mac80211.h revision 57c4d7b4c4986037be51476b8e3025d5ba18d8b8
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85struct ieee80211_ht_bss_info {
86	u8 primary_channel;
87	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
88	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89};
90
91/**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96enum ieee80211_max_queues {
97	IEEE80211_MAX_QUEUES =		4,
98};
99
100/**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 *	2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112struct ieee80211_tx_queue_params {
113	u16 txop;
114	u16 cw_min;
115	u16 cw_max;
116	u8 aifs;
117};
118
119/**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126struct ieee80211_tx_queue_stats {
127	unsigned int len;
128	unsigned int limit;
129	unsigned int count;
130};
131
132struct ieee80211_low_level_stats {
133	unsigned int dot11ACKFailureCount;
134	unsigned int dot11RTSFailureCount;
135	unsigned int dot11FCSErrorCount;
136	unsigned int dot11RTSSuccessCount;
137};
138
139/**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 *	also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
153 */
154enum ieee80211_bss_change {
155	BSS_CHANGED_ASSOC		= 1<<0,
156	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
157	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
158	BSS_CHANGED_ERP_SLOT		= 1<<3,
159	BSS_CHANGED_HT                  = 1<<4,
160	BSS_CHANGED_BASIC_RATES		= 1<<5,
161	BSS_CHANGED_BEACON_INT		= 1<<6,
162};
163
164/**
165 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
166 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
167 */
168struct ieee80211_bss_ht_conf {
169	u16 operation_mode;
170};
171
172/**
173 * struct ieee80211_bss_conf - holds the BSS's changing parameters
174 *
175 * This structure keeps information about a BSS (and an association
176 * to that BSS) that can change during the lifetime of the BSS.
177 *
178 * @assoc: association status
179 * @aid: association ID number, valid only when @assoc is true
180 * @use_cts_prot: use CTS protection
181 * @use_short_preamble: use 802.11b short preamble;
182 *	if the hardware cannot handle this it must set the
183 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184 * @use_short_slot: use short slot time (only relevant for ERP);
185 *	if the hardware cannot handle this it must set the
186 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187 * @dtim_period: num of beacons before the next DTIM, for PSM
188 * @timestamp: beacon timestamp
189 * @beacon_int: beacon interval
190 * @assoc_capability: capabilities taken from assoc resp
191 * @ht: BSS's HT configuration
192 * @basic_rates: bitmap of basic rates, each bit stands for an
193 *	index into the rate table configured by the driver in
194 *	the current band.
195 */
196struct ieee80211_bss_conf {
197	/* association related data */
198	bool assoc;
199	u16 aid;
200	/* erp related data */
201	bool use_cts_prot;
202	bool use_short_preamble;
203	bool use_short_slot;
204	u8 dtim_period;
205	u16 beacon_int;
206	u16 assoc_capability;
207	u64 timestamp;
208	u32 basic_rates;
209	struct ieee80211_bss_ht_conf ht;
210};
211
212/**
213 * enum mac80211_tx_control_flags - flags to describe transmission information/status
214 *
215 * These flags are used with the @flags member of &ieee80211_tx_info.
216 *
217 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
218 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
219 *	number to this frame, taking care of not overwriting the fragment
220 *	number and increasing the sequence number only when the
221 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
222 *	assign sequence numbers to QoS-data frames but cannot do so correctly
223 *	for non-QoS-data and management frames because beacons need them from
224 *	that counter as well and mac80211 cannot guarantee proper sequencing.
225 *	If this flag is set, the driver should instruct the hardware to
226 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
227 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
228 *	beacons and always be clear for frames without a sequence number field.
229 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
230 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
231 *	station
232 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
233 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
234 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
235 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
236 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
237 *	because the destination STA was in powersave mode.
238 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
239 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
240 * 	is for the whole aggregation.
241 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
242 * 	so consider using block ack request (BAR).
243 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
244 *	set by rate control algorithms to indicate probe rate, will
245 *	be cleared for fragmented frames (except on the last fragment)
246 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
247 *	set this flag in the driver; indicates that the rate control
248 *	algorithm was used and should be notified of TX status
249 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
250 *	used to indicate that a pending frame requires TX processing before
251 *	it can be sent out.
252 */
253enum mac80211_tx_control_flags {
254	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
255	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
256	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
257	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
258	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
259	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
260	IEEE80211_TX_CTL_AMPDU			= BIT(6),
261	IEEE80211_TX_CTL_INJECTED		= BIT(7),
262	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
263	IEEE80211_TX_STAT_ACK			= BIT(9),
264	IEEE80211_TX_STAT_AMPDU			= BIT(10),
265	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
266	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
267	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
268	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
269};
270
271/**
272 * enum mac80211_rate_control_flags - per-rate flags set by the
273 *	Rate Control algorithm.
274 *
275 * These flags are set by the Rate control algorithm for each rate during tx,
276 * in the @flags member of struct ieee80211_tx_rate.
277 *
278 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
279 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
280 *	This is set if the current BSS requires ERP protection.
281 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
282 * @IEEE80211_TX_RC_MCS: HT rate.
283 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
284 *	Greenfield mode.
285 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
286 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
287 *	adjacent 20 MHz channels, if the current channel type is
288 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
289 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
290 */
291enum mac80211_rate_control_flags {
292	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
293	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
294	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
295
296	/* rate index is an MCS rate number instead of an index */
297	IEEE80211_TX_RC_MCS			= BIT(3),
298	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
299	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
300	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
301	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
302};
303
304
305/* there are 40 bytes if you don't need the rateset to be kept */
306#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
307
308/* if you do need the rateset, then you have less space */
309#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
310
311/* maximum number of rate stages */
312#define IEEE80211_TX_MAX_RATES	5
313
314/**
315 * struct ieee80211_tx_rate - rate selection/status
316 *
317 * @idx: rate index to attempt to send with
318 * @flags: rate control flags (&enum mac80211_rate_control_flags)
319 * @count: number of tries in this rate before going to the next rate
320 *
321 * A value of -1 for @idx indicates an invalid rate and, if used
322 * in an array of retry rates, that no more rates should be tried.
323 *
324 * When used for transmit status reporting, the driver should
325 * always report the rate along with the flags it used.
326 */
327struct ieee80211_tx_rate {
328	s8 idx;
329	u8 count;
330	u8 flags;
331} __attribute__((packed));
332
333/**
334 * struct ieee80211_tx_info - skb transmit information
335 *
336 * This structure is placed in skb->cb for three uses:
337 *  (1) mac80211 TX control - mac80211 tells the driver what to do
338 *  (2) driver internal use (if applicable)
339 *  (3) TX status information - driver tells mac80211 what happened
340 *
341 * The TX control's sta pointer is only valid during the ->tx call,
342 * it may be NULL.
343 *
344 * @flags: transmit info flags, defined above
345 * @band: the band to transmit on (use for checking for races)
346 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
347 * @pad: padding, ignore
348 * @control: union for control data
349 * @status: union for status data
350 * @driver_data: array of driver_data pointers
351 * @ampdu_ack_len: number of aggregated frames.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ampdu_ack_map: block ack bit map for the aggregation.
354 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
355 * @ack_signal: signal strength of the ACK frame
356 */
357struct ieee80211_tx_info {
358	/* common information */
359	u32 flags;
360	u8 band;
361
362	u8 antenna_sel_tx;
363
364	/* 2 byte hole */
365	u8 pad[2];
366
367	union {
368		struct {
369			union {
370				/* rate control */
371				struct {
372					struct ieee80211_tx_rate rates[
373						IEEE80211_TX_MAX_RATES];
374					s8 rts_cts_rate_idx;
375				};
376				/* only needed before rate control */
377				unsigned long jiffies;
378			};
379			/* NB: vif can be NULL for injected frames */
380			struct ieee80211_vif *vif;
381			struct ieee80211_key_conf *hw_key;
382			struct ieee80211_sta *sta;
383		} control;
384		struct {
385			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
386			u8 ampdu_ack_len;
387			u64 ampdu_ack_map;
388			int ack_signal;
389			/* 8 bytes free */
390		} status;
391		struct {
392			struct ieee80211_tx_rate driver_rates[
393				IEEE80211_TX_MAX_RATES];
394			void *rate_driver_data[
395				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
396		};
397		void *driver_data[
398			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
399	};
400};
401
402static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
403{
404	return (struct ieee80211_tx_info *)skb->cb;
405}
406
407/**
408 * ieee80211_tx_info_clear_status - clear TX status
409 *
410 * @info: The &struct ieee80211_tx_info to be cleared.
411 *
412 * When the driver passes an skb back to mac80211, it must report
413 * a number of things in TX status. This function clears everything
414 * in the TX status but the rate control information (it does clear
415 * the count since you need to fill that in anyway).
416 *
417 * NOTE: You can only use this function if you do NOT use
418 *	 info->driver_data! Use info->rate_driver_data
419 *	 instead if you need only the less space that allows.
420 */
421static inline void
422ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
423{
424	int i;
425
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, control.rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
429		     offsetof(struct ieee80211_tx_info, driver_rates));
430	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
431	/* clear the rate counts */
432	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
433		info->status.rates[i].count = 0;
434
435	BUILD_BUG_ON(
436	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
437	memset(&info->status.ampdu_ack_len, 0,
438	       sizeof(struct ieee80211_tx_info) -
439	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
440}
441
442
443/**
444 * enum mac80211_rx_flags - receive flags
445 *
446 * These flags are used with the @flag member of &struct ieee80211_rx_status.
447 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
448 *	Use together with %RX_FLAG_MMIC_STRIPPED.
449 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
450 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
451 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
452 *	verification has been done by the hardware.
453 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
454 *	If this flag is set, the stack cannot do any replay detection
455 *	hence the driver or hardware will have to do that.
456 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
457 *	the frame.
458 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
459 *	the frame.
460 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
461 *	is valid. This is useful in monitor mode and necessary for beacon frames
462 *	to enable IBSS merging.
463 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
464 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
465 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
466 * @RX_FLAG_SHORT_GI: Short guard interval was used
467 */
468enum mac80211_rx_flags {
469	RX_FLAG_MMIC_ERROR	= 1<<0,
470	RX_FLAG_DECRYPTED	= 1<<1,
471	RX_FLAG_RADIOTAP	= 1<<2,
472	RX_FLAG_MMIC_STRIPPED	= 1<<3,
473	RX_FLAG_IV_STRIPPED	= 1<<4,
474	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
475	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
476	RX_FLAG_TSFT		= 1<<7,
477	RX_FLAG_SHORTPRE	= 1<<8,
478	RX_FLAG_HT		= 1<<9,
479	RX_FLAG_40MHZ		= 1<<10,
480	RX_FLAG_SHORT_GI	= 1<<11,
481};
482
483/**
484 * struct ieee80211_rx_status - receive status
485 *
486 * The low-level driver should provide this information (the subset
487 * supported by hardware) to the 802.11 code with each received
488 * frame.
489 *
490 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
491 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
492 * @band: the active band when this frame was received
493 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
494 * @signal: signal strength when receiving this frame, either in dBm, in dB or
495 *	unspecified depending on the hardware capabilities flags
496 *	@IEEE80211_HW_SIGNAL_*
497 * @noise: noise when receiving this frame, in dBm.
498 * @qual: overall signal quality indication, in percent (0-100).
499 * @antenna: antenna used
500 * @rate_idx: index of data rate into band's supported rates or MCS index if
501 *	HT rates are use (RX_FLAG_HT)
502 * @flag: %RX_FLAG_*
503 */
504struct ieee80211_rx_status {
505	u64 mactime;
506	enum ieee80211_band band;
507	int freq;
508	int signal;
509	int noise;
510	int qual;
511	int antenna;
512	int rate_idx;
513	int flag;
514};
515
516/**
517 * enum ieee80211_conf_flags - configuration flags
518 *
519 * Flags to define PHY configuration options
520 *
521 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
522 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
523 */
524enum ieee80211_conf_flags {
525	IEEE80211_CONF_RADIOTAP		= (1<<0),
526	IEEE80211_CONF_PS		= (1<<1),
527};
528
529
530/**
531 * enum ieee80211_conf_changed - denotes which configuration changed
532 *
533 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
534 * @_IEEE80211_CONF_CHANGE_BEACON_INTERVAL: DEPRECATED
535 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
536 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
537 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
538 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
539 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
540 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
541 */
542enum ieee80211_conf_changed {
543	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
544	_IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
545	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
546	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
547	IEEE80211_CONF_CHANGE_PS		= BIT(4),
548	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
549	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
550	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
551};
552
553static inline __deprecated enum ieee80211_conf_changed
554__IEEE80211_CONF_CHANGE_BEACON_INTERVAL(void)
555{
556	return _IEEE80211_CONF_CHANGE_BEACON_INTERVAL;
557}
558#define IEEE80211_CONF_CHANGE_BEACON_INTERVAL \
559	__IEEE80211_CONF_CHANGE_BEACON_INTERVAL()
560
561/**
562 * struct ieee80211_conf - configuration of the device
563 *
564 * This struct indicates how the driver shall configure the hardware.
565 *
566 * @flags: configuration flags defined above
567 *
568 * @radio_enabled: when zero, driver is required to switch off the radio.
569 * @beacon_int: beacon interval (TODO make interface config)
570 *
571 * @listen_interval: listen interval in units of beacon interval
572 * @max_sleep_period: the maximum number of beacon intervals to sleep for
573 *	before checking the beacon for a TIM bit (managed mode only); this
574 *	value will be only achievable between DTIM frames, the hardware
575 *	needs to check for the multicast traffic bit in DTIM beacons.
576 *	This variable is valid only when the CONF_PS flag is set.
577 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
578 *	powersave documentation below. This variable is valid only when
579 *	the CONF_PS flag is set.
580 *
581 * @power_level: requested transmit power (in dBm)
582 *
583 * @channel: the channel to tune to
584 * @channel_type: the channel (HT) type
585 *
586 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
587 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
588 *    but actually means the number of transmissions not the number of retries
589 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
590 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
591 *    number of transmissions not the number of retries
592 */
593struct ieee80211_conf {
594	int beacon_int;
595	u32 flags;
596	int power_level, dynamic_ps_timeout;
597	int max_sleep_period;
598
599	u16 listen_interval;
600	bool radio_enabled;
601
602	u8 long_frame_max_tx_count, short_frame_max_tx_count;
603
604	struct ieee80211_channel *channel;
605	enum nl80211_channel_type channel_type;
606};
607
608/**
609 * struct ieee80211_vif - per-interface data
610 *
611 * Data in this structure is continually present for driver
612 * use during the life of a virtual interface.
613 *
614 * @type: type of this virtual interface
615 * @bss_conf: BSS configuration for this interface, either our own
616 *	or the BSS we're associated to
617 * @drv_priv: data area for driver use, will always be aligned to
618 *	sizeof(void *).
619 */
620struct ieee80211_vif {
621	enum nl80211_iftype type;
622	struct ieee80211_bss_conf bss_conf;
623	/* must be last */
624	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
625};
626
627static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
628{
629#ifdef CONFIG_MAC80211_MESH
630	return vif->type == NL80211_IFTYPE_MESH_POINT;
631#endif
632	return false;
633}
634
635/**
636 * struct ieee80211_if_init_conf - initial configuration of an interface
637 *
638 * @vif: pointer to a driver-use per-interface structure. The pointer
639 *	itself is also used for various functions including
640 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
641 * @type: one of &enum nl80211_iftype constants. Determines the type of
642 *	added/removed interface.
643 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
644 *	until the interface is removed (i.e. it cannot be used after
645 *	remove_interface() callback was called for this interface).
646 *
647 * This structure is used in add_interface() and remove_interface()
648 * callbacks of &struct ieee80211_hw.
649 *
650 * When you allow multiple interfaces to be added to your PHY, take care
651 * that the hardware can actually handle multiple MAC addresses. However,
652 * also take care that when there's no interface left with mac_addr != %NULL
653 * you remove the MAC address from the device to avoid acknowledging packets
654 * in pure monitor mode.
655 */
656struct ieee80211_if_init_conf {
657	enum nl80211_iftype type;
658	struct ieee80211_vif *vif;
659	void *mac_addr;
660};
661
662/**
663 * enum ieee80211_if_conf_change - interface config change flags
664 *
665 * @IEEE80211_IFCC_BSSID: The BSSID changed.
666 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
667 *	(currently AP and MESH only), use ieee80211_beacon_get().
668 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
669 */
670enum ieee80211_if_conf_change {
671	IEEE80211_IFCC_BSSID		= BIT(0),
672	IEEE80211_IFCC_BEACON		= BIT(1),
673	IEEE80211_IFCC_BEACON_ENABLED	= BIT(2),
674};
675
676/**
677 * struct ieee80211_if_conf - configuration of an interface
678 *
679 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
680 * @bssid: BSSID of the network we are associated to/creating.
681 * @enable_beacon: Indicates whether beacons can be sent.
682 *	This is valid only for AP/IBSS/MESH modes.
683 *
684 * This structure is passed to the config_interface() callback of
685 * &struct ieee80211_hw.
686 */
687struct ieee80211_if_conf {
688	u32 changed;
689	const u8 *bssid;
690	bool enable_beacon;
691};
692
693/**
694 * enum ieee80211_key_alg - key algorithm
695 * @ALG_WEP: WEP40 or WEP104
696 * @ALG_TKIP: TKIP
697 * @ALG_CCMP: CCMP (AES)
698 * @ALG_AES_CMAC: AES-128-CMAC
699 */
700enum ieee80211_key_alg {
701	ALG_WEP,
702	ALG_TKIP,
703	ALG_CCMP,
704	ALG_AES_CMAC,
705};
706
707/**
708 * enum ieee80211_key_len - key length
709 * @LEN_WEP40: WEP 5-byte long key
710 * @LEN_WEP104: WEP 13-byte long key
711 */
712enum ieee80211_key_len {
713	LEN_WEP40 = 5,
714	LEN_WEP104 = 13,
715};
716
717/**
718 * enum ieee80211_key_flags - key flags
719 *
720 * These flags are used for communication about keys between the driver
721 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
722 *
723 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
724 *	that the STA this key will be used with could be using QoS.
725 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
726 *	driver to indicate that it requires IV generation for this
727 *	particular key.
728 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
729 *	the driver for a TKIP key if it requires Michael MIC
730 *	generation in software.
731 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
732 *	that the key is pairwise rather then a shared key.
733 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
734 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
735 *	be done in software.
736 */
737enum ieee80211_key_flags {
738	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
739	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
740	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
741	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
742	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
743};
744
745/**
746 * struct ieee80211_key_conf - key information
747 *
748 * This key information is given by mac80211 to the driver by
749 * the set_key() callback in &struct ieee80211_ops.
750 *
751 * @hw_key_idx: To be set by the driver, this is the key index the driver
752 *	wants to be given when a frame is transmitted and needs to be
753 *	encrypted in hardware.
754 * @alg: The key algorithm.
755 * @flags: key flags, see &enum ieee80211_key_flags.
756 * @keyidx: the key index (0-3)
757 * @keylen: key material length
758 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
759 * 	data block:
760 * 	- Temporal Encryption Key (128 bits)
761 * 	- Temporal Authenticator Tx MIC Key (64 bits)
762 * 	- Temporal Authenticator Rx MIC Key (64 bits)
763 * @icv_len: The ICV length for this key type
764 * @iv_len: The IV length for this key type
765 */
766struct ieee80211_key_conf {
767	enum ieee80211_key_alg alg;
768	u8 icv_len;
769	u8 iv_len;
770	u8 hw_key_idx;
771	u8 flags;
772	s8 keyidx;
773	u8 keylen;
774	u8 key[0];
775};
776
777/**
778 * enum set_key_cmd - key command
779 *
780 * Used with the set_key() callback in &struct ieee80211_ops, this
781 * indicates whether a key is being removed or added.
782 *
783 * @SET_KEY: a key is set
784 * @DISABLE_KEY: a key must be disabled
785 */
786enum set_key_cmd {
787	SET_KEY, DISABLE_KEY,
788};
789
790/**
791 * struct ieee80211_sta - station table entry
792 *
793 * A station table entry represents a station we are possibly
794 * communicating with. Since stations are RCU-managed in
795 * mac80211, any ieee80211_sta pointer you get access to must
796 * either be protected by rcu_read_lock() explicitly or implicitly,
797 * or you must take good care to not use such a pointer after a
798 * call to your sta_notify callback that removed it.
799 *
800 * @addr: MAC address
801 * @aid: AID we assigned to the station if we're an AP
802 * @supp_rates: Bitmap of supported rates (per band)
803 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
804 * @drv_priv: data area for driver use, will always be aligned to
805 *	sizeof(void *), size is determined in hw information.
806 */
807struct ieee80211_sta {
808	u32 supp_rates[IEEE80211_NUM_BANDS];
809	u8 addr[ETH_ALEN];
810	u16 aid;
811	struct ieee80211_sta_ht_cap ht_cap;
812
813	/* must be last */
814	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
815};
816
817/**
818 * enum sta_notify_cmd - sta notify command
819 *
820 * Used with the sta_notify() callback in &struct ieee80211_ops, this
821 * indicates addition and removal of a station to station table,
822 * or if a associated station made a power state transition.
823 *
824 * @STA_NOTIFY_ADD: a station was added to the station table
825 * @STA_NOTIFY_REMOVE: a station being removed from the station table
826 * @STA_NOTIFY_SLEEP: a station is now sleeping
827 * @STA_NOTIFY_AWAKE: a sleeping station woke up
828 */
829enum sta_notify_cmd {
830	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
831	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
832};
833
834/**
835 * enum ieee80211_tkip_key_type - get tkip key
836 *
837 * Used by drivers which need to get a tkip key for skb. Some drivers need a
838 * phase 1 key, others need a phase 2 key. A single function allows the driver
839 * to get the key, this enum indicates what type of key is required.
840 *
841 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
842 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
843 */
844enum ieee80211_tkip_key_type {
845	IEEE80211_TKIP_P1_KEY,
846	IEEE80211_TKIP_P2_KEY,
847};
848
849/**
850 * enum ieee80211_hw_flags - hardware flags
851 *
852 * These flags are used to indicate hardware capabilities to
853 * the stack. Generally, flags here should have their meaning
854 * done in a way that the simplest hardware doesn't need setting
855 * any particular flags. There are some exceptions to this rule,
856 * however, so you are advised to review these flags carefully.
857 *
858 * @IEEE80211_HW_RX_INCLUDES_FCS:
859 *	Indicates that received frames passed to the stack include
860 *	the FCS at the end.
861 *
862 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
863 *	Some wireless LAN chipsets buffer broadcast/multicast frames
864 *	for power saving stations in the hardware/firmware and others
865 *	rely on the host system for such buffering. This option is used
866 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
867 *	multicast frames when there are power saving stations so that
868 *	the driver can fetch them with ieee80211_get_buffered_bc().
869 *
870 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
871 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
872 *
873 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
874 *	Hardware is not capable of receiving frames with short preamble on
875 *	the 2.4 GHz band.
876 *
877 * @IEEE80211_HW_SIGNAL_UNSPEC:
878 *	Hardware can provide signal values but we don't know its units. We
879 *	expect values between 0 and @max_signal.
880 *	If possible please provide dB or dBm instead.
881 *
882 * @IEEE80211_HW_SIGNAL_DBM:
883 *	Hardware gives signal values in dBm, decibel difference from
884 *	one milliwatt. This is the preferred method since it is standardized
885 *	between different devices. @max_signal does not need to be set.
886 *
887 * @IEEE80211_HW_NOISE_DBM:
888 *	Hardware can provide noise (radio interference) values in units dBm,
889 *      decibel difference from one milliwatt.
890 *
891 * @IEEE80211_HW_SPECTRUM_MGMT:
892 * 	Hardware supports spectrum management defined in 802.11h
893 * 	Measurement, Channel Switch, Quieting, TPC
894 *
895 * @IEEE80211_HW_AMPDU_AGGREGATION:
896 *	Hardware supports 11n A-MPDU aggregation.
897 *
898 * @IEEE80211_HW_SUPPORTS_PS:
899 *	Hardware has power save support (i.e. can go to sleep).
900 *
901 * @IEEE80211_HW_PS_NULLFUNC_STACK:
902 *	Hardware requires nullfunc frame handling in stack, implies
903 *	stack support for dynamic PS.
904 *
905 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
906 *	Hardware has support for dynamic PS.
907 *
908 * @IEEE80211_HW_MFP_CAPABLE:
909 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
910 *
911 * @IEEE80211_HW_BEACON_FILTER:
912 *	Hardware supports dropping of irrelevant beacon frames to
913 *	avoid waking up cpu.
914 */
915enum ieee80211_hw_flags {
916	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
917	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
918	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
919	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
920	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
921	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
922	IEEE80211_HW_NOISE_DBM				= 1<<7,
923	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
924	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
925	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
926	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
927	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
928	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
929	IEEE80211_HW_BEACON_FILTER			= 1<<14,
930};
931
932/**
933 * struct ieee80211_hw - hardware information and state
934 *
935 * This structure contains the configuration and hardware
936 * information for an 802.11 PHY.
937 *
938 * @wiphy: This points to the &struct wiphy allocated for this
939 *	802.11 PHY. You must fill in the @perm_addr and @dev
940 *	members of this structure using SET_IEEE80211_DEV()
941 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
942 *	bands (with channels, bitrates) are registered here.
943 *
944 * @conf: &struct ieee80211_conf, device configuration, don't use.
945 *
946 * @workqueue: single threaded workqueue available for driver use,
947 *	allocated by mac80211 on registration and flushed when an
948 *	interface is removed.
949 *	NOTICE: All work performed on this workqueue must not
950 *	acquire the RTNL lock.
951 *
952 * @priv: pointer to private area that was allocated for driver use
953 *	along with this structure.
954 *
955 * @flags: hardware flags, see &enum ieee80211_hw_flags.
956 *
957 * @extra_tx_headroom: headroom to reserve in each transmit skb
958 *	for use by the driver (e.g. for transmit headers.)
959 *
960 * @channel_change_time: time (in microseconds) it takes to change channels.
961 *
962 * @max_signal: Maximum value for signal (rssi) in RX information, used
963 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
964 *
965 * @max_listen_interval: max listen interval in units of beacon interval
966 *     that HW supports
967 *
968 * @queues: number of available hardware transmit queues for
969 *	data packets. WMM/QoS requires at least four, these
970 *	queues need to have configurable access parameters.
971 *
972 * @rate_control_algorithm: rate control algorithm for this hardware.
973 *	If unset (NULL), the default algorithm will be used. Must be
974 *	set before calling ieee80211_register_hw().
975 *
976 * @vif_data_size: size (in bytes) of the drv_priv data area
977 *	within &struct ieee80211_vif.
978 * @sta_data_size: size (in bytes) of the drv_priv data area
979 *	within &struct ieee80211_sta.
980 *
981 * @max_rates: maximum number of alternate rate retry stages
982 * @max_rate_tries: maximum number of tries for each stage
983 */
984struct ieee80211_hw {
985	struct ieee80211_conf conf;
986	struct wiphy *wiphy;
987	struct workqueue_struct *workqueue;
988	const char *rate_control_algorithm;
989	void *priv;
990	u32 flags;
991	unsigned int extra_tx_headroom;
992	int channel_change_time;
993	int vif_data_size;
994	int sta_data_size;
995	u16 queues;
996	u16 max_listen_interval;
997	s8 max_signal;
998	u8 max_rates;
999	u8 max_rate_tries;
1000};
1001
1002/**
1003 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1004 *
1005 * @wiphy: the &struct wiphy which we want to query
1006 *
1007 * mac80211 drivers can use this to get to their respective
1008 * &struct ieee80211_hw. Drivers wishing to get to their own private
1009 * structure can then access it via hw->priv. Note that mac802111 drivers should
1010 * not use wiphy_priv() to try to get their private driver structure as this
1011 * is already used internally by mac80211.
1012 */
1013struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1014
1015/**
1016 * SET_IEEE80211_DEV - set device for 802.11 hardware
1017 *
1018 * @hw: the &struct ieee80211_hw to set the device for
1019 * @dev: the &struct device of this 802.11 device
1020 */
1021static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1022{
1023	set_wiphy_dev(hw->wiphy, dev);
1024}
1025
1026/**
1027 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1028 *
1029 * @hw: the &struct ieee80211_hw to set the MAC address for
1030 * @addr: the address to set
1031 */
1032static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1033{
1034	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1035}
1036
1037static inline struct ieee80211_rate *
1038ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1039		      const struct ieee80211_tx_info *c)
1040{
1041	if (WARN_ON(c->control.rates[0].idx < 0))
1042		return NULL;
1043	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1044}
1045
1046static inline struct ieee80211_rate *
1047ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1048			   const struct ieee80211_tx_info *c)
1049{
1050	if (c->control.rts_cts_rate_idx < 0)
1051		return NULL;
1052	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1053}
1054
1055static inline struct ieee80211_rate *
1056ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1057			     const struct ieee80211_tx_info *c, int idx)
1058{
1059	if (c->control.rates[idx + 1].idx < 0)
1060		return NULL;
1061	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1062}
1063
1064/**
1065 * DOC: Hardware crypto acceleration
1066 *
1067 * mac80211 is capable of taking advantage of many hardware
1068 * acceleration designs for encryption and decryption operations.
1069 *
1070 * The set_key() callback in the &struct ieee80211_ops for a given
1071 * device is called to enable hardware acceleration of encryption and
1072 * decryption. The callback takes a @sta parameter that will be NULL
1073 * for default keys or keys used for transmission only, or point to
1074 * the station information for the peer for individual keys.
1075 * Multiple transmission keys with the same key index may be used when
1076 * VLANs are configured for an access point.
1077 *
1078 * When transmitting, the TX control data will use the @hw_key_idx
1079 * selected by the driver by modifying the &struct ieee80211_key_conf
1080 * pointed to by the @key parameter to the set_key() function.
1081 *
1082 * The set_key() call for the %SET_KEY command should return 0 if
1083 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1084 * added; if you return 0 then hw_key_idx must be assigned to the
1085 * hardware key index, you are free to use the full u8 range.
1086 *
1087 * When the cmd is %DISABLE_KEY then it must succeed.
1088 *
1089 * Note that it is permissible to not decrypt a frame even if a key
1090 * for it has been uploaded to hardware, the stack will not make any
1091 * decision based on whether a key has been uploaded or not but rather
1092 * based on the receive flags.
1093 *
1094 * The &struct ieee80211_key_conf structure pointed to by the @key
1095 * parameter is guaranteed to be valid until another call to set_key()
1096 * removes it, but it can only be used as a cookie to differentiate
1097 * keys.
1098 *
1099 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1100 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1101 * handler.
1102 * The update_tkip_key() call updates the driver with the new phase 1 key.
1103 * This happens everytime the iv16 wraps around (every 65536 packets). The
1104 * set_key() call will happen only once for each key (unless the AP did
1105 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1106 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1107 * handler is software decryption with wrap around of iv16.
1108 */
1109
1110/**
1111 * DOC: Powersave support
1112 *
1113 * mac80211 has support for various powersave implementations.
1114 *
1115 * First, it can support hardware that handles all powersaving by
1116 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1117 * hardware flag. In that case, it will be told about the desired
1118 * powersave mode depending on the association status, and the driver
1119 * must take care of sending nullfunc frames when necessary, i.e. when
1120 * entering and leaving powersave mode. The driver is required to look at
1121 * the AID in beacons and signal to the AP that it woke up when it finds
1122 * traffic directed to it. This mode supports dynamic PS by simply
1123 * enabling/disabling PS.
1124 *
1125 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1126 * flag to indicate that it can support dynamic PS mode itself (see below).
1127 *
1128 * Other hardware designs cannot send nullfunc frames by themselves and also
1129 * need software support for parsing the TIM bitmap. This is also supported
1130 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1131 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1132 * required to pass up beacons. The hardware is still required to handle
1133 * waking up for multicast traffic; if it cannot the driver must handle that
1134 * as best as it can, mac80211 is too slow.
1135 *
1136 * Dynamic powersave mode is an extension to normal powersave mode in which
1137 * the hardware stays awake for a user-specified period of time after sending
1138 * a frame so that reply frames need not be buffered and therefore delayed
1139 * to the next wakeup. This can either be supported by hardware, in which case
1140 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1141 * value, or by the stack if all nullfunc handling is in the stack.
1142 */
1143
1144/**
1145 * DOC: Beacon filter support
1146 *
1147 * Some hardware have beacon filter support to reduce host cpu wakeups
1148 * which will reduce system power consumption. It usuallly works so that
1149 * the firmware creates a checksum of the beacon but omits all constantly
1150 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1151 * beacon is forwarded to the host, otherwise it will be just dropped. That
1152 * way the host will only receive beacons where some relevant information
1153 * (for example ERP protection or WMM settings) have changed.
1154 *
1155 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1156 * hardware capability. The driver needs to enable beacon filter support
1157 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1158 * power save is enabled, the stack will not check for beacon loss and the
1159 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1160 *
1161 * The time (or number of beacons missed) until the firmware notifies the
1162 * driver of a beacon loss event (which in turn causes the driver to call
1163 * ieee80211_beacon_loss()) should be configurable and will be controlled
1164 * by mac80211 and the roaming algorithm in the future.
1165 *
1166 * Since there may be constantly changing information elements that nothing
1167 * in the software stack cares about, we will, in the future, have mac80211
1168 * tell the driver which information elements are interesting in the sense
1169 * that we want to see changes in them. This will include
1170 *  - a list of information element IDs
1171 *  - a list of OUIs for the vendor information element
1172 *
1173 * Ideally, the hardware would filter out any beacons without changes in the
1174 * requested elements, but if it cannot support that it may, at the expense
1175 * of some efficiency, filter out only a subset. For example, if the device
1176 * doesn't support checking for OUIs it should pass up all changes in all
1177 * vendor information elements.
1178 *
1179 * Note that change, for the sake of simplification, also includes information
1180 * elements appearing or disappearing from the beacon.
1181 *
1182 * Some hardware supports an "ignore list" instead, just make sure nothing
1183 * that was requested is on the ignore list, and include commonly changing
1184 * information element IDs in the ignore list, for example 11 (BSS load) and
1185 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1186 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1187 * it could also include some currently unused IDs.
1188 *
1189 *
1190 * In addition to these capabilities, hardware should support notifying the
1191 * host of changes in the beacon RSSI. This is relevant to implement roaming
1192 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1193 * the received data packets). This can consist in notifying the host when
1194 * the RSSI changes significantly or when it drops below or rises above
1195 * configurable thresholds. In the future these thresholds will also be
1196 * configured by mac80211 (which gets them from userspace) to implement
1197 * them as the roaming algorithm requires.
1198 *
1199 * If the hardware cannot implement this, the driver should ask it to
1200 * periodically pass beacon frames to the host so that software can do the
1201 * signal strength threshold checking.
1202 */
1203
1204/**
1205 * DOC: Frame filtering
1206 *
1207 * mac80211 requires to see many management frames for proper
1208 * operation, and users may want to see many more frames when
1209 * in monitor mode. However, for best CPU usage and power consumption,
1210 * having as few frames as possible percolate through the stack is
1211 * desirable. Hence, the hardware should filter as much as possible.
1212 *
1213 * To achieve this, mac80211 uses filter flags (see below) to tell
1214 * the driver's configure_filter() function which frames should be
1215 * passed to mac80211 and which should be filtered out.
1216 *
1217 * The configure_filter() callback is invoked with the parameters
1218 * @mc_count and @mc_list for the combined multicast address list
1219 * of all virtual interfaces, @changed_flags telling which flags
1220 * were changed and @total_flags with the new flag states.
1221 *
1222 * If your device has no multicast address filters your driver will
1223 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1224 * parameter to see whether multicast frames should be accepted
1225 * or dropped.
1226 *
1227 * All unsupported flags in @total_flags must be cleared.
1228 * Hardware does not support a flag if it is incapable of _passing_
1229 * the frame to the stack. Otherwise the driver must ignore
1230 * the flag, but not clear it.
1231 * You must _only_ clear the flag (announce no support for the
1232 * flag to mac80211) if you are not able to pass the packet type
1233 * to the stack (so the hardware always filters it).
1234 * So for example, you should clear @FIF_CONTROL, if your hardware
1235 * always filters control frames. If your hardware always passes
1236 * control frames to the kernel and is incapable of filtering them,
1237 * you do _not_ clear the @FIF_CONTROL flag.
1238 * This rule applies to all other FIF flags as well.
1239 */
1240
1241/**
1242 * enum ieee80211_filter_flags - hardware filter flags
1243 *
1244 * These flags determine what the filter in hardware should be
1245 * programmed to let through and what should not be passed to the
1246 * stack. It is always safe to pass more frames than requested,
1247 * but this has negative impact on power consumption.
1248 *
1249 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1250 *	think of the BSS as your network segment and then this corresponds
1251 *	to the regular ethernet device promiscuous mode.
1252 *
1253 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1254 *	by the user or if the hardware is not capable of filtering by
1255 *	multicast address.
1256 *
1257 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1258 *	%RX_FLAG_FAILED_FCS_CRC for them)
1259 *
1260 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1261 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1262 *
1263 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1264 *	to the hardware that it should not filter beacons or probe responses
1265 *	by BSSID. Filtering them can greatly reduce the amount of processing
1266 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1267 *	honour this flag if possible.
1268 *
1269 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1270 *	only those addressed to this station
1271 *
1272 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1273 */
1274enum ieee80211_filter_flags {
1275	FIF_PROMISC_IN_BSS	= 1<<0,
1276	FIF_ALLMULTI		= 1<<1,
1277	FIF_FCSFAIL		= 1<<2,
1278	FIF_PLCPFAIL		= 1<<3,
1279	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1280	FIF_CONTROL		= 1<<5,
1281	FIF_OTHER_BSS		= 1<<6,
1282};
1283
1284/**
1285 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1286 *
1287 * These flags are used with the ampdu_action() callback in
1288 * &struct ieee80211_ops to indicate which action is needed.
1289 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1290 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1291 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1292 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1293 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1294 */
1295enum ieee80211_ampdu_mlme_action {
1296	IEEE80211_AMPDU_RX_START,
1297	IEEE80211_AMPDU_RX_STOP,
1298	IEEE80211_AMPDU_TX_START,
1299	IEEE80211_AMPDU_TX_STOP,
1300	IEEE80211_AMPDU_TX_OPERATIONAL,
1301};
1302
1303/**
1304 * struct ieee80211_ops - callbacks from mac80211 to the driver
1305 *
1306 * This structure contains various callbacks that the driver may
1307 * handle or, in some cases, must handle, for example to configure
1308 * the hardware to a new channel or to transmit a frame.
1309 *
1310 * @tx: Handler that 802.11 module calls for each transmitted frame.
1311 *	skb contains the buffer starting from the IEEE 802.11 header.
1312 *	The low-level driver should send the frame out based on
1313 *	configuration in the TX control data. This handler should,
1314 *	preferably, never fail and stop queues appropriately, more
1315 *	importantly, however, it must never fail for A-MPDU-queues.
1316 *	This function should return NETDEV_TX_OK except in very
1317 *	limited cases.
1318 *	Must be implemented and atomic.
1319 *
1320 * @start: Called before the first netdevice attached to the hardware
1321 *	is enabled. This should turn on the hardware and must turn on
1322 *	frame reception (for possibly enabled monitor interfaces.)
1323 *	Returns negative error codes, these may be seen in userspace,
1324 *	or zero.
1325 *	When the device is started it should not have a MAC address
1326 *	to avoid acknowledging frames before a non-monitor device
1327 *	is added.
1328 *	Must be implemented.
1329 *
1330 * @stop: Called after last netdevice attached to the hardware
1331 *	is disabled. This should turn off the hardware (at least
1332 *	it must turn off frame reception.)
1333 *	May be called right after add_interface if that rejects
1334 *	an interface.
1335 *	Must be implemented.
1336 *
1337 * @add_interface: Called when a netdevice attached to the hardware is
1338 *	enabled. Because it is not called for monitor mode devices, @start
1339 *	and @stop must be implemented.
1340 *	The driver should perform any initialization it needs before
1341 *	the device can be enabled. The initial configuration for the
1342 *	interface is given in the conf parameter.
1343 *	The callback may refuse to add an interface by returning a
1344 *	negative error code (which will be seen in userspace.)
1345 *	Must be implemented.
1346 *
1347 * @remove_interface: Notifies a driver that an interface is going down.
1348 *	The @stop callback is called after this if it is the last interface
1349 *	and no monitor interfaces are present.
1350 *	When all interfaces are removed, the MAC address in the hardware
1351 *	must be cleared so the device no longer acknowledges packets,
1352 *	the mac_addr member of the conf structure is, however, set to the
1353 *	MAC address of the device going away.
1354 *	Hence, this callback must be implemented.
1355 *
1356 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1357 *	function to change hardware configuration, e.g., channel.
1358 *	This function should never fail but returns a negative error code
1359 *	if it does.
1360 *
1361 * @config_interface: Handler for configuration requests related to interfaces
1362 *	(e.g. BSSID changes.)
1363 *	Returns a negative error code which will be seen in userspace.
1364 *
1365 * @bss_info_changed: Handler for configuration requests related to BSS
1366 *	parameters that may vary during BSS's lifespan, and may affect low
1367 *	level driver (e.g. assoc/disassoc status, erp parameters).
1368 *	This function should not be used if no BSS has been set, unless
1369 *	for association indication. The @changed parameter indicates which
1370 *	of the bss parameters has changed when a call is made.
1371 *
1372 * @configure_filter: Configure the device's RX filter.
1373 *	See the section "Frame filtering" for more information.
1374 *	This callback must be implemented and atomic.
1375 *
1376 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1377 * 	must be set or cleared for a given STA. Must be atomic.
1378 *
1379 * @set_key: See the section "Hardware crypto acceleration"
1380 *	This callback can sleep, and is only called between add_interface
1381 *	and remove_interface calls, i.e. while the given virtual interface
1382 *	is enabled.
1383 *	Returns a negative error code if the key can't be added.
1384 *
1385 * @update_tkip_key: See the section "Hardware crypto acceleration"
1386 * 	This callback will be called in the context of Rx. Called for drivers
1387 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1388 *
1389 * @hw_scan: Ask the hardware to service the scan request, no need to start
1390 *	the scan state machine in stack. The scan must honour the channel
1391 *	configuration done by the regulatory agent in the wiphy's
1392 *	registered bands. The hardware (or the driver) needs to make sure
1393 *	that power save is disabled.
1394 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1395 *	entire IEs after the SSID, so that drivers need not look at these
1396 *	at all but just send them after the SSID -- mac80211 includes the
1397 *	(extended) supported rates and HT information (where applicable).
1398 *	When the scan finishes, ieee80211_scan_completed() must be called;
1399 *	note that it also must be called when the scan cannot finish due to
1400 *	any error unless this callback returned a negative error code.
1401 *
1402 * @sw_scan_start: Notifier function that is called just before a software scan
1403 *	is started. Can be NULL, if the driver doesn't need this notification.
1404 *
1405 * @sw_scan_complete: Notifier function that is called just after a software scan
1406 *	finished. Can be NULL, if the driver doesn't need this notification.
1407 *
1408 * @get_stats: Return low-level statistics.
1409 * 	Returns zero if statistics are available.
1410 *
1411 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1412 *	callback should be provided to read the TKIP transmit IVs (both IV32
1413 *	and IV16) for the given key from hardware.
1414 *
1415 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1416 *
1417 * @sta_notify: Notifies low level driver about addition, removal or power
1418 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1419 *	Must be atomic.
1420 *
1421 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1422 *	bursting) for a hardware TX queue.
1423 *	Returns a negative error code on failure.
1424 *
1425 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1426 *	to get number of currently queued packets (queue length), maximum queue
1427 *	size (limit), and total number of packets sent using each TX queue
1428 *	(count). The 'stats' pointer points to an array that has hw->queues
1429 *	items.
1430 *
1431 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1432 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1433 *	required function.
1434 *
1435 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1436 *      Currently, this is only used for IBSS mode debugging. Is not a
1437 *	required function.
1438 *
1439 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1440 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1441 *	function is optional if the firmware/hardware takes full care of
1442 *	TSF synchronization.
1443 *
1444 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1445 *	This is needed only for IBSS mode and the result of this function is
1446 *	used to determine whether to reply to Probe Requests.
1447 *	Returns non-zero if this device sent the last beacon.
1448 *
1449 * @ampdu_action: Perform a certain A-MPDU action
1450 * 	The RA/TID combination determines the destination and TID we want
1451 * 	the ampdu action to be performed for. The action is defined through
1452 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1453 * 	is the first frame we expect to perform the action on. Notice
1454 * 	that TX/RX_STOP can pass NULL for this parameter.
1455 *	Returns a negative error code on failure.
1456 */
1457struct ieee80211_ops {
1458	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1459	int (*start)(struct ieee80211_hw *hw);
1460	void (*stop)(struct ieee80211_hw *hw);
1461	int (*add_interface)(struct ieee80211_hw *hw,
1462			     struct ieee80211_if_init_conf *conf);
1463	void (*remove_interface)(struct ieee80211_hw *hw,
1464				 struct ieee80211_if_init_conf *conf);
1465	int (*config)(struct ieee80211_hw *hw, u32 changed);
1466	int (*config_interface)(struct ieee80211_hw *hw,
1467				struct ieee80211_vif *vif,
1468				struct ieee80211_if_conf *conf);
1469	void (*bss_info_changed)(struct ieee80211_hw *hw,
1470				 struct ieee80211_vif *vif,
1471				 struct ieee80211_bss_conf *info,
1472				 u32 changed);
1473	void (*configure_filter)(struct ieee80211_hw *hw,
1474				 unsigned int changed_flags,
1475				 unsigned int *total_flags,
1476				 int mc_count, struct dev_addr_list *mc_list);
1477	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1478		       bool set);
1479	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1480		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1481		       struct ieee80211_key_conf *key);
1482	void (*update_tkip_key)(struct ieee80211_hw *hw,
1483			struct ieee80211_key_conf *conf, const u8 *address,
1484			u32 iv32, u16 *phase1key);
1485	int (*hw_scan)(struct ieee80211_hw *hw,
1486		       struct cfg80211_scan_request *req);
1487	void (*sw_scan_start)(struct ieee80211_hw *hw);
1488	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1489	int (*get_stats)(struct ieee80211_hw *hw,
1490			 struct ieee80211_low_level_stats *stats);
1491	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1492			     u32 *iv32, u16 *iv16);
1493	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1494	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1495			enum sta_notify_cmd, struct ieee80211_sta *sta);
1496	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1497		       const struct ieee80211_tx_queue_params *params);
1498	int (*get_tx_stats)(struct ieee80211_hw *hw,
1499			    struct ieee80211_tx_queue_stats *stats);
1500	u64 (*get_tsf)(struct ieee80211_hw *hw);
1501	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1502	void (*reset_tsf)(struct ieee80211_hw *hw);
1503	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1504	int (*ampdu_action)(struct ieee80211_hw *hw,
1505			    enum ieee80211_ampdu_mlme_action action,
1506			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1507};
1508
1509/**
1510 * ieee80211_alloc_hw -  Allocate a new hardware device
1511 *
1512 * This must be called once for each hardware device. The returned pointer
1513 * must be used to refer to this device when calling other functions.
1514 * mac80211 allocates a private data area for the driver pointed to by
1515 * @priv in &struct ieee80211_hw, the size of this area is given as
1516 * @priv_data_len.
1517 *
1518 * @priv_data_len: length of private data
1519 * @ops: callbacks for this device
1520 */
1521struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1522					const struct ieee80211_ops *ops);
1523
1524/**
1525 * ieee80211_register_hw - Register hardware device
1526 *
1527 * You must call this function before any other functions in
1528 * mac80211. Note that before a hardware can be registered, you
1529 * need to fill the contained wiphy's information.
1530 *
1531 * @hw: the device to register as returned by ieee80211_alloc_hw()
1532 */
1533int ieee80211_register_hw(struct ieee80211_hw *hw);
1534
1535#ifdef CONFIG_MAC80211_LEDS
1536extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1537extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1538extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1539extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1540#endif
1541/**
1542 * ieee80211_get_tx_led_name - get name of TX LED
1543 *
1544 * mac80211 creates a transmit LED trigger for each wireless hardware
1545 * that can be used to drive LEDs if your driver registers a LED device.
1546 * This function returns the name (or %NULL if not configured for LEDs)
1547 * of the trigger so you can automatically link the LED device.
1548 *
1549 * @hw: the hardware to get the LED trigger name for
1550 */
1551static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1552{
1553#ifdef CONFIG_MAC80211_LEDS
1554	return __ieee80211_get_tx_led_name(hw);
1555#else
1556	return NULL;
1557#endif
1558}
1559
1560/**
1561 * ieee80211_get_rx_led_name - get name of RX LED
1562 *
1563 * mac80211 creates a receive LED trigger for each wireless hardware
1564 * that can be used to drive LEDs if your driver registers a LED device.
1565 * This function returns the name (or %NULL if not configured for LEDs)
1566 * of the trigger so you can automatically link the LED device.
1567 *
1568 * @hw: the hardware to get the LED trigger name for
1569 */
1570static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1571{
1572#ifdef CONFIG_MAC80211_LEDS
1573	return __ieee80211_get_rx_led_name(hw);
1574#else
1575	return NULL;
1576#endif
1577}
1578
1579/**
1580 * ieee80211_get_assoc_led_name - get name of association LED
1581 *
1582 * mac80211 creates a association LED trigger for each wireless hardware
1583 * that can be used to drive LEDs if your driver registers a LED device.
1584 * This function returns the name (or %NULL if not configured for LEDs)
1585 * of the trigger so you can automatically link the LED device.
1586 *
1587 * @hw: the hardware to get the LED trigger name for
1588 */
1589static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1590{
1591#ifdef CONFIG_MAC80211_LEDS
1592	return __ieee80211_get_assoc_led_name(hw);
1593#else
1594	return NULL;
1595#endif
1596}
1597
1598/**
1599 * ieee80211_get_radio_led_name - get name of radio LED
1600 *
1601 * mac80211 creates a radio change LED trigger for each wireless hardware
1602 * that can be used to drive LEDs if your driver registers a LED device.
1603 * This function returns the name (or %NULL if not configured for LEDs)
1604 * of the trigger so you can automatically link the LED device.
1605 *
1606 * @hw: the hardware to get the LED trigger name for
1607 */
1608static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1609{
1610#ifdef CONFIG_MAC80211_LEDS
1611	return __ieee80211_get_radio_led_name(hw);
1612#else
1613	return NULL;
1614#endif
1615}
1616
1617/**
1618 * ieee80211_unregister_hw - Unregister a hardware device
1619 *
1620 * This function instructs mac80211 to free allocated resources
1621 * and unregister netdevices from the networking subsystem.
1622 *
1623 * @hw: the hardware to unregister
1624 */
1625void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1626
1627/**
1628 * ieee80211_free_hw - free hardware descriptor
1629 *
1630 * This function frees everything that was allocated, including the
1631 * private data for the driver. You must call ieee80211_unregister_hw()
1632 * before calling this function.
1633 *
1634 * @hw: the hardware to free
1635 */
1636void ieee80211_free_hw(struct ieee80211_hw *hw);
1637
1638/**
1639 * ieee80211_restart_hw - restart hardware completely
1640 *
1641 * Call this function when the hardware was restarted for some reason
1642 * (hardware error, ...) and the driver is unable to restore its state
1643 * by itself. mac80211 assumes that at this point the driver/hardware
1644 * is completely uninitialised and stopped, it starts the process by
1645 * calling the ->start() operation. The driver will need to reset all
1646 * internal state that it has prior to calling this function.
1647 *
1648 * @hw: the hardware to restart
1649 */
1650void ieee80211_restart_hw(struct ieee80211_hw *hw);
1651
1652/* trick to avoid symbol clashes with the ieee80211 subsystem */
1653void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1654		    struct ieee80211_rx_status *status);
1655
1656/**
1657 * ieee80211_rx - receive frame
1658 *
1659 * Use this function to hand received frames to mac80211. The receive
1660 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1661 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1662 *
1663 * This function may not be called in IRQ context. Calls to this function
1664 * for a single hardware must be synchronized against each other. Calls
1665 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1666 * single hardware.
1667 *
1668 * @hw: the hardware this frame came in on
1669 * @skb: the buffer to receive, owned by mac80211 after this call
1670 * @status: status of this frame; the status pointer need not be valid
1671 *	after this function returns
1672 */
1673static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1674				struct ieee80211_rx_status *status)
1675{
1676	__ieee80211_rx(hw, skb, status);
1677}
1678
1679/**
1680 * ieee80211_rx_irqsafe - receive frame
1681 *
1682 * Like ieee80211_rx() but can be called in IRQ context
1683 * (internally defers to a tasklet.)
1684 *
1685 * Calls to this function and ieee80211_rx() may not be mixed for a
1686 * single hardware.
1687 *
1688 * @hw: the hardware this frame came in on
1689 * @skb: the buffer to receive, owned by mac80211 after this call
1690 * @status: status of this frame; the status pointer need not be valid
1691 *	after this function returns and is not freed by mac80211,
1692 *	it is recommended that it points to a stack area
1693 */
1694void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1695			  struct sk_buff *skb,
1696			  struct ieee80211_rx_status *status);
1697
1698/**
1699 * ieee80211_tx_status - transmit status callback
1700 *
1701 * Call this function for all transmitted frames after they have been
1702 * transmitted. It is permissible to not call this function for
1703 * multicast frames but this can affect statistics.
1704 *
1705 * This function may not be called in IRQ context. Calls to this function
1706 * for a single hardware must be synchronized against each other. Calls
1707 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1708 * for a single hardware.
1709 *
1710 * @hw: the hardware the frame was transmitted by
1711 * @skb: the frame that was transmitted, owned by mac80211 after this call
1712 */
1713void ieee80211_tx_status(struct ieee80211_hw *hw,
1714			 struct sk_buff *skb);
1715
1716/**
1717 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1718 *
1719 * Like ieee80211_tx_status() but can be called in IRQ context
1720 * (internally defers to a tasklet.)
1721 *
1722 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1723 * single hardware.
1724 *
1725 * @hw: the hardware the frame was transmitted by
1726 * @skb: the frame that was transmitted, owned by mac80211 after this call
1727 */
1728void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1729				 struct sk_buff *skb);
1730
1731/**
1732 * ieee80211_beacon_get - beacon generation function
1733 * @hw: pointer obtained from ieee80211_alloc_hw().
1734 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1735 *
1736 * If the beacon frames are generated by the host system (i.e., not in
1737 * hardware/firmware), the low-level driver uses this function to receive
1738 * the next beacon frame from the 802.11 code. The low-level is responsible
1739 * for calling this function before beacon data is needed (e.g., based on
1740 * hardware interrupt). Returned skb is used only once and low-level driver
1741 * is responsible for freeing it.
1742 */
1743struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1744				     struct ieee80211_vif *vif);
1745
1746/**
1747 * ieee80211_rts_get - RTS frame generation function
1748 * @hw: pointer obtained from ieee80211_alloc_hw().
1749 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1750 * @frame: pointer to the frame that is going to be protected by the RTS.
1751 * @frame_len: the frame length (in octets).
1752 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1753 * @rts: The buffer where to store the RTS frame.
1754 *
1755 * If the RTS frames are generated by the host system (i.e., not in
1756 * hardware/firmware), the low-level driver uses this function to receive
1757 * the next RTS frame from the 802.11 code. The low-level is responsible
1758 * for calling this function before and RTS frame is needed.
1759 */
1760void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1761		       const void *frame, size_t frame_len,
1762		       const struct ieee80211_tx_info *frame_txctl,
1763		       struct ieee80211_rts *rts);
1764
1765/**
1766 * ieee80211_rts_duration - Get the duration field for an RTS frame
1767 * @hw: pointer obtained from ieee80211_alloc_hw().
1768 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1769 * @frame_len: the length of the frame that is going to be protected by the RTS.
1770 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1771 *
1772 * If the RTS is generated in firmware, but the host system must provide
1773 * the duration field, the low-level driver uses this function to receive
1774 * the duration field value in little-endian byteorder.
1775 */
1776__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1777			      struct ieee80211_vif *vif, size_t frame_len,
1778			      const struct ieee80211_tx_info *frame_txctl);
1779
1780/**
1781 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1782 * @hw: pointer obtained from ieee80211_alloc_hw().
1783 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1784 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1785 * @frame_len: the frame length (in octets).
1786 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1787 * @cts: The buffer where to store the CTS-to-self frame.
1788 *
1789 * If the CTS-to-self frames are generated by the host system (i.e., not in
1790 * hardware/firmware), the low-level driver uses this function to receive
1791 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1792 * for calling this function before and CTS-to-self frame is needed.
1793 */
1794void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1795			     struct ieee80211_vif *vif,
1796			     const void *frame, size_t frame_len,
1797			     const struct ieee80211_tx_info *frame_txctl,
1798			     struct ieee80211_cts *cts);
1799
1800/**
1801 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1802 * @hw: pointer obtained from ieee80211_alloc_hw().
1803 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1804 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1805 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1806 *
1807 * If the CTS-to-self is generated in firmware, but the host system must provide
1808 * the duration field, the low-level driver uses this function to receive
1809 * the duration field value in little-endian byteorder.
1810 */
1811__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1812				    struct ieee80211_vif *vif,
1813				    size_t frame_len,
1814				    const struct ieee80211_tx_info *frame_txctl);
1815
1816/**
1817 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1818 * @hw: pointer obtained from ieee80211_alloc_hw().
1819 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1820 * @frame_len: the length of the frame.
1821 * @rate: the rate at which the frame is going to be transmitted.
1822 *
1823 * Calculate the duration field of some generic frame, given its
1824 * length and transmission rate (in 100kbps).
1825 */
1826__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1827					struct ieee80211_vif *vif,
1828					size_t frame_len,
1829					struct ieee80211_rate *rate);
1830
1831/**
1832 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1833 * @hw: pointer as obtained from ieee80211_alloc_hw().
1834 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1835 *
1836 * Function for accessing buffered broadcast and multicast frames. If
1837 * hardware/firmware does not implement buffering of broadcast/multicast
1838 * frames when power saving is used, 802.11 code buffers them in the host
1839 * memory. The low-level driver uses this function to fetch next buffered
1840 * frame. In most cases, this is used when generating beacon frame. This
1841 * function returns a pointer to the next buffered skb or NULL if no more
1842 * buffered frames are available.
1843 *
1844 * Note: buffered frames are returned only after DTIM beacon frame was
1845 * generated with ieee80211_beacon_get() and the low-level driver must thus
1846 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1847 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1848 * does not need to check for DTIM beacons separately and should be able to
1849 * use common code for all beacons.
1850 */
1851struct sk_buff *
1852ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1853
1854/**
1855 * ieee80211_get_hdrlen_from_skb - get header length from data
1856 *
1857 * Given an skb with a raw 802.11 header at the data pointer this function
1858 * returns the 802.11 header length in bytes (not including encryption
1859 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1860 * header the function returns 0.
1861 *
1862 * @skb: the frame
1863 */
1864unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1865
1866/**
1867 * ieee80211_hdrlen - get header length in bytes from frame control
1868 * @fc: frame control field in little-endian format
1869 */
1870unsigned int ieee80211_hdrlen(__le16 fc);
1871
1872/**
1873 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1874 *
1875 * This function computes a TKIP rc4 key for an skb. It computes
1876 * a phase 1 key if needed (iv16 wraps around). This function is to
1877 * be used by drivers which can do HW encryption but need to compute
1878 * to phase 1/2 key in SW.
1879 *
1880 * @keyconf: the parameter passed with the set key
1881 * @skb: the skb for which the key is needed
1882 * @type: TBD
1883 * @key: a buffer to which the key will be written
1884 */
1885void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1886				struct sk_buff *skb,
1887				enum ieee80211_tkip_key_type type, u8 *key);
1888/**
1889 * ieee80211_wake_queue - wake specific queue
1890 * @hw: pointer as obtained from ieee80211_alloc_hw().
1891 * @queue: queue number (counted from zero).
1892 *
1893 * Drivers should use this function instead of netif_wake_queue.
1894 */
1895void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1896
1897/**
1898 * ieee80211_stop_queue - stop specific queue
1899 * @hw: pointer as obtained from ieee80211_alloc_hw().
1900 * @queue: queue number (counted from zero).
1901 *
1902 * Drivers should use this function instead of netif_stop_queue.
1903 */
1904void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1905
1906/**
1907 * ieee80211_queue_stopped - test status of the queue
1908 * @hw: pointer as obtained from ieee80211_alloc_hw().
1909 * @queue: queue number (counted from zero).
1910 *
1911 * Drivers should use this function instead of netif_stop_queue.
1912 */
1913
1914int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1915
1916/**
1917 * ieee80211_stop_queues - stop all queues
1918 * @hw: pointer as obtained from ieee80211_alloc_hw().
1919 *
1920 * Drivers should use this function instead of netif_stop_queue.
1921 */
1922void ieee80211_stop_queues(struct ieee80211_hw *hw);
1923
1924/**
1925 * ieee80211_wake_queues - wake all queues
1926 * @hw: pointer as obtained from ieee80211_alloc_hw().
1927 *
1928 * Drivers should use this function instead of netif_wake_queue.
1929 */
1930void ieee80211_wake_queues(struct ieee80211_hw *hw);
1931
1932/**
1933 * ieee80211_scan_completed - completed hardware scan
1934 *
1935 * When hardware scan offload is used (i.e. the hw_scan() callback is
1936 * assigned) this function needs to be called by the driver to notify
1937 * mac80211 that the scan finished.
1938 *
1939 * @hw: the hardware that finished the scan
1940 * @aborted: set to true if scan was aborted
1941 */
1942void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1943
1944/**
1945 * ieee80211_iterate_active_interfaces - iterate active interfaces
1946 *
1947 * This function iterates over the interfaces associated with a given
1948 * hardware that are currently active and calls the callback for them.
1949 * This function allows the iterator function to sleep, when the iterator
1950 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1951 * be used.
1952 *
1953 * @hw: the hardware struct of which the interfaces should be iterated over
1954 * @iterator: the iterator function to call
1955 * @data: first argument of the iterator function
1956 */
1957void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1958					 void (*iterator)(void *data, u8 *mac,
1959						struct ieee80211_vif *vif),
1960					 void *data);
1961
1962/**
1963 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1964 *
1965 * This function iterates over the interfaces associated with a given
1966 * hardware that are currently active and calls the callback for them.
1967 * This function requires the iterator callback function to be atomic,
1968 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1969 *
1970 * @hw: the hardware struct of which the interfaces should be iterated over
1971 * @iterator: the iterator function to call, cannot sleep
1972 * @data: first argument of the iterator function
1973 */
1974void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1975						void (*iterator)(void *data,
1976						    u8 *mac,
1977						    struct ieee80211_vif *vif),
1978						void *data);
1979
1980/**
1981 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1982 * @hw: pointer as obtained from ieee80211_alloc_hw().
1983 * @ra: receiver address of the BA session recipient
1984 * @tid: the TID to BA on.
1985 *
1986 * Return: success if addBA request was sent, failure otherwise
1987 *
1988 * Although mac80211/low level driver/user space application can estimate
1989 * the need to start aggregation on a certain RA/TID, the session level
1990 * will be managed by the mac80211.
1991 */
1992int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1993
1994/**
1995 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1996 * @hw: pointer as obtained from ieee80211_alloc_hw().
1997 * @ra: receiver address of the BA session recipient.
1998 * @tid: the TID to BA on.
1999 *
2000 * This function must be called by low level driver once it has
2001 * finished with preparations for the BA session.
2002 */
2003void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2004
2005/**
2006 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2007 * @hw: pointer as obtained from ieee80211_alloc_hw().
2008 * @ra: receiver address of the BA session recipient.
2009 * @tid: the TID to BA on.
2010 *
2011 * This function must be called by low level driver once it has
2012 * finished with preparations for the BA session.
2013 * This version of the function is IRQ-safe.
2014 */
2015void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2016				      u16 tid);
2017
2018/**
2019 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2020 * @hw: pointer as obtained from ieee80211_alloc_hw().
2021 * @ra: receiver address of the BA session recipient
2022 * @tid: the TID to stop BA.
2023 * @initiator: if indicates initiator DELBA frame will be sent.
2024 *
2025 * Return: error if no sta with matching da found, success otherwise
2026 *
2027 * Although mac80211/low level driver/user space application can estimate
2028 * the need to stop aggregation on a certain RA/TID, the session level
2029 * will be managed by the mac80211.
2030 */
2031int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2032				 u8 *ra, u16 tid,
2033				 enum ieee80211_back_parties initiator);
2034
2035/**
2036 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2037 * @hw: pointer as obtained from ieee80211_alloc_hw().
2038 * @ra: receiver address of the BA session recipient.
2039 * @tid: the desired TID to BA on.
2040 *
2041 * This function must be called by low level driver once it has
2042 * finished with preparations for the BA session tear down.
2043 */
2044void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2045
2046/**
2047 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2048 * @hw: pointer as obtained from ieee80211_alloc_hw().
2049 * @ra: receiver address of the BA session recipient.
2050 * @tid: the desired TID to BA on.
2051 *
2052 * This function must be called by low level driver once it has
2053 * finished with preparations for the BA session tear down.
2054 * This version of the function is IRQ-safe.
2055 */
2056void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2057				     u16 tid);
2058
2059/**
2060 * ieee80211_find_sta - find a station
2061 *
2062 * @hw: pointer as obtained from ieee80211_alloc_hw()
2063 * @addr: station's address
2064 *
2065 * This function must be called under RCU lock and the
2066 * resulting pointer is only valid under RCU lock as well.
2067 */
2068struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2069					 const u8 *addr);
2070
2071/**
2072 * ieee80211_beacon_loss - inform hardware does not receive beacons
2073 *
2074 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2075 *
2076 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2077 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2078 * hardware is not receiving beacons with this function.
2079 */
2080void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2081
2082/* Rate control API */
2083
2084/**
2085 * enum rate_control_changed - flags to indicate which parameter changed
2086 *
2087 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2088 *	changed, rate control algorithm can update its internal state if needed.
2089 */
2090enum rate_control_changed {
2091	IEEE80211_RC_HT_CHANGED = BIT(0)
2092};
2093
2094/**
2095 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2096 *
2097 * @hw: The hardware the algorithm is invoked for.
2098 * @sband: The band this frame is being transmitted on.
2099 * @bss_conf: the current BSS configuration
2100 * @reported_rate: The rate control algorithm can fill this in to indicate
2101 *	which rate should be reported to userspace as the current rate and
2102 *	used for rate calculations in the mesh network.
2103 * @rts: whether RTS will be used for this frame because it is longer than the
2104 *	RTS threshold
2105 * @short_preamble: whether mac80211 will request short-preamble transmission
2106 *	if the selected rate supports it
2107 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2108 * @skb: the skb that will be transmitted, the control information in it needs
2109 *	to be filled in
2110 */
2111struct ieee80211_tx_rate_control {
2112	struct ieee80211_hw *hw;
2113	struct ieee80211_supported_band *sband;
2114	struct ieee80211_bss_conf *bss_conf;
2115	struct sk_buff *skb;
2116	struct ieee80211_tx_rate reported_rate;
2117	bool rts, short_preamble;
2118	u8 max_rate_idx;
2119};
2120
2121struct rate_control_ops {
2122	struct module *module;
2123	const char *name;
2124	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2125	void (*free)(void *priv);
2126
2127	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2128	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2129			  struct ieee80211_sta *sta, void *priv_sta);
2130	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2131			    struct ieee80211_sta *sta,
2132			    void *priv_sta, u32 changed);
2133	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2134			 void *priv_sta);
2135
2136	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2137			  struct ieee80211_sta *sta, void *priv_sta,
2138			  struct sk_buff *skb);
2139	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2140			 struct ieee80211_tx_rate_control *txrc);
2141
2142	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2143				struct dentry *dir);
2144	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2145};
2146
2147static inline int rate_supported(struct ieee80211_sta *sta,
2148				 enum ieee80211_band band,
2149				 int index)
2150{
2151	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2152}
2153
2154static inline s8
2155rate_lowest_index(struct ieee80211_supported_band *sband,
2156		  struct ieee80211_sta *sta)
2157{
2158	int i;
2159
2160	for (i = 0; i < sband->n_bitrates; i++)
2161		if (rate_supported(sta, sband->band, i))
2162			return i;
2163
2164	/* warn when we cannot find a rate. */
2165	WARN_ON(1);
2166
2167	return 0;
2168}
2169
2170
2171int ieee80211_rate_control_register(struct rate_control_ops *ops);
2172void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2173
2174static inline bool
2175conf_is_ht20(struct ieee80211_conf *conf)
2176{
2177	return conf->channel_type == NL80211_CHAN_HT20;
2178}
2179
2180static inline bool
2181conf_is_ht40_minus(struct ieee80211_conf *conf)
2182{
2183	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2184}
2185
2186static inline bool
2187conf_is_ht40_plus(struct ieee80211_conf *conf)
2188{
2189	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2190}
2191
2192static inline bool
2193conf_is_ht40(struct ieee80211_conf *conf)
2194{
2195	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2196}
2197
2198static inline bool
2199conf_is_ht(struct ieee80211_conf *conf)
2200{
2201	return conf->channel_type != NL80211_CHAN_NO_HT;
2202}
2203
2204#endif /* MAC80211_H */
2205