mac80211.h revision 3cfcf6ac6d69dc290e96416731eea5c88ac7d426
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/wireless.h>
23#include <net/cfg80211.h>
24
25/**
26 * DOC: Introduction
27 *
28 * mac80211 is the Linux stack for 802.11 hardware that implements
29 * only partial functionality in hard- or firmware. This document
30 * defines the interface between mac80211 and low-level hardware
31 * drivers.
32 */
33
34/**
35 * DOC: Calling mac80211 from interrupts
36 *
37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
38 * called in hardware interrupt context. The low-level driver must not call any
39 * other functions in hardware interrupt context. If there is a need for such
40 * call, the low-level driver should first ACK the interrupt and perform the
41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
42 * tasklet function.
43 *
44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
45 *	 use the non-IRQ-safe functions!
46 */
47
48/**
49 * DOC: Warning
50 *
51 * If you're reading this document and not the header file itself, it will
52 * be incomplete because not all documentation has been converted yet.
53 */
54
55/**
56 * DOC: Frame format
57 *
58 * As a general rule, when frames are passed between mac80211 and the driver,
59 * they start with the IEEE 802.11 header and include the same octets that are
60 * sent over the air except for the FCS which should be calculated by the
61 * hardware.
62 *
63 * There are, however, various exceptions to this rule for advanced features:
64 *
65 * The first exception is for hardware encryption and decryption offload
66 * where the IV/ICV may or may not be generated in hardware.
67 *
68 * Secondly, when the hardware handles fragmentation, the frame handed to
69 * the driver from mac80211 is the MSDU, not the MPDU.
70 *
71 * Finally, for received frames, the driver is able to indicate that it has
72 * filled a radiotap header and put that in front of the frame; if it does
73 * not do so then mac80211 may add this under certain circumstances.
74 */
75
76/**
77 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
78 *
79 * This structure describes most essential parameters needed
80 * to describe 802.11n HT characteristics in a BSS.
81 *
82 * @primary_channel: channel number of primery channel
83 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
84 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
85 */
86struct ieee80211_ht_bss_info {
87	u8 primary_channel;
88	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
89	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
90};
91
92/**
93 * enum ieee80211_max_queues - maximum number of queues
94 *
95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
96 * @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable
97 *	for A-MPDU operation.
98 */
99enum ieee80211_max_queues {
100	IEEE80211_MAX_QUEUES =		16,
101	IEEE80211_MAX_AMPDU_QUEUES =	16,
102};
103
104/**
105 * struct ieee80211_tx_queue_params - transmit queue configuration
106 *
107 * The information provided in this structure is required for QoS
108 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
109 *
110 * @aifs: arbitration interframe space [0..255]
111 * @cw_min: minimum contention window [a value of the form
112 *	2^n-1 in the range 1..32767]
113 * @cw_max: maximum contention window [like @cw_min]
114 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
115 */
116struct ieee80211_tx_queue_params {
117	u16 txop;
118	u16 cw_min;
119	u16 cw_max;
120	u8 aifs;
121};
122
123/**
124 * struct ieee80211_tx_queue_stats - transmit queue statistics
125 *
126 * @len: number of packets in queue
127 * @limit: queue length limit
128 * @count: number of frames sent
129 */
130struct ieee80211_tx_queue_stats {
131	unsigned int len;
132	unsigned int limit;
133	unsigned int count;
134};
135
136struct ieee80211_low_level_stats {
137	unsigned int dot11ACKFailureCount;
138	unsigned int dot11RTSFailureCount;
139	unsigned int dot11FCSErrorCount;
140	unsigned int dot11RTSSuccessCount;
141};
142
143/**
144 * enum ieee80211_bss_change - BSS change notification flags
145 *
146 * These flags are used with the bss_info_changed() callback
147 * to indicate which BSS parameter changed.
148 *
149 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
150 *	also implies a change in the AID.
151 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
152 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
153 * @BSS_CHANGED_ERP_SLOT: slot timing changed
154 * @BSS_CHANGED_HT: 802.11n parameters changed
155 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
156 */
157enum ieee80211_bss_change {
158	BSS_CHANGED_ASSOC		= 1<<0,
159	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
160	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
161	BSS_CHANGED_ERP_SLOT		= 1<<3,
162	BSS_CHANGED_HT                  = 1<<4,
163	BSS_CHANGED_BASIC_RATES		= 1<<5,
164};
165
166/**
167 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
168 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
169 */
170struct ieee80211_bss_ht_conf {
171	u16 operation_mode;
172};
173
174/**
175 * struct ieee80211_bss_conf - holds the BSS's changing parameters
176 *
177 * This structure keeps information about a BSS (and an association
178 * to that BSS) that can change during the lifetime of the BSS.
179 *
180 * @assoc: association status
181 * @aid: association ID number, valid only when @assoc is true
182 * @use_cts_prot: use CTS protection
183 * @use_short_preamble: use 802.11b short preamble;
184 *	if the hardware cannot handle this it must set the
185 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
186 * @use_short_slot: use short slot time (only relevant for ERP);
187 *	if the hardware cannot handle this it must set the
188 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
189 * @dtim_period: num of beacons before the next DTIM, for PSM
190 * @timestamp: beacon timestamp
191 * @beacon_int: beacon interval
192 * @assoc_capability: capabilities taken from assoc resp
193 * @ht: BSS's HT configuration
194 * @basic_rates: bitmap of basic rates, each bit stands for an
195 *	index into the rate table configured by the driver in
196 *	the current band.
197 */
198struct ieee80211_bss_conf {
199	/* association related data */
200	bool assoc;
201	u16 aid;
202	/* erp related data */
203	bool use_cts_prot;
204	bool use_short_preamble;
205	bool use_short_slot;
206	u8 dtim_period;
207	u16 beacon_int;
208	u16 assoc_capability;
209	u64 timestamp;
210	u64 basic_rates;
211	struct ieee80211_bss_ht_conf ht;
212};
213
214/**
215 * enum mac80211_tx_control_flags - flags to describe transmission information/status
216 *
217 * These flags are used with the @flags member of &ieee80211_tx_info.
218 *
219 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
220 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
221 *	number to this frame, taking care of not overwriting the fragment
222 *	number and increasing the sequence number only when the
223 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
224 *	assign sequence numbers to QoS-data frames but cannot do so correctly
225 *	for non-QoS-data and management frames because beacons need them from
226 *	that counter as well and mac80211 cannot guarantee proper sequencing.
227 *	If this flag is set, the driver should instruct the hardware to
228 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
229 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
230 *	beacons and always be clear for frames without a sequence number field.
231 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
232 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
233 *	station
234 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
235 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
236 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
237 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
238 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
239 *	because the destination STA was in powersave mode.
240 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
241 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
242 * 	is for the whole aggregation.
243 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
244 * 	so consider using block ack request (BAR).
245 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
246 *	set by rate control algorithms to indicate probe rate, will
247 *	be cleared for fragmented frames (except on the last fragment)
248 */
249enum mac80211_tx_control_flags {
250	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
251	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
252	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
253	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
254	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
255	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
256	IEEE80211_TX_CTL_AMPDU			= BIT(6),
257	IEEE80211_TX_CTL_INJECTED		= BIT(7),
258	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
259	IEEE80211_TX_STAT_ACK			= BIT(9),
260	IEEE80211_TX_STAT_AMPDU			= BIT(10),
261	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
262	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
263};
264
265enum mac80211_rate_control_flags {
266	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
267	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
268	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
269
270	/* rate index is an MCS rate number instead of an index */
271	IEEE80211_TX_RC_MCS			= BIT(3),
272	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
273	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
274	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
275	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
276};
277
278
279/* there are 40 bytes if you don't need the rateset to be kept */
280#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
281
282/* if you do need the rateset, then you have less space */
283#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
284
285/* maximum number of rate stages */
286#define IEEE80211_TX_MAX_RATES	5
287
288/**
289 * struct ieee80211_tx_rate - rate selection/status
290 *
291 * @idx: rate index to attempt to send with
292 * @flags: rate control flags (&enum mac80211_rate_control_flags)
293 * @count: number of tries in this rate before going to the next rate
294 *
295 * A value of -1 for @idx indicates an invalid rate and, if used
296 * in an array of retry rates, that no more rates should be tried.
297 *
298 * When used for transmit status reporting, the driver should
299 * always report the rate along with the flags it used.
300 */
301struct ieee80211_tx_rate {
302	s8 idx;
303	u8 count;
304	u8 flags;
305} __attribute__((packed));
306
307/**
308 * struct ieee80211_tx_info - skb transmit information
309 *
310 * This structure is placed in skb->cb for three uses:
311 *  (1) mac80211 TX control - mac80211 tells the driver what to do
312 *  (2) driver internal use (if applicable)
313 *  (3) TX status information - driver tells mac80211 what happened
314 *
315 * The TX control's sta pointer is only valid during the ->tx call,
316 * it may be NULL.
317 *
318 * @flags: transmit info flags, defined above
319 * @band: the band to transmit on (use for checking for races)
320 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
321 * @pad: padding, ignore
322 * @control: union for control data
323 * @status: union for status data
324 * @driver_data: array of driver_data pointers
325 * @ampdu_ack_len: number of aggregated frames.
326 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
327 * @ampdu_ack_map: block ack bit map for the aggregation.
328 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
329 * @ack_signal: signal strength of the ACK frame
330 */
331struct ieee80211_tx_info {
332	/* common information */
333	u32 flags;
334	u8 band;
335
336	u8 antenna_sel_tx;
337
338	/* 2 byte hole */
339	u8 pad[2];
340
341	union {
342		struct {
343			union {
344				/* rate control */
345				struct {
346					struct ieee80211_tx_rate rates[
347						IEEE80211_TX_MAX_RATES];
348					s8 rts_cts_rate_idx;
349				};
350				/* only needed before rate control */
351				unsigned long jiffies;
352			};
353			/* NB: vif can be NULL for injected frames */
354			struct ieee80211_vif *vif;
355			struct ieee80211_key_conf *hw_key;
356			struct ieee80211_sta *sta;
357		} control;
358		struct {
359			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
360			u8 ampdu_ack_len;
361			u64 ampdu_ack_map;
362			int ack_signal;
363			/* 8 bytes free */
364		} status;
365		struct {
366			struct ieee80211_tx_rate driver_rates[
367				IEEE80211_TX_MAX_RATES];
368			void *rate_driver_data[
369				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
370		};
371		void *driver_data[
372			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
373	};
374};
375
376static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
377{
378	return (struct ieee80211_tx_info *)skb->cb;
379}
380
381/**
382 * ieee80211_tx_info_clear_status - clear TX status
383 *
384 * @info: The &struct ieee80211_tx_info to be cleared.
385 *
386 * When the driver passes an skb back to mac80211, it must report
387 * a number of things in TX status. This function clears everything
388 * in the TX status but the rate control information (it does clear
389 * the count since you need to fill that in anyway).
390 *
391 * NOTE: You can only use this function if you do NOT use
392 *	 info->driver_data! Use info->rate_driver_data
393 *	 instead if you need only the less space that allows.
394 */
395static inline void
396ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
397{
398	int i;
399
400	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
401		     offsetof(struct ieee80211_tx_info, control.rates));
402	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
403		     offsetof(struct ieee80211_tx_info, driver_rates));
404	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
405	/* clear the rate counts */
406	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
407		info->status.rates[i].count = 0;
408
409	BUILD_BUG_ON(
410	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
411	memset(&info->status.ampdu_ack_len, 0,
412	       sizeof(struct ieee80211_tx_info) -
413	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
414}
415
416
417/**
418 * enum mac80211_rx_flags - receive flags
419 *
420 * These flags are used with the @flag member of &struct ieee80211_rx_status.
421 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
422 *	Use together with %RX_FLAG_MMIC_STRIPPED.
423 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
424 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
425 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
426 *	verification has been done by the hardware.
427 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
428 *	If this flag is set, the stack cannot do any replay detection
429 *	hence the driver or hardware will have to do that.
430 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
431 *	the frame.
432 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
433 *	the frame.
434 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
435 *	is valid. This is useful in monitor mode and necessary for beacon frames
436 *	to enable IBSS merging.
437 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
438 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
439 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
440 * @RX_FLAG_SHORT_GI: Short guard interval was used
441 */
442enum mac80211_rx_flags {
443	RX_FLAG_MMIC_ERROR	= 1<<0,
444	RX_FLAG_DECRYPTED	= 1<<1,
445	RX_FLAG_RADIOTAP	= 1<<2,
446	RX_FLAG_MMIC_STRIPPED	= 1<<3,
447	RX_FLAG_IV_STRIPPED	= 1<<4,
448	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
449	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
450	RX_FLAG_TSFT		= 1<<7,
451	RX_FLAG_SHORTPRE	= 1<<8,
452	RX_FLAG_HT		= 1<<9,
453	RX_FLAG_40MHZ		= 1<<10,
454	RX_FLAG_SHORT_GI	= 1<<11,
455};
456
457/**
458 * struct ieee80211_rx_status - receive status
459 *
460 * The low-level driver should provide this information (the subset
461 * supported by hardware) to the 802.11 code with each received
462 * frame.
463 *
464 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
465 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
466 * @band: the active band when this frame was received
467 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
468 * @signal: signal strength when receiving this frame, either in dBm, in dB or
469 *	unspecified depending on the hardware capabilities flags
470 *	@IEEE80211_HW_SIGNAL_*
471 * @noise: noise when receiving this frame, in dBm.
472 * @qual: overall signal quality indication, in percent (0-100).
473 * @antenna: antenna used
474 * @rate_idx: index of data rate into band's supported rates or MCS index if
475 *	HT rates are use (RX_FLAG_HT)
476 * @flag: %RX_FLAG_*
477 */
478struct ieee80211_rx_status {
479	u64 mactime;
480	enum ieee80211_band band;
481	int freq;
482	int signal;
483	int noise;
484	int qual;
485	int antenna;
486	int rate_idx;
487	int flag;
488};
489
490/**
491 * enum ieee80211_conf_flags - configuration flags
492 *
493 * Flags to define PHY configuration options
494 *
495 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
496 * @IEEE80211_CONF_PS: Enable 802.11 power save mode
497 */
498enum ieee80211_conf_flags {
499	IEEE80211_CONF_RADIOTAP		= (1<<0),
500	IEEE80211_CONF_PS		= (1<<1),
501};
502
503/* XXX: remove all this once drivers stop trying to use it */
504static inline int __deprecated __IEEE80211_CONF_SHORT_SLOT_TIME(void)
505{
506	return 0;
507}
508#define IEEE80211_CONF_SHORT_SLOT_TIME (__IEEE80211_CONF_SHORT_SLOT_TIME())
509
510/**
511 * enum ieee80211_conf_changed - denotes which configuration changed
512 *
513 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
514 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
515 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
516 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
517 * @IEEE80211_CONF_CHANGE_PS: the PS flag changed
518 * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed
519 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
520 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
521 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
522 */
523enum ieee80211_conf_changed {
524	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
525	IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
526	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
527	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
528	IEEE80211_CONF_CHANGE_PS		= BIT(4),
529	IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT	= BIT(5),
530	IEEE80211_CONF_CHANGE_POWER		= BIT(6),
531	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(7),
532	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(8),
533};
534
535/**
536 * struct ieee80211_conf - configuration of the device
537 *
538 * This struct indicates how the driver shall configure the hardware.
539 *
540 * @radio_enabled: when zero, driver is required to switch off the radio.
541 * @beacon_int: beacon interval (TODO make interface config)
542 * @listen_interval: listen interval in units of beacon interval
543 * @flags: configuration flags defined above
544 * @power_level: requested transmit power (in dBm)
545 * @dynamic_ps_timeout: dynamic powersave timeout (in ms)
546 * @channel: the channel to tune to
547 * @channel_type: the channel (HT) type
548 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
549 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
550 *    but actually means the number of transmissions not the number of retries
551 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
552 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
553 *    number of transmissions not the number of retries
554 */
555struct ieee80211_conf {
556	int beacon_int;
557	u32 flags;
558	int power_level, dynamic_ps_timeout;
559
560	u16 listen_interval;
561	bool radio_enabled;
562
563	u8 long_frame_max_tx_count, short_frame_max_tx_count;
564
565	struct ieee80211_channel *channel;
566	enum nl80211_channel_type channel_type;
567};
568
569/**
570 * struct ieee80211_vif - per-interface data
571 *
572 * Data in this structure is continually present for driver
573 * use during the life of a virtual interface.
574 *
575 * @type: type of this virtual interface
576 * @bss_conf: BSS configuration for this interface, either our own
577 *	or the BSS we're associated to
578 * @drv_priv: data area for driver use, will always be aligned to
579 *	sizeof(void *).
580 */
581struct ieee80211_vif {
582	enum nl80211_iftype type;
583	struct ieee80211_bss_conf bss_conf;
584	/* must be last */
585	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
586};
587
588static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
589{
590#ifdef CONFIG_MAC80211_MESH
591	return vif->type == NL80211_IFTYPE_MESH_POINT;
592#endif
593	return false;
594}
595
596/**
597 * struct ieee80211_if_init_conf - initial configuration of an interface
598 *
599 * @vif: pointer to a driver-use per-interface structure. The pointer
600 *	itself is also used for various functions including
601 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
602 * @type: one of &enum nl80211_iftype constants. Determines the type of
603 *	added/removed interface.
604 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
605 *	until the interface is removed (i.e. it cannot be used after
606 *	remove_interface() callback was called for this interface).
607 *
608 * This structure is used in add_interface() and remove_interface()
609 * callbacks of &struct ieee80211_hw.
610 *
611 * When you allow multiple interfaces to be added to your PHY, take care
612 * that the hardware can actually handle multiple MAC addresses. However,
613 * also take care that when there's no interface left with mac_addr != %NULL
614 * you remove the MAC address from the device to avoid acknowledging packets
615 * in pure monitor mode.
616 */
617struct ieee80211_if_init_conf {
618	enum nl80211_iftype type;
619	struct ieee80211_vif *vif;
620	void *mac_addr;
621};
622
623/**
624 * enum ieee80211_if_conf_change - interface config change flags
625 *
626 * @IEEE80211_IFCC_BSSID: The BSSID changed.
627 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
628 *	(currently AP and MESH only), use ieee80211_beacon_get().
629 */
630enum ieee80211_if_conf_change {
631	IEEE80211_IFCC_BSSID	= BIT(0),
632	IEEE80211_IFCC_BEACON	= BIT(1),
633};
634
635/**
636 * struct ieee80211_if_conf - configuration of an interface
637 *
638 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
639 * @bssid: BSSID of the network we are associated to/creating.
640 *
641 * This structure is passed to the config_interface() callback of
642 * &struct ieee80211_hw.
643 */
644struct ieee80211_if_conf {
645	u32 changed;
646	u8 *bssid;
647};
648
649/**
650 * enum ieee80211_key_alg - key algorithm
651 * @ALG_WEP: WEP40 or WEP104
652 * @ALG_TKIP: TKIP
653 * @ALG_CCMP: CCMP (AES)
654 * @ALG_AES_CMAC: AES-128-CMAC
655 */
656enum ieee80211_key_alg {
657	ALG_WEP,
658	ALG_TKIP,
659	ALG_CCMP,
660	ALG_AES_CMAC,
661};
662
663/**
664 * enum ieee80211_key_len - key length
665 * @LEN_WEP40: WEP 5-byte long key
666 * @LEN_WEP104: WEP 13-byte long key
667 */
668enum ieee80211_key_len {
669	LEN_WEP40 = 5,
670	LEN_WEP104 = 13,
671};
672
673/**
674 * enum ieee80211_key_flags - key flags
675 *
676 * These flags are used for communication about keys between the driver
677 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
678 *
679 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
680 *	that the STA this key will be used with could be using QoS.
681 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
682 *	driver to indicate that it requires IV generation for this
683 *	particular key.
684 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
685 *	the driver for a TKIP key if it requires Michael MIC
686 *	generation in software.
687 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
688 *	that the key is pairwise rather then a shared key.
689 */
690enum ieee80211_key_flags {
691	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
692	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
693	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
694	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
695};
696
697/**
698 * struct ieee80211_key_conf - key information
699 *
700 * This key information is given by mac80211 to the driver by
701 * the set_key() callback in &struct ieee80211_ops.
702 *
703 * @hw_key_idx: To be set by the driver, this is the key index the driver
704 *	wants to be given when a frame is transmitted and needs to be
705 *	encrypted in hardware.
706 * @alg: The key algorithm.
707 * @flags: key flags, see &enum ieee80211_key_flags.
708 * @keyidx: the key index (0-3)
709 * @keylen: key material length
710 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
711 * 	data block:
712 * 	- Temporal Encryption Key (128 bits)
713 * 	- Temporal Authenticator Tx MIC Key (64 bits)
714 * 	- Temporal Authenticator Rx MIC Key (64 bits)
715 * @icv_len: The ICV length for this key type
716 * @iv_len: The IV length for this key type
717 */
718struct ieee80211_key_conf {
719	enum ieee80211_key_alg alg;
720	u8 icv_len;
721	u8 iv_len;
722	u8 hw_key_idx;
723	u8 flags;
724	s8 keyidx;
725	u8 keylen;
726	u8 key[0];
727};
728
729/**
730 * enum set_key_cmd - key command
731 *
732 * Used with the set_key() callback in &struct ieee80211_ops, this
733 * indicates whether a key is being removed or added.
734 *
735 * @SET_KEY: a key is set
736 * @DISABLE_KEY: a key must be disabled
737 */
738enum set_key_cmd {
739	SET_KEY, DISABLE_KEY,
740};
741
742/**
743 * struct ieee80211_sta - station table entry
744 *
745 * A station table entry represents a station we are possibly
746 * communicating with. Since stations are RCU-managed in
747 * mac80211, any ieee80211_sta pointer you get access to must
748 * either be protected by rcu_read_lock() explicitly or implicitly,
749 * or you must take good care to not use such a pointer after a
750 * call to your sta_notify callback that removed it.
751 *
752 * @addr: MAC address
753 * @aid: AID we assigned to the station if we're an AP
754 * @supp_rates: Bitmap of supported rates (per band)
755 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
756 * @drv_priv: data area for driver use, will always be aligned to
757 *	sizeof(void *), size is determined in hw information.
758 */
759struct ieee80211_sta {
760	u64 supp_rates[IEEE80211_NUM_BANDS];
761	u8 addr[ETH_ALEN];
762	u16 aid;
763	struct ieee80211_sta_ht_cap ht_cap;
764
765	/* must be last */
766	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
767};
768
769/**
770 * enum sta_notify_cmd - sta notify command
771 *
772 * Used with the sta_notify() callback in &struct ieee80211_ops, this
773 * indicates addition and removal of a station to station table,
774 * or if a associated station made a power state transition.
775 *
776 * @STA_NOTIFY_ADD: a station was added to the station table
777 * @STA_NOTIFY_REMOVE: a station being removed from the station table
778 * @STA_NOTIFY_SLEEP: a station is now sleeping
779 * @STA_NOTIFY_AWAKE: a sleeping station woke up
780 */
781enum sta_notify_cmd {
782	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
783	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
784};
785
786/**
787 * enum ieee80211_tkip_key_type - get tkip key
788 *
789 * Used by drivers which need to get a tkip key for skb. Some drivers need a
790 * phase 1 key, others need a phase 2 key. A single function allows the driver
791 * to get the key, this enum indicates what type of key is required.
792 *
793 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
794 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
795 */
796enum ieee80211_tkip_key_type {
797	IEEE80211_TKIP_P1_KEY,
798	IEEE80211_TKIP_P2_KEY,
799};
800
801/**
802 * enum ieee80211_hw_flags - hardware flags
803 *
804 * These flags are used to indicate hardware capabilities to
805 * the stack. Generally, flags here should have their meaning
806 * done in a way that the simplest hardware doesn't need setting
807 * any particular flags. There are some exceptions to this rule,
808 * however, so you are advised to review these flags carefully.
809 *
810 * @IEEE80211_HW_RX_INCLUDES_FCS:
811 *	Indicates that received frames passed to the stack include
812 *	the FCS at the end.
813 *
814 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
815 *	Some wireless LAN chipsets buffer broadcast/multicast frames
816 *	for power saving stations in the hardware/firmware and others
817 *	rely on the host system for such buffering. This option is used
818 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
819 *	multicast frames when there are power saving stations so that
820 *	the driver can fetch them with ieee80211_get_buffered_bc().
821 *
822 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
823 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
824 *
825 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
826 *	Hardware is not capable of receiving frames with short preamble on
827 *	the 2.4 GHz band.
828 *
829 * @IEEE80211_HW_SIGNAL_UNSPEC:
830 *	Hardware can provide signal values but we don't know its units. We
831 *	expect values between 0 and @max_signal.
832 *	If possible please provide dB or dBm instead.
833 *
834 * @IEEE80211_HW_SIGNAL_DB:
835 *	Hardware gives signal values in dB, decibel difference from an
836 *	arbitrary, fixed reference. We expect values between 0 and @max_signal.
837 *	If possible please provide dBm instead.
838 *
839 * @IEEE80211_HW_SIGNAL_DBM:
840 *	Hardware gives signal values in dBm, decibel difference from
841 *	one milliwatt. This is the preferred method since it is standardized
842 *	between different devices. @max_signal does not need to be set.
843 *
844 * @IEEE80211_HW_NOISE_DBM:
845 *	Hardware can provide noise (radio interference) values in units dBm,
846 *      decibel difference from one milliwatt.
847 *
848 * @IEEE80211_HW_SPECTRUM_MGMT:
849 * 	Hardware supports spectrum management defined in 802.11h
850 * 	Measurement, Channel Switch, Quieting, TPC
851 *
852 * @IEEE80211_HW_AMPDU_AGGREGATION:
853 *	Hardware supports 11n A-MPDU aggregation.
854 *
855 * @IEEE80211_HW_SUPPORTS_PS:
856 *	Hardware has power save support (i.e. can go to sleep).
857 *
858 * @IEEE80211_HW_PS_NULLFUNC_STACK:
859 *	Hardware requires nullfunc frame handling in stack, implies
860 *	stack support for dynamic PS.
861 *
862 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
863 *	Hardware has support for dynamic PS.
864 */
865enum ieee80211_hw_flags {
866	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
867	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
868	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
869	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
870	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
871	IEEE80211_HW_SIGNAL_DB				= 1<<6,
872	IEEE80211_HW_SIGNAL_DBM				= 1<<7,
873	IEEE80211_HW_NOISE_DBM				= 1<<8,
874	IEEE80211_HW_SPECTRUM_MGMT			= 1<<9,
875	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<10,
876	IEEE80211_HW_SUPPORTS_PS			= 1<<11,
877	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<12,
878	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<13,
879};
880
881/**
882 * struct ieee80211_hw - hardware information and state
883 *
884 * This structure contains the configuration and hardware
885 * information for an 802.11 PHY.
886 *
887 * @wiphy: This points to the &struct wiphy allocated for this
888 *	802.11 PHY. You must fill in the @perm_addr and @dev
889 *	members of this structure using SET_IEEE80211_DEV()
890 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
891 *	bands (with channels, bitrates) are registered here.
892 *
893 * @conf: &struct ieee80211_conf, device configuration, don't use.
894 *
895 * @workqueue: single threaded workqueue available for driver use,
896 *	allocated by mac80211 on registration and flushed when an
897 *	interface is removed.
898 *	NOTICE: All work performed on this workqueue should NEVER
899 *	acquire the RTNL lock (i.e. Don't use the function
900 *	ieee80211_iterate_active_interfaces())
901 *
902 * @priv: pointer to private area that was allocated for driver use
903 *	along with this structure.
904 *
905 * @flags: hardware flags, see &enum ieee80211_hw_flags.
906 *
907 * @extra_tx_headroom: headroom to reserve in each transmit skb
908 *	for use by the driver (e.g. for transmit headers.)
909 *
910 * @channel_change_time: time (in microseconds) it takes to change channels.
911 *
912 * @max_signal: Maximum value for signal (rssi) in RX information, used
913 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
914 *
915 * @max_listen_interval: max listen interval in units of beacon interval
916 *     that HW supports
917 *
918 * @queues: number of available hardware transmit queues for
919 *	data packets. WMM/QoS requires at least four, these
920 *	queues need to have configurable access parameters.
921 *
922 * @ampdu_queues: number of available hardware transmit queues
923 *	for A-MPDU packets, these have no access parameters
924 *	because they're used only for A-MPDU frames. Note that
925 *	mac80211 will not currently use any of the regular queues
926 *	for aggregation.
927 *
928 * @rate_control_algorithm: rate control algorithm for this hardware.
929 *	If unset (NULL), the default algorithm will be used. Must be
930 *	set before calling ieee80211_register_hw().
931 *
932 * @vif_data_size: size (in bytes) of the drv_priv data area
933 *	within &struct ieee80211_vif.
934 * @sta_data_size: size (in bytes) of the drv_priv data area
935 *	within &struct ieee80211_sta.
936 *
937 * @max_rates: maximum number of alternate rate retry stages
938 * @max_rate_tries: maximum number of tries for each stage
939 */
940struct ieee80211_hw {
941	struct ieee80211_conf conf;
942	struct wiphy *wiphy;
943	struct workqueue_struct *workqueue;
944	const char *rate_control_algorithm;
945	void *priv;
946	u32 flags;
947	unsigned int extra_tx_headroom;
948	int channel_change_time;
949	int vif_data_size;
950	int sta_data_size;
951	u16 queues;
952	u16 ampdu_queues;
953	u16 max_listen_interval;
954	s8 max_signal;
955	u8 max_rates;
956	u8 max_rate_tries;
957};
958
959/**
960 * SET_IEEE80211_DEV - set device for 802.11 hardware
961 *
962 * @hw: the &struct ieee80211_hw to set the device for
963 * @dev: the &struct device of this 802.11 device
964 */
965static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
966{
967	set_wiphy_dev(hw->wiphy, dev);
968}
969
970/**
971 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
972 *
973 * @hw: the &struct ieee80211_hw to set the MAC address for
974 * @addr: the address to set
975 */
976static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
977{
978	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
979}
980
981static inline int ieee80211_num_regular_queues(struct ieee80211_hw *hw)
982{
983	return hw->queues;
984}
985
986static inline int ieee80211_num_queues(struct ieee80211_hw *hw)
987{
988	return hw->queues + hw->ampdu_queues;
989}
990
991static inline struct ieee80211_rate *
992ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
993		      const struct ieee80211_tx_info *c)
994{
995	if (WARN_ON(c->control.rates[0].idx < 0))
996		return NULL;
997	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
998}
999
1000static inline struct ieee80211_rate *
1001ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1002			   const struct ieee80211_tx_info *c)
1003{
1004	if (c->control.rts_cts_rate_idx < 0)
1005		return NULL;
1006	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1007}
1008
1009static inline struct ieee80211_rate *
1010ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1011			     const struct ieee80211_tx_info *c, int idx)
1012{
1013	if (c->control.rates[idx + 1].idx < 0)
1014		return NULL;
1015	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1016}
1017
1018/**
1019 * DOC: Hardware crypto acceleration
1020 *
1021 * mac80211 is capable of taking advantage of many hardware
1022 * acceleration designs for encryption and decryption operations.
1023 *
1024 * The set_key() callback in the &struct ieee80211_ops for a given
1025 * device is called to enable hardware acceleration of encryption and
1026 * decryption. The callback takes a @sta parameter that will be NULL
1027 * for default keys or keys used for transmission only, or point to
1028 * the station information for the peer for individual keys.
1029 * Multiple transmission keys with the same key index may be used when
1030 * VLANs are configured for an access point.
1031 *
1032 * When transmitting, the TX control data will use the @hw_key_idx
1033 * selected by the driver by modifying the &struct ieee80211_key_conf
1034 * pointed to by the @key parameter to the set_key() function.
1035 *
1036 * The set_key() call for the %SET_KEY command should return 0 if
1037 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1038 * added; if you return 0 then hw_key_idx must be assigned to the
1039 * hardware key index, you are free to use the full u8 range.
1040 *
1041 * When the cmd is %DISABLE_KEY then it must succeed.
1042 *
1043 * Note that it is permissible to not decrypt a frame even if a key
1044 * for it has been uploaded to hardware, the stack will not make any
1045 * decision based on whether a key has been uploaded or not but rather
1046 * based on the receive flags.
1047 *
1048 * The &struct ieee80211_key_conf structure pointed to by the @key
1049 * parameter is guaranteed to be valid until another call to set_key()
1050 * removes it, but it can only be used as a cookie to differentiate
1051 * keys.
1052 *
1053 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1054 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1055 * handler.
1056 * The update_tkip_key() call updates the driver with the new phase 1 key.
1057 * This happens everytime the iv16 wraps around (every 65536 packets). The
1058 * set_key() call will happen only once for each key (unless the AP did
1059 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1060 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1061 * handler is software decryption with wrap around of iv16.
1062 */
1063
1064/**
1065 * DOC: Powersave support
1066 *
1067 * mac80211 has support for various powersave implementations.
1068 *
1069 * First, it can support hardware that handles all powersaving by
1070 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1071 * hardware flag. In that case, it will be told about the desired
1072 * powersave mode depending on the association status, and the driver
1073 * must take care of sending nullfunc frames when necessary, i.e. when
1074 * entering and leaving powersave mode. The driver is required to look at
1075 * the AID in beacons and signal to the AP that it woke up when it finds
1076 * traffic directed to it. This mode supports dynamic PS by simply
1077 * enabling/disabling PS.
1078 *
1079 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1080 * flag to indicate that it can support dynamic PS mode itself (see below).
1081 *
1082 * Other hardware designs cannot send nullfunc frames by themselves and also
1083 * need software support for parsing the TIM bitmap. This is also supported
1084 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1085 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1086 * required to pass up beacons. Additionally, in this case, mac80211 will
1087 * wake up the hardware when multicast traffic is announced in the beacon.
1088 *
1089 * FIXME: I don't think we can be fast enough in software when we want to
1090 *	  receive multicast traffic?
1091 *
1092 * Dynamic powersave mode is an extension to normal powersave mode in which
1093 * the hardware stays awake for a user-specified period of time after sending
1094 * a frame so that reply frames need not be buffered and therefore delayed
1095 * to the next wakeup. This can either be supported by hardware, in which case
1096 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1097 * value, or by the stack if all nullfunc handling is in the stack.
1098 */
1099
1100/**
1101 * DOC: Frame filtering
1102 *
1103 * mac80211 requires to see many management frames for proper
1104 * operation, and users may want to see many more frames when
1105 * in monitor mode. However, for best CPU usage and power consumption,
1106 * having as few frames as possible percolate through the stack is
1107 * desirable. Hence, the hardware should filter as much as possible.
1108 *
1109 * To achieve this, mac80211 uses filter flags (see below) to tell
1110 * the driver's configure_filter() function which frames should be
1111 * passed to mac80211 and which should be filtered out.
1112 *
1113 * The configure_filter() callback is invoked with the parameters
1114 * @mc_count and @mc_list for the combined multicast address list
1115 * of all virtual interfaces, @changed_flags telling which flags
1116 * were changed and @total_flags with the new flag states.
1117 *
1118 * If your device has no multicast address filters your driver will
1119 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1120 * parameter to see whether multicast frames should be accepted
1121 * or dropped.
1122 *
1123 * All unsupported flags in @total_flags must be cleared.
1124 * Hardware does not support a flag if it is incapable of _passing_
1125 * the frame to the stack. Otherwise the driver must ignore
1126 * the flag, but not clear it.
1127 * You must _only_ clear the flag (announce no support for the
1128 * flag to mac80211) if you are not able to pass the packet type
1129 * to the stack (so the hardware always filters it).
1130 * So for example, you should clear @FIF_CONTROL, if your hardware
1131 * always filters control frames. If your hardware always passes
1132 * control frames to the kernel and is incapable of filtering them,
1133 * you do _not_ clear the @FIF_CONTROL flag.
1134 * This rule applies to all other FIF flags as well.
1135 */
1136
1137/**
1138 * enum ieee80211_filter_flags - hardware filter flags
1139 *
1140 * These flags determine what the filter in hardware should be
1141 * programmed to let through and what should not be passed to the
1142 * stack. It is always safe to pass more frames than requested,
1143 * but this has negative impact on power consumption.
1144 *
1145 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1146 *	think of the BSS as your network segment and then this corresponds
1147 *	to the regular ethernet device promiscuous mode.
1148 *
1149 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1150 *	by the user or if the hardware is not capable of filtering by
1151 *	multicast address.
1152 *
1153 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1154 *	%RX_FLAG_FAILED_FCS_CRC for them)
1155 *
1156 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1157 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1158 *
1159 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1160 *	to the hardware that it should not filter beacons or probe responses
1161 *	by BSSID. Filtering them can greatly reduce the amount of processing
1162 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1163 *	honour this flag if possible.
1164 *
1165 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1166 *	only those addressed to this station
1167 *
1168 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1169 */
1170enum ieee80211_filter_flags {
1171	FIF_PROMISC_IN_BSS	= 1<<0,
1172	FIF_ALLMULTI		= 1<<1,
1173	FIF_FCSFAIL		= 1<<2,
1174	FIF_PLCPFAIL		= 1<<3,
1175	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1176	FIF_CONTROL		= 1<<5,
1177	FIF_OTHER_BSS		= 1<<6,
1178};
1179
1180/**
1181 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1182 *
1183 * These flags are used with the ampdu_action() callback in
1184 * &struct ieee80211_ops to indicate which action is needed.
1185 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1186 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1187 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1188 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1189 * @IEEE80211_AMPDU_TX_RESUME: resume TX aggregation
1190 */
1191enum ieee80211_ampdu_mlme_action {
1192	IEEE80211_AMPDU_RX_START,
1193	IEEE80211_AMPDU_RX_STOP,
1194	IEEE80211_AMPDU_TX_START,
1195	IEEE80211_AMPDU_TX_STOP,
1196	IEEE80211_AMPDU_TX_RESUME,
1197};
1198
1199/**
1200 * struct ieee80211_ops - callbacks from mac80211 to the driver
1201 *
1202 * This structure contains various callbacks that the driver may
1203 * handle or, in some cases, must handle, for example to configure
1204 * the hardware to a new channel or to transmit a frame.
1205 *
1206 * @tx: Handler that 802.11 module calls for each transmitted frame.
1207 *	skb contains the buffer starting from the IEEE 802.11 header.
1208 *	The low-level driver should send the frame out based on
1209 *	configuration in the TX control data. This handler should,
1210 *	preferably, never fail and stop queues appropriately, more
1211 *	importantly, however, it must never fail for A-MPDU-queues.
1212 *	Must be implemented and atomic.
1213 *
1214 * @start: Called before the first netdevice attached to the hardware
1215 *	is enabled. This should turn on the hardware and must turn on
1216 *	frame reception (for possibly enabled monitor interfaces.)
1217 *	Returns negative error codes, these may be seen in userspace,
1218 *	or zero.
1219 *	When the device is started it should not have a MAC address
1220 *	to avoid acknowledging frames before a non-monitor device
1221 *	is added.
1222 *	Must be implemented.
1223 *
1224 * @stop: Called after last netdevice attached to the hardware
1225 *	is disabled. This should turn off the hardware (at least
1226 *	it must turn off frame reception.)
1227 *	May be called right after add_interface if that rejects
1228 *	an interface.
1229 *	Must be implemented.
1230 *
1231 * @add_interface: Called when a netdevice attached to the hardware is
1232 *	enabled. Because it is not called for monitor mode devices, @start
1233 *	and @stop must be implemented.
1234 *	The driver should perform any initialization it needs before
1235 *	the device can be enabled. The initial configuration for the
1236 *	interface is given in the conf parameter.
1237 *	The callback may refuse to add an interface by returning a
1238 *	negative error code (which will be seen in userspace.)
1239 *	Must be implemented.
1240 *
1241 * @remove_interface: Notifies a driver that an interface is going down.
1242 *	The @stop callback is called after this if it is the last interface
1243 *	and no monitor interfaces are present.
1244 *	When all interfaces are removed, the MAC address in the hardware
1245 *	must be cleared so the device no longer acknowledges packets,
1246 *	the mac_addr member of the conf structure is, however, set to the
1247 *	MAC address of the device going away.
1248 *	Hence, this callback must be implemented.
1249 *
1250 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1251 *	function to change hardware configuration, e.g., channel.
1252 *
1253 * @config_interface: Handler for configuration requests related to interfaces
1254 *	(e.g. BSSID changes.)
1255 *
1256 * @bss_info_changed: Handler for configuration requests related to BSS
1257 *	parameters that may vary during BSS's lifespan, and may affect low
1258 *	level driver (e.g. assoc/disassoc status, erp parameters).
1259 *	This function should not be used if no BSS has been set, unless
1260 *	for association indication. The @changed parameter indicates which
1261 *	of the bss parameters has changed when a call is made.
1262 *
1263 * @configure_filter: Configure the device's RX filter.
1264 *	See the section "Frame filtering" for more information.
1265 *	This callback must be implemented and atomic.
1266 *
1267 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1268 * 	must be set or cleared for a given STA. Must be atomic.
1269 *
1270 * @set_key: See the section "Hardware crypto acceleration"
1271 *	This callback can sleep, and is only called between add_interface
1272 *	and remove_interface calls, i.e. while the given virtual interface
1273 *	is enabled.
1274 *
1275 * @update_tkip_key: See the section "Hardware crypto acceleration"
1276 * 	This callback will be called in the context of Rx. Called for drivers
1277 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1278 *
1279 * @hw_scan: Ask the hardware to service the scan request, no need to start
1280 *	the scan state machine in stack. The scan must honour the channel
1281 *	configuration done by the regulatory agent in the wiphy's registered
1282 *	bands. When the scan finishes, ieee80211_scan_completed() must be
1283 *	called; note that it also must be called when the scan cannot finish
1284 *	because the hardware is turned off! Anything else is a bug!
1285 *
1286 * @get_stats: return low-level statistics
1287 *
1288 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1289 *	callback should be provided to read the TKIP transmit IVs (both IV32
1290 *	and IV16) for the given key from hardware.
1291 *
1292 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1293 *
1294 * @sta_notify: Notifies low level driver about addition, removal or power
1295 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1296 *	Must be atomic.
1297 *
1298 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1299 *	bursting) for a hardware TX queue.
1300 *
1301 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1302 *	to get number of currently queued packets (queue length), maximum queue
1303 *	size (limit), and total number of packets sent using each TX queue
1304 *	(count). The 'stats' pointer points to an array that has hw->queues +
1305 *	hw->ampdu_queues items.
1306 *
1307 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1308 *	this is only used for IBSS mode debugging and, as such, is not a
1309 *	required function. Must be atomic.
1310 *
1311 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1312 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1313 *	function is optional if the firmware/hardware takes full care of
1314 *	TSF synchronization.
1315 *
1316 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1317 *	This is needed only for IBSS mode and the result of this function is
1318 *	used to determine whether to reply to Probe Requests.
1319 *
1320 * @ampdu_action: Perform a certain A-MPDU action
1321 * 	The RA/TID combination determines the destination and TID we want
1322 * 	the ampdu action to be performed for. The action is defined through
1323 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1324 * 	is the first frame we expect to perform the action on. notice
1325 * 	that TX/RX_STOP can pass NULL for this parameter.
1326 */
1327struct ieee80211_ops {
1328	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1329	int (*start)(struct ieee80211_hw *hw);
1330	void (*stop)(struct ieee80211_hw *hw);
1331	int (*add_interface)(struct ieee80211_hw *hw,
1332			     struct ieee80211_if_init_conf *conf);
1333	void (*remove_interface)(struct ieee80211_hw *hw,
1334				 struct ieee80211_if_init_conf *conf);
1335	int (*config)(struct ieee80211_hw *hw, u32 changed);
1336	int (*config_interface)(struct ieee80211_hw *hw,
1337				struct ieee80211_vif *vif,
1338				struct ieee80211_if_conf *conf);
1339	void (*bss_info_changed)(struct ieee80211_hw *hw,
1340				 struct ieee80211_vif *vif,
1341				 struct ieee80211_bss_conf *info,
1342				 u32 changed);
1343	void (*configure_filter)(struct ieee80211_hw *hw,
1344				 unsigned int changed_flags,
1345				 unsigned int *total_flags,
1346				 int mc_count, struct dev_addr_list *mc_list);
1347	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1348		       bool set);
1349	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1350		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1351		       struct ieee80211_key_conf *key);
1352	void (*update_tkip_key)(struct ieee80211_hw *hw,
1353			struct ieee80211_key_conf *conf, const u8 *address,
1354			u32 iv32, u16 *phase1key);
1355	int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len);
1356	int (*get_stats)(struct ieee80211_hw *hw,
1357			 struct ieee80211_low_level_stats *stats);
1358	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1359			     u32 *iv32, u16 *iv16);
1360	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1361	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1362			enum sta_notify_cmd, struct ieee80211_sta *sta);
1363	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1364		       const struct ieee80211_tx_queue_params *params);
1365	int (*get_tx_stats)(struct ieee80211_hw *hw,
1366			    struct ieee80211_tx_queue_stats *stats);
1367	u64 (*get_tsf)(struct ieee80211_hw *hw);
1368	void (*reset_tsf)(struct ieee80211_hw *hw);
1369	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1370	int (*ampdu_action)(struct ieee80211_hw *hw,
1371			    enum ieee80211_ampdu_mlme_action action,
1372			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1373};
1374
1375/**
1376 * ieee80211_alloc_hw -  Allocate a new hardware device
1377 *
1378 * This must be called once for each hardware device. The returned pointer
1379 * must be used to refer to this device when calling other functions.
1380 * mac80211 allocates a private data area for the driver pointed to by
1381 * @priv in &struct ieee80211_hw, the size of this area is given as
1382 * @priv_data_len.
1383 *
1384 * @priv_data_len: length of private data
1385 * @ops: callbacks for this device
1386 */
1387struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1388					const struct ieee80211_ops *ops);
1389
1390/**
1391 * ieee80211_register_hw - Register hardware device
1392 *
1393 * You must call this function before any other functions in
1394 * mac80211. Note that before a hardware can be registered, you
1395 * need to fill the contained wiphy's information.
1396 *
1397 * @hw: the device to register as returned by ieee80211_alloc_hw()
1398 */
1399int ieee80211_register_hw(struct ieee80211_hw *hw);
1400
1401#ifdef CONFIG_MAC80211_LEDS
1402extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1403extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1404extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1405extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1406#endif
1407/**
1408 * ieee80211_get_tx_led_name - get name of TX LED
1409 *
1410 * mac80211 creates a transmit LED trigger for each wireless hardware
1411 * that can be used to drive LEDs if your driver registers a LED device.
1412 * This function returns the name (or %NULL if not configured for LEDs)
1413 * of the trigger so you can automatically link the LED device.
1414 *
1415 * @hw: the hardware to get the LED trigger name for
1416 */
1417static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1418{
1419#ifdef CONFIG_MAC80211_LEDS
1420	return __ieee80211_get_tx_led_name(hw);
1421#else
1422	return NULL;
1423#endif
1424}
1425
1426/**
1427 * ieee80211_get_rx_led_name - get name of RX LED
1428 *
1429 * mac80211 creates a receive LED trigger for each wireless hardware
1430 * that can be used to drive LEDs if your driver registers a LED device.
1431 * This function returns the name (or %NULL if not configured for LEDs)
1432 * of the trigger so you can automatically link the LED device.
1433 *
1434 * @hw: the hardware to get the LED trigger name for
1435 */
1436static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1437{
1438#ifdef CONFIG_MAC80211_LEDS
1439	return __ieee80211_get_rx_led_name(hw);
1440#else
1441	return NULL;
1442#endif
1443}
1444
1445/**
1446 * ieee80211_get_assoc_led_name - get name of association LED
1447 *
1448 * mac80211 creates a association LED trigger for each wireless hardware
1449 * that can be used to drive LEDs if your driver registers a LED device.
1450 * This function returns the name (or %NULL if not configured for LEDs)
1451 * of the trigger so you can automatically link the LED device.
1452 *
1453 * @hw: the hardware to get the LED trigger name for
1454 */
1455static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1456{
1457#ifdef CONFIG_MAC80211_LEDS
1458	return __ieee80211_get_assoc_led_name(hw);
1459#else
1460	return NULL;
1461#endif
1462}
1463
1464/**
1465 * ieee80211_get_radio_led_name - get name of radio LED
1466 *
1467 * mac80211 creates a radio change LED trigger for each wireless hardware
1468 * that can be used to drive LEDs if your driver registers a LED device.
1469 * This function returns the name (or %NULL if not configured for LEDs)
1470 * of the trigger so you can automatically link the LED device.
1471 *
1472 * @hw: the hardware to get the LED trigger name for
1473 */
1474static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1475{
1476#ifdef CONFIG_MAC80211_LEDS
1477	return __ieee80211_get_radio_led_name(hw);
1478#else
1479	return NULL;
1480#endif
1481}
1482
1483/**
1484 * ieee80211_unregister_hw - Unregister a hardware device
1485 *
1486 * This function instructs mac80211 to free allocated resources
1487 * and unregister netdevices from the networking subsystem.
1488 *
1489 * @hw: the hardware to unregister
1490 */
1491void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1492
1493/**
1494 * ieee80211_free_hw - free hardware descriptor
1495 *
1496 * This function frees everything that was allocated, including the
1497 * private data for the driver. You must call ieee80211_unregister_hw()
1498 * before calling this function.
1499 *
1500 * @hw: the hardware to free
1501 */
1502void ieee80211_free_hw(struct ieee80211_hw *hw);
1503
1504/* trick to avoid symbol clashes with the ieee80211 subsystem */
1505void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1506		    struct ieee80211_rx_status *status);
1507
1508/**
1509 * ieee80211_rx - receive frame
1510 *
1511 * Use this function to hand received frames to mac80211. The receive
1512 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1513 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1514 *
1515 * This function may not be called in IRQ context. Calls to this function
1516 * for a single hardware must be synchronized against each other. Calls
1517 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1518 * single hardware.
1519 *
1520 * @hw: the hardware this frame came in on
1521 * @skb: the buffer to receive, owned by mac80211 after this call
1522 * @status: status of this frame; the status pointer need not be valid
1523 *	after this function returns
1524 */
1525static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1526				struct ieee80211_rx_status *status)
1527{
1528	__ieee80211_rx(hw, skb, status);
1529}
1530
1531/**
1532 * ieee80211_rx_irqsafe - receive frame
1533 *
1534 * Like ieee80211_rx() but can be called in IRQ context
1535 * (internally defers to a tasklet.)
1536 *
1537 * Calls to this function and ieee80211_rx() may not be mixed for a
1538 * single hardware.
1539 *
1540 * @hw: the hardware this frame came in on
1541 * @skb: the buffer to receive, owned by mac80211 after this call
1542 * @status: status of this frame; the status pointer need not be valid
1543 *	after this function returns and is not freed by mac80211,
1544 *	it is recommended that it points to a stack area
1545 */
1546void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1547			  struct sk_buff *skb,
1548			  struct ieee80211_rx_status *status);
1549
1550/**
1551 * ieee80211_tx_status - transmit status callback
1552 *
1553 * Call this function for all transmitted frames after they have been
1554 * transmitted. It is permissible to not call this function for
1555 * multicast frames but this can affect statistics.
1556 *
1557 * This function may not be called in IRQ context. Calls to this function
1558 * for a single hardware must be synchronized against each other. Calls
1559 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1560 * for a single hardware.
1561 *
1562 * @hw: the hardware the frame was transmitted by
1563 * @skb: the frame that was transmitted, owned by mac80211 after this call
1564 */
1565void ieee80211_tx_status(struct ieee80211_hw *hw,
1566			 struct sk_buff *skb);
1567
1568/**
1569 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1570 *
1571 * Like ieee80211_tx_status() but can be called in IRQ context
1572 * (internally defers to a tasklet.)
1573 *
1574 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1575 * single hardware.
1576 *
1577 * @hw: the hardware the frame was transmitted by
1578 * @skb: the frame that was transmitted, owned by mac80211 after this call
1579 */
1580void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1581				 struct sk_buff *skb);
1582
1583/**
1584 * ieee80211_beacon_get - beacon generation function
1585 * @hw: pointer obtained from ieee80211_alloc_hw().
1586 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1587 *
1588 * If the beacon frames are generated by the host system (i.e., not in
1589 * hardware/firmware), the low-level driver uses this function to receive
1590 * the next beacon frame from the 802.11 code. The low-level is responsible
1591 * for calling this function before beacon data is needed (e.g., based on
1592 * hardware interrupt). Returned skb is used only once and low-level driver
1593 * is responsible for freeing it.
1594 */
1595struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1596				     struct ieee80211_vif *vif);
1597
1598/**
1599 * ieee80211_rts_get - RTS frame generation function
1600 * @hw: pointer obtained from ieee80211_alloc_hw().
1601 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1602 * @frame: pointer to the frame that is going to be protected by the RTS.
1603 * @frame_len: the frame length (in octets).
1604 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1605 * @rts: The buffer where to store the RTS frame.
1606 *
1607 * If the RTS frames are generated by the host system (i.e., not in
1608 * hardware/firmware), the low-level driver uses this function to receive
1609 * the next RTS frame from the 802.11 code. The low-level is responsible
1610 * for calling this function before and RTS frame is needed.
1611 */
1612void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1613		       const void *frame, size_t frame_len,
1614		       const struct ieee80211_tx_info *frame_txctl,
1615		       struct ieee80211_rts *rts);
1616
1617/**
1618 * ieee80211_rts_duration - Get the duration field for an RTS frame
1619 * @hw: pointer obtained from ieee80211_alloc_hw().
1620 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1621 * @frame_len: the length of the frame that is going to be protected by the RTS.
1622 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1623 *
1624 * If the RTS is generated in firmware, but the host system must provide
1625 * the duration field, the low-level driver uses this function to receive
1626 * the duration field value in little-endian byteorder.
1627 */
1628__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1629			      struct ieee80211_vif *vif, size_t frame_len,
1630			      const struct ieee80211_tx_info *frame_txctl);
1631
1632/**
1633 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1634 * @hw: pointer obtained from ieee80211_alloc_hw().
1635 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1636 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1637 * @frame_len: the frame length (in octets).
1638 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1639 * @cts: The buffer where to store the CTS-to-self frame.
1640 *
1641 * If the CTS-to-self frames are generated by the host system (i.e., not in
1642 * hardware/firmware), the low-level driver uses this function to receive
1643 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1644 * for calling this function before and CTS-to-self frame is needed.
1645 */
1646void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1647			     struct ieee80211_vif *vif,
1648			     const void *frame, size_t frame_len,
1649			     const struct ieee80211_tx_info *frame_txctl,
1650			     struct ieee80211_cts *cts);
1651
1652/**
1653 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1654 * @hw: pointer obtained from ieee80211_alloc_hw().
1655 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1656 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1657 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1658 *
1659 * If the CTS-to-self is generated in firmware, but the host system must provide
1660 * the duration field, the low-level driver uses this function to receive
1661 * the duration field value in little-endian byteorder.
1662 */
1663__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1664				    struct ieee80211_vif *vif,
1665				    size_t frame_len,
1666				    const struct ieee80211_tx_info *frame_txctl);
1667
1668/**
1669 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1670 * @hw: pointer obtained from ieee80211_alloc_hw().
1671 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1672 * @frame_len: the length of the frame.
1673 * @rate: the rate at which the frame is going to be transmitted.
1674 *
1675 * Calculate the duration field of some generic frame, given its
1676 * length and transmission rate (in 100kbps).
1677 */
1678__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1679					struct ieee80211_vif *vif,
1680					size_t frame_len,
1681					struct ieee80211_rate *rate);
1682
1683/**
1684 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1685 * @hw: pointer as obtained from ieee80211_alloc_hw().
1686 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1687 *
1688 * Function for accessing buffered broadcast and multicast frames. If
1689 * hardware/firmware does not implement buffering of broadcast/multicast
1690 * frames when power saving is used, 802.11 code buffers them in the host
1691 * memory. The low-level driver uses this function to fetch next buffered
1692 * frame. In most cases, this is used when generating beacon frame. This
1693 * function returns a pointer to the next buffered skb or NULL if no more
1694 * buffered frames are available.
1695 *
1696 * Note: buffered frames are returned only after DTIM beacon frame was
1697 * generated with ieee80211_beacon_get() and the low-level driver must thus
1698 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1699 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1700 * does not need to check for DTIM beacons separately and should be able to
1701 * use common code for all beacons.
1702 */
1703struct sk_buff *
1704ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1705
1706/**
1707 * ieee80211_get_hdrlen_from_skb - get header length from data
1708 *
1709 * Given an skb with a raw 802.11 header at the data pointer this function
1710 * returns the 802.11 header length in bytes (not including encryption
1711 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1712 * header the function returns 0.
1713 *
1714 * @skb: the frame
1715 */
1716unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1717
1718/**
1719 * ieee80211_hdrlen - get header length in bytes from frame control
1720 * @fc: frame control field in little-endian format
1721 */
1722unsigned int ieee80211_hdrlen(__le16 fc);
1723
1724/**
1725 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1726 *
1727 * This function computes a TKIP rc4 key for an skb. It computes
1728 * a phase 1 key if needed (iv16 wraps around). This function is to
1729 * be used by drivers which can do HW encryption but need to compute
1730 * to phase 1/2 key in SW.
1731 *
1732 * @keyconf: the parameter passed with the set key
1733 * @skb: the skb for which the key is needed
1734 * @type: TBD
1735 * @key: a buffer to which the key will be written
1736 */
1737void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1738				struct sk_buff *skb,
1739				enum ieee80211_tkip_key_type type, u8 *key);
1740/**
1741 * ieee80211_wake_queue - wake specific queue
1742 * @hw: pointer as obtained from ieee80211_alloc_hw().
1743 * @queue: queue number (counted from zero).
1744 *
1745 * Drivers should use this function instead of netif_wake_queue.
1746 */
1747void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1748
1749/**
1750 * ieee80211_stop_queue - stop specific queue
1751 * @hw: pointer as obtained from ieee80211_alloc_hw().
1752 * @queue: queue number (counted from zero).
1753 *
1754 * Drivers should use this function instead of netif_stop_queue.
1755 */
1756void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1757
1758/**
1759 * ieee80211_queue_stopped - test status of the queue
1760 * @hw: pointer as obtained from ieee80211_alloc_hw().
1761 * @queue: queue number (counted from zero).
1762 *
1763 * Drivers should use this function instead of netif_stop_queue.
1764 */
1765
1766int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1767
1768/**
1769 * ieee80211_stop_queues - stop all queues
1770 * @hw: pointer as obtained from ieee80211_alloc_hw().
1771 *
1772 * Drivers should use this function instead of netif_stop_queue.
1773 */
1774void ieee80211_stop_queues(struct ieee80211_hw *hw);
1775
1776/**
1777 * ieee80211_wake_queues - wake all queues
1778 * @hw: pointer as obtained from ieee80211_alloc_hw().
1779 *
1780 * Drivers should use this function instead of netif_wake_queue.
1781 */
1782void ieee80211_wake_queues(struct ieee80211_hw *hw);
1783
1784/**
1785 * ieee80211_scan_completed - completed hardware scan
1786 *
1787 * When hardware scan offload is used (i.e. the hw_scan() callback is
1788 * assigned) this function needs to be called by the driver to notify
1789 * mac80211 that the scan finished.
1790 *
1791 * @hw: the hardware that finished the scan
1792 */
1793void ieee80211_scan_completed(struct ieee80211_hw *hw);
1794
1795/**
1796 * ieee80211_iterate_active_interfaces - iterate active interfaces
1797 *
1798 * This function iterates over the interfaces associated with a given
1799 * hardware that are currently active and calls the callback for them.
1800 * This function allows the iterator function to sleep, when the iterator
1801 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1802 * be used.
1803 *
1804 * @hw: the hardware struct of which the interfaces should be iterated over
1805 * @iterator: the iterator function to call
1806 * @data: first argument of the iterator function
1807 */
1808void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1809					 void (*iterator)(void *data, u8 *mac,
1810						struct ieee80211_vif *vif),
1811					 void *data);
1812
1813/**
1814 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1815 *
1816 * This function iterates over the interfaces associated with a given
1817 * hardware that are currently active and calls the callback for them.
1818 * This function requires the iterator callback function to be atomic,
1819 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1820 *
1821 * @hw: the hardware struct of which the interfaces should be iterated over
1822 * @iterator: the iterator function to call, cannot sleep
1823 * @data: first argument of the iterator function
1824 */
1825void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1826						void (*iterator)(void *data,
1827						    u8 *mac,
1828						    struct ieee80211_vif *vif),
1829						void *data);
1830
1831/**
1832 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1833 * @hw: pointer as obtained from ieee80211_alloc_hw().
1834 * @ra: receiver address of the BA session recipient
1835 * @tid: the TID to BA on.
1836 *
1837 * Return: success if addBA request was sent, failure otherwise
1838 *
1839 * Although mac80211/low level driver/user space application can estimate
1840 * the need to start aggregation on a certain RA/TID, the session level
1841 * will be managed by the mac80211.
1842 */
1843int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1844
1845/**
1846 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1847 * @hw: pointer as obtained from ieee80211_alloc_hw().
1848 * @ra: receiver address of the BA session recipient.
1849 * @tid: the TID to BA on.
1850 *
1851 * This function must be called by low level driver once it has
1852 * finished with preparations for the BA session.
1853 */
1854void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1855
1856/**
1857 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1858 * @hw: pointer as obtained from ieee80211_alloc_hw().
1859 * @ra: receiver address of the BA session recipient.
1860 * @tid: the TID to BA on.
1861 *
1862 * This function must be called by low level driver once it has
1863 * finished with preparations for the BA session.
1864 * This version of the function is IRQ-safe.
1865 */
1866void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1867				      u16 tid);
1868
1869/**
1870 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1871 * @hw: pointer as obtained from ieee80211_alloc_hw().
1872 * @ra: receiver address of the BA session recipient
1873 * @tid: the TID to stop BA.
1874 * @initiator: if indicates initiator DELBA frame will be sent.
1875 *
1876 * Return: error if no sta with matching da found, success otherwise
1877 *
1878 * Although mac80211/low level driver/user space application can estimate
1879 * the need to stop aggregation on a certain RA/TID, the session level
1880 * will be managed by the mac80211.
1881 */
1882int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1883				 u8 *ra, u16 tid,
1884				 enum ieee80211_back_parties initiator);
1885
1886/**
1887 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1888 * @hw: pointer as obtained from ieee80211_alloc_hw().
1889 * @ra: receiver address of the BA session recipient.
1890 * @tid: the desired TID to BA on.
1891 *
1892 * This function must be called by low level driver once it has
1893 * finished with preparations for the BA session tear down.
1894 */
1895void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1896
1897/**
1898 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1899 * @hw: pointer as obtained from ieee80211_alloc_hw().
1900 * @ra: receiver address of the BA session recipient.
1901 * @tid: the desired TID to BA on.
1902 *
1903 * This function must be called by low level driver once it has
1904 * finished with preparations for the BA session tear down.
1905 * This version of the function is IRQ-safe.
1906 */
1907void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1908				     u16 tid);
1909
1910/**
1911 * ieee80211_find_sta - find a station
1912 *
1913 * @hw: pointer as obtained from ieee80211_alloc_hw()
1914 * @addr: station's address
1915 *
1916 * This function must be called under RCU lock and the
1917 * resulting pointer is only valid under RCU lock as well.
1918 */
1919struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
1920					 const u8 *addr);
1921
1922
1923/* Rate control API */
1924
1925/**
1926 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
1927 *
1928 * @hw: The hardware the algorithm is invoked for.
1929 * @sband: The band this frame is being transmitted on.
1930 * @bss_conf: the current BSS configuration
1931 * @reported_rate: The rate control algorithm can fill this in to indicate
1932 *	which rate should be reported to userspace as the current rate and
1933 *	used for rate calculations in the mesh network.
1934 * @rts: whether RTS will be used for this frame because it is longer than the
1935 *	RTS threshold
1936 * @short_preamble: whether mac80211 will request short-preamble transmission
1937 *	if the selected rate supports it
1938 * @max_rate_idx: user-requested maximum rate (not MCS for now)
1939 * @skb: the skb that will be transmitted, the control information in it needs
1940 *	to be filled in
1941 */
1942struct ieee80211_tx_rate_control {
1943	struct ieee80211_hw *hw;
1944	struct ieee80211_supported_band *sband;
1945	struct ieee80211_bss_conf *bss_conf;
1946	struct sk_buff *skb;
1947	struct ieee80211_tx_rate reported_rate;
1948	bool rts, short_preamble;
1949	u8 max_rate_idx;
1950};
1951
1952struct rate_control_ops {
1953	struct module *module;
1954	const char *name;
1955	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
1956	void (*free)(void *priv);
1957
1958	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
1959	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
1960			  struct ieee80211_sta *sta, void *priv_sta);
1961	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
1962			 void *priv_sta);
1963
1964	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
1965			  struct ieee80211_sta *sta, void *priv_sta,
1966			  struct sk_buff *skb);
1967	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1968			 struct ieee80211_tx_rate_control *txrc);
1969
1970	void (*add_sta_debugfs)(void *priv, void *priv_sta,
1971				struct dentry *dir);
1972	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
1973};
1974
1975static inline int rate_supported(struct ieee80211_sta *sta,
1976				 enum ieee80211_band band,
1977				 int index)
1978{
1979	return (sta == NULL || sta->supp_rates[band] & BIT(index));
1980}
1981
1982static inline s8
1983rate_lowest_index(struct ieee80211_supported_band *sband,
1984		  struct ieee80211_sta *sta)
1985{
1986	int i;
1987
1988	for (i = 0; i < sband->n_bitrates; i++)
1989		if (rate_supported(sta, sband->band, i))
1990			return i;
1991
1992	/* warn when we cannot find a rate. */
1993	WARN_ON(1);
1994
1995	return 0;
1996}
1997
1998
1999int ieee80211_rate_control_register(struct rate_control_ops *ops);
2000void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2001
2002static inline bool
2003conf_is_ht20(struct ieee80211_conf *conf)
2004{
2005	return conf->channel_type == NL80211_CHAN_HT20;
2006}
2007
2008static inline bool
2009conf_is_ht40_minus(struct ieee80211_conf *conf)
2010{
2011	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2012}
2013
2014static inline bool
2015conf_is_ht40_plus(struct ieee80211_conf *conf)
2016{
2017	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2018}
2019
2020static inline bool
2021conf_is_ht40(struct ieee80211_conf *conf)
2022{
2023	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2024}
2025
2026static inline bool
2027conf_is_ht(struct ieee80211_conf *conf)
2028{
2029	return conf->channel_type != NL80211_CHAN_NO_HT;
2030}
2031
2032#endif /* MAC80211_H */
2033