mac80211.h revision 3fa52056f3a8e755708241d5795e6d3e6f55ad85
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80enum ieee80211_max_queues {
81	IEEE80211_MAX_QUEUES =		4,
82};
83
84/**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 *	2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96struct ieee80211_tx_queue_params {
97	u16 txop;
98	u16 cw_min;
99	u16 cw_max;
100	u8 aifs;
101};
102
103/**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110struct ieee80211_tx_queue_stats {
111	unsigned int len;
112	unsigned int limit;
113	unsigned int count;
114};
115
116struct ieee80211_low_level_stats {
117	unsigned int dot11ACKFailureCount;
118	unsigned int dot11RTSFailureCount;
119	unsigned int dot11FCSErrorCount;
120	unsigned int dot11RTSSuccessCount;
121};
122
123/**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 *	also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 *	reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 *	new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 *	enabled/disabled (beaconing modes)
143 */
144enum ieee80211_bss_change {
145	BSS_CHANGED_ASSOC		= 1<<0,
146	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
147	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
148	BSS_CHANGED_ERP_SLOT		= 1<<3,
149	BSS_CHANGED_HT                  = 1<<4,
150	BSS_CHANGED_BASIC_RATES		= 1<<5,
151	BSS_CHANGED_BEACON_INT		= 1<<6,
152	BSS_CHANGED_BSSID		= 1<<7,
153	BSS_CHANGED_BEACON		= 1<<8,
154	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
155};
156
157/**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 *	if the hardware cannot handle this it must set the
168 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 *	if the hardware cannot handle this it must set the
171 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @basic_rates: bitmap of basic rates, each bit stands for an
177 *	index into the rate table configured by the driver in
178 *	the current band.
179 * @bssid: The BSSID for this BSS
180 * @enable_beacon: whether beaconing should be enabled or not
181 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
182 *	This field is only valid when the channel type is one of the HT types.
183 */
184struct ieee80211_bss_conf {
185	const u8 *bssid;
186	/* association related data */
187	bool assoc;
188	u16 aid;
189	/* erp related data */
190	bool use_cts_prot;
191	bool use_short_preamble;
192	bool use_short_slot;
193	bool enable_beacon;
194	u8 dtim_period;
195	u16 beacon_int;
196	u16 assoc_capability;
197	u64 timestamp;
198	u32 basic_rates;
199	u16 ht_operation_mode;
200};
201
202/**
203 * enum mac80211_tx_control_flags - flags to describe transmission information/status
204 *
205 * These flags are used with the @flags member of &ieee80211_tx_info.
206 *
207 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
208 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
209 *	number to this frame, taking care of not overwriting the fragment
210 *	number and increasing the sequence number only when the
211 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
212 *	assign sequence numbers to QoS-data frames but cannot do so correctly
213 *	for non-QoS-data and management frames because beacons need them from
214 *	that counter as well and mac80211 cannot guarantee proper sequencing.
215 *	If this flag is set, the driver should instruct the hardware to
216 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
217 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
218 *	beacons and always be clear for frames without a sequence number field.
219 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
220 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
221 *	station
222 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
223 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
224 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
225 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
226 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
227 *	because the destination STA was in powersave mode.
228 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
229 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
230 * 	is for the whole aggregation.
231 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
232 * 	so consider using block ack request (BAR).
233 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
234 *	set by rate control algorithms to indicate probe rate, will
235 *	be cleared for fragmented frames (except on the last fragment)
236 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
237 *	set this flag in the driver; indicates that the rate control
238 *	algorithm was used and should be notified of TX status
239 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
240 *	used to indicate that a pending frame requires TX processing before
241 *	it can be sent out.
242 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
243 *	used to indicate that a frame was already retried due to PS
244 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
245 *	used to indicate frame should not be encrypted
246 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
247 *	This frame is a response to a PS-poll frame and should be sent
248 *	although the station is in powersave mode.
249 */
250enum mac80211_tx_control_flags {
251	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
252	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
253	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
254	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
255	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
256	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
257	IEEE80211_TX_CTL_AMPDU			= BIT(6),
258	IEEE80211_TX_CTL_INJECTED		= BIT(7),
259	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
260	IEEE80211_TX_STAT_ACK			= BIT(9),
261	IEEE80211_TX_STAT_AMPDU			= BIT(10),
262	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
263	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
264	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
265	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
266	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
267	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
268	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
269};
270
271/**
272 * enum mac80211_rate_control_flags - per-rate flags set by the
273 *	Rate Control algorithm.
274 *
275 * These flags are set by the Rate control algorithm for each rate during tx,
276 * in the @flags member of struct ieee80211_tx_rate.
277 *
278 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
279 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
280 *	This is set if the current BSS requires ERP protection.
281 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
282 * @IEEE80211_TX_RC_MCS: HT rate.
283 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
284 *	Greenfield mode.
285 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
286 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
287 *	adjacent 20 MHz channels, if the current channel type is
288 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
289 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
290 */
291enum mac80211_rate_control_flags {
292	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
293	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
294	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
295
296	/* rate index is an MCS rate number instead of an index */
297	IEEE80211_TX_RC_MCS			= BIT(3),
298	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
299	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
300	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
301	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
302};
303
304
305/* there are 40 bytes if you don't need the rateset to be kept */
306#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
307
308/* if you do need the rateset, then you have less space */
309#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
310
311/* maximum number of rate stages */
312#define IEEE80211_TX_MAX_RATES	5
313
314/**
315 * struct ieee80211_tx_rate - rate selection/status
316 *
317 * @idx: rate index to attempt to send with
318 * @flags: rate control flags (&enum mac80211_rate_control_flags)
319 * @count: number of tries in this rate before going to the next rate
320 *
321 * A value of -1 for @idx indicates an invalid rate and, if used
322 * in an array of retry rates, that no more rates should be tried.
323 *
324 * When used for transmit status reporting, the driver should
325 * always report the rate along with the flags it used.
326 */
327struct ieee80211_tx_rate {
328	s8 idx;
329	u8 count;
330	u8 flags;
331} __attribute__((packed));
332
333/**
334 * struct ieee80211_tx_info - skb transmit information
335 *
336 * This structure is placed in skb->cb for three uses:
337 *  (1) mac80211 TX control - mac80211 tells the driver what to do
338 *  (2) driver internal use (if applicable)
339 *  (3) TX status information - driver tells mac80211 what happened
340 *
341 * The TX control's sta pointer is only valid during the ->tx call,
342 * it may be NULL.
343 *
344 * @flags: transmit info flags, defined above
345 * @band: the band to transmit on (use for checking for races)
346 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
347 * @pad: padding, ignore
348 * @control: union for control data
349 * @status: union for status data
350 * @driver_data: array of driver_data pointers
351 * @ampdu_ack_len: number of aggregated frames.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ampdu_ack_map: block ack bit map for the aggregation.
354 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
355 * @ack_signal: signal strength of the ACK frame
356 */
357struct ieee80211_tx_info {
358	/* common information */
359	u32 flags;
360	u8 band;
361
362	u8 antenna_sel_tx;
363
364	/* 2 byte hole */
365	u8 pad[2];
366
367	union {
368		struct {
369			union {
370				/* rate control */
371				struct {
372					struct ieee80211_tx_rate rates[
373						IEEE80211_TX_MAX_RATES];
374					s8 rts_cts_rate_idx;
375				};
376				/* only needed before rate control */
377				unsigned long jiffies;
378			};
379			/* NB: vif can be NULL for injected frames */
380			struct ieee80211_vif *vif;
381			struct ieee80211_key_conf *hw_key;
382			struct ieee80211_sta *sta;
383		} control;
384		struct {
385			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
386			u8 ampdu_ack_len;
387			u64 ampdu_ack_map;
388			int ack_signal;
389			/* 8 bytes free */
390		} status;
391		struct {
392			struct ieee80211_tx_rate driver_rates[
393				IEEE80211_TX_MAX_RATES];
394			void *rate_driver_data[
395				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
396		};
397		void *driver_data[
398			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
399	};
400};
401
402static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
403{
404	return (struct ieee80211_tx_info *)skb->cb;
405}
406
407static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
408{
409	return (struct ieee80211_rx_status *)skb->cb;
410}
411
412/**
413 * ieee80211_tx_info_clear_status - clear TX status
414 *
415 * @info: The &struct ieee80211_tx_info to be cleared.
416 *
417 * When the driver passes an skb back to mac80211, it must report
418 * a number of things in TX status. This function clears everything
419 * in the TX status but the rate control information (it does clear
420 * the count since you need to fill that in anyway).
421 *
422 * NOTE: You can only use this function if you do NOT use
423 *	 info->driver_data! Use info->rate_driver_data
424 *	 instead if you need only the less space that allows.
425 */
426static inline void
427ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
428{
429	int i;
430
431	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
432		     offsetof(struct ieee80211_tx_info, control.rates));
433	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
434		     offsetof(struct ieee80211_tx_info, driver_rates));
435	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
436	/* clear the rate counts */
437	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
438		info->status.rates[i].count = 0;
439
440	BUILD_BUG_ON(
441	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
442	memset(&info->status.ampdu_ack_len, 0,
443	       sizeof(struct ieee80211_tx_info) -
444	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
445}
446
447
448/**
449 * enum mac80211_rx_flags - receive flags
450 *
451 * These flags are used with the @flag member of &struct ieee80211_rx_status.
452 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
453 *	Use together with %RX_FLAG_MMIC_STRIPPED.
454 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
455 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
456 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
457 *	verification has been done by the hardware.
458 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
459 *	If this flag is set, the stack cannot do any replay detection
460 *	hence the driver or hardware will have to do that.
461 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
462 *	the frame.
463 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
464 *	the frame.
465 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
466 *	is valid. This is useful in monitor mode and necessary for beacon frames
467 *	to enable IBSS merging.
468 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
469 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
470 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
471 * @RX_FLAG_SHORT_GI: Short guard interval was used
472 */
473enum mac80211_rx_flags {
474	RX_FLAG_MMIC_ERROR	= 1<<0,
475	RX_FLAG_DECRYPTED	= 1<<1,
476	RX_FLAG_RADIOTAP	= 1<<2,
477	RX_FLAG_MMIC_STRIPPED	= 1<<3,
478	RX_FLAG_IV_STRIPPED	= 1<<4,
479	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
480	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
481	RX_FLAG_TSFT		= 1<<7,
482	RX_FLAG_SHORTPRE	= 1<<8,
483	RX_FLAG_HT		= 1<<9,
484	RX_FLAG_40MHZ		= 1<<10,
485	RX_FLAG_SHORT_GI	= 1<<11,
486};
487
488/**
489 * struct ieee80211_rx_status - receive status
490 *
491 * The low-level driver should provide this information (the subset
492 * supported by hardware) to the 802.11 code with each received
493 * frame, in the skb's control buffer (cb).
494 *
495 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
496 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
497 * @band: the active band when this frame was received
498 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
499 * @signal: signal strength when receiving this frame, either in dBm, in dB or
500 *	unspecified depending on the hardware capabilities flags
501 *	@IEEE80211_HW_SIGNAL_*
502 * @noise: noise when receiving this frame, in dBm.
503 * @qual: overall signal quality indication, in percent (0-100).
504 * @antenna: antenna used
505 * @rate_idx: index of data rate into band's supported rates or MCS index if
506 *	HT rates are use (RX_FLAG_HT)
507 * @flag: %RX_FLAG_*
508 */
509struct ieee80211_rx_status {
510	u64 mactime;
511	enum ieee80211_band band;
512	int freq;
513	int signal;
514	int noise;
515	int qual;
516	int antenna;
517	int rate_idx;
518	int flag;
519};
520
521/**
522 * enum ieee80211_conf_flags - configuration flags
523 *
524 * Flags to define PHY configuration options
525 *
526 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
527 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
528 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
529 *	the driver should be prepared to handle configuration requests but
530 *	may turn the device off as much as possible. Typically, this flag will
531 *	be set when an interface is set UP but not associated or scanning, but
532 *	it can also be unset in that case when monitor interfaces are active.
533 */
534enum ieee80211_conf_flags {
535	IEEE80211_CONF_RADIOTAP		= (1<<0),
536	IEEE80211_CONF_PS		= (1<<1),
537	IEEE80211_CONF_IDLE		= (1<<2),
538};
539
540
541/**
542 * enum ieee80211_conf_changed - denotes which configuration changed
543 *
544 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
545 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
546 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
547 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
548 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
549 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
550 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
551 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
552 */
553enum ieee80211_conf_changed {
554	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
555	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
556	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
557	IEEE80211_CONF_CHANGE_PS		= BIT(4),
558	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
559	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
560	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
561	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
562};
563
564static inline __deprecated enum ieee80211_conf_changed
565__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
566{
567	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
568}
569#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
570	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
571
572/**
573 * struct ieee80211_conf - configuration of the device
574 *
575 * This struct indicates how the driver shall configure the hardware.
576 *
577 * @flags: configuration flags defined above
578 *
579 * @radio_enabled: when zero, driver is required to switch off the radio.
580 * @beacon_int: DEPRECATED, DO NOT USE
581 *
582 * @listen_interval: listen interval in units of beacon interval
583 * @max_sleep_period: the maximum number of beacon intervals to sleep for
584 *	before checking the beacon for a TIM bit (managed mode only); this
585 *	value will be only achievable between DTIM frames, the hardware
586 *	needs to check for the multicast traffic bit in DTIM beacons.
587 *	This variable is valid only when the CONF_PS flag is set.
588 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
589 *	powersave documentation below. This variable is valid only when
590 *	the CONF_PS flag is set.
591 *
592 * @power_level: requested transmit power (in dBm)
593 *
594 * @channel: the channel to tune to
595 * @channel_type: the channel (HT) type
596 *
597 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
598 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
599 *    but actually means the number of transmissions not the number of retries
600 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
601 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
602 *    number of transmissions not the number of retries
603 */
604struct ieee80211_conf {
605	int __deprecated beacon_int;
606	u32 flags;
607	int power_level, dynamic_ps_timeout;
608	int max_sleep_period;
609
610	u16 listen_interval;
611	bool __deprecated radio_enabled;
612
613	u8 long_frame_max_tx_count, short_frame_max_tx_count;
614
615	struct ieee80211_channel *channel;
616	enum nl80211_channel_type channel_type;
617};
618
619/**
620 * struct ieee80211_vif - per-interface data
621 *
622 * Data in this structure is continually present for driver
623 * use during the life of a virtual interface.
624 *
625 * @type: type of this virtual interface
626 * @bss_conf: BSS configuration for this interface, either our own
627 *	or the BSS we're associated to
628 * @drv_priv: data area for driver use, will always be aligned to
629 *	sizeof(void *).
630 */
631struct ieee80211_vif {
632	enum nl80211_iftype type;
633	struct ieee80211_bss_conf bss_conf;
634	/* must be last */
635	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
636};
637
638static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
639{
640#ifdef CONFIG_MAC80211_MESH
641	return vif->type == NL80211_IFTYPE_MESH_POINT;
642#endif
643	return false;
644}
645
646/**
647 * struct ieee80211_if_init_conf - initial configuration of an interface
648 *
649 * @vif: pointer to a driver-use per-interface structure. The pointer
650 *	itself is also used for various functions including
651 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
652 * @type: one of &enum nl80211_iftype constants. Determines the type of
653 *	added/removed interface.
654 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
655 *	until the interface is removed (i.e. it cannot be used after
656 *	remove_interface() callback was called for this interface).
657 *
658 * This structure is used in add_interface() and remove_interface()
659 * callbacks of &struct ieee80211_hw.
660 *
661 * When you allow multiple interfaces to be added to your PHY, take care
662 * that the hardware can actually handle multiple MAC addresses. However,
663 * also take care that when there's no interface left with mac_addr != %NULL
664 * you remove the MAC address from the device to avoid acknowledging packets
665 * in pure monitor mode.
666 */
667struct ieee80211_if_init_conf {
668	enum nl80211_iftype type;
669	struct ieee80211_vif *vif;
670	void *mac_addr;
671};
672
673/**
674 * enum ieee80211_key_alg - key algorithm
675 * @ALG_WEP: WEP40 or WEP104
676 * @ALG_TKIP: TKIP
677 * @ALG_CCMP: CCMP (AES)
678 * @ALG_AES_CMAC: AES-128-CMAC
679 */
680enum ieee80211_key_alg {
681	ALG_WEP,
682	ALG_TKIP,
683	ALG_CCMP,
684	ALG_AES_CMAC,
685};
686
687/**
688 * enum ieee80211_key_flags - key flags
689 *
690 * These flags are used for communication about keys between the driver
691 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
692 *
693 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
694 *	that the STA this key will be used with could be using QoS.
695 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
696 *	driver to indicate that it requires IV generation for this
697 *	particular key.
698 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
699 *	the driver for a TKIP key if it requires Michael MIC
700 *	generation in software.
701 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
702 *	that the key is pairwise rather then a shared key.
703 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
704 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
705 *	be done in software.
706 */
707enum ieee80211_key_flags {
708	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
709	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
710	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
711	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
712	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
713};
714
715/**
716 * struct ieee80211_key_conf - key information
717 *
718 * This key information is given by mac80211 to the driver by
719 * the set_key() callback in &struct ieee80211_ops.
720 *
721 * @hw_key_idx: To be set by the driver, this is the key index the driver
722 *	wants to be given when a frame is transmitted and needs to be
723 *	encrypted in hardware.
724 * @alg: The key algorithm.
725 * @flags: key flags, see &enum ieee80211_key_flags.
726 * @keyidx: the key index (0-3)
727 * @keylen: key material length
728 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
729 * 	data block:
730 * 	- Temporal Encryption Key (128 bits)
731 * 	- Temporal Authenticator Tx MIC Key (64 bits)
732 * 	- Temporal Authenticator Rx MIC Key (64 bits)
733 * @icv_len: The ICV length for this key type
734 * @iv_len: The IV length for this key type
735 */
736struct ieee80211_key_conf {
737	enum ieee80211_key_alg alg;
738	u8 icv_len;
739	u8 iv_len;
740	u8 hw_key_idx;
741	u8 flags;
742	s8 keyidx;
743	u8 keylen;
744	u8 key[0];
745};
746
747/**
748 * enum set_key_cmd - key command
749 *
750 * Used with the set_key() callback in &struct ieee80211_ops, this
751 * indicates whether a key is being removed or added.
752 *
753 * @SET_KEY: a key is set
754 * @DISABLE_KEY: a key must be disabled
755 */
756enum set_key_cmd {
757	SET_KEY, DISABLE_KEY,
758};
759
760/**
761 * struct ieee80211_sta - station table entry
762 *
763 * A station table entry represents a station we are possibly
764 * communicating with. Since stations are RCU-managed in
765 * mac80211, any ieee80211_sta pointer you get access to must
766 * either be protected by rcu_read_lock() explicitly or implicitly,
767 * or you must take good care to not use such a pointer after a
768 * call to your sta_notify callback that removed it.
769 *
770 * @addr: MAC address
771 * @aid: AID we assigned to the station if we're an AP
772 * @supp_rates: Bitmap of supported rates (per band)
773 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
774 * @drv_priv: data area for driver use, will always be aligned to
775 *	sizeof(void *), size is determined in hw information.
776 */
777struct ieee80211_sta {
778	u32 supp_rates[IEEE80211_NUM_BANDS];
779	u8 addr[ETH_ALEN];
780	u16 aid;
781	struct ieee80211_sta_ht_cap ht_cap;
782
783	/* must be last */
784	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
785};
786
787/**
788 * enum sta_notify_cmd - sta notify command
789 *
790 * Used with the sta_notify() callback in &struct ieee80211_ops, this
791 * indicates addition and removal of a station to station table,
792 * or if a associated station made a power state transition.
793 *
794 * @STA_NOTIFY_ADD: a station was added to the station table
795 * @STA_NOTIFY_REMOVE: a station being removed from the station table
796 * @STA_NOTIFY_SLEEP: a station is now sleeping
797 * @STA_NOTIFY_AWAKE: a sleeping station woke up
798 */
799enum sta_notify_cmd {
800	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
801	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
802};
803
804/**
805 * enum ieee80211_tkip_key_type - get tkip key
806 *
807 * Used by drivers which need to get a tkip key for skb. Some drivers need a
808 * phase 1 key, others need a phase 2 key. A single function allows the driver
809 * to get the key, this enum indicates what type of key is required.
810 *
811 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
812 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
813 */
814enum ieee80211_tkip_key_type {
815	IEEE80211_TKIP_P1_KEY,
816	IEEE80211_TKIP_P2_KEY,
817};
818
819/**
820 * enum ieee80211_hw_flags - hardware flags
821 *
822 * These flags are used to indicate hardware capabilities to
823 * the stack. Generally, flags here should have their meaning
824 * done in a way that the simplest hardware doesn't need setting
825 * any particular flags. There are some exceptions to this rule,
826 * however, so you are advised to review these flags carefully.
827 *
828 * @IEEE80211_HW_RX_INCLUDES_FCS:
829 *	Indicates that received frames passed to the stack include
830 *	the FCS at the end.
831 *
832 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
833 *	Some wireless LAN chipsets buffer broadcast/multicast frames
834 *	for power saving stations in the hardware/firmware and others
835 *	rely on the host system for such buffering. This option is used
836 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
837 *	multicast frames when there are power saving stations so that
838 *	the driver can fetch them with ieee80211_get_buffered_bc().
839 *
840 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
841 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
842 *
843 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
844 *	Hardware is not capable of receiving frames with short preamble on
845 *	the 2.4 GHz band.
846 *
847 * @IEEE80211_HW_SIGNAL_UNSPEC:
848 *	Hardware can provide signal values but we don't know its units. We
849 *	expect values between 0 and @max_signal.
850 *	If possible please provide dB or dBm instead.
851 *
852 * @IEEE80211_HW_SIGNAL_DBM:
853 *	Hardware gives signal values in dBm, decibel difference from
854 *	one milliwatt. This is the preferred method since it is standardized
855 *	between different devices. @max_signal does not need to be set.
856 *
857 * @IEEE80211_HW_NOISE_DBM:
858 *	Hardware can provide noise (radio interference) values in units dBm,
859 *      decibel difference from one milliwatt.
860 *
861 * @IEEE80211_HW_SPECTRUM_MGMT:
862 * 	Hardware supports spectrum management defined in 802.11h
863 * 	Measurement, Channel Switch, Quieting, TPC
864 *
865 * @IEEE80211_HW_AMPDU_AGGREGATION:
866 *	Hardware supports 11n A-MPDU aggregation.
867 *
868 * @IEEE80211_HW_SUPPORTS_PS:
869 *	Hardware has power save support (i.e. can go to sleep).
870 *
871 * @IEEE80211_HW_PS_NULLFUNC_STACK:
872 *	Hardware requires nullfunc frame handling in stack, implies
873 *	stack support for dynamic PS.
874 *
875 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
876 *	Hardware has support for dynamic PS.
877 *
878 * @IEEE80211_HW_MFP_CAPABLE:
879 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
880 *
881 * @IEEE80211_HW_BEACON_FILTER:
882 *	Hardware supports dropping of irrelevant beacon frames to
883 *	avoid waking up cpu.
884 */
885enum ieee80211_hw_flags {
886	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
887	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
888	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
889	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
890	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
891	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
892	IEEE80211_HW_NOISE_DBM				= 1<<7,
893	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
894	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
895	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
896	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
897	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
898	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
899	IEEE80211_HW_BEACON_FILTER			= 1<<14,
900};
901
902/**
903 * struct ieee80211_hw - hardware information and state
904 *
905 * This structure contains the configuration and hardware
906 * information for an 802.11 PHY.
907 *
908 * @wiphy: This points to the &struct wiphy allocated for this
909 *	802.11 PHY. You must fill in the @perm_addr and @dev
910 *	members of this structure using SET_IEEE80211_DEV()
911 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
912 *	bands (with channels, bitrates) are registered here.
913 *
914 * @conf: &struct ieee80211_conf, device configuration, don't use.
915 *
916 * @workqueue: single threaded workqueue available for driver use,
917 *	allocated by mac80211 on registration and flushed when an
918 *	interface is removed.
919 *	NOTICE: All work performed on this workqueue must not
920 *	acquire the RTNL lock.
921 *
922 * @priv: pointer to private area that was allocated for driver use
923 *	along with this structure.
924 *
925 * @flags: hardware flags, see &enum ieee80211_hw_flags.
926 *
927 * @extra_tx_headroom: headroom to reserve in each transmit skb
928 *	for use by the driver (e.g. for transmit headers.)
929 *
930 * @channel_change_time: time (in microseconds) it takes to change channels.
931 *
932 * @max_signal: Maximum value for signal (rssi) in RX information, used
933 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
934 *
935 * @max_listen_interval: max listen interval in units of beacon interval
936 *     that HW supports
937 *
938 * @queues: number of available hardware transmit queues for
939 *	data packets. WMM/QoS requires at least four, these
940 *	queues need to have configurable access parameters.
941 *
942 * @rate_control_algorithm: rate control algorithm for this hardware.
943 *	If unset (NULL), the default algorithm will be used. Must be
944 *	set before calling ieee80211_register_hw().
945 *
946 * @vif_data_size: size (in bytes) of the drv_priv data area
947 *	within &struct ieee80211_vif.
948 * @sta_data_size: size (in bytes) of the drv_priv data area
949 *	within &struct ieee80211_sta.
950 *
951 * @max_rates: maximum number of alternate rate retry stages
952 * @max_rate_tries: maximum number of tries for each stage
953 */
954struct ieee80211_hw {
955	struct ieee80211_conf conf;
956	struct wiphy *wiphy;
957	struct workqueue_struct *workqueue;
958	const char *rate_control_algorithm;
959	void *priv;
960	u32 flags;
961	unsigned int extra_tx_headroom;
962	int channel_change_time;
963	int vif_data_size;
964	int sta_data_size;
965	u16 queues;
966	u16 max_listen_interval;
967	s8 max_signal;
968	u8 max_rates;
969	u8 max_rate_tries;
970};
971
972/**
973 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
974 *
975 * @wiphy: the &struct wiphy which we want to query
976 *
977 * mac80211 drivers can use this to get to their respective
978 * &struct ieee80211_hw. Drivers wishing to get to their own private
979 * structure can then access it via hw->priv. Note that mac802111 drivers should
980 * not use wiphy_priv() to try to get their private driver structure as this
981 * is already used internally by mac80211.
982 */
983struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
984
985/**
986 * SET_IEEE80211_DEV - set device for 802.11 hardware
987 *
988 * @hw: the &struct ieee80211_hw to set the device for
989 * @dev: the &struct device of this 802.11 device
990 */
991static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
992{
993	set_wiphy_dev(hw->wiphy, dev);
994}
995
996/**
997 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
998 *
999 * @hw: the &struct ieee80211_hw to set the MAC address for
1000 * @addr: the address to set
1001 */
1002static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1003{
1004	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1005}
1006
1007static inline struct ieee80211_rate *
1008ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1009		      const struct ieee80211_tx_info *c)
1010{
1011	if (WARN_ON(c->control.rates[0].idx < 0))
1012		return NULL;
1013	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1014}
1015
1016static inline struct ieee80211_rate *
1017ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1018			   const struct ieee80211_tx_info *c)
1019{
1020	if (c->control.rts_cts_rate_idx < 0)
1021		return NULL;
1022	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1023}
1024
1025static inline struct ieee80211_rate *
1026ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1027			     const struct ieee80211_tx_info *c, int idx)
1028{
1029	if (c->control.rates[idx + 1].idx < 0)
1030		return NULL;
1031	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1032}
1033
1034/**
1035 * DOC: Hardware crypto acceleration
1036 *
1037 * mac80211 is capable of taking advantage of many hardware
1038 * acceleration designs for encryption and decryption operations.
1039 *
1040 * The set_key() callback in the &struct ieee80211_ops for a given
1041 * device is called to enable hardware acceleration of encryption and
1042 * decryption. The callback takes a @sta parameter that will be NULL
1043 * for default keys or keys used for transmission only, or point to
1044 * the station information for the peer for individual keys.
1045 * Multiple transmission keys with the same key index may be used when
1046 * VLANs are configured for an access point.
1047 *
1048 * When transmitting, the TX control data will use the @hw_key_idx
1049 * selected by the driver by modifying the &struct ieee80211_key_conf
1050 * pointed to by the @key parameter to the set_key() function.
1051 *
1052 * The set_key() call for the %SET_KEY command should return 0 if
1053 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1054 * added; if you return 0 then hw_key_idx must be assigned to the
1055 * hardware key index, you are free to use the full u8 range.
1056 *
1057 * When the cmd is %DISABLE_KEY then it must succeed.
1058 *
1059 * Note that it is permissible to not decrypt a frame even if a key
1060 * for it has been uploaded to hardware, the stack will not make any
1061 * decision based on whether a key has been uploaded or not but rather
1062 * based on the receive flags.
1063 *
1064 * The &struct ieee80211_key_conf structure pointed to by the @key
1065 * parameter is guaranteed to be valid until another call to set_key()
1066 * removes it, but it can only be used as a cookie to differentiate
1067 * keys.
1068 *
1069 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1070 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1071 * handler.
1072 * The update_tkip_key() call updates the driver with the new phase 1 key.
1073 * This happens everytime the iv16 wraps around (every 65536 packets). The
1074 * set_key() call will happen only once for each key (unless the AP did
1075 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1076 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1077 * handler is software decryption with wrap around of iv16.
1078 */
1079
1080/**
1081 * DOC: Powersave support
1082 *
1083 * mac80211 has support for various powersave implementations.
1084 *
1085 * First, it can support hardware that handles all powersaving by
1086 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1087 * hardware flag. In that case, it will be told about the desired
1088 * powersave mode depending on the association status, and the driver
1089 * must take care of sending nullfunc frames when necessary, i.e. when
1090 * entering and leaving powersave mode. The driver is required to look at
1091 * the AID in beacons and signal to the AP that it woke up when it finds
1092 * traffic directed to it. This mode supports dynamic PS by simply
1093 * enabling/disabling PS.
1094 *
1095 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1096 * flag to indicate that it can support dynamic PS mode itself (see below).
1097 *
1098 * Other hardware designs cannot send nullfunc frames by themselves and also
1099 * need software support for parsing the TIM bitmap. This is also supported
1100 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1101 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1102 * required to pass up beacons. The hardware is still required to handle
1103 * waking up for multicast traffic; if it cannot the driver must handle that
1104 * as best as it can, mac80211 is too slow.
1105 *
1106 * Dynamic powersave mode is an extension to normal powersave mode in which
1107 * the hardware stays awake for a user-specified period of time after sending
1108 * a frame so that reply frames need not be buffered and therefore delayed
1109 * to the next wakeup. This can either be supported by hardware, in which case
1110 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1111 * value, or by the stack if all nullfunc handling is in the stack.
1112 */
1113
1114/**
1115 * DOC: Beacon filter support
1116 *
1117 * Some hardware have beacon filter support to reduce host cpu wakeups
1118 * which will reduce system power consumption. It usuallly works so that
1119 * the firmware creates a checksum of the beacon but omits all constantly
1120 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1121 * beacon is forwarded to the host, otherwise it will be just dropped. That
1122 * way the host will only receive beacons where some relevant information
1123 * (for example ERP protection or WMM settings) have changed.
1124 *
1125 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1126 * hardware capability. The driver needs to enable beacon filter support
1127 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1128 * power save is enabled, the stack will not check for beacon loss and the
1129 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1130 *
1131 * The time (or number of beacons missed) until the firmware notifies the
1132 * driver of a beacon loss event (which in turn causes the driver to call
1133 * ieee80211_beacon_loss()) should be configurable and will be controlled
1134 * by mac80211 and the roaming algorithm in the future.
1135 *
1136 * Since there may be constantly changing information elements that nothing
1137 * in the software stack cares about, we will, in the future, have mac80211
1138 * tell the driver which information elements are interesting in the sense
1139 * that we want to see changes in them. This will include
1140 *  - a list of information element IDs
1141 *  - a list of OUIs for the vendor information element
1142 *
1143 * Ideally, the hardware would filter out any beacons without changes in the
1144 * requested elements, but if it cannot support that it may, at the expense
1145 * of some efficiency, filter out only a subset. For example, if the device
1146 * doesn't support checking for OUIs it should pass up all changes in all
1147 * vendor information elements.
1148 *
1149 * Note that change, for the sake of simplification, also includes information
1150 * elements appearing or disappearing from the beacon.
1151 *
1152 * Some hardware supports an "ignore list" instead, just make sure nothing
1153 * that was requested is on the ignore list, and include commonly changing
1154 * information element IDs in the ignore list, for example 11 (BSS load) and
1155 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1156 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1157 * it could also include some currently unused IDs.
1158 *
1159 *
1160 * In addition to these capabilities, hardware should support notifying the
1161 * host of changes in the beacon RSSI. This is relevant to implement roaming
1162 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1163 * the received data packets). This can consist in notifying the host when
1164 * the RSSI changes significantly or when it drops below or rises above
1165 * configurable thresholds. In the future these thresholds will also be
1166 * configured by mac80211 (which gets them from userspace) to implement
1167 * them as the roaming algorithm requires.
1168 *
1169 * If the hardware cannot implement this, the driver should ask it to
1170 * periodically pass beacon frames to the host so that software can do the
1171 * signal strength threshold checking.
1172 */
1173
1174/**
1175 * DOC: Frame filtering
1176 *
1177 * mac80211 requires to see many management frames for proper
1178 * operation, and users may want to see many more frames when
1179 * in monitor mode. However, for best CPU usage and power consumption,
1180 * having as few frames as possible percolate through the stack is
1181 * desirable. Hence, the hardware should filter as much as possible.
1182 *
1183 * To achieve this, mac80211 uses filter flags (see below) to tell
1184 * the driver's configure_filter() function which frames should be
1185 * passed to mac80211 and which should be filtered out.
1186 *
1187 * The configure_filter() callback is invoked with the parameters
1188 * @mc_count and @mc_list for the combined multicast address list
1189 * of all virtual interfaces, @changed_flags telling which flags
1190 * were changed and @total_flags with the new flag states.
1191 *
1192 * If your device has no multicast address filters your driver will
1193 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1194 * parameter to see whether multicast frames should be accepted
1195 * or dropped.
1196 *
1197 * All unsupported flags in @total_flags must be cleared.
1198 * Hardware does not support a flag if it is incapable of _passing_
1199 * the frame to the stack. Otherwise the driver must ignore
1200 * the flag, but not clear it.
1201 * You must _only_ clear the flag (announce no support for the
1202 * flag to mac80211) if you are not able to pass the packet type
1203 * to the stack (so the hardware always filters it).
1204 * So for example, you should clear @FIF_CONTROL, if your hardware
1205 * always filters control frames. If your hardware always passes
1206 * control frames to the kernel and is incapable of filtering them,
1207 * you do _not_ clear the @FIF_CONTROL flag.
1208 * This rule applies to all other FIF flags as well.
1209 */
1210
1211/**
1212 * enum ieee80211_filter_flags - hardware filter flags
1213 *
1214 * These flags determine what the filter in hardware should be
1215 * programmed to let through and what should not be passed to the
1216 * stack. It is always safe to pass more frames than requested,
1217 * but this has negative impact on power consumption.
1218 *
1219 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1220 *	think of the BSS as your network segment and then this corresponds
1221 *	to the regular ethernet device promiscuous mode.
1222 *
1223 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1224 *	by the user or if the hardware is not capable of filtering by
1225 *	multicast address.
1226 *
1227 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1228 *	%RX_FLAG_FAILED_FCS_CRC for them)
1229 *
1230 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1231 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1232 *
1233 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1234 *	to the hardware that it should not filter beacons or probe responses
1235 *	by BSSID. Filtering them can greatly reduce the amount of processing
1236 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1237 *	honour this flag if possible.
1238 *
1239 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1240 *	only those addressed to this station
1241 *
1242 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1243 */
1244enum ieee80211_filter_flags {
1245	FIF_PROMISC_IN_BSS	= 1<<0,
1246	FIF_ALLMULTI		= 1<<1,
1247	FIF_FCSFAIL		= 1<<2,
1248	FIF_PLCPFAIL		= 1<<3,
1249	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1250	FIF_CONTROL		= 1<<5,
1251	FIF_OTHER_BSS		= 1<<6,
1252};
1253
1254/**
1255 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1256 *
1257 * These flags are used with the ampdu_action() callback in
1258 * &struct ieee80211_ops to indicate which action is needed.
1259 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1260 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1261 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1262 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1263 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1264 */
1265enum ieee80211_ampdu_mlme_action {
1266	IEEE80211_AMPDU_RX_START,
1267	IEEE80211_AMPDU_RX_STOP,
1268	IEEE80211_AMPDU_TX_START,
1269	IEEE80211_AMPDU_TX_STOP,
1270	IEEE80211_AMPDU_TX_OPERATIONAL,
1271};
1272
1273/**
1274 * struct ieee80211_ops - callbacks from mac80211 to the driver
1275 *
1276 * This structure contains various callbacks that the driver may
1277 * handle or, in some cases, must handle, for example to configure
1278 * the hardware to a new channel or to transmit a frame.
1279 *
1280 * @tx: Handler that 802.11 module calls for each transmitted frame.
1281 *	skb contains the buffer starting from the IEEE 802.11 header.
1282 *	The low-level driver should send the frame out based on
1283 *	configuration in the TX control data. This handler should,
1284 *	preferably, never fail and stop queues appropriately, more
1285 *	importantly, however, it must never fail for A-MPDU-queues.
1286 *	This function should return NETDEV_TX_OK except in very
1287 *	limited cases.
1288 *	Must be implemented and atomic.
1289 *
1290 * @start: Called before the first netdevice attached to the hardware
1291 *	is enabled. This should turn on the hardware and must turn on
1292 *	frame reception (for possibly enabled monitor interfaces.)
1293 *	Returns negative error codes, these may be seen in userspace,
1294 *	or zero.
1295 *	When the device is started it should not have a MAC address
1296 *	to avoid acknowledging frames before a non-monitor device
1297 *	is added.
1298 *	Must be implemented.
1299 *
1300 * @stop: Called after last netdevice attached to the hardware
1301 *	is disabled. This should turn off the hardware (at least
1302 *	it must turn off frame reception.)
1303 *	May be called right after add_interface if that rejects
1304 *	an interface.
1305 *	Must be implemented.
1306 *
1307 * @add_interface: Called when a netdevice attached to the hardware is
1308 *	enabled. Because it is not called for monitor mode devices, @start
1309 *	and @stop must be implemented.
1310 *	The driver should perform any initialization it needs before
1311 *	the device can be enabled. The initial configuration for the
1312 *	interface is given in the conf parameter.
1313 *	The callback may refuse to add an interface by returning a
1314 *	negative error code (which will be seen in userspace.)
1315 *	Must be implemented.
1316 *
1317 * @remove_interface: Notifies a driver that an interface is going down.
1318 *	The @stop callback is called after this if it is the last interface
1319 *	and no monitor interfaces are present.
1320 *	When all interfaces are removed, the MAC address in the hardware
1321 *	must be cleared so the device no longer acknowledges packets,
1322 *	the mac_addr member of the conf structure is, however, set to the
1323 *	MAC address of the device going away.
1324 *	Hence, this callback must be implemented.
1325 *
1326 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1327 *	function to change hardware configuration, e.g., channel.
1328 *	This function should never fail but returns a negative error code
1329 *	if it does.
1330 *
1331 * @bss_info_changed: Handler for configuration requests related to BSS
1332 *	parameters that may vary during BSS's lifespan, and may affect low
1333 *	level driver (e.g. assoc/disassoc status, erp parameters).
1334 *	This function should not be used if no BSS has been set, unless
1335 *	for association indication. The @changed parameter indicates which
1336 *	of the bss parameters has changed when a call is made.
1337 *
1338 * @configure_filter: Configure the device's RX filter.
1339 *	See the section "Frame filtering" for more information.
1340 *	This callback must be implemented and atomic.
1341 *
1342 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1343 * 	must be set or cleared for a given STA. Must be atomic.
1344 *
1345 * @set_key: See the section "Hardware crypto acceleration"
1346 *	This callback can sleep, and is only called between add_interface
1347 *	and remove_interface calls, i.e. while the given virtual interface
1348 *	is enabled.
1349 *	Returns a negative error code if the key can't be added.
1350 *
1351 * @update_tkip_key: See the section "Hardware crypto acceleration"
1352 * 	This callback will be called in the context of Rx. Called for drivers
1353 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1354 *
1355 * @hw_scan: Ask the hardware to service the scan request, no need to start
1356 *	the scan state machine in stack. The scan must honour the channel
1357 *	configuration done by the regulatory agent in the wiphy's
1358 *	registered bands. The hardware (or the driver) needs to make sure
1359 *	that power save is disabled.
1360 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1361 *	entire IEs after the SSID, so that drivers need not look at these
1362 *	at all but just send them after the SSID -- mac80211 includes the
1363 *	(extended) supported rates and HT information (where applicable).
1364 *	When the scan finishes, ieee80211_scan_completed() must be called;
1365 *	note that it also must be called when the scan cannot finish due to
1366 *	any error unless this callback returned a negative error code.
1367 *
1368 * @sw_scan_start: Notifier function that is called just before a software scan
1369 *	is started. Can be NULL, if the driver doesn't need this notification.
1370 *
1371 * @sw_scan_complete: Notifier function that is called just after a software scan
1372 *	finished. Can be NULL, if the driver doesn't need this notification.
1373 *
1374 * @get_stats: Return low-level statistics.
1375 * 	Returns zero if statistics are available.
1376 *
1377 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1378 *	callback should be provided to read the TKIP transmit IVs (both IV32
1379 *	and IV16) for the given key from hardware.
1380 *
1381 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1382 *
1383 * @sta_notify: Notifies low level driver about addition, removal or power
1384 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1385 *	Must be atomic.
1386 *
1387 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1388 *	bursting) for a hardware TX queue.
1389 *	Returns a negative error code on failure.
1390 *
1391 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1392 *	to get number of currently queued packets (queue length), maximum queue
1393 *	size (limit), and total number of packets sent using each TX queue
1394 *	(count). The 'stats' pointer points to an array that has hw->queues
1395 *	items.
1396 *
1397 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1398 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1399 *	required function.
1400 *
1401 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1402 *      Currently, this is only used for IBSS mode debugging. Is not a
1403 *	required function.
1404 *
1405 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1406 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1407 *	function is optional if the firmware/hardware takes full care of
1408 *	TSF synchronization.
1409 *
1410 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1411 *	This is needed only for IBSS mode and the result of this function is
1412 *	used to determine whether to reply to Probe Requests.
1413 *	Returns non-zero if this device sent the last beacon.
1414 *
1415 * @ampdu_action: Perform a certain A-MPDU action
1416 * 	The RA/TID combination determines the destination and TID we want
1417 * 	the ampdu action to be performed for. The action is defined through
1418 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1419 * 	is the first frame we expect to perform the action on. Notice
1420 * 	that TX/RX_STOP can pass NULL for this parameter.
1421 *	Returns a negative error code on failure.
1422 *
1423 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1424 *	need to set wiphy->rfkill_poll to %true before registration,
1425 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1426 *
1427 * @testmode_cmd: Implement a cfg80211 test mode command.
1428 */
1429struct ieee80211_ops {
1430	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1431	int (*start)(struct ieee80211_hw *hw);
1432	void (*stop)(struct ieee80211_hw *hw);
1433	int (*add_interface)(struct ieee80211_hw *hw,
1434			     struct ieee80211_if_init_conf *conf);
1435	void (*remove_interface)(struct ieee80211_hw *hw,
1436				 struct ieee80211_if_init_conf *conf);
1437	int (*config)(struct ieee80211_hw *hw, u32 changed);
1438	void (*bss_info_changed)(struct ieee80211_hw *hw,
1439				 struct ieee80211_vif *vif,
1440				 struct ieee80211_bss_conf *info,
1441				 u32 changed);
1442	void (*configure_filter)(struct ieee80211_hw *hw,
1443				 unsigned int changed_flags,
1444				 unsigned int *total_flags,
1445				 int mc_count, struct dev_addr_list *mc_list);
1446	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1447		       bool set);
1448	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1449		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1450		       struct ieee80211_key_conf *key);
1451	void (*update_tkip_key)(struct ieee80211_hw *hw,
1452			struct ieee80211_key_conf *conf, const u8 *address,
1453			u32 iv32, u16 *phase1key);
1454	int (*hw_scan)(struct ieee80211_hw *hw,
1455		       struct cfg80211_scan_request *req);
1456	void (*sw_scan_start)(struct ieee80211_hw *hw);
1457	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1458	int (*get_stats)(struct ieee80211_hw *hw,
1459			 struct ieee80211_low_level_stats *stats);
1460	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1461			     u32 *iv32, u16 *iv16);
1462	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1463	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1464			enum sta_notify_cmd, struct ieee80211_sta *sta);
1465	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1466		       const struct ieee80211_tx_queue_params *params);
1467	int (*get_tx_stats)(struct ieee80211_hw *hw,
1468			    struct ieee80211_tx_queue_stats *stats);
1469	u64 (*get_tsf)(struct ieee80211_hw *hw);
1470	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1471	void (*reset_tsf)(struct ieee80211_hw *hw);
1472	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1473	int (*ampdu_action)(struct ieee80211_hw *hw,
1474			    enum ieee80211_ampdu_mlme_action action,
1475			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1476
1477	void (*rfkill_poll)(struct ieee80211_hw *hw);
1478#ifdef CONFIG_NL80211_TESTMODE
1479	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1480#endif
1481};
1482
1483/**
1484 * ieee80211_alloc_hw -  Allocate a new hardware device
1485 *
1486 * This must be called once for each hardware device. The returned pointer
1487 * must be used to refer to this device when calling other functions.
1488 * mac80211 allocates a private data area for the driver pointed to by
1489 * @priv in &struct ieee80211_hw, the size of this area is given as
1490 * @priv_data_len.
1491 *
1492 * @priv_data_len: length of private data
1493 * @ops: callbacks for this device
1494 */
1495struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1496					const struct ieee80211_ops *ops);
1497
1498/**
1499 * ieee80211_register_hw - Register hardware device
1500 *
1501 * You must call this function before any other functions in
1502 * mac80211. Note that before a hardware can be registered, you
1503 * need to fill the contained wiphy's information.
1504 *
1505 * @hw: the device to register as returned by ieee80211_alloc_hw()
1506 */
1507int ieee80211_register_hw(struct ieee80211_hw *hw);
1508
1509#ifdef CONFIG_MAC80211_LEDS
1510extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1511extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1512extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1513extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1514#endif
1515/**
1516 * ieee80211_get_tx_led_name - get name of TX LED
1517 *
1518 * mac80211 creates a transmit LED trigger for each wireless hardware
1519 * that can be used to drive LEDs if your driver registers a LED device.
1520 * This function returns the name (or %NULL if not configured for LEDs)
1521 * of the trigger so you can automatically link the LED device.
1522 *
1523 * @hw: the hardware to get the LED trigger name for
1524 */
1525static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1526{
1527#ifdef CONFIG_MAC80211_LEDS
1528	return __ieee80211_get_tx_led_name(hw);
1529#else
1530	return NULL;
1531#endif
1532}
1533
1534/**
1535 * ieee80211_get_rx_led_name - get name of RX LED
1536 *
1537 * mac80211 creates a receive LED trigger for each wireless hardware
1538 * that can be used to drive LEDs if your driver registers a LED device.
1539 * This function returns the name (or %NULL if not configured for LEDs)
1540 * of the trigger so you can automatically link the LED device.
1541 *
1542 * @hw: the hardware to get the LED trigger name for
1543 */
1544static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1545{
1546#ifdef CONFIG_MAC80211_LEDS
1547	return __ieee80211_get_rx_led_name(hw);
1548#else
1549	return NULL;
1550#endif
1551}
1552
1553/**
1554 * ieee80211_get_assoc_led_name - get name of association LED
1555 *
1556 * mac80211 creates a association LED trigger for each wireless hardware
1557 * that can be used to drive LEDs if your driver registers a LED device.
1558 * This function returns the name (or %NULL if not configured for LEDs)
1559 * of the trigger so you can automatically link the LED device.
1560 *
1561 * @hw: the hardware to get the LED trigger name for
1562 */
1563static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1564{
1565#ifdef CONFIG_MAC80211_LEDS
1566	return __ieee80211_get_assoc_led_name(hw);
1567#else
1568	return NULL;
1569#endif
1570}
1571
1572/**
1573 * ieee80211_get_radio_led_name - get name of radio LED
1574 *
1575 * mac80211 creates a radio change LED trigger for each wireless hardware
1576 * that can be used to drive LEDs if your driver registers a LED device.
1577 * This function returns the name (or %NULL if not configured for LEDs)
1578 * of the trigger so you can automatically link the LED device.
1579 *
1580 * @hw: the hardware to get the LED trigger name for
1581 */
1582static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1583{
1584#ifdef CONFIG_MAC80211_LEDS
1585	return __ieee80211_get_radio_led_name(hw);
1586#else
1587	return NULL;
1588#endif
1589}
1590
1591/**
1592 * ieee80211_unregister_hw - Unregister a hardware device
1593 *
1594 * This function instructs mac80211 to free allocated resources
1595 * and unregister netdevices from the networking subsystem.
1596 *
1597 * @hw: the hardware to unregister
1598 */
1599void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1600
1601/**
1602 * ieee80211_free_hw - free hardware descriptor
1603 *
1604 * This function frees everything that was allocated, including the
1605 * private data for the driver. You must call ieee80211_unregister_hw()
1606 * before calling this function.
1607 *
1608 * @hw: the hardware to free
1609 */
1610void ieee80211_free_hw(struct ieee80211_hw *hw);
1611
1612/**
1613 * ieee80211_restart_hw - restart hardware completely
1614 *
1615 * Call this function when the hardware was restarted for some reason
1616 * (hardware error, ...) and the driver is unable to restore its state
1617 * by itself. mac80211 assumes that at this point the driver/hardware
1618 * is completely uninitialised and stopped, it starts the process by
1619 * calling the ->start() operation. The driver will need to reset all
1620 * internal state that it has prior to calling this function.
1621 *
1622 * @hw: the hardware to restart
1623 */
1624void ieee80211_restart_hw(struct ieee80211_hw *hw);
1625
1626/*
1627 * trick to avoid symbol clashes with the ieee80211 subsystem,
1628 * use the inline below instead
1629 */
1630void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1631
1632/**
1633 * ieee80211_rx - receive frame
1634 *
1635 * Use this function to hand received frames to mac80211. The receive
1636 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1637 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1638 *
1639 * This function may not be called in IRQ context. Calls to this function
1640 * for a single hardware must be synchronized against each other. Calls
1641 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1642 * single hardware.
1643 *
1644 * @hw: the hardware this frame came in on
1645 * @skb: the buffer to receive, owned by mac80211 after this call
1646 */
1647static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1648{
1649	__ieee80211_rx(hw, skb);
1650}
1651
1652/**
1653 * ieee80211_rx_irqsafe - receive frame
1654 *
1655 * Like ieee80211_rx() but can be called in IRQ context
1656 * (internally defers to a tasklet.)
1657 *
1658 * Calls to this function and ieee80211_rx() may not be mixed for a
1659 * single hardware.
1660 *
1661 * @hw: the hardware this frame came in on
1662 * @skb: the buffer to receive, owned by mac80211 after this call
1663 */
1664void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1665
1666/**
1667 * ieee80211_tx_status - transmit status callback
1668 *
1669 * Call this function for all transmitted frames after they have been
1670 * transmitted. It is permissible to not call this function for
1671 * multicast frames but this can affect statistics.
1672 *
1673 * This function may not be called in IRQ context. Calls to this function
1674 * for a single hardware must be synchronized against each other. Calls
1675 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1676 * for a single hardware.
1677 *
1678 * @hw: the hardware the frame was transmitted by
1679 * @skb: the frame that was transmitted, owned by mac80211 after this call
1680 */
1681void ieee80211_tx_status(struct ieee80211_hw *hw,
1682			 struct sk_buff *skb);
1683
1684/**
1685 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1686 *
1687 * Like ieee80211_tx_status() but can be called in IRQ context
1688 * (internally defers to a tasklet.)
1689 *
1690 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1691 * single hardware.
1692 *
1693 * @hw: the hardware the frame was transmitted by
1694 * @skb: the frame that was transmitted, owned by mac80211 after this call
1695 */
1696void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1697				 struct sk_buff *skb);
1698
1699/**
1700 * ieee80211_beacon_get - beacon generation function
1701 * @hw: pointer obtained from ieee80211_alloc_hw().
1702 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1703 *
1704 * If the beacon frames are generated by the host system (i.e., not in
1705 * hardware/firmware), the low-level driver uses this function to receive
1706 * the next beacon frame from the 802.11 code. The low-level is responsible
1707 * for calling this function before beacon data is needed (e.g., based on
1708 * hardware interrupt). Returned skb is used only once and low-level driver
1709 * is responsible for freeing it.
1710 */
1711struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1712				     struct ieee80211_vif *vif);
1713
1714/**
1715 * ieee80211_rts_get - RTS frame generation function
1716 * @hw: pointer obtained from ieee80211_alloc_hw().
1717 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1718 * @frame: pointer to the frame that is going to be protected by the RTS.
1719 * @frame_len: the frame length (in octets).
1720 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1721 * @rts: The buffer where to store the RTS frame.
1722 *
1723 * If the RTS frames are generated by the host system (i.e., not in
1724 * hardware/firmware), the low-level driver uses this function to receive
1725 * the next RTS frame from the 802.11 code. The low-level is responsible
1726 * for calling this function before and RTS frame is needed.
1727 */
1728void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1729		       const void *frame, size_t frame_len,
1730		       const struct ieee80211_tx_info *frame_txctl,
1731		       struct ieee80211_rts *rts);
1732
1733/**
1734 * ieee80211_rts_duration - Get the duration field for an RTS frame
1735 * @hw: pointer obtained from ieee80211_alloc_hw().
1736 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1737 * @frame_len: the length of the frame that is going to be protected by the RTS.
1738 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1739 *
1740 * If the RTS is generated in firmware, but the host system must provide
1741 * the duration field, the low-level driver uses this function to receive
1742 * the duration field value in little-endian byteorder.
1743 */
1744__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1745			      struct ieee80211_vif *vif, size_t frame_len,
1746			      const struct ieee80211_tx_info *frame_txctl);
1747
1748/**
1749 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1750 * @hw: pointer obtained from ieee80211_alloc_hw().
1751 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1752 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1753 * @frame_len: the frame length (in octets).
1754 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1755 * @cts: The buffer where to store the CTS-to-self frame.
1756 *
1757 * If the CTS-to-self frames are generated by the host system (i.e., not in
1758 * hardware/firmware), the low-level driver uses this function to receive
1759 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1760 * for calling this function before and CTS-to-self frame is needed.
1761 */
1762void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1763			     struct ieee80211_vif *vif,
1764			     const void *frame, size_t frame_len,
1765			     const struct ieee80211_tx_info *frame_txctl,
1766			     struct ieee80211_cts *cts);
1767
1768/**
1769 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1770 * @hw: pointer obtained from ieee80211_alloc_hw().
1771 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1772 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1773 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1774 *
1775 * If the CTS-to-self is generated in firmware, but the host system must provide
1776 * the duration field, the low-level driver uses this function to receive
1777 * the duration field value in little-endian byteorder.
1778 */
1779__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1780				    struct ieee80211_vif *vif,
1781				    size_t frame_len,
1782				    const struct ieee80211_tx_info *frame_txctl);
1783
1784/**
1785 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1786 * @hw: pointer obtained from ieee80211_alloc_hw().
1787 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1788 * @frame_len: the length of the frame.
1789 * @rate: the rate at which the frame is going to be transmitted.
1790 *
1791 * Calculate the duration field of some generic frame, given its
1792 * length and transmission rate (in 100kbps).
1793 */
1794__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1795					struct ieee80211_vif *vif,
1796					size_t frame_len,
1797					struct ieee80211_rate *rate);
1798
1799/**
1800 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1801 * @hw: pointer as obtained from ieee80211_alloc_hw().
1802 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1803 *
1804 * Function for accessing buffered broadcast and multicast frames. If
1805 * hardware/firmware does not implement buffering of broadcast/multicast
1806 * frames when power saving is used, 802.11 code buffers them in the host
1807 * memory. The low-level driver uses this function to fetch next buffered
1808 * frame. In most cases, this is used when generating beacon frame. This
1809 * function returns a pointer to the next buffered skb or NULL if no more
1810 * buffered frames are available.
1811 *
1812 * Note: buffered frames are returned only after DTIM beacon frame was
1813 * generated with ieee80211_beacon_get() and the low-level driver must thus
1814 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1815 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1816 * does not need to check for DTIM beacons separately and should be able to
1817 * use common code for all beacons.
1818 */
1819struct sk_buff *
1820ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1821
1822/**
1823 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1824 *
1825 * This function computes a TKIP rc4 key for an skb. It computes
1826 * a phase 1 key if needed (iv16 wraps around). This function is to
1827 * be used by drivers which can do HW encryption but need to compute
1828 * to phase 1/2 key in SW.
1829 *
1830 * @keyconf: the parameter passed with the set key
1831 * @skb: the skb for which the key is needed
1832 * @type: TBD
1833 * @key: a buffer to which the key will be written
1834 */
1835void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1836				struct sk_buff *skb,
1837				enum ieee80211_tkip_key_type type, u8 *key);
1838/**
1839 * ieee80211_wake_queue - wake specific queue
1840 * @hw: pointer as obtained from ieee80211_alloc_hw().
1841 * @queue: queue number (counted from zero).
1842 *
1843 * Drivers should use this function instead of netif_wake_queue.
1844 */
1845void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1846
1847/**
1848 * ieee80211_stop_queue - stop specific queue
1849 * @hw: pointer as obtained from ieee80211_alloc_hw().
1850 * @queue: queue number (counted from zero).
1851 *
1852 * Drivers should use this function instead of netif_stop_queue.
1853 */
1854void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1855
1856/**
1857 * ieee80211_queue_stopped - test status of the queue
1858 * @hw: pointer as obtained from ieee80211_alloc_hw().
1859 * @queue: queue number (counted from zero).
1860 *
1861 * Drivers should use this function instead of netif_stop_queue.
1862 */
1863
1864int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1865
1866/**
1867 * ieee80211_stop_queues - stop all queues
1868 * @hw: pointer as obtained from ieee80211_alloc_hw().
1869 *
1870 * Drivers should use this function instead of netif_stop_queue.
1871 */
1872void ieee80211_stop_queues(struct ieee80211_hw *hw);
1873
1874/**
1875 * ieee80211_wake_queues - wake all queues
1876 * @hw: pointer as obtained from ieee80211_alloc_hw().
1877 *
1878 * Drivers should use this function instead of netif_wake_queue.
1879 */
1880void ieee80211_wake_queues(struct ieee80211_hw *hw);
1881
1882/**
1883 * ieee80211_scan_completed - completed hardware scan
1884 *
1885 * When hardware scan offload is used (i.e. the hw_scan() callback is
1886 * assigned) this function needs to be called by the driver to notify
1887 * mac80211 that the scan finished.
1888 *
1889 * @hw: the hardware that finished the scan
1890 * @aborted: set to true if scan was aborted
1891 */
1892void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1893
1894/**
1895 * ieee80211_iterate_active_interfaces - iterate active interfaces
1896 *
1897 * This function iterates over the interfaces associated with a given
1898 * hardware that are currently active and calls the callback for them.
1899 * This function allows the iterator function to sleep, when the iterator
1900 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1901 * be used.
1902 *
1903 * @hw: the hardware struct of which the interfaces should be iterated over
1904 * @iterator: the iterator function to call
1905 * @data: first argument of the iterator function
1906 */
1907void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1908					 void (*iterator)(void *data, u8 *mac,
1909						struct ieee80211_vif *vif),
1910					 void *data);
1911
1912/**
1913 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1914 *
1915 * This function iterates over the interfaces associated with a given
1916 * hardware that are currently active and calls the callback for them.
1917 * This function requires the iterator callback function to be atomic,
1918 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1919 *
1920 * @hw: the hardware struct of which the interfaces should be iterated over
1921 * @iterator: the iterator function to call, cannot sleep
1922 * @data: first argument of the iterator function
1923 */
1924void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1925						void (*iterator)(void *data,
1926						    u8 *mac,
1927						    struct ieee80211_vif *vif),
1928						void *data);
1929
1930/**
1931 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1932 * @hw: pointer as obtained from ieee80211_alloc_hw().
1933 * @ra: receiver address of the BA session recipient
1934 * @tid: the TID to BA on.
1935 *
1936 * Return: success if addBA request was sent, failure otherwise
1937 *
1938 * Although mac80211/low level driver/user space application can estimate
1939 * the need to start aggregation on a certain RA/TID, the session level
1940 * will be managed by the mac80211.
1941 */
1942int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1943
1944/**
1945 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1946 * @hw: pointer as obtained from ieee80211_alloc_hw().
1947 * @ra: receiver address of the BA session recipient.
1948 * @tid: the TID to BA on.
1949 *
1950 * This function must be called by low level driver once it has
1951 * finished with preparations for the BA session.
1952 */
1953void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1954
1955/**
1956 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1957 * @hw: pointer as obtained from ieee80211_alloc_hw().
1958 * @ra: receiver address of the BA session recipient.
1959 * @tid: the TID to BA on.
1960 *
1961 * This function must be called by low level driver once it has
1962 * finished with preparations for the BA session.
1963 * This version of the function is IRQ-safe.
1964 */
1965void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1966				      u16 tid);
1967
1968/**
1969 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1970 * @hw: pointer as obtained from ieee80211_alloc_hw().
1971 * @ra: receiver address of the BA session recipient
1972 * @tid: the TID to stop BA.
1973 * @initiator: if indicates initiator DELBA frame will be sent.
1974 *
1975 * Return: error if no sta with matching da found, success otherwise
1976 *
1977 * Although mac80211/low level driver/user space application can estimate
1978 * the need to stop aggregation on a certain RA/TID, the session level
1979 * will be managed by the mac80211.
1980 */
1981int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1982				 u8 *ra, u16 tid,
1983				 enum ieee80211_back_parties initiator);
1984
1985/**
1986 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1987 * @hw: pointer as obtained from ieee80211_alloc_hw().
1988 * @ra: receiver address of the BA session recipient.
1989 * @tid: the desired TID to BA on.
1990 *
1991 * This function must be called by low level driver once it has
1992 * finished with preparations for the BA session tear down.
1993 */
1994void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1995
1996/**
1997 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1998 * @hw: pointer as obtained from ieee80211_alloc_hw().
1999 * @ra: receiver address of the BA session recipient.
2000 * @tid: the desired TID to BA on.
2001 *
2002 * This function must be called by low level driver once it has
2003 * finished with preparations for the BA session tear down.
2004 * This version of the function is IRQ-safe.
2005 */
2006void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2007				     u16 tid);
2008
2009/**
2010 * ieee80211_find_sta - find a station
2011 *
2012 * @hw: pointer as obtained from ieee80211_alloc_hw()
2013 * @addr: station's address
2014 *
2015 * This function must be called under RCU lock and the
2016 * resulting pointer is only valid under RCU lock as well.
2017 */
2018struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2019					 const u8 *addr);
2020
2021/**
2022 * ieee80211_beacon_loss - inform hardware does not receive beacons
2023 *
2024 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2025 *
2026 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2027 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2028 * hardware is not receiving beacons with this function.
2029 */
2030void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2031
2032/* Rate control API */
2033
2034/**
2035 * enum rate_control_changed - flags to indicate which parameter changed
2036 *
2037 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2038 *	changed, rate control algorithm can update its internal state if needed.
2039 */
2040enum rate_control_changed {
2041	IEEE80211_RC_HT_CHANGED = BIT(0)
2042};
2043
2044/**
2045 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2046 *
2047 * @hw: The hardware the algorithm is invoked for.
2048 * @sband: The band this frame is being transmitted on.
2049 * @bss_conf: the current BSS configuration
2050 * @reported_rate: The rate control algorithm can fill this in to indicate
2051 *	which rate should be reported to userspace as the current rate and
2052 *	used for rate calculations in the mesh network.
2053 * @rts: whether RTS will be used for this frame because it is longer than the
2054 *	RTS threshold
2055 * @short_preamble: whether mac80211 will request short-preamble transmission
2056 *	if the selected rate supports it
2057 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2058 * @skb: the skb that will be transmitted, the control information in it needs
2059 *	to be filled in
2060 */
2061struct ieee80211_tx_rate_control {
2062	struct ieee80211_hw *hw;
2063	struct ieee80211_supported_band *sband;
2064	struct ieee80211_bss_conf *bss_conf;
2065	struct sk_buff *skb;
2066	struct ieee80211_tx_rate reported_rate;
2067	bool rts, short_preamble;
2068	u8 max_rate_idx;
2069};
2070
2071struct rate_control_ops {
2072	struct module *module;
2073	const char *name;
2074	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2075	void (*free)(void *priv);
2076
2077	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2078	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2079			  struct ieee80211_sta *sta, void *priv_sta);
2080	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2081			    struct ieee80211_sta *sta,
2082			    void *priv_sta, u32 changed);
2083	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2084			 void *priv_sta);
2085
2086	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2087			  struct ieee80211_sta *sta, void *priv_sta,
2088			  struct sk_buff *skb);
2089	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2090			 struct ieee80211_tx_rate_control *txrc);
2091
2092	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2093				struct dentry *dir);
2094	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2095};
2096
2097static inline int rate_supported(struct ieee80211_sta *sta,
2098				 enum ieee80211_band band,
2099				 int index)
2100{
2101	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2102}
2103
2104/**
2105 * rate_control_send_low - helper for drivers for management/no-ack frames
2106 *
2107 * Rate control algorithms that agree to use the lowest rate to
2108 * send management frames and NO_ACK data with the respective hw
2109 * retries should use this in the beginning of their mac80211 get_rate
2110 * callback. If true is returned the rate control can simply return.
2111 * If false is returned we guarantee that sta and sta and priv_sta is
2112 * not null.
2113 *
2114 * Rate control algorithms wishing to do more intelligent selection of
2115 * rate for multicast/broadcast frames may choose to not use this.
2116 *
2117 * @sta: &struct ieee80211_sta pointer to the target destination. Note
2118 * 	that this may be null.
2119 * @priv_sta: private rate control structure. This may be null.
2120 * @txrc: rate control information we sholud populate for mac80211.
2121 */
2122bool rate_control_send_low(struct ieee80211_sta *sta,
2123			   void *priv_sta,
2124			   struct ieee80211_tx_rate_control *txrc);
2125
2126
2127static inline s8
2128rate_lowest_index(struct ieee80211_supported_band *sband,
2129		  struct ieee80211_sta *sta)
2130{
2131	int i;
2132
2133	for (i = 0; i < sband->n_bitrates; i++)
2134		if (rate_supported(sta, sband->band, i))
2135			return i;
2136
2137	/* warn when we cannot find a rate. */
2138	WARN_ON(1);
2139
2140	return 0;
2141}
2142
2143static inline
2144bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2145			      struct ieee80211_sta *sta)
2146{
2147	unsigned int i;
2148
2149	for (i = 0; i < sband->n_bitrates; i++)
2150		if (rate_supported(sta, sband->band, i))
2151			return true;
2152	return false;
2153}
2154
2155int ieee80211_rate_control_register(struct rate_control_ops *ops);
2156void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2157
2158static inline bool
2159conf_is_ht20(struct ieee80211_conf *conf)
2160{
2161	return conf->channel_type == NL80211_CHAN_HT20;
2162}
2163
2164static inline bool
2165conf_is_ht40_minus(struct ieee80211_conf *conf)
2166{
2167	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2168}
2169
2170static inline bool
2171conf_is_ht40_plus(struct ieee80211_conf *conf)
2172{
2173	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2174}
2175
2176static inline bool
2177conf_is_ht40(struct ieee80211_conf *conf)
2178{
2179	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2180}
2181
2182static inline bool
2183conf_is_ht(struct ieee80211_conf *conf)
2184{
2185	return conf->channel_type != NL80211_CHAN_NO_HT;
2186}
2187
2188#endif /* MAC80211_H */
2189