of rate stages */
339#define IEEE80211_TX_MAX_RATES	5
340
341/**
342 * struct ieee80211_tx_rate - rate selection/status
343 *
344 * @idx: rate index to attempt to send with
345 * @flags: rate control flags (&enum mac80211_rate_control_flags)
346 * @count: number of tries in this rate before going to the next rate
347 *
348 * A value of -1 for @idx indicates an invalid rate and, if used
349 * in an array of retry rates, that no more rates should be tried.
350 *
351 * When used for transmit status reporting, the driver should
352 * always report the rate along with the flags it used.
353 *
354 * &struct ieee80211_tx_info contains an array of these structs
355 * in the control information, and it will be filled by the rate
356 * control algorithm according to what should be sent. For example,
357 * if this array contains, in the format { <idx>, <count> } the
358 * information
359 *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
360 * then this means that the frame should be transmitted
361 * up to twice at rate 3, up to twice at rate 2, and up to four
362 * times at rate 1 if it doesn't get acknowledged. Say it gets
363 * acknowledged by the peer after the fifth attempt, the status
364 * information should then contain
365 *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
366 * since it was transmitted twice at rate 3, twice at rate 2
367 * and once at rate 1 after which we received an acknowledgement.
368 */
369struct ieee80211_tx_rate {
370	s8 idx;
371	u8 count;
372	u8 flags;
373} __attribute__((packed));
374
375/**
376 * struct ieee80211_tx_info - skb transmit information
377 *
378 * This structure is placed in skb->cb for three uses:
379 *  (1) mac80211 TX control - mac80211 tells the driver what to do
380 *  (2) driver internal use (if applicable)
381 *  (3) TX status information - driver tells mac80211 what happened
382 *
383 * The TX control's sta pointer is only valid during the ->tx call,
384 * it may be NULL.
385 *
386 * @flags: transmit info flags, defined above
387 * @band: the band to transmit on (use for checking for races)
388 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
389 * @pad: padding, ignore
390 * @control: union for control data
391 * @status: union for status data
392 * @driver_data: array of driver_data pointers
393 * @ampdu_ack_len: number of aggregated frames.
394 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
395 * @ampdu_ack_map: block ack bit map for the aggregation.
396 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
397 * @ack_signal: signal strength of the ACK frame
398 */
399struct ieee80211_tx_info {
400	/* common information */
401	u32 flags;
402	u8 band;
403
404	u8 antenna_sel_tx;
405
406	/* 2 byte hole */
407	u8 pad[2];
408
409	union {
410		struct {
411			union {
412				/* rate control */
413				struct {
414					struct ieee80211_tx_rate rates[
415						IEEE80211_TX_MAX_RATES];
416					s8 rts_cts_rate_idx;
417				};
418				/* only needed before rate control */
419				unsigned long jiffies;
420			};
421			/* NB: vif can be NULL for injected frames */
422			struct ieee80211_vif *vif;
423			struct ieee80211_key_conf *hw_key;
424			struct ieee80211_sta *sta;
425		} control;
426		struct {
427			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
428			u8 ampdu_ack_len;
429			u64 ampdu_ack_map;
430			int ack_signal;
431			/* 8 bytes free */
432		} status;
433		struct {
434			struct ieee80211_tx_rate driver_rates[
435				IEEE80211_TX_MAX_RATES];
436			void *rate_driver_data[
437				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
438		};
439		void *driver_data[
440			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
441	};
442};
443
444static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
445{
446	return (struct ieee80211_tx_info *)skb->cb;
447}
448
449static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
450{
451	return (struct ieee80211_rx_status *)skb->cb;
452}
453
454/**
455 * ieee80211_tx_info_clear_status - clear TX status
456 *
457 * @info: The &struct ieee80211_tx_info to be cleared.
458 *
459 * When the driver passes an skb back to mac80211, it must report
460 * a number of things in TX status. This function clears everything
461 * in the TX status but the rate control information (it does clear
462 * the count since you need to fill that in anyway).
463 *
464 * NOTE: You can only use this function if you do NOT use
465 *	 info->driver_data! Use info->rate_driver_data
466 *	 instead if you need only the less space that allows.
467 */
468static inline void
469ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
470{
471	int i;
472
473	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
474		     offsetof(struct ieee80211_tx_info, control.rates));
475	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
476		     offsetof(struct ieee80211_tx_info, driver_rates));
477	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
478	/* clear the rate counts */
479	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
480		info->status.rates[i].count = 0;
481
482	BUILD_BUG_ON(
483	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
484	memset(&info->status.ampdu_ack_len, 0,
485	       sizeof(struct ieee80211_tx_info) -
486	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
487}
488
489
490/**
491 * enum mac80211_rx_flags - receive flags
492 *
493 * These flags are used with the @flag member of &struct ieee80211_rx_status.
494 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
495 *	Use together with %RX_FLAG_MMIC_STRIPPED.
496 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
497 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
498 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
499 *	verification has been done by the hardware.
500 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
501 *	If this flag is set, the stack cannot do any replay detection
502 *	hence the driver or hardware will have to do that.
503 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
504 *	the frame.
505 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
506 *	the frame.
507 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
508 *	is valid. This is useful in monitor mode and necessary for beacon frames
509 *	to enable IBSS merging.
510 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
511 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
512 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
513 * @RX_FLAG_SHORT_GI: Short guard interval was used
514 */
515enum mac80211_rx_flags {
516	RX_FLAG_MMIC_ERROR	= 1<<0,
517	RX_FLAG_DECRYPTED	= 1<<1,
518	RX_FLAG_RADIOTAP	= 1<<2,
519	RX_FLAG_MMIC_STRIPPED	= 1<<3,
520	RX_FLAG_IV_STRIPPED	= 1<<4,
521	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
522	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
523	RX_FLAG_TSFT		= 1<<7,
524	RX_FLAG_SHORTPRE	= 1<<8,
525	RX_FLAG_HT		= 1<<9,
526	RX_FLAG_40MHZ		= 1<<10,
527	RX_FLAG_SHORT_GI	= 1<<11,
528};
529
530/**
531 * struct ieee80211_rx_status - receive status
532 *
533 * The low-level driver should provide this information (the subset
534 * supported by hardware) to the 802.11 code with each received
535 * frame, in the skb's control buffer (cb).
536 *
537 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
538 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
539 * @band: the active band when this frame was received
540 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
541 * @signal: signal strength when receiving this frame, either in dBm, in dB or
542 *	unspecified depending on the hardware capabilities flags
543 *	@IEEE80211_HW_SIGNAL_*
544 * @noise: noise when receiving this frame, in dBm.
545 * @qual: overall signal quality indication, in percent (0-100).
546 * @antenna: antenna used
547 * @rate_idx: index of data rate into band's supported rates or MCS index if
548 *	HT rates are use (RX_FLAG_HT)
549 * @flag: %RX_FLAG_*
550 */
551struct ieee80211_rx_status {
552	u64 mactime;
553	enum ieee80211_band band;
554	int freq;
555	int signal;
556	int noise;
557	int qual;
558	int antenna;
559	int rate_idx;
560	int flag;
561};
562
563/**
564 * enum ieee80211_conf_flags - configuration flags
565 *
566 * Flags to define PHY configuration options
567 *
568 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
569 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
570 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
571 *	the driver should be prepared to handle configuration requests but
572 *	may turn the device off as much as possible. Typically, this flag will
573 *	be set when an interface is set UP but not associated or scanning, but
574 *	it can also be unset in that case when monitor interfaces are active.
575 */
576enum ieee80211_conf_flags {
577	IEEE80211_CONF_RADIOTAP		= (1<<0),
578	IEEE80211_CONF_PS		= (1<<1),
579	IEEE80211_CONF_IDLE		= (1<<2),
580};
581
582
583/**
584 * enum ieee80211_conf_changed - denotes which configuration changed
585 *
586 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
587 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
588 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
589 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
590 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
591 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
592 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
593 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
594 */
595enum ieee80211_conf_changed {
596	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
597	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
598	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
599	IEEE80211_CONF_CHANGE_PS		= BIT(4),
600	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
601	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
602	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
603	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
604};
605
606static inline __deprecated enum ieee80211_conf_changed
607__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
608{
609	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
610}
611#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
612	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
613
614/**
615 * struct ieee80211_conf - configuration of the device
616 *
617 * This struct indicates how the driver shall configure the hardware.
618 *
619 * @flags: configuration flags defined above
620 *
621 * @radio_enabled: when zero, driver is required to switch off the radio.
622 * @beacon_int: DEPRECATED, DO NOT USE
623 *
624 * @listen_interval: listen interval in units of beacon interval
625 * @max_sleep_period: the maximum number of beacon intervals to sleep for
626 *	before checking the beacon for a TIM bit (managed mode only); this
627 *	value will be only achievable between DTIM frames, the hardware
628 *	needs to check for the multicast traffic bit in DTIM beacons.
629 *	This variable is valid only when the CONF_PS flag is set.
630 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
631 *	powersave documentation below. This variable is valid only when
632 *	the CONF_PS flag is set.
633 *
634 * @power_level: requested transmit power (in dBm)
635 *
636 * @channel: the channel to tune to
637 * @channel_type: the channel (HT) type
638 *
639 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
640 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
641 *    but actually means the number of transmissions not the number of retries
642 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
643 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
644 *    number of transmissions not the number of retries
645 */
646struct ieee80211_conf {
647	int __deprecated beacon_int;
648	u32 flags;
649	int power_level, dynamic_ps_timeout;
650	int max_sleep_period;
651
652	u16 listen_interval;
653	bool __deprecated radio_enabled;
654
655	u8 long_frame_max_tx_count, short_frame_max_tx_count;
656
657	struct ieee80211_channel *channel;
658	enum nl80211_channel_type channel_type;
659};
660
661/**
662 * struct ieee80211_vif - per-interface data
663 *
664 * Data in this structure is continually present for driver
665 * use during the life of a virtual interface.
666 *
667 * @type: type of this virtual interface
668 * @bss_conf: BSS configuration for this interface, either our own
669 *	or the BSS we're associated to
670 * @drv_priv: data area for driver use, will always be aligned to
671 *	sizeof(void *).
672 */
673struct ieee80211_vif {
674	enum nl80211_iftype type;
675	struct ieee80211_bss_conf bss_conf;
676	/* must be last */
677	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
678};
679
680static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
681{
682#ifdef CONFIG_MAC80211_MESH
683	return vif->type == NL80211_IFTYPE_MESH_POINT;
684#endif
685	return false;
686}
687
688/**
689 * struct ieee80211_if_init_conf - initial configuration of an interface
690 *
691 * @vif: pointer to a driver-use per-interface structure. The pointer
692 *	itself is also used for various functions including
693 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
694 * @type: one of &enum nl80211_iftype constants. Determines the type of
695 *	added/removed interface.
696 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
697 *	until the interface is removed (i.e. it cannot be used after
698 *	remove_interface() callback was called for this interface).
699 *
700 * This structure is used in add_interface() and remove_interface()
701 * callbacks of &struct ieee80211_hw.
702 *
703 * When you allow multiple interfaces to be added to your PHY, take care
704 * that the hardware can actually handle multiple MAC addresses. However,
705 * also take care that when there's no interface left with mac_addr != %NULL
706 * you remove the MAC address from the device to avoid acknowledging packets
707 * in pure monitor mode.
708 */
709struct ieee80211_if_init_conf {
710	enum nl80211_iftype type;
711	struct ieee80211_vif *vif;
712	void *mac_addr;
713};
714
715/**
716 * enum ieee80211_key_alg - key algorithm
717 * @ALG_WEP: WEP40 or WEP104
718 * @ALG_TKIP: TKIP
719 * @ALG_CCMP: CCMP (AES)
720 * @ALG_AES_CMAC: AES-128-CMAC
721 */
722enum ieee80211_key_alg {
723	ALG_WEP,
724	ALG_TKIP,
725	ALG_CCMP,
726	ALG_AES_CMAC,
727};
728
729/**
730 * enum ieee80211_key_flags - key flags
731 *
732 * These flags are used for communication about keys between the driver
733 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
734 *
735 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
736 *	that the STA this key will be used with could be using QoS.
737 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
738 *	driver to indicate that it requires IV generation for this
739 *	particular key.
740 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
741 *	the driver for a TKIP key if it requires Michael MIC
742 *	generation in software.
743 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
744 *	that the key is pairwise rather then a shared key.
745 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
746 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
747 *	be done in software.
748 */
749enum ieee80211_key_flags {
750	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
751	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
752	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
753	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
754	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
755};
756
757/**
758 * struct ieee80211_key_conf - key information
759 *
760 * This key information is given by mac80211 to the driver by
761 * the set_key() callback in &struct ieee80211_ops.
762 *
763 * @hw_key_idx: To be set by the driver, this is the key index the driver
764 *	wants to be given when a frame is transmitted and needs to be
765 *	encrypted in hardware.
766 * @alg: The key algorithm.
767 * @flags: key flags, see &enum ieee80211_key_flags.
768 * @keyidx: the key index (0-3)
769 * @keylen: key material length
770 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
771 * 	data block:
772 * 	- Temporal Encryption Key (128 bits)
773 * 	- Temporal Authenticator Tx MIC Key (64 bits)
774 * 	- Temporal Authenticator Rx MIC Key (64 bits)
775 * @icv_len: The ICV length for this key type
776 * @iv_len: The IV length for this key type
777 */
778struct ieee80211_key_conf {
779	enum ieee80211_key_alg alg;
780	u8 icv_len;
781	u8 iv_len;
782	u8 hw_key_idx;
783	u8 flags;
784	s8 keyidx;
785	u8 keylen;
786	u8 key[0];
787};
788
789/**
790 * enum set_key_cmd - key command
791 *
792 * Used with the set_key() callback in &struct ieee80211_ops, this
793 * indicates whether a key is being removed or added.
794 *
795 * @SET_KEY: a key is set
796 * @DISABLE_KEY: a key must be disabled
797 */
798enum set_key_cmd {
799	SET_KEY, DISABLE_KEY,
800};
801
802/**
803 * struct ieee80211_sta - station table entry
804 *
805 * A station table entry represents a station we are possibly
806 * communicating with. Since stations are RCU-managed in
807 * mac80211, any ieee80211_sta pointer you get access to must
808 * either be protected by rcu_read_lock() explicitly or implicitly,
809 * or you must take good care to not use such a pointer after a
810 * call to your sta_notify callback that removed it.
811 *
812 * @addr: MAC address
813 * @aid: AID we assigned to the station if we're an AP
814 * @supp_rates: Bitmap of supported rates (per band)
815 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
816 * @drv_priv: data area for driver use, will always be aligned to
817 *	sizeof(void *), size is determined in hw information.
818 */
819struct ieee80211_sta {
820	u32 supp_rates[IEEE80211_NUM_BANDS];
821	u8 addr[ETH_ALEN];
822	u16 aid;
823	struct ieee80211_sta_ht_cap ht_cap;
824
825	/* must be last */
826	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
827};
828
829/**
830 * enum sta_notify_cmd - sta notify command
831 *
832 * Used with the sta_notify() callback in &struct ieee80211_ops, this
833 * indicates addition and removal of a station to station table,
834 * or if a associated station made a power state transition.
835 *
836 * @STA_NOTIFY_ADD: a station was added to the station table
837 * @STA_NOTIFY_REMOVE: a station being removed from the station table
838 * @STA_NOTIFY_SLEEP: a station is now sleeping
839 * @STA_NOTIFY_AWAKE: a sleeping station woke up
840 */
841enum sta_notify_cmd {
842	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
843	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
844};
845
846/**
847 * enum ieee80211_tkip_key_type - get tkip key
848 *
849 * Used by drivers which need to get a tkip key for skb. Some drivers need a
850 * phase 1 key, others need a phase 2 key. A single function allows the driver
851 * to get the key, this enum indicates what type of key is required.
852 *
853 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
854 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
855 */
856enum ieee80211_tkip_key_type {
857	IEEE80211_TKIP_P1_KEY,
858	IEEE80211_TKIP_P2_KEY,
859};
860
861/**
862 * enum ieee80211_hw_flags - hardware flags
863 *
864 * These flags are used to indicate hardware capabilities to
865 * the stack. Generally, flags here should have their meaning
866 * done in a way that the simplest hardware doesn't need setting
867 * any particular flags. There are some exceptions to this rule,
868 * however, so you are advised to review these flags carefully.
869 *
870 * @IEEE80211_HW_RX_INCLUDES_FCS:
871 *	Indicates that received frames passed to the stack include
872 *	the FCS at the end.
873 *
874 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
875 *	Some wireless LAN chipsets buffer broadcast/multicast frames
876 *	for power saving stations in the hardware/firmware and others
877 *	rely on the host system for such buffering. This option is used
878 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
879 *	multicast frames when there are power saving stations so that
880 *	the driver can fetch them with ieee80211_get_buffered_bc().
881 *
882 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
883 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
884 *
885 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
886 *	Hardware is not capable of receiving frames with short preamble on
887 *	the 2.4 GHz band.
888 *
889 * @IEEE80211_HW_SIGNAL_UNSPEC:
890 *	Hardware can provide signal values but we don't know its units. We
891 *	expect values between 0 and @max_signal.
892 *	If possible please provide dB or dBm instead.
893 *
894 * @IEEE80211_HW_SIGNAL_DBM:
895 *	Hardware gives signal values in dBm, decibel difference from
896 *	one milliwatt. This is the preferred method since it is standardized
897 *	between different devices. @max_signal does not need to be set.
898 *
899 * @IEEE80211_HW_NOISE_DBM:
900 *	Hardware can provide noise (radio interference) values in units dBm,
901 *      decibel difference from one milliwatt.
902 *
903 * @IEEE80211_HW_SPECTRUM_MGMT:
904 * 	Hardware supports spectrum management defined in 802.11h
905 * 	Measurement, Channel Switch, Quieting, TPC
906 *
907 * @IEEE80211_HW_AMPDU_AGGREGATION:
908 *	Hardware supports 11n A-MPDU aggregation.
909 *
910 * @IEEE80211_HW_SUPPORTS_PS:
911 *	Hardware has power save support (i.e. can go to sleep).
912 *
913 * @IEEE80211_HW_PS_NULLFUNC_STACK:
914 *	Hardware requires nullfunc frame handling in stack, implies
915 *	stack support for dynamic PS.
916 *
917 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
918 *	Hardware has support for dynamic PS.
919 *
920 * @IEEE80211_HW_MFP_CAPABLE:
921 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
922 *
923 * @IEEE80211_HW_BEACON_FILTER:
924 *	Hardware supports dropping of irrelevant beacon frames to
925 *	avoid waking up cpu.
926 */
927enum ieee80211_hw_flags {
928	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
929	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
930	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
931	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
932	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
933	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
934	IEEE80211_HW_NOISE_DBM				= 1<<7,
935	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
936	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
937	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
938	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
939	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
940	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
941	IEEE80211_HW_BEACON_FILTER			= 1<<14,
942};
943
944/**
945 * struct ieee80211_hw - hardware information and state
946 *
947 * This structure contains the configuration and hardware
948 * information for an 802.11 PHY.
949 *
950 * @wiphy: This points to the &struct wiphy allocated for this
951 *	802.11 PHY. You must fill in the @perm_addr and @dev
952 *	members of this structure using SET_IEEE80211_DEV()
953 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
954 *	bands (with channels, bitrates) are registered here.
955 *
956 * @conf: &struct ieee80211_conf, device configuration, don't use.
957 *
958 * @priv: pointer to private area that was allocated for driver use
959 *	along with this structure.
960 *
961 * @flags: hardware flags, see &enum ieee80211_hw_flags.
962 *
963 * @extra_tx_headroom: headroom to reserve in each transmit skb
964 *	for use by the driver (e.g. for transmit headers.)
965 *
966 * @channel_change_time: time (in microseconds) it takes to change channels.
967 *
968 * @max_signal: Maximum value for signal (rssi) in RX information, used
969 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
970 *
971 * @max_listen_interval: max listen interval in units of beacon interval
972 *     that HW supports
973 *
974 * @queues: number of available hardware transmit queues for
975 *	data packets. WMM/QoS requires at least four, these
976 *	queues need to have configurable access parameters.
977 *
978 * @rate_control_algorithm: rate control algorithm for this hardware.
979 *	If unset (NULL), the default algorithm will be used. Must be
980 *	set before calling ieee80211_register_hw().
981 *
982 * @vif_data_size: size (in bytes) of the drv_priv data area
983 *	within &struct ieee80211_vif.
984 * @sta_data_size: size (in bytes) of the drv_priv data area
985 *	within &struct ieee80211_sta.
986 *
987 * @max_rates: maximum number of alternate rate retry stages
988 * @max_rate_tries: maximum number of tries for each stage
989 */
990struct ieee80211_hw {
991	struct ieee80211_conf conf;
992	struct wiphy *wiphy;
993	const char *rate_control_algorithm;
994	void *priv;
995	u32 flags;
996	unsigned int extra_tx_headroom;
997	int channel_change_time;
998	int vif_data_size;
999	int sta_data_size;
1000	u16 queues;
1001	u16 max_listen_interval;
1002	s8 max_signal;
1003	u8 max_rates;
1004	u8 max_rate_tries;
1005};
1006
1007/**
1008 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1009 *
1010 * @wiphy: the &struct wiphy which we want to query
1011 *
1012 * mac80211 drivers can use this to get to their respective
1013 * &struct ieee80211_hw. Drivers wishing to get to their own private
1014 * structure can then access it via hw->priv. Note that mac802111 drivers should
1015 * not use wiphy_priv() to try to get their private driver structure as this
1016 * is already used internally by mac80211.
1017 */
1018struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1019
1020/**
1021 * SET_IEEE80211_DEV - set device for 802.11 hardware
1022 *
1023 * @hw: the &struct ieee80211_hw to set the device for
1024 * @dev: the &struct device of this 802.11 device
1025 */
1026static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1027{
1028	set_wiphy_dev(hw->wiphy, dev);
1029}
1030
1031/**
1032 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1033 *
1034 * @hw: the &struct ieee80211_hw to set the MAC address for
1035 * @addr: the address to set
1036 */
1037static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1038{
1039	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1040}
1041
1042static inline struct ieee80211_rate *
1043ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1044		      const struct ieee80211_tx_info *c)
1045{
1046	if (WARN_ON(c->control.rates[0].idx < 0))
1047		return NULL;
1048	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1049}
1050
1051static inline struct ieee80211_rate *
1052ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1053			   const struct ieee80211_tx_info *c)
1054{
1055	if (c->control.rts_cts_rate_idx < 0)
1056		return NULL;
1057	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1058}
1059
1060static inline struct ieee80211_rate *
1061ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1062			     const struct ieee80211_tx_info *c, int idx)
1063{
1064	if (c->control.rates[idx + 1].idx < 0)
1065		return NULL;
1066	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1067}
1068
1069/**
1070 * DOC: Hardware crypto acceleration
1071 *
1072 * mac80211 is capable of taking advantage of many hardware
1073 * acceleration designs for encryption and decryption operations.
1074 *
1075 * The set_key() callback in the &struct ieee80211_ops for a given
1076 * device is called to enable hardware acceleration of encryption and
1077 * decryption. The callback takes a @sta parameter that will be NULL
1078 * for default keys or keys used for transmission only, or point to
1079 * the station information for the peer for individual keys.
1080 * Multiple transmission keys with the same key index may be used when
1081 * VLANs are configured for an access point.
1082 *
1083 * When transmitting, the TX control data will use the @hw_key_idx
1084 * selected by the driver by modifying the &struct ieee80211_key_conf
1085 * pointed to by the @key parameter to the set_key() function.
1086 *
1087 * The set_key() call for the %SET_KEY command should return 0 if
1088 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1089 * added; if you return 0 then hw_key_idx must be assigned to the
1090 * hardware key index, you are free to use the full u8 range.
1091 *
1092 * When the cmd is %DISABLE_KEY then it must succeed.
1093 *
1094 * Note that it is permissible to not decrypt a frame even if a key
1095 * for it has been uploaded to hardware, the stack will not make any
1096 * decision based on whether a key has been uploaded or not but rather
1097 * based on the receive flags.
1098 *
1099 * The &struct ieee80211_key_conf structure pointed to by the @key
1100 * parameter is guaranteed to be valid until another call to set_key()
1101 * removes it, but it can only be used as a cookie to differentiate
1102 * keys.
1103 *
1104 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1105 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1106 * handler.
1107 * The update_tkip_key() call updates the driver with the new phase 1 key.
1108 * This happens everytime the iv16 wraps around (every 65536 packets). The
1109 * set_key() call will happen only once for each key (unless the AP did
1110 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1111 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1112 * handler is software decryption with wrap around of iv16.
1113 */
1114
1115/**
1116 * DOC: Powersave support
1117 *
1118 * mac80211 has support for various powersave implementations.
1119 *
1120 * First, it can support hardware that handles all powersaving by
1121 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1122 * hardware flag. In that case, it will be told about the desired
1123 * powersave mode depending on the association status, and the driver
1124 * must take care of sending nullfunc frames when necessary, i.e. when
1125 * entering and leaving powersave mode. The driver is required to look at
1126 * the AID in beacons and signal to the AP that it woke up when it finds
1127 * traffic directed to it. This mode supports dynamic PS by simply
1128 * enabling/disabling PS.
1129 *
1130 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1131 * flag to indicate that it can support dynamic PS mode itself (see below).
1132 *
1133 * Other hardware designs cannot send nullfunc frames by themselves and also
1134 * need software support for parsing the TIM bitmap. This is also supported
1135 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1136 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1137 * required to pass up beacons. The hardware is still required to handle
1138 * waking up for multicast traffic; if it cannot the driver must handle that
1139 * as best as it can, mac80211 is too slow.
1140 *
1141 * Dynamic powersave mode is an extension to normal powersave mode in which
1142 * the hardware stays awake for a user-specified period of time after sending
1143 * a frame so that reply frames need not be buffered and therefore delayed
1144 * to the next wakeup. This can either be supported by hardware, in which case
1145 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1146 * value, or by the stack if all nullfunc handling is in the stack.
1147 */
1148
1149/**
1150 * DOC: Beacon filter support
1151 *
1152 * Some hardware have beacon filter support to reduce host cpu wakeups
1153 * which will reduce system power consumption. It usuallly works so that
1154 * the firmware creates a checksum of the beacon but omits all constantly
1155 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1156 * beacon is forwarded to the host, otherwise it will be just dropped. That
1157 * way the host will only receive beacons where some relevant information
1158 * (for example ERP protection or WMM settings) have changed.
1159 *
1160 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1161 * hardware capability. The driver needs to enable beacon filter support
1162 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1163 * power save is enabled, the stack will not check for beacon loss and the
1164 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1165 *
1166 * The time (or number of beacons missed) until the firmware notifies the
1167 * driver of a beacon loss event (which in turn causes the driver to call
1168 * ieee80211_beacon_loss()) should be configurable and will be controlled
1169 * by mac80211 and the roaming algorithm in the future.
1170 *
1171 * Since there may be constantly changing information elements that nothing
1172 * in the software stack cares about, we will, in the future, have mac80211
1173 * tell the driver which information elements are interesting in the sense
1174 * that we want to see changes in them. This will include
1175 *  - a list of information element IDs
1176 *  - a list of OUIs for the vendor information element
1177 *
1178 * Ideally, the hardware would filter out any beacons without changes in the
1179 * requested elements, but if it cannot support that it may, at the expense
1180 * of some efficiency, filter out only a subset. For example, if the device
1181 * doesn't support checking for OUIs it should pass up all changes in all
1182 * vendor information elements.
1183 *
1184 * Note that change, for the sake of simplification, also includes information
1185 * elements appearing or disappearing from the beacon.
1186 *
1187 * Some hardware supports an "ignore list" instead, just make sure nothing
1188 * that was requested is on the ignore list, and include commonly changing
1189 * information element IDs in the ignore list, for example 11 (BSS load) and
1190 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1191 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1192 * it could also include some currently unused IDs.
1193 *
1194 *
1195 * In addition to these capabilities, hardware should support notifying the
1196 * host of changes in the beacon RSSI. This is relevant to implement roaming
1197 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1198 * the received data packets). This can consist in notifying the host when
1199 * the RSSI changes significantly or when it drops below or rises above
1200 * configurable thresholds. In the future these thresholds will also be
1201 * configured by mac80211 (which gets them from userspace) to implement
1202 * them as the roaming algorithm requires.
1203 *
1204 * If the hardware cannot implement this, the driver should ask it to
1205 * periodically pass beacon frames to the host so that software can do the
1206 * signal strength threshold checking.
1207 */
1208
1209/**
1210 * DOC: Frame filtering
1211 *
1212 * mac80211 requires to see many management frames for proper
1213 * operation, and users may want to see many more frames when
1214 * in monitor mode. However, for best CPU usage and power consumption,
1215 * having as few frames as possible percolate through the stack is
1216 * desirable. Hence, the hardware should filter as much as possible.
1217 *
1218 * To achieve this, mac80211 uses filter flags (see below) to tell
1219 * the driver's configure_filter() function which frames should be
1220 * passed to mac80211 and which should be filtered out.
1221 *
1222 * Before configure_filter() is invoked, the prepare_multicast()
1223 * callback is invoked with the parameters @mc_count and @mc_list
1224 * for the combined multicast address list of all virtual interfaces.
1225 * It's use is optional, and it returns a u64 that is passed to
1226 * configure_filter(). Additionally, configure_filter() has the
1227 * arguments @changed_flags telling which flags were changed and
1228 * @total_flags with the new flag states.
1229 *
1230 * If your device has no multicast address filters your driver will
1231 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1232 * parameter to see whether multicast frames should be accepted
1233 * or dropped.
1234 *
1235 * All unsupported flags in @total_flags must be cleared.
1236 * Hardware does not support a flag if it is incapable of _passing_
1237 * the frame to the stack. Otherwise the driver must ignore
1238 * the flag, but not clear it.
1239 * You must _only_ clear the flag (announce no support for the
1240 * flag to mac80211) if you are not able to pass the packet type
1241 * to the stack (so the hardware always filters it).
1242 * So for example, you should clear @FIF_CONTROL, if your hardware
1243 * always filters control frames. If your hardware always passes
1244 * control frames to the kernel and is incapable of filtering them,
1245 * you do _not_ clear the @FIF_CONTROL flag.
1246 * This rule applies to all other FIF flags as well.
1247 */
1248
1249/**
1250 * enum ieee80211_filter_flags - hardware filter flags
1251 *
1252 * These flags determine what the filter in hardware should be
1253 * programmed to let through and what should not be passed to the
1254 * stack. It is always safe to pass more frames than requested,
1255 * but this has negative impact on power consumption.
1256 *
1257 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1258 *	think of the BSS as your network segment and then this corresponds
1259 *	to the regular ethernet device promiscuous mode.
1260 *
1261 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1262 *	by the user or if the hardware is not capable of filtering by
1263 *	multicast address.
1264 *
1265 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1266 *	%RX_FLAG_FAILED_FCS_CRC for them)
1267 *
1268 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1269 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1270 *
1271 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1272 *	to the hardware that it should not filter beacons or probe responses
1273 *	by BSSID. Filtering them can greatly reduce the amount of processing
1274 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1275 *	honour this flag if possible.
1276 *
1277 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1278 *  is not set then only those addressed to this station.
1279 *
1280 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1281 *
1282 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1283 *  those addressed to this station.
1284 */
1285enum ieee80211_filter_flags {
1286	FIF_PROMISC_IN_BSS	= 1<<0,
1287	FIF_ALLMULTI		= 1<<1,
1288	FIF_FCSFAIL		= 1<<2,
1289	FIF_PLCPFAIL		= 1<<3,
1290	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1291	FIF_CONTROL		= 1<<5,
1292	FIF_OTHER_BSS		= 1<<6,
1293	FIF_PSPOLL		= 1<<7,
1294};
1295
1296/**
1297 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1298 *
1299 * These flags are used with the ampdu_action() callback in
1300 * &struct ieee80211_ops to indicate which action is needed.
1301 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1302 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1303 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1304 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1305 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1306 */
1307enum ieee80211_ampdu_mlme_action {
1308	IEEE80211_AMPDU_RX_START,
1309	IEEE80211_AMPDU_RX_STOP,
1310	IEEE80211_AMPDU_TX_START,
1311	IEEE80211_AMPDU_TX_STOP,
1312	IEEE80211_AMPDU_TX_OPERATIONAL,
1313};
1314
1315/**
1316 * struct ieee80211_ops - callbacks from mac80211 to the driver
1317 *
1318 * This structure contains various callbacks that the driver may
1319 * handle or, in some cases, must handle, for example to configure
1320 * the hardware to a new channel or to transmit a frame.
1321 *
1322 * @tx: Handler that 802.11 module calls for each transmitted frame.
1323 *	skb contains the buffer starting from the IEEE 802.11 header.
1324 *	The low-level driver should send the frame out based on
1325 *	configuration in the TX control data. This handler should,
1326 *	preferably, never fail and stop queues appropriately, more
1327 *	importantly, however, it must never fail for A-MPDU-queues.
1328 *	This function should return NETDEV_TX_OK except in very
1329 *	limited cases.
1330 *	Must be implemented and atomic.
1331 *
1332 * @start: Called before the first netdevice attached to the hardware
1333 *	is enabled. This should turn on the hardware and must turn on
1334 *	frame reception (for possibly enabled monitor interfaces.)
1335 *	Returns negative error codes, these may be seen in userspace,
1336 *	or zero.
1337 *	When the device is started it should not have a MAC address
1338 *	to avoid acknowledging frames before a non-monitor device
1339 *	is added.
1340 *	Must be implemented.
1341 *
1342 * @stop: Called after last netdevice attached to the hardware
1343 *	is disabled. This should turn off the hardware (at least
1344 *	it must turn off frame reception.)
1345 *	May be called right after add_interface if that rejects
1346 *	an interface. If you added any work onto the mac80211 workqueue
1347 *	you should ensure to cancel it on this callback.
1348 *	Must be implemented.
1349 *
1350 * @add_interface: Called when a netdevice attached to the hardware is
1351 *	enabled. Because it is not called for monitor mode devices, @start
1352 *	and @stop must be implemented.
1353 *	The driver should perform any initialization it needs before
1354 *	the device can be enabled. The initial configuration for the
1355 *	interface is given in the conf parameter.
1356 *	The callback may refuse to add an interface by returning a
1357 *	negative error code (which will be seen in userspace.)
1358 *	Must be implemented.
1359 *
1360 * @remove_interface: Notifies a driver that an interface is going down.
1361 *	The @stop callback is called after this if it is the last interface
1362 *	and no monitor interfaces are present.
1363 *	When all interfaces are removed, the MAC address in the hardware
1364 *	must be cleared so the device no longer acknowledges packets,
1365 *	the mac_addr member of the conf structure is, however, set to the
1366 *	MAC address of the device going away.
1367 *	Hence, this callback must be implemented.
1368 *
1369 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1370 *	function to change hardware configuration, e.g., channel.
1371 *	This function should never fail but returns a negative error code
1372 *	if it does.
1373 *
1374 * @bss_info_changed: Handler for configuration requests related to BSS
1375 *	parameters that may vary during BSS's lifespan, and may affect low
1376 *	level driver (e.g. assoc/disassoc status, erp parameters).
1377 *	This function should not be used if no BSS has been set, unless
1378 *	for association indication. The @changed parameter indicates which
1379 *	of the bss parameters has changed when a call is made.
1380 *
1381 * @prepare_multicast: Prepare for multicast filter configuration.
1382 *	This callback is optional, and its return value is passed
1383 *	to configure_filter(). This callback must be atomic.
1384 *
1385 * @configure_filter: Configure the device's RX filter.
1386 *	See the section "Frame filtering" for more information.
1387 *	This callback must be implemented.
1388 *
1389 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1390 * 	must be set or cleared for a given STA. Must be atomic.
1391 *
1392 * @set_key: See the section "Hardware crypto acceleration"
1393 *	This callback can sleep, and is only called between add_interface
1394 *	and remove_interface calls, i.e. while the given virtual interface
1395 *	is enabled.
1396 *	Returns a negative error code if the key can't be added.
1397 *
1398 * @update_tkip_key: See the section "Hardware crypto acceleration"
1399 * 	This callback will be called in the context of Rx. Called for drivers
1400 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1401 *
1402 * @hw_scan: Ask the hardware to service the scan request, no need to start
1403 *	the scan state machine in stack. The scan must honour the channel
1404 *	configuration done by the regulatory agent in the wiphy's
1405 *	registered bands. The hardware (or the driver) needs to make sure
1406 *	that power save is disabled.
1407 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1408 *	entire IEs after the SSID, so that drivers need not look at these
1409 *	at all but just send them after the SSID -- mac80211 includes the
1410 *	(extended) supported rates and HT information (where applicable).
1411 *	When the scan finishes, ieee80211_scan_completed() must be called;
1412 *	note that it also must be called when the scan cannot finish due to
1413 *	any error unless this callback returned a negative error code.
1414 *
1415 * @sw_scan_start: Notifier function that is called just before a software scan
1416 *	is started. Can be NULL, if the driver doesn't need this notification.
1417 *
1418 * @sw_scan_complete: Notifier function that is called just after a software scan
1419 *	finished. Can be NULL, if the driver doesn't need this notification.
1420 *
1421 * @get_stats: Return low-level statistics.
1422 * 	Returns zero if statistics are available.
1423 *
1424 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1425 *	callback should be provided to read the TKIP transmit IVs (both IV32
1426 *	and IV16) for the given key from hardware.
1427 *
1428 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1429 *
1430 * @sta_notify: Notifies low level driver about addition, removal or power
1431 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1432 *	Must be atomic.
1433 *
1434 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1435 *	bursting) for a hardware TX queue.
1436 *	Returns a negative error code on failure.
1437 *
1438 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1439 *	to get number of currently queued packets (queue length), maximum queue
1440 *	size (limit), and total number of packets sent using each TX queue
1441 *	(count). The 'stats' pointer points to an array that has hw->queues
1442 *	items.
1443 *
1444 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1445 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1446 *	required function.
1447 *
1448 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1449 *      Currently, this is only used for IBSS mode debugging. Is not a
1450 *	required function.
1451 *
1452 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1453 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1454 *	function is optional if the firmware/hardware takes full care of
1455 *	TSF synchronization.
1456 *
1457 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1458 *	This is needed only for IBSS mode and the result of this function is
1459 *	used to determine whether to reply to Probe Requests.
1460 *	Returns non-zero if this device sent the last beacon.
1461 *
1462 * @ampdu_action: Perform a certain A-MPDU action
1463 * 	The RA/TID combination determines the destination and TID we want
1464 * 	the ampdu action to be performed for. The action is defined through
1465 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1466 * 	is the first frame we expect to perform the action on. Notice
1467 * 	that TX/RX_STOP can pass NULL for this parameter.
1468 *	Returns a negative error code on failure.
1469 *
1470 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1471 *	need to set wiphy->rfkill_poll to %true before registration,
1472 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1473 *
1474 * @testmode_cmd: Implement a cfg80211 test mode command.
1475 */
1476struct ieee80211_ops {
1477	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1478	int (*start)(struct ieee80211_hw *hw);
1479	void (*stop)(struct ieee80211_hw *hw);
1480	int (*add_interface)(struct ieee80211_hw *hw,
1481			     struct ieee80211_if_init_conf *conf);
1482	void (*remove_interface)(struct ieee80211_hw *hw,
1483				 struct ieee80211_if_init_conf *conf);
1484	int (*config)(struct ieee80211_hw *hw, u32 changed);
1485	void (*bss_info_changed)(struct ieee80211_hw *hw,
1486				 struct ieee80211_vif *vif,
1487				 struct ieee80211_bss_conf *info,
1488				 u32 changed);
1489	u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1490				 int mc_count, struct dev_addr_list *mc_list);
1491	void (*configure_filter)(struct ieee80211_hw *hw,
1492				 unsigned int changed_flags,
1493				 unsigned int *total_flags,
1494				 u64 multicast);
1495	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1496		       bool set);
1497	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1498		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1499		       struct ieee80211_key_conf *key);
1500	void (*update_tkip_key)(struct ieee80211_hw *hw,
1501			struct ieee80211_key_conf *conf, const u8 *address,
1502			u32 iv32, u16 *phase1key);
1503	int (*hw_scan)(struct ieee80211_hw *hw,
1504		       struct cfg80211_scan_request *req);
1505	void (*sw_scan_start)(struct ieee80211_hw *hw);
1506	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1507	int (*get_stats)(struct ieee80211_hw *hw,
1508			 struct ieee80211_low_level_stats *stats);
1509	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1510			     u32 *iv32, u16 *iv16);
1511	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1512	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1513			enum sta_notify_cmd, struct ieee80211_sta *sta);
1514	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1515		       const struct ieee80211_tx_queue_params *params);
1516	int (*get_tx_stats)(struct ieee80211_hw *hw,
1517			    struct ieee80211_tx_queue_stats *stats);
1518	u64 (*get_tsf)(struct ieee80211_hw *hw);
1519	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1520	void (*reset_tsf)(struct ieee80211_hw *hw);
1521	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1522	int (*ampdu_action)(struct ieee80211_hw *hw,
1523			    enum ieee80211_ampdu_mlme_action action,
1524			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1525
1526	void (*rfkill_poll)(struct ieee80211_hw *hw);
1527#ifdef CONFIG_NL80211_TESTMODE
1528	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1529#endif
1530};
1531
1532/**
1533 * ieee80211_alloc_hw -  Allocate a new hardware device
1534 *
1535 * This must be called once for each hardware device. The returned pointer
1536 * must be used to refer to this device when calling other functions.
1537 * mac80211 allocates a private data area for the driver pointed to by
1538 * @priv in &struct ieee80211_hw, the size of this area is given as
1539 * @priv_data_len.
1540 *
1541 * @priv_data_len: length of private data
1542 * @ops: callbacks for this device
1543 */
1544struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1545					const struct ieee80211_ops *ops);
1546
1547/**
1548 * ieee80211_register_hw - Register hardware device
1549 *
1550 * You must call this function before any other functions in
1551 * mac80211. Note that before a hardware can be registered, you
1552 * need to fill the contained wiphy's information.
1553 *
1554 * @hw: the device to register as returned by ieee80211_alloc_hw()
1555 */
1556int ieee80211_register_hw(struct ieee80211_hw *hw);
1557
1558#ifdef CONFIG_MAC80211_LEDS
1559extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1560extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1561extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1562extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1563#endif
1564/**
1565 * ieee80211_get_tx_led_name - get name of TX LED
1566 *
1567 * mac80211 creates a transmit LED trigger for each wireless hardware
1568 * that can be used to drive LEDs if your driver registers a LED device.
1569 * This function returns the name (or %NULL if not configured for LEDs)
1570 * of the trigger so you can automatically link the LED device.
1571 *
1572 * @hw: the hardware to get the LED trigger name for
1573 */
1574static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1575{
1576#ifdef CONFIG_MAC80211_LEDS
1577	return __ieee80211_get_tx_led_name(hw);
1578#else
1579	return NULL;
1580#endif
1581}
1582
1583/**
1584 * ieee80211_get_rx_led_name - get name of RX LED
1585 *
1586 * mac80211 creates a receive LED trigger for each wireless hardware
1587 * that can be used to drive LEDs if your driver registers a LED device.
1588 * This function returns the name (or %NULL if not configured for LEDs)
1589 * of the trigger so you can automatically link the LED device.
1590 *
1591 * @hw: the hardware to get the LED trigger name for
1592 */
1593static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1594{
1595#ifdef CONFIG_MAC80211_LEDS
1596	return __ieee80211_get_rx_led_name(hw);
1597#else
1598	return NULL;
1599#endif
1600}
1601
1602/**
1603 * ieee80211_get_assoc_led_name - get name of association LED
1604 *
1605 * mac80211 creates a association LED trigger for each wireless hardware
1606 * that can be used to drive LEDs if your driver registers a LED device.
1607 * This function returns the name (or %NULL if not configured for LEDs)
1608 * of the trigger so you can automatically link the LED device.
1609 *
1610 * @hw: the hardware to get the LED trigger name for
1611 */
1612static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1613{
1614#ifdef CONFIG_MAC80211_LEDS
1615	return __ieee80211_get_assoc_led_name(hw);
1616#else
1617	return NULL;
1618#endif
1619}
1620
1621/**
1622 * ieee80211_get_radio_led_name - get name of radio LED
1623 *
1624 * mac80211 creates a radio change LED trigger for each wireless hardware
1625 * that can be used to drive LEDs if your driver registers a LED device.
1626 * This function returns the name (or %NULL if not configured for LEDs)
1627 * of the trigger so you can automatically link the LED device.
1628 *
1629 * @hw: the hardware to get the LED trigger name for
1630 */
1631static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1632{
1633#ifdef CONFIG_MAC80211_LEDS
1634	return __ieee80211_get_radio_led_name(hw);
1635#else
1636	return NULL;
1637#endif
1638}
1639
1640/**
1641 * ieee80211_unregister_hw - Unregister a hardware device
1642 *
1643 * This function instructs mac80211 to free allocated resources
1644 * and unregister netdevices from the networking subsystem.
1645 *
1646 * @hw: the hardware to unregister
1647 */
1648void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1649
1650/**
1651 * ieee80211_free_hw - free hardware descriptor
1652 *
1653 * This function frees everything that was allocated, including the
1654 * private data for the driver. You must call ieee80211_unregister_hw()
1655 * before calling this function.
1656 *
1657 * @hw: the hardware to free
1658 */
1659void ieee80211_free_hw(struct ieee80211_hw *hw);
1660
1661/**
1662 * ieee80211_restart_hw - restart hardware completely
1663 *
1664 * Call this function when the hardware was restarted for some reason
1665 * (hardware error, ...) and the driver is unable to restore its state
1666 * by itself. mac80211 assumes that at this point the driver/hardware
1667 * is completely uninitialised and stopped, it starts the process by
1668 * calling the ->start() operation. The driver will need to reset all
1669 * internal state that it has prior to calling this function.
1670 *
1671 * @hw: the hardware to restart
1672 */
1673void ieee80211_restart_hw(struct ieee80211_hw *hw);
1674
1675/*
1676 * trick to avoid symbol clashes with the ieee80211 subsystem,
1677 * use the inline below instead
1678 */
1679void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1680
1681/**
1682 * ieee80211_rx - receive frame
1683 *
1684 * Use this function to hand received frames to mac80211. The receive
1685 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1686 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1687 *
1688 * This function may not be called in IRQ context. Calls to this function
1689 * for a single hardware must be synchronized against each other. Calls
1690 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1691 * single hardware.
1692 *
1693 * @hw: the hardware this frame came in on
1694 * @skb: the buffer to receive, owned by mac80211 after this call
1695 */
1696static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1697{
1698	__ieee80211_rx(hw, skb);
1699}
1700
1701/**
1702 * ieee80211_rx_irqsafe - receive frame
1703 *
1704 * Like ieee80211_rx() but can be called in IRQ context
1705 * (internally defers to a tasklet.)
1706 *
1707 * Calls to this function and ieee80211_rx() may not be mixed for a
1708 * single hardware.
1709 *
1710 * @hw: the hardware this frame came in on
1711 * @skb: the buffer to receive, owned by mac80211 after this call
1712 */
1713void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1714
1715/**
1716 * ieee80211_tx_status - transmit status callback
1717 *
1718 * Call this function for all transmitted frames after they have been
1719 * transmitted. It is permissible to not call this function for
1720 * multicast frames but this can affect statistics.
1721 *
1722 * This function may not be called in IRQ context. Calls to this function
1723 * for a single hardware must be synchronized against each other. Calls
1724 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1725 * for a single hardware.
1726 *
1727 * @hw: the hardware the frame was transmitted by
1728 * @skb: the frame that was transmitted, owned by mac80211 after this call
1729 */
1730void ieee80211_tx_status(struct ieee80211_hw *hw,
1731			 struct sk_buff *skb);
1732
1733/**
1734 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1735 *
1736 * Like ieee80211_tx_status() but can be called in IRQ context
1737 * (internally defers to a tasklet.)
1738 *
1739 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1740 * single hardware.
1741 *
1742 * @hw: the hardware the frame was transmitted by
1743 * @skb: the frame that was transmitted, owned by mac80211 after this call
1744 */
1745void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1746				 struct sk_buff *skb);
1747
1748/**
1749 * ieee80211_beacon_get - beacon generation function
1750 * @hw: pointer obtained from ieee80211_alloc_hw().
1751 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1752 *
1753 * If the beacon frames are generated by the host system (i.e., not in
1754 * hardware/firmware), the low-level driver uses this function to receive
1755 * the next beacon frame from the 802.11 code. The low-level is responsible
1756 * for calling this function before beacon data is needed (e.g., based on
1757 * hardware interrupt). Returned skb is used only once and low-level driver
1758 * is responsible for freeing it.
1759 */
1760struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1761				     struct ieee80211_vif *vif);
1762
1763/**
1764 * ieee80211_rts_get - RTS frame generation function
1765 * @hw: pointer obtained from ieee80211_alloc_hw().
1766 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1767 * @frame: pointer to the frame that is going to be protected by the RTS.
1768 * @frame_len: the frame length (in octets).
1769 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1770 * @rts: The buffer where to store the RTS frame.
1771 *
1772 * If the RTS frames are generated by the host system (i.e., not in
1773 * hardware/firmware), the low-level driver uses this function to receive
1774 * the next RTS frame from the 802.11 code. The low-level is responsible
1775 * for calling this function before and RTS frame is needed.
1776 */
1777void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1778		       const void *frame, size_t frame_len,
1779		       const struct ieee80211_tx_info *frame_txctl,
1780		       struct ieee80211_rts *rts);
1781
1782/**
1783 * ieee80211_rts_duration - Get the duration field for an RTS frame
1784 * @hw: pointer obtained from ieee80211_alloc_hw().
1785 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1786 * @frame_len: the length of the frame that is going to be protected by the RTS.
1787 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1788 *
1789 * If the RTS is generated in firmware, but the host system must provide
1790 * the duration field, the low-level driver uses this function to receive
1791 * the duration field value in little-endian byteorder.
1792 */
1793__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1794			      struct ieee80211_vif *vif, size_t frame_len,
1795			      const struct ieee80211_tx_info *frame_txctl);
1796
1797/**
1798 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1799 * @hw: pointer obtained from ieee80211_alloc_hw().
1800 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1801 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1802 * @frame_len: the frame length (in octets).
1803 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1804 * @cts: The buffer where to store the CTS-to-self frame.
1805 *
1806 * If the CTS-to-self frames are generated by the host system (i.e., not in
1807 * hardware/firmware), the low-level driver uses this function to receive
1808 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1809 * for calling this function before and CTS-to-self frame is needed.
1810 */
1811void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1812			     struct ieee80211_vif *vif,
1813			     const void *frame, size_t frame_len,
1814			     const struct ieee80211_tx_info *frame_txctl,
1815			     struct ieee80211_cts *cts);
1816
1817/**
1818 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1819 * @hw: pointer obtained from ieee80211_alloc_hw().
1820 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1821 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1822 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1823 *
1824 * If the CTS-to-self is generated in firmware, but the host system must provide
1825 * the duration field, the low-level driver uses this function to receive
1826 * the duration field value in little-endian byteorder.
1827 */
1828__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1829				    struct ieee80211_vif *vif,
1830				    size_t frame_len,
1831				    const struct ieee80211_tx_info *frame_txctl);
1832
1833/**
1834 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1835 * @hw: pointer obtained from ieee80211_alloc_hw().
1836 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1837 * @frame_len: the length of the frame.
1838 * @rate: the rate at which the frame is going to be transmitted.
1839 *
1840 * Calculate the duration field of some generic frame, given its
1841 * length and transmission rate (in 100kbps).
1842 */
1843__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1844					struct ieee80211_vif *vif,
1845					size_t frame_len,
1846					struct ieee80211_rate *rate);
1847
1848/**
1849 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1850 * @hw: pointer as obtained from ieee80211_alloc_hw().
1851 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1852 *
1853 * Function for accessing buffered broadcast and multicast frames. If
1854 * hardware/firmware does not implement buffering of broadcast/multicast
1855 * frames when power saving is used, 802.11 code buffers them in the host
1856 * memory. The low-level driver uses this function to fetch next buffered
1857 * frame. In most cases, this is used when generating beacon frame. This
1858 * function returns a pointer to the next buffered skb or NULL if no more
1859 * buffered frames are available.
1860 *
1861 * Note: buffered frames are returned only after DTIM beacon frame was
1862 * generated with ieee80211_beacon_get() and the low-level driver must thus
1863 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1864 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1865 * does not need to check for DTIM beacons separately and should be able to
1866 * use common code for all beacons.
1867 */
1868struct sk_buff *
1869ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1870
1871/**
1872 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1873 *
1874 * This function computes a TKIP rc4 key for an skb. It computes
1875 * a phase 1 key if needed (iv16 wraps around). This function is to
1876 * be used by drivers which can do HW encryption but need to compute
1877 * to phase 1/2 key in SW.
1878 *
1879 * @keyconf: the parameter passed with the set key
1880 * @skb: the skb for which the key is needed
1881 * @type: TBD
1882 * @key: a buffer to which the key will be written
1883 */
1884void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1885				struct sk_buff *skb,
1886				enum ieee80211_tkip_key_type type, u8 *key);
1887/**
1888 * ieee80211_wake_queue - wake specific queue
1889 * @hw: pointer as obtained from ieee80211_alloc_hw().
1890 * @queue: queue number (counted from zero).
1891 *
1892 * Drivers should use this function instead of netif_wake_queue.
1893 */
1894void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1895
1896/**
1897 * ieee80211_stop_queue - stop specific queue
1898 * @hw: pointer as obtained from ieee80211_alloc_hw().
1899 * @queue: queue number (counted from zero).
1900 *
1901 * Drivers should use this function instead of netif_stop_queue.
1902 */
1903void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1904
1905/**
1906 * ieee80211_queue_stopped - test status of the queue
1907 * @hw: pointer as obtained from ieee80211_alloc_hw().
1908 * @queue: queue number (counted from zero).
1909 *
1910 * Drivers should use this function instead of netif_stop_queue.
1911 */
1912
1913int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1914
1915/**
1916 * ieee80211_stop_queues - stop all queues
1917 * @hw: pointer as obtained from ieee80211_alloc_hw().
1918 *
1919 * Drivers should use this function instead of netif_stop_queue.
1920 */
1921void ieee80211_stop_queues(struct ieee80211_hw *hw);
1922
1923/**
1924 * ieee80211_wake_queues - wake all queues
1925 * @hw: pointer as obtained from ieee80211_alloc_hw().
1926 *
1927 * Drivers should use this function instead of netif_wake_queue.
1928 */
1929void ieee80211_wake_queues(struct ieee80211_hw *hw);
1930
1931/**
1932 * ieee80211_scan_completed - completed hardware scan
1933 *
1934 * When hardware scan offload is used (i.e. the hw_scan() callback is
1935 * assigned) this function needs to be called by the driver to notify
1936 * mac80211 that the scan finished.
1937 *
1938 * @hw: the hardware that finished the scan
1939 * @aborted: set to true if scan was aborted
1940 */
1941void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1942
1943/**
1944 * ieee80211_iterate_active_interfaces - iterate active interfaces
1945 *
1946 * This function iterates over the interfaces associated with a given
1947 * hardware that are currently active and calls the callback for them.
1948 * This function allows the iterator function to sleep, when the iterator
1949 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1950 * be used.
1951 *
1952 * @hw: the hardware struct of which the interfaces should be iterated over
1953 * @iterator: the iterator function to call
1954 * @data: first argument of the iterator function
1955 */
1956void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1957					 void (*iterator)(void *data, u8 *mac,
1958						struct ieee80211_vif *vif),
1959					 void *data);
1960
1961/**
1962 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1963 *
1964 * This function iterates over the interfaces associated with a given
1965 * hardware that are currently active and calls the callback for them.
1966 * This function requires the iterator callback function to be atomic,
1967 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1968 *
1969 * @hw: the hardware struct of which the interfaces should be iterated over
1970 * @iterator: the iterator function to call, cannot sleep
1971 * @data: first argument of the iterator function
1972 */
1973void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1974						void (*iterator)(void *data,
1975						    u8 *mac,
1976						    struct ieee80211_vif *vif),
1977						void *data);
1978
1979/**
1980 * ieee80211_queue_work - add work onto the mac80211 workqueue
1981 *
1982 * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
1983 * This helper ensures drivers are not queueing work when they should not be.
1984 *
1985 * @hw: the hardware struct for the interface we are adding work for
1986 * @work: the work we want to add onto the mac80211 workqueue
1987 */
1988void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
1989
1990/**
1991 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
1992 *
1993 * Drivers and mac80211 use this to queue delayed work onto the mac80211
1994 * workqueue.
1995 *
1996 * @hw: the hardware struct for the interface we are adding work for
1997 * @dwork: delayable work to queue onto the mac80211 workqueue
1998 * @delay: number of jiffies to wait before queueing
1999 */
2000void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
2001				  struct delayed_work *dwork,
2002				  unsigned long delay);
2003
2004/**
2005 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
2006 * @hw: pointer as obtained from ieee80211_alloc_hw().
2007 * @ra: receiver address of the BA session recipient
2008 * @tid: the TID to BA on.
2009 *
2010 * Return: success if addBA request was sent, failure otherwise
2011 *
2012 * Although mac80211/low level driver/user space application can estimate
2013 * the need to start aggregation on a certain RA/TID, the session level
2014 * will be managed by the mac80211.
2015 */
2016int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2017
2018/**
2019 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
2020 * @hw: pointer as obtained from ieee80211_alloc_hw().
2021 * @ra: receiver address of the BA session recipient.
2022 * @tid: the TID to BA on.
2023 *
2024 * This function must be called by low level driver once it has
2025 * finished with preparations for the BA session.
2026 */
2027void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2028
2029/**
2030 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2031 * @hw: pointer as obtained from ieee80211_alloc_hw().
2032 * @ra: receiver address of the BA session recipient.
2033 * @tid: the TID to BA on.
2034 *
2035 * This function must be called by low level driver once it has
2036 * finished with preparations for the BA session.
2037 * This version of the function is IRQ-safe.
2038 */
2039void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2040				      u16 tid);
2041
2042/**
2043 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2044 * @hw: pointer as obtained from ieee80211_alloc_hw().
2045 * @ra: receiver address of the BA session recipient
2046 * @tid: the TID to stop BA.
2047 * @initiator: if indicates initiator DELBA frame will be sent.
2048 *
2049 * Return: error if no sta with matching da found, success otherwise
2050 *
2051 * Although mac80211/low level driver/user space application can estimate
2052 * the need to stop aggregation on a certain RA/TID, the session level
2053 * will be managed by the mac80211.
2054 */
2055int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2056				 u8 *ra, u16 tid,
2057				 enum ieee80211_back_parties initiator);
2058
2059/**
2060 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2061 * @hw: pointer as obtained from ieee80211_alloc_hw().
2062 * @ra: receiver address of the BA session recipient.
2063 * @tid: the desired TID to BA on.
2064 *
2065 * This function must be called by low level driver once it has
2066 * finished with preparations for the BA session tear down.
2067 */
2068void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2069
2070/**
2071 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2072 * @hw: pointer as obtained from ieee80211_alloc_hw().
2073 * @ra: receiver address of the BA session recipient.
2074 * @tid: the desired TID to BA on.
2075 *
2076 * This function must be called by low level driver once it has
2077 * finished with preparations for the BA session tear down.
2078 * This version of the function is IRQ-safe.
2079 */
2080void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2081				     u16 tid);
2082
2083/**
2084 * ieee80211_find_sta - find a station
2085 *
2086 * @hw: pointer as obtained from ieee80211_alloc_hw()
2087 * @addr: station's address
2088 *
2089 * This function must be called under RCU lock and the
2090 * resulting pointer is only valid under RCU lock as well.
2091 */
2092struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2093					 const u8 *addr);
2094
2095/**
2096 * ieee80211_beacon_loss - inform hardware does not receive beacons
2097 *
2098 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2099 *
2100 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2101 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2102 * hardware is not receiving beacons with this function.
2103 */
2104void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2105
2106/* Rate control API */
2107
2108/**
2109 * enum rate_control_changed - flags to indicate which parameter changed
2110 *
2111 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2112 *	changed, rate control algorithm can update its internal state if needed.
2113 */
2114enum rate_control_changed {
2115	IEEE80211_RC_HT_CHANGED = BIT(0)
2116};
2117
2118/**
2119 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2120 *
2121 * @hw: The hardware the algorithm is invoked for.
2122 * @sband: The band this frame is being transmitted on.
2123 * @bss_conf: the current BSS configuration
2124 * @reported_rate: The rate control algorithm can fill this in to indicate
2125 *	which rate should be reported to userspace as the current rate and
2126 *	used for rate calculations in the mesh network.
2127 * @rts: whether RTS will be used for this frame because it is longer than the
2128 *	RTS threshold
2129 * @short_preamble: whether mac80211 will request short-preamble transmission
2130 *	if the selected rate supports it
2131 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2132 * @skb: the skb that will be transmitted, the control information in it needs
2133 *	to be filled in
2134 */
2135struct ieee80211_tx_rate_control {
2136	struct ieee80211_hw *hw;
2137	struct ieee80211_supported_band *sband;
2138	struct ieee80211_bss_conf *bss_conf;
2139	struct sk_buff *skb;
2140	struct ieee80211_tx_rate reported_rate;
2141	bool rts, short_preamble;
2142	u8 max_rate_idx;
2143};
2144
2145struct rate_control_ops {
2146	struct module *module;
2147	const char *name;
2148	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2149	void (*free)(void *priv);
2150
2151	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2152	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2153			  struct ieee80211_sta *sta, void *priv_sta);
2154	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2155			    struct ieee80211_sta *sta,
2156			    void *priv_sta, u32 changed);
2157	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2158			 void *priv_sta);
2159
2160	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2161			  struct ieee80211_sta *sta, void *priv_sta,
2162			  struct sk_buff *skb);
2163	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2164			 struct ieee80211_tx_rate_control *txrc);
2165
2166	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2167				struct dentry *dir);
2168	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2169};
2170
2171static inline int rate_supported(struct ieee80211_sta *sta,
2172				 enum ieee80211_band band,
2173				 int index)
2174{
2175	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2176}
2177
2178/**
2179 * rate_control_send_low - helper for drivers for management/no-ack frames
2180 *
2181 * Rate control algorithms that agree to use the lowest rate to
2182 * send management frames and NO_ACK data with the respective hw
2183 * retries should use this in the beginning of their mac80211 get_rate
2184 * callback. If true is returned the rate control can simply return.
2185 * If false is returned we guarantee that sta and sta and priv_sta is
2186 * not null.
2187 *
2188 * Rate control algorithms wishing to do more intelligent selection of
2189 * rate for multicast/broadcast frames may choose to not use this.
2190 *
2191 * @sta: &struct ieee80211_sta pointer to the target destination. Note
2192 * 	that this may be null.
2193 * @priv_sta: private rate control structure. This may be null.
2194 * @txrc: rate control information we sholud populate for mac80211.
2195 */
2196bool rate_control_send_low(struct ieee80211_sta *sta,
2197			   void *priv_sta,
2198			   struct ieee80211_tx_rate_control *txrc);
2199
2200
2201static inline s8
2202rate_lowest_index(struct ieee80211_supported_band *sband,
2203		  struct ieee80211_sta *sta)
2204{
2205	int i;
2206
2207	for (i = 0; i < sband->n_bitrates; i++)
2208		if (rate_supported(sta, sband->band, i))
2209			return i;
2210
2211	/* warn when we cannot find a rate. */
2212	WARN_ON(1);
2213
2214	return 0;
2215}
2216
2217static inline
2218bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2219			      struct ieee80211_sta *sta)
2220{
2221	unsigned int i;
2222
2223	for (i = 0; i < sband->n_bitrates; i++)
2224		if (rate_supported(sta, sband->band, i))
2225			return true;
2226	return false;
2227}
2228
2229int ieee80211_rate_control_register(struct rate_control_ops *ops);
2230void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2231
2232static inline bool
2233conf_is_ht20(struct ieee80211_conf *conf)
2234{
2235	return conf->channel_type == NL80211_CHAN_HT20;
2236}
2237
2238static inline bool
2239conf_is_ht40_minus(struct ieee80211_conf *conf)
2240{
2241	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2242}
2243
2244static inline bool
2245conf_is_ht40_plus(struct ieee80211_conf *conf)
2246{
2247	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2248}
2249
2250static inline bool
2251conf_is_ht40(struct ieee80211_conf *conf)
2252{
2253	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2254}
2255
2256static inline bool
2257conf_is_ht(struct ieee80211_conf *conf)
2258{
2259	return conf->channel_type != NL80211_CHAN_NO_HT;
2260}
2261
2262#endif /* MAC80211_H */
2263