mac80211.h revision 8f77f3849cc3ae2d6df9301785a3d316ea7d7ee1
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80enum ieee80211_max_queues {
81	IEEE80211_MAX_QUEUES =		4,
82};
83
84/**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 *	2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96struct ieee80211_tx_queue_params {
97	u16 txop;
98	u16 cw_min;
99	u16 cw_max;
100	u8 aifs;
101};
102
103/**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110struct ieee80211_tx_queue_stats {
111	unsigned int len;
112	unsigned int limit;
113	unsigned int count;
114};
115
116struct ieee80211_low_level_stats {
117	unsigned int dot11ACKFailureCount;
118	unsigned int dot11RTSFailureCount;
119	unsigned int dot11FCSErrorCount;
120	unsigned int dot11RTSSuccessCount;
121};
122
123/**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 *	also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 *	reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 *	new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 *	enabled/disabled (beaconing modes)
143 */
144enum ieee80211_bss_change {
145	BSS_CHANGED_ASSOC		= 1<<0,
146	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
147	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
148	BSS_CHANGED_ERP_SLOT		= 1<<3,
149	BSS_CHANGED_HT                  = 1<<4,
150	BSS_CHANGED_BASIC_RATES		= 1<<5,
151	BSS_CHANGED_BEACON_INT		= 1<<6,
152	BSS_CHANGED_BSSID		= 1<<7,
153	BSS_CHANGED_BEACON		= 1<<8,
154	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
155};
156
157/**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 *	if the hardware cannot handle this it must set the
168 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 *	if the hardware cannot handle this it must set the
171 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @basic_rates: bitmap of basic rates, each bit stands for an
177 *	index into the rate table configured by the driver in
178 *	the current band.
179 * @bssid: The BSSID for this BSS
180 * @enable_beacon: whether beaconing should be enabled or not
181 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
182 *	This field is only valid when the channel type is one of the HT types.
183 */
184struct ieee80211_bss_conf {
185	const u8 *bssid;
186	/* association related data */
187	bool assoc;
188	u16 aid;
189	/* erp related data */
190	bool use_cts_prot;
191	bool use_short_preamble;
192	bool use_short_slot;
193	bool enable_beacon;
194	u8 dtim_period;
195	u16 beacon_int;
196	u16 assoc_capability;
197	u64 timestamp;
198	u32 basic_rates;
199	u16 ht_operation_mode;
200};
201
202/**
203 * enum mac80211_tx_control_flags - flags to describe transmission information/status
204 *
205 * These flags are used with the @flags member of &ieee80211_tx_info.
206 *
207 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
208 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
209 *	number to this frame, taking care of not overwriting the fragment
210 *	number and increasing the sequence number only when the
211 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
212 *	assign sequence numbers to QoS-data frames but cannot do so correctly
213 *	for non-QoS-data and management frames because beacons need them from
214 *	that counter as well and mac80211 cannot guarantee proper sequencing.
215 *	If this flag is set, the driver should instruct the hardware to
216 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
217 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
218 *	beacons and always be clear for frames without a sequence number field.
219 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
220 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
221 *	station
222 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
223 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
224 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
225 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
226 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
227 *	because the destination STA was in powersave mode.
228 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
229 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
230 * 	is for the whole aggregation.
231 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
232 * 	so consider using block ack request (BAR).
233 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
234 *	set by rate control algorithms to indicate probe rate, will
235 *	be cleared for fragmented frames (except on the last fragment)
236 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
237 *	set this flag in the driver; indicates that the rate control
238 *	algorithm was used and should be notified of TX status
239 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
240 *	used to indicate that a pending frame requires TX processing before
241 *	it can be sent out.
242 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
243 *	used to indicate that a frame was already retried due to PS
244 */
245enum mac80211_tx_control_flags {
246	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
247	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
248	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
249	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
250	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
251	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
252	IEEE80211_TX_CTL_AMPDU			= BIT(6),
253	IEEE80211_TX_CTL_INJECTED		= BIT(7),
254	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
255	IEEE80211_TX_STAT_ACK			= BIT(9),
256	IEEE80211_TX_STAT_AMPDU			= BIT(10),
257	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
258	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
259	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
260	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
261	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
262};
263
264/**
265 * enum mac80211_rate_control_flags - per-rate flags set by the
266 *	Rate Control algorithm.
267 *
268 * These flags are set by the Rate control algorithm for each rate during tx,
269 * in the @flags member of struct ieee80211_tx_rate.
270 *
271 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
272 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
273 *	This is set if the current BSS requires ERP protection.
274 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
275 * @IEEE80211_TX_RC_MCS: HT rate.
276 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
277 *	Greenfield mode.
278 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
279 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
280 *	adjacent 20 MHz channels, if the current channel type is
281 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
282 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
283 */
284enum mac80211_rate_control_flags {
285	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
286	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
287	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
288
289	/* rate index is an MCS rate number instead of an index */
290	IEEE80211_TX_RC_MCS			= BIT(3),
291	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
292	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
293	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
294	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
295};
296
297
298/* there are 40 bytes if you don't need the rateset to be kept */
299#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
300
301/* if you do need the rateset, then you have less space */
302#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
303
304/* maximum number of rate stages */
305#define IEEE80211_TX_MAX_RATES	5
306
307/**
308 * struct ieee80211_tx_rate - rate selection/status
309 *
310 * @idx: rate index to attempt to send with
311 * @flags: rate control flags (&enum mac80211_rate_control_flags)
312 * @count: number of tries in this rate before going to the next rate
313 *
314 * A value of -1 for @idx indicates an invalid rate and, if used
315 * in an array of retry rates, that no more rates should be tried.
316 *
317 * When used for transmit status reporting, the driver should
318 * always report the rate along with the flags it used.
319 */
320struct ieee80211_tx_rate {
321	s8 idx;
322	u8 count;
323	u8 flags;
324} __attribute__((packed));
325
326/**
327 * struct ieee80211_tx_info - skb transmit information
328 *
329 * This structure is placed in skb->cb for three uses:
330 *  (1) mac80211 TX control - mac80211 tells the driver what to do
331 *  (2) driver internal use (if applicable)
332 *  (3) TX status information - driver tells mac80211 what happened
333 *
334 * The TX control's sta pointer is only valid during the ->tx call,
335 * it may be NULL.
336 *
337 * @flags: transmit info flags, defined above
338 * @band: the band to transmit on (use for checking for races)
339 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
340 * @pad: padding, ignore
341 * @control: union for control data
342 * @status: union for status data
343 * @driver_data: array of driver_data pointers
344 * @ampdu_ack_len: number of aggregated frames.
345 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
346 * @ampdu_ack_map: block ack bit map for the aggregation.
347 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
348 * @ack_signal: signal strength of the ACK frame
349 */
350struct ieee80211_tx_info {
351	/* common information */
352	u32 flags;
353	u8 band;
354
355	u8 antenna_sel_tx;
356
357	/* 2 byte hole */
358	u8 pad[2];
359
360	union {
361		struct {
362			union {
363				/* rate control */
364				struct {
365					struct ieee80211_tx_rate rates[
366						IEEE80211_TX_MAX_RATES];
367					s8 rts_cts_rate_idx;
368				};
369				/* only needed before rate control */
370				unsigned long jiffies;
371			};
372			/* NB: vif can be NULL for injected frames */
373			struct ieee80211_vif *vif;
374			struct ieee80211_key_conf *hw_key;
375			struct ieee80211_sta *sta;
376		} control;
377		struct {
378			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
379			u8 ampdu_ack_len;
380			u64 ampdu_ack_map;
381			int ack_signal;
382			/* 8 bytes free */
383		} status;
384		struct {
385			struct ieee80211_tx_rate driver_rates[
386				IEEE80211_TX_MAX_RATES];
387			void *rate_driver_data[
388				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
389		};
390		void *driver_data[
391			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
392	};
393};
394
395static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
396{
397	return (struct ieee80211_tx_info *)skb->cb;
398}
399
400/**
401 * ieee80211_tx_info_clear_status - clear TX status
402 *
403 * @info: The &struct ieee80211_tx_info to be cleared.
404 *
405 * When the driver passes an skb back to mac80211, it must report
406 * a number of things in TX status. This function clears everything
407 * in the TX status but the rate control information (it does clear
408 * the count since you need to fill that in anyway).
409 *
410 * NOTE: You can only use this function if you do NOT use
411 *	 info->driver_data! Use info->rate_driver_data
412 *	 instead if you need only the less space that allows.
413 */
414static inline void
415ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
416{
417	int i;
418
419	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
420		     offsetof(struct ieee80211_tx_info, control.rates));
421	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
422		     offsetof(struct ieee80211_tx_info, driver_rates));
423	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
424	/* clear the rate counts */
425	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
426		info->status.rates[i].count = 0;
427
428	BUILD_BUG_ON(
429	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
430	memset(&info->status.ampdu_ack_len, 0,
431	       sizeof(struct ieee80211_tx_info) -
432	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
433}
434
435
436/**
437 * enum mac80211_rx_flags - receive flags
438 *
439 * These flags are used with the @flag member of &struct ieee80211_rx_status.
440 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
441 *	Use together with %RX_FLAG_MMIC_STRIPPED.
442 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
443 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
444 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
445 *	verification has been done by the hardware.
446 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
447 *	If this flag is set, the stack cannot do any replay detection
448 *	hence the driver or hardware will have to do that.
449 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
450 *	the frame.
451 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
452 *	the frame.
453 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
454 *	is valid. This is useful in monitor mode and necessary for beacon frames
455 *	to enable IBSS merging.
456 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
457 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
458 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
459 * @RX_FLAG_SHORT_GI: Short guard interval was used
460 */
461enum mac80211_rx_flags {
462	RX_FLAG_MMIC_ERROR	= 1<<0,
463	RX_FLAG_DECRYPTED	= 1<<1,
464	RX_FLAG_RADIOTAP	= 1<<2,
465	RX_FLAG_MMIC_STRIPPED	= 1<<3,
466	RX_FLAG_IV_STRIPPED	= 1<<4,
467	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
468	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
469	RX_FLAG_TSFT		= 1<<7,
470	RX_FLAG_SHORTPRE	= 1<<8,
471	RX_FLAG_HT		= 1<<9,
472	RX_FLAG_40MHZ		= 1<<10,
473	RX_FLAG_SHORT_GI	= 1<<11,
474};
475
476/**
477 * struct ieee80211_rx_status - receive status
478 *
479 * The low-level driver should provide this information (the subset
480 * supported by hardware) to the 802.11 code with each received
481 * frame.
482 *
483 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
484 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
485 * @band: the active band when this frame was received
486 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
487 * @signal: signal strength when receiving this frame, either in dBm, in dB or
488 *	unspecified depending on the hardware capabilities flags
489 *	@IEEE80211_HW_SIGNAL_*
490 * @noise: noise when receiving this frame, in dBm.
491 * @qual: overall signal quality indication, in percent (0-100).
492 * @antenna: antenna used
493 * @rate_idx: index of data rate into band's supported rates or MCS index if
494 *	HT rates are use (RX_FLAG_HT)
495 * @flag: %RX_FLAG_*
496 */
497struct ieee80211_rx_status {
498	u64 mactime;
499	enum ieee80211_band band;
500	int freq;
501	int signal;
502	int noise;
503	int qual;
504	int antenna;
505	int rate_idx;
506	int flag;
507};
508
509/**
510 * enum ieee80211_conf_flags - configuration flags
511 *
512 * Flags to define PHY configuration options
513 *
514 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
515 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
516 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
517 *	the driver should be prepared to handle configuration requests but
518 *	may turn the device off as much as possible. Typically, this flag will
519 *	be set when an interface is set UP but not associated or scanning, but
520 *	it can also be unset in that case when monitor interfaces are active.
521 */
522enum ieee80211_conf_flags {
523	IEEE80211_CONF_RADIOTAP		= (1<<0),
524	IEEE80211_CONF_PS		= (1<<1),
525	IEEE80211_CONF_IDLE		= (1<<2),
526};
527
528
529/**
530 * enum ieee80211_conf_changed - denotes which configuration changed
531 *
532 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
533 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
534 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
535 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
536 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
537 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
538 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
539 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
540 */
541enum ieee80211_conf_changed {
542	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
543	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
544	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
545	IEEE80211_CONF_CHANGE_PS		= BIT(4),
546	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
547	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
548	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
549	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
550};
551
552static inline __deprecated enum ieee80211_conf_changed
553__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
554{
555	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
556}
557#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
558	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
559
560/**
561 * struct ieee80211_conf - configuration of the device
562 *
563 * This struct indicates how the driver shall configure the hardware.
564 *
565 * @flags: configuration flags defined above
566 *
567 * @radio_enabled: when zero, driver is required to switch off the radio.
568 * @beacon_int: DEPRECATED, DO NOT USE
569 *
570 * @listen_interval: listen interval in units of beacon interval
571 * @max_sleep_period: the maximum number of beacon intervals to sleep for
572 *	before checking the beacon for a TIM bit (managed mode only); this
573 *	value will be only achievable between DTIM frames, the hardware
574 *	needs to check for the multicast traffic bit in DTIM beacons.
575 *	This variable is valid only when the CONF_PS flag is set.
576 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
577 *	powersave documentation below. This variable is valid only when
578 *	the CONF_PS flag is set.
579 *
580 * @power_level: requested transmit power (in dBm)
581 *
582 * @channel: the channel to tune to
583 * @channel_type: the channel (HT) type
584 *
585 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
586 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
587 *    but actually means the number of transmissions not the number of retries
588 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
589 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
590 *    number of transmissions not the number of retries
591 */
592struct ieee80211_conf {
593	int __deprecated beacon_int;
594	u32 flags;
595	int power_level, dynamic_ps_timeout;
596	int max_sleep_period;
597
598	u16 listen_interval;
599	bool __deprecated radio_enabled;
600
601	u8 long_frame_max_tx_count, short_frame_max_tx_count;
602
603	struct ieee80211_channel *channel;
604	enum nl80211_channel_type channel_type;
605};
606
607/**
608 * struct ieee80211_vif - per-interface data
609 *
610 * Data in this structure is continually present for driver
611 * use during the life of a virtual interface.
612 *
613 * @type: type of this virtual interface
614 * @bss_conf: BSS configuration for this interface, either our own
615 *	or the BSS we're associated to
616 * @drv_priv: data area for driver use, will always be aligned to
617 *	sizeof(void *).
618 */
619struct ieee80211_vif {
620	enum nl80211_iftype type;
621	struct ieee80211_bss_conf bss_conf;
622	/* must be last */
623	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
624};
625
626static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
627{
628#ifdef CONFIG_MAC80211_MESH
629	return vif->type == NL80211_IFTYPE_MESH_POINT;
630#endif
631	return false;
632}
633
634/**
635 * struct ieee80211_if_init_conf - initial configuration of an interface
636 *
637 * @vif: pointer to a driver-use per-interface structure. The pointer
638 *	itself is also used for various functions including
639 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
640 * @type: one of &enum nl80211_iftype constants. Determines the type of
641 *	added/removed interface.
642 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
643 *	until the interface is removed (i.e. it cannot be used after
644 *	remove_interface() callback was called for this interface).
645 *
646 * This structure is used in add_interface() and remove_interface()
647 * callbacks of &struct ieee80211_hw.
648 *
649 * When you allow multiple interfaces to be added to your PHY, take care
650 * that the hardware can actually handle multiple MAC addresses. However,
651 * also take care that when there's no interface left with mac_addr != %NULL
652 * you remove the MAC address from the device to avoid acknowledging packets
653 * in pure monitor mode.
654 */
655struct ieee80211_if_init_conf {
656	enum nl80211_iftype type;
657	struct ieee80211_vif *vif;
658	void *mac_addr;
659};
660
661/**
662 * enum ieee80211_key_alg - key algorithm
663 * @ALG_WEP: WEP40 or WEP104
664 * @ALG_TKIP: TKIP
665 * @ALG_CCMP: CCMP (AES)
666 * @ALG_AES_CMAC: AES-128-CMAC
667 */
668enum ieee80211_key_alg {
669	ALG_WEP,
670	ALG_TKIP,
671	ALG_CCMP,
672	ALG_AES_CMAC,
673};
674
675/**
676 * enum ieee80211_key_flags - key flags
677 *
678 * These flags are used for communication about keys between the driver
679 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
680 *
681 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
682 *	that the STA this key will be used with could be using QoS.
683 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
684 *	driver to indicate that it requires IV generation for this
685 *	particular key.
686 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
687 *	the driver for a TKIP key if it requires Michael MIC
688 *	generation in software.
689 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
690 *	that the key is pairwise rather then a shared key.
691 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
692 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
693 *	be done in software.
694 */
695enum ieee80211_key_flags {
696	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
697	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
698	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
699	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
700	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
701};
702
703/**
704 * struct ieee80211_key_conf - key information
705 *
706 * This key information is given by mac80211 to the driver by
707 * the set_key() callback in &struct ieee80211_ops.
708 *
709 * @hw_key_idx: To be set by the driver, this is the key index the driver
710 *	wants to be given when a frame is transmitted and needs to be
711 *	encrypted in hardware.
712 * @alg: The key algorithm.
713 * @flags: key flags, see &enum ieee80211_key_flags.
714 * @keyidx: the key index (0-3)
715 * @keylen: key material length
716 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
717 * 	data block:
718 * 	- Temporal Encryption Key (128 bits)
719 * 	- Temporal Authenticator Tx MIC Key (64 bits)
720 * 	- Temporal Authenticator Rx MIC Key (64 bits)
721 * @icv_len: The ICV length for this key type
722 * @iv_len: The IV length for this key type
723 */
724struct ieee80211_key_conf {
725	enum ieee80211_key_alg alg;
726	u8 icv_len;
727	u8 iv_len;
728	u8 hw_key_idx;
729	u8 flags;
730	s8 keyidx;
731	u8 keylen;
732	u8 key[0];
733};
734
735/**
736 * enum set_key_cmd - key command
737 *
738 * Used with the set_key() callback in &struct ieee80211_ops, this
739 * indicates whether a key is being removed or added.
740 *
741 * @SET_KEY: a key is set
742 * @DISABLE_KEY: a key must be disabled
743 */
744enum set_key_cmd {
745	SET_KEY, DISABLE_KEY,
746};
747
748/**
749 * struct ieee80211_sta - station table entry
750 *
751 * A station table entry represents a station we are possibly
752 * communicating with. Since stations are RCU-managed in
753 * mac80211, any ieee80211_sta pointer you get access to must
754 * either be protected by rcu_read_lock() explicitly or implicitly,
755 * or you must take good care to not use such a pointer after a
756 * call to your sta_notify callback that removed it.
757 *
758 * @addr: MAC address
759 * @aid: AID we assigned to the station if we're an AP
760 * @supp_rates: Bitmap of supported rates (per band)
761 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
762 * @drv_priv: data area for driver use, will always be aligned to
763 *	sizeof(void *), size is determined in hw information.
764 */
765struct ieee80211_sta {
766	u32 supp_rates[IEEE80211_NUM_BANDS];
767	u8 addr[ETH_ALEN];
768	u16 aid;
769	struct ieee80211_sta_ht_cap ht_cap;
770
771	/* must be last */
772	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
773};
774
775/**
776 * enum sta_notify_cmd - sta notify command
777 *
778 * Used with the sta_notify() callback in &struct ieee80211_ops, this
779 * indicates addition and removal of a station to station table,
780 * or if a associated station made a power state transition.
781 *
782 * @STA_NOTIFY_ADD: a station was added to the station table
783 * @STA_NOTIFY_REMOVE: a station being removed from the station table
784 * @STA_NOTIFY_SLEEP: a station is now sleeping
785 * @STA_NOTIFY_AWAKE: a sleeping station woke up
786 */
787enum sta_notify_cmd {
788	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
789	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
790};
791
792/**
793 * enum ieee80211_tkip_key_type - get tkip key
794 *
795 * Used by drivers which need to get a tkip key for skb. Some drivers need a
796 * phase 1 key, others need a phase 2 key. A single function allows the driver
797 * to get the key, this enum indicates what type of key is required.
798 *
799 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
800 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
801 */
802enum ieee80211_tkip_key_type {
803	IEEE80211_TKIP_P1_KEY,
804	IEEE80211_TKIP_P2_KEY,
805};
806
807/**
808 * enum ieee80211_hw_flags - hardware flags
809 *
810 * These flags are used to indicate hardware capabilities to
811 * the stack. Generally, flags here should have their meaning
812 * done in a way that the simplest hardware doesn't need setting
813 * any particular flags. There are some exceptions to this rule,
814 * however, so you are advised to review these flags carefully.
815 *
816 * @IEEE80211_HW_RX_INCLUDES_FCS:
817 *	Indicates that received frames passed to the stack include
818 *	the FCS at the end.
819 *
820 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
821 *	Some wireless LAN chipsets buffer broadcast/multicast frames
822 *	for power saving stations in the hardware/firmware and others
823 *	rely on the host system for such buffering. This option is used
824 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
825 *	multicast frames when there are power saving stations so that
826 *	the driver can fetch them with ieee80211_get_buffered_bc().
827 *
828 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
829 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
830 *
831 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
832 *	Hardware is not capable of receiving frames with short preamble on
833 *	the 2.4 GHz band.
834 *
835 * @IEEE80211_HW_SIGNAL_UNSPEC:
836 *	Hardware can provide signal values but we don't know its units. We
837 *	expect values between 0 and @max_signal.
838 *	If possible please provide dB or dBm instead.
839 *
840 * @IEEE80211_HW_SIGNAL_DBM:
841 *	Hardware gives signal values in dBm, decibel difference from
842 *	one milliwatt. This is the preferred method since it is standardized
843 *	between different devices. @max_signal does not need to be set.
844 *
845 * @IEEE80211_HW_NOISE_DBM:
846 *	Hardware can provide noise (radio interference) values in units dBm,
847 *      decibel difference from one milliwatt.
848 *
849 * @IEEE80211_HW_SPECTRUM_MGMT:
850 * 	Hardware supports spectrum management defined in 802.11h
851 * 	Measurement, Channel Switch, Quieting, TPC
852 *
853 * @IEEE80211_HW_AMPDU_AGGREGATION:
854 *	Hardware supports 11n A-MPDU aggregation.
855 *
856 * @IEEE80211_HW_SUPPORTS_PS:
857 *	Hardware has power save support (i.e. can go to sleep).
858 *
859 * @IEEE80211_HW_PS_NULLFUNC_STACK:
860 *	Hardware requires nullfunc frame handling in stack, implies
861 *	stack support for dynamic PS.
862 *
863 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
864 *	Hardware has support for dynamic PS.
865 *
866 * @IEEE80211_HW_MFP_CAPABLE:
867 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
868 *
869 * @IEEE80211_HW_BEACON_FILTER:
870 *	Hardware supports dropping of irrelevant beacon frames to
871 *	avoid waking up cpu.
872 */
873enum ieee80211_hw_flags {
874	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
875	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
876	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
877	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
878	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
879	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
880	IEEE80211_HW_NOISE_DBM				= 1<<7,
881	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
882	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
883	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
884	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
885	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
886	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
887	IEEE80211_HW_BEACON_FILTER			= 1<<14,
888};
889
890/**
891 * struct ieee80211_hw - hardware information and state
892 *
893 * This structure contains the configuration and hardware
894 * information for an 802.11 PHY.
895 *
896 * @wiphy: This points to the &struct wiphy allocated for this
897 *	802.11 PHY. You must fill in the @perm_addr and @dev
898 *	members of this structure using SET_IEEE80211_DEV()
899 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
900 *	bands (with channels, bitrates) are registered here.
901 *
902 * @conf: &struct ieee80211_conf, device configuration, don't use.
903 *
904 * @workqueue: single threaded workqueue available for driver use,
905 *	allocated by mac80211 on registration and flushed when an
906 *	interface is removed.
907 *	NOTICE: All work performed on this workqueue must not
908 *	acquire the RTNL lock.
909 *
910 * @priv: pointer to private area that was allocated for driver use
911 *	along with this structure.
912 *
913 * @flags: hardware flags, see &enum ieee80211_hw_flags.
914 *
915 * @extra_tx_headroom: headroom to reserve in each transmit skb
916 *	for use by the driver (e.g. for transmit headers.)
917 *
918 * @channel_change_time: time (in microseconds) it takes to change channels.
919 *
920 * @max_signal: Maximum value for signal (rssi) in RX information, used
921 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
922 *
923 * @max_listen_interval: max listen interval in units of beacon interval
924 *     that HW supports
925 *
926 * @queues: number of available hardware transmit queues for
927 *	data packets. WMM/QoS requires at least four, these
928 *	queues need to have configurable access parameters.
929 *
930 * @rate_control_algorithm: rate control algorithm for this hardware.
931 *	If unset (NULL), the default algorithm will be used. Must be
932 *	set before calling ieee80211_register_hw().
933 *
934 * @vif_data_size: size (in bytes) of the drv_priv data area
935 *	within &struct ieee80211_vif.
936 * @sta_data_size: size (in bytes) of the drv_priv data area
937 *	within &struct ieee80211_sta.
938 *
939 * @max_rates: maximum number of alternate rate retry stages
940 * @max_rate_tries: maximum number of tries for each stage
941 */
942struct ieee80211_hw {
943	struct ieee80211_conf conf;
944	struct wiphy *wiphy;
945	struct workqueue_struct *workqueue;
946	const char *rate_control_algorithm;
947	void *priv;
948	u32 flags;
949	unsigned int extra_tx_headroom;
950	int channel_change_time;
951	int vif_data_size;
952	int sta_data_size;
953	u16 queues;
954	u16 max_listen_interval;
955	s8 max_signal;
956	u8 max_rates;
957	u8 max_rate_tries;
958};
959
960/**
961 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
962 *
963 * @wiphy: the &struct wiphy which we want to query
964 *
965 * mac80211 drivers can use this to get to their respective
966 * &struct ieee80211_hw. Drivers wishing to get to their own private
967 * structure can then access it via hw->priv. Note that mac802111 drivers should
968 * not use wiphy_priv() to try to get their private driver structure as this
969 * is already used internally by mac80211.
970 */
971struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
972
973/**
974 * SET_IEEE80211_DEV - set device for 802.11 hardware
975 *
976 * @hw: the &struct ieee80211_hw to set the device for
977 * @dev: the &struct device of this 802.11 device
978 */
979static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
980{
981	set_wiphy_dev(hw->wiphy, dev);
982}
983
984/**
985 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
986 *
987 * @hw: the &struct ieee80211_hw to set the MAC address for
988 * @addr: the address to set
989 */
990static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
991{
992	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
993}
994
995static inline struct ieee80211_rate *
996ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
997		      const struct ieee80211_tx_info *c)
998{
999	if (WARN_ON(c->control.rates[0].idx < 0))
1000		return NULL;
1001	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1002}
1003
1004static inline struct ieee80211_rate *
1005ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1006			   const struct ieee80211_tx_info *c)
1007{
1008	if (c->control.rts_cts_rate_idx < 0)
1009		return NULL;
1010	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1011}
1012
1013static inline struct ieee80211_rate *
1014ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1015			     const struct ieee80211_tx_info *c, int idx)
1016{
1017	if (c->control.rates[idx + 1].idx < 0)
1018		return NULL;
1019	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1020}
1021
1022/**
1023 * DOC: Hardware crypto acceleration
1024 *
1025 * mac80211 is capable of taking advantage of many hardware
1026 * acceleration designs for encryption and decryption operations.
1027 *
1028 * The set_key() callback in the &struct ieee80211_ops for a given
1029 * device is called to enable hardware acceleration of encryption and
1030 * decryption. The callback takes a @sta parameter that will be NULL
1031 * for default keys or keys used for transmission only, or point to
1032 * the station information for the peer for individual keys.
1033 * Multiple transmission keys with the same key index may be used when
1034 * VLANs are configured for an access point.
1035 *
1036 * When transmitting, the TX control data will use the @hw_key_idx
1037 * selected by the driver by modifying the &struct ieee80211_key_conf
1038 * pointed to by the @key parameter to the set_key() function.
1039 *
1040 * The set_key() call for the %SET_KEY command should return 0 if
1041 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1042 * added; if you return 0 then hw_key_idx must be assigned to the
1043 * hardware key index, you are free to use the full u8 range.
1044 *
1045 * When the cmd is %DISABLE_KEY then it must succeed.
1046 *
1047 * Note that it is permissible to not decrypt a frame even if a key
1048 * for it has been uploaded to hardware, the stack will not make any
1049 * decision based on whether a key has been uploaded or not but rather
1050 * based on the receive flags.
1051 *
1052 * The &struct ieee80211_key_conf structure pointed to by the @key
1053 * parameter is guaranteed to be valid until another call to set_key()
1054 * removes it, but it can only be used as a cookie to differentiate
1055 * keys.
1056 *
1057 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1058 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1059 * handler.
1060 * The update_tkip_key() call updates the driver with the new phase 1 key.
1061 * This happens everytime the iv16 wraps around (every 65536 packets). The
1062 * set_key() call will happen only once for each key (unless the AP did
1063 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1064 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1065 * handler is software decryption with wrap around of iv16.
1066 */
1067
1068/**
1069 * DOC: Powersave support
1070 *
1071 * mac80211 has support for various powersave implementations.
1072 *
1073 * First, it can support hardware that handles all powersaving by
1074 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1075 * hardware flag. In that case, it will be told about the desired
1076 * powersave mode depending on the association status, and the driver
1077 * must take care of sending nullfunc frames when necessary, i.e. when
1078 * entering and leaving powersave mode. The driver is required to look at
1079 * the AID in beacons and signal to the AP that it woke up when it finds
1080 * traffic directed to it. This mode supports dynamic PS by simply
1081 * enabling/disabling PS.
1082 *
1083 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1084 * flag to indicate that it can support dynamic PS mode itself (see below).
1085 *
1086 * Other hardware designs cannot send nullfunc frames by themselves and also
1087 * need software support for parsing the TIM bitmap. This is also supported
1088 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1089 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1090 * required to pass up beacons. The hardware is still required to handle
1091 * waking up for multicast traffic; if it cannot the driver must handle that
1092 * as best as it can, mac80211 is too slow.
1093 *
1094 * Dynamic powersave mode is an extension to normal powersave mode in which
1095 * the hardware stays awake for a user-specified period of time after sending
1096 * a frame so that reply frames need not be buffered and therefore delayed
1097 * to the next wakeup. This can either be supported by hardware, in which case
1098 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1099 * value, or by the stack if all nullfunc handling is in the stack.
1100 */
1101
1102/**
1103 * DOC: Beacon filter support
1104 *
1105 * Some hardware have beacon filter support to reduce host cpu wakeups
1106 * which will reduce system power consumption. It usuallly works so that
1107 * the firmware creates a checksum of the beacon but omits all constantly
1108 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1109 * beacon is forwarded to the host, otherwise it will be just dropped. That
1110 * way the host will only receive beacons where some relevant information
1111 * (for example ERP protection or WMM settings) have changed.
1112 *
1113 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1114 * hardware capability. The driver needs to enable beacon filter support
1115 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1116 * power save is enabled, the stack will not check for beacon loss and the
1117 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1118 *
1119 * The time (or number of beacons missed) until the firmware notifies the
1120 * driver of a beacon loss event (which in turn causes the driver to call
1121 * ieee80211_beacon_loss()) should be configurable and will be controlled
1122 * by mac80211 and the roaming algorithm in the future.
1123 *
1124 * Since there may be constantly changing information elements that nothing
1125 * in the software stack cares about, we will, in the future, have mac80211
1126 * tell the driver which information elements are interesting in the sense
1127 * that we want to see changes in them. This will include
1128 *  - a list of information element IDs
1129 *  - a list of OUIs for the vendor information element
1130 *
1131 * Ideally, the hardware would filter out any beacons without changes in the
1132 * requested elements, but if it cannot support that it may, at the expense
1133 * of some efficiency, filter out only a subset. For example, if the device
1134 * doesn't support checking for OUIs it should pass up all changes in all
1135 * vendor information elements.
1136 *
1137 * Note that change, for the sake of simplification, also includes information
1138 * elements appearing or disappearing from the beacon.
1139 *
1140 * Some hardware supports an "ignore list" instead, just make sure nothing
1141 * that was requested is on the ignore list, and include commonly changing
1142 * information element IDs in the ignore list, for example 11 (BSS load) and
1143 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1144 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1145 * it could also include some currently unused IDs.
1146 *
1147 *
1148 * In addition to these capabilities, hardware should support notifying the
1149 * host of changes in the beacon RSSI. This is relevant to implement roaming
1150 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1151 * the received data packets). This can consist in notifying the host when
1152 * the RSSI changes significantly or when it drops below or rises above
1153 * configurable thresholds. In the future these thresholds will also be
1154 * configured by mac80211 (which gets them from userspace) to implement
1155 * them as the roaming algorithm requires.
1156 *
1157 * If the hardware cannot implement this, the driver should ask it to
1158 * periodically pass beacon frames to the host so that software can do the
1159 * signal strength threshold checking.
1160 */
1161
1162/**
1163 * DOC: Frame filtering
1164 *
1165 * mac80211 requires to see many management frames for proper
1166 * operation, and users may want to see many more frames when
1167 * in monitor mode. However, for best CPU usage and power consumption,
1168 * having as few frames as possible percolate through the stack is
1169 * desirable. Hence, the hardware should filter as much as possible.
1170 *
1171 * To achieve this, mac80211 uses filter flags (see below) to tell
1172 * the driver's configure_filter() function which frames should be
1173 * passed to mac80211 and which should be filtered out.
1174 *
1175 * The configure_filter() callback is invoked with the parameters
1176 * @mc_count and @mc_list for the combined multicast address list
1177 * of all virtual interfaces, @changed_flags telling which flags
1178 * were changed and @total_flags with the new flag states.
1179 *
1180 * If your device has no multicast address filters your driver will
1181 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1182 * parameter to see whether multicast frames should be accepted
1183 * or dropped.
1184 *
1185 * All unsupported flags in @total_flags must be cleared.
1186 * Hardware does not support a flag if it is incapable of _passing_
1187 * the frame to the stack. Otherwise the driver must ignore
1188 * the flag, but not clear it.
1189 * You must _only_ clear the flag (announce no support for the
1190 * flag to mac80211) if you are not able to pass the packet type
1191 * to the stack (so the hardware always filters it).
1192 * So for example, you should clear @FIF_CONTROL, if your hardware
1193 * always filters control frames. If your hardware always passes
1194 * control frames to the kernel and is incapable of filtering them,
1195 * you do _not_ clear the @FIF_CONTROL flag.
1196 * This rule applies to all other FIF flags as well.
1197 */
1198
1199/**
1200 * enum ieee80211_filter_flags - hardware filter flags
1201 *
1202 * These flags determine what the filter in hardware should be
1203 * programmed to let through and what should not be passed to the
1204 * stack. It is always safe to pass more frames than requested,
1205 * but this has negative impact on power consumption.
1206 *
1207 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1208 *	think of the BSS as your network segment and then this corresponds
1209 *	to the regular ethernet device promiscuous mode.
1210 *
1211 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1212 *	by the user or if the hardware is not capable of filtering by
1213 *	multicast address.
1214 *
1215 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1216 *	%RX_FLAG_FAILED_FCS_CRC for them)
1217 *
1218 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1219 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1220 *
1221 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1222 *	to the hardware that it should not filter beacons or probe responses
1223 *	by BSSID. Filtering them can greatly reduce the amount of processing
1224 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1225 *	honour this flag if possible.
1226 *
1227 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1228 *	only those addressed to this station
1229 *
1230 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1231 */
1232enum ieee80211_filter_flags {
1233	FIF_PROMISC_IN_BSS	= 1<<0,
1234	FIF_ALLMULTI		= 1<<1,
1235	FIF_FCSFAIL		= 1<<2,
1236	FIF_PLCPFAIL		= 1<<3,
1237	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1238	FIF_CONTROL		= 1<<5,
1239	FIF_OTHER_BSS		= 1<<6,
1240};
1241
1242/**
1243 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1244 *
1245 * These flags are used with the ampdu_action() callback in
1246 * &struct ieee80211_ops to indicate which action is needed.
1247 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1248 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1249 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1250 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1251 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1252 */
1253enum ieee80211_ampdu_mlme_action {
1254	IEEE80211_AMPDU_RX_START,
1255	IEEE80211_AMPDU_RX_STOP,
1256	IEEE80211_AMPDU_TX_START,
1257	IEEE80211_AMPDU_TX_STOP,
1258	IEEE80211_AMPDU_TX_OPERATIONAL,
1259};
1260
1261/**
1262 * struct ieee80211_ops - callbacks from mac80211 to the driver
1263 *
1264 * This structure contains various callbacks that the driver may
1265 * handle or, in some cases, must handle, for example to configure
1266 * the hardware to a new channel or to transmit a frame.
1267 *
1268 * @tx: Handler that 802.11 module calls for each transmitted frame.
1269 *	skb contains the buffer starting from the IEEE 802.11 header.
1270 *	The low-level driver should send the frame out based on
1271 *	configuration in the TX control data. This handler should,
1272 *	preferably, never fail and stop queues appropriately, more
1273 *	importantly, however, it must never fail for A-MPDU-queues.
1274 *	This function should return NETDEV_TX_OK except in very
1275 *	limited cases.
1276 *	Must be implemented and atomic.
1277 *
1278 * @start: Called before the first netdevice attached to the hardware
1279 *	is enabled. This should turn on the hardware and must turn on
1280 *	frame reception (for possibly enabled monitor interfaces.)
1281 *	Returns negative error codes, these may be seen in userspace,
1282 *	or zero.
1283 *	When the device is started it should not have a MAC address
1284 *	to avoid acknowledging frames before a non-monitor device
1285 *	is added.
1286 *	Must be implemented.
1287 *
1288 * @stop: Called after last netdevice attached to the hardware
1289 *	is disabled. This should turn off the hardware (at least
1290 *	it must turn off frame reception.)
1291 *	May be called right after add_interface if that rejects
1292 *	an interface.
1293 *	Must be implemented.
1294 *
1295 * @add_interface: Called when a netdevice attached to the hardware is
1296 *	enabled. Because it is not called for monitor mode devices, @start
1297 *	and @stop must be implemented.
1298 *	The driver should perform any initialization it needs before
1299 *	the device can be enabled. The initial configuration for the
1300 *	interface is given in the conf parameter.
1301 *	The callback may refuse to add an interface by returning a
1302 *	negative error code (which will be seen in userspace.)
1303 *	Must be implemented.
1304 *
1305 * @remove_interface: Notifies a driver that an interface is going down.
1306 *	The @stop callback is called after this if it is the last interface
1307 *	and no monitor interfaces are present.
1308 *	When all interfaces are removed, the MAC address in the hardware
1309 *	must be cleared so the device no longer acknowledges packets,
1310 *	the mac_addr member of the conf structure is, however, set to the
1311 *	MAC address of the device going away.
1312 *	Hence, this callback must be implemented.
1313 *
1314 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1315 *	function to change hardware configuration, e.g., channel.
1316 *	This function should never fail but returns a negative error code
1317 *	if it does.
1318 *
1319 * @bss_info_changed: Handler for configuration requests related to BSS
1320 *	parameters that may vary during BSS's lifespan, and may affect low
1321 *	level driver (e.g. assoc/disassoc status, erp parameters).
1322 *	This function should not be used if no BSS has been set, unless
1323 *	for association indication. The @changed parameter indicates which
1324 *	of the bss parameters has changed when a call is made.
1325 *
1326 * @configure_filter: Configure the device's RX filter.
1327 *	See the section "Frame filtering" for more information.
1328 *	This callback must be implemented and atomic.
1329 *
1330 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1331 * 	must be set or cleared for a given STA. Must be atomic.
1332 *
1333 * @set_key: See the section "Hardware crypto acceleration"
1334 *	This callback can sleep, and is only called between add_interface
1335 *	and remove_interface calls, i.e. while the given virtual interface
1336 *	is enabled.
1337 *	Returns a negative error code if the key can't be added.
1338 *
1339 * @update_tkip_key: See the section "Hardware crypto acceleration"
1340 * 	This callback will be called in the context of Rx. Called for drivers
1341 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1342 *
1343 * @hw_scan: Ask the hardware to service the scan request, no need to start
1344 *	the scan state machine in stack. The scan must honour the channel
1345 *	configuration done by the regulatory agent in the wiphy's
1346 *	registered bands. The hardware (or the driver) needs to make sure
1347 *	that power save is disabled.
1348 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1349 *	entire IEs after the SSID, so that drivers need not look at these
1350 *	at all but just send them after the SSID -- mac80211 includes the
1351 *	(extended) supported rates and HT information (where applicable).
1352 *	When the scan finishes, ieee80211_scan_completed() must be called;
1353 *	note that it also must be called when the scan cannot finish due to
1354 *	any error unless this callback returned a negative error code.
1355 *
1356 * @sw_scan_start: Notifier function that is called just before a software scan
1357 *	is started. Can be NULL, if the driver doesn't need this notification.
1358 *
1359 * @sw_scan_complete: Notifier function that is called just after a software scan
1360 *	finished. Can be NULL, if the driver doesn't need this notification.
1361 *
1362 * @get_stats: Return low-level statistics.
1363 * 	Returns zero if statistics are available.
1364 *
1365 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1366 *	callback should be provided to read the TKIP transmit IVs (both IV32
1367 *	and IV16) for the given key from hardware.
1368 *
1369 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1370 *
1371 * @sta_notify: Notifies low level driver about addition, removal or power
1372 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1373 *	Must be atomic.
1374 *
1375 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1376 *	bursting) for a hardware TX queue.
1377 *	Returns a negative error code on failure.
1378 *
1379 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1380 *	to get number of currently queued packets (queue length), maximum queue
1381 *	size (limit), and total number of packets sent using each TX queue
1382 *	(count). The 'stats' pointer points to an array that has hw->queues
1383 *	items.
1384 *
1385 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1386 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1387 *	required function.
1388 *
1389 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1390 *      Currently, this is only used for IBSS mode debugging. Is not a
1391 *	required function.
1392 *
1393 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1394 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1395 *	function is optional if the firmware/hardware takes full care of
1396 *	TSF synchronization.
1397 *
1398 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1399 *	This is needed only for IBSS mode and the result of this function is
1400 *	used to determine whether to reply to Probe Requests.
1401 *	Returns non-zero if this device sent the last beacon.
1402 *
1403 * @ampdu_action: Perform a certain A-MPDU action
1404 * 	The RA/TID combination determines the destination and TID we want
1405 * 	the ampdu action to be performed for. The action is defined through
1406 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1407 * 	is the first frame we expect to perform the action on. Notice
1408 * 	that TX/RX_STOP can pass NULL for this parameter.
1409 *	Returns a negative error code on failure.
1410 *
1411 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1412 *	need to set wiphy->rfkill_poll to %true before registration,
1413 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1414 */
1415struct ieee80211_ops {
1416	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1417	int (*start)(struct ieee80211_hw *hw);
1418	void (*stop)(struct ieee80211_hw *hw);
1419	int (*add_interface)(struct ieee80211_hw *hw,
1420			     struct ieee80211_if_init_conf *conf);
1421	void (*remove_interface)(struct ieee80211_hw *hw,
1422				 struct ieee80211_if_init_conf *conf);
1423	int (*config)(struct ieee80211_hw *hw, u32 changed);
1424	void (*bss_info_changed)(struct ieee80211_hw *hw,
1425				 struct ieee80211_vif *vif,
1426				 struct ieee80211_bss_conf *info,
1427				 u32 changed);
1428	void (*configure_filter)(struct ieee80211_hw *hw,
1429				 unsigned int changed_flags,
1430				 unsigned int *total_flags,
1431				 int mc_count, struct dev_addr_list *mc_list);
1432	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1433		       bool set);
1434	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1435		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1436		       struct ieee80211_key_conf *key);
1437	void (*update_tkip_key)(struct ieee80211_hw *hw,
1438			struct ieee80211_key_conf *conf, const u8 *address,
1439			u32 iv32, u16 *phase1key);
1440	int (*hw_scan)(struct ieee80211_hw *hw,
1441		       struct cfg80211_scan_request *req);
1442	void (*sw_scan_start)(struct ieee80211_hw *hw);
1443	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1444	int (*get_stats)(struct ieee80211_hw *hw,
1445			 struct ieee80211_low_level_stats *stats);
1446	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1447			     u32 *iv32, u16 *iv16);
1448	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1449	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1450			enum sta_notify_cmd, struct ieee80211_sta *sta);
1451	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1452		       const struct ieee80211_tx_queue_params *params);
1453	int (*get_tx_stats)(struct ieee80211_hw *hw,
1454			    struct ieee80211_tx_queue_stats *stats);
1455	u64 (*get_tsf)(struct ieee80211_hw *hw);
1456	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1457	void (*reset_tsf)(struct ieee80211_hw *hw);
1458	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1459	int (*ampdu_action)(struct ieee80211_hw *hw,
1460			    enum ieee80211_ampdu_mlme_action action,
1461			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1462
1463	void (*rfkill_poll)(struct ieee80211_hw *hw);
1464};
1465
1466/**
1467 * ieee80211_alloc_hw -  Allocate a new hardware device
1468 *
1469 * This must be called once for each hardware device. The returned pointer
1470 * must be used to refer to this device when calling other functions.
1471 * mac80211 allocates a private data area for the driver pointed to by
1472 * @priv in &struct ieee80211_hw, the size of this area is given as
1473 * @priv_data_len.
1474 *
1475 * @priv_data_len: length of private data
1476 * @ops: callbacks for this device
1477 */
1478struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1479					const struct ieee80211_ops *ops);
1480
1481/**
1482 * ieee80211_register_hw - Register hardware device
1483 *
1484 * You must call this function before any other functions in
1485 * mac80211. Note that before a hardware can be registered, you
1486 * need to fill the contained wiphy's information.
1487 *
1488 * @hw: the device to register as returned by ieee80211_alloc_hw()
1489 */
1490int ieee80211_register_hw(struct ieee80211_hw *hw);
1491
1492#ifdef CONFIG_MAC80211_LEDS
1493extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1494extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1495extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1496extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1497#endif
1498/**
1499 * ieee80211_get_tx_led_name - get name of TX LED
1500 *
1501 * mac80211 creates a transmit LED trigger for each wireless hardware
1502 * that can be used to drive LEDs if your driver registers a LED device.
1503 * This function returns the name (or %NULL if not configured for LEDs)
1504 * of the trigger so you can automatically link the LED device.
1505 *
1506 * @hw: the hardware to get the LED trigger name for
1507 */
1508static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1509{
1510#ifdef CONFIG_MAC80211_LEDS
1511	return __ieee80211_get_tx_led_name(hw);
1512#else
1513	return NULL;
1514#endif
1515}
1516
1517/**
1518 * ieee80211_get_rx_led_name - get name of RX LED
1519 *
1520 * mac80211 creates a receive LED trigger for each wireless hardware
1521 * that can be used to drive LEDs if your driver registers a LED device.
1522 * This function returns the name (or %NULL if not configured for LEDs)
1523 * of the trigger so you can automatically link the LED device.
1524 *
1525 * @hw: the hardware to get the LED trigger name for
1526 */
1527static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1528{
1529#ifdef CONFIG_MAC80211_LEDS
1530	return __ieee80211_get_rx_led_name(hw);
1531#else
1532	return NULL;
1533#endif
1534}
1535
1536/**
1537 * ieee80211_get_assoc_led_name - get name of association LED
1538 *
1539 * mac80211 creates a association LED trigger for each wireless hardware
1540 * that can be used to drive LEDs if your driver registers a LED device.
1541 * This function returns the name (or %NULL if not configured for LEDs)
1542 * of the trigger so you can automatically link the LED device.
1543 *
1544 * @hw: the hardware to get the LED trigger name for
1545 */
1546static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1547{
1548#ifdef CONFIG_MAC80211_LEDS
1549	return __ieee80211_get_assoc_led_name(hw);
1550#else
1551	return NULL;
1552#endif
1553}
1554
1555/**
1556 * ieee80211_get_radio_led_name - get name of radio LED
1557 *
1558 * mac80211 creates a radio change LED trigger for each wireless hardware
1559 * that can be used to drive LEDs if your driver registers a LED device.
1560 * This function returns the name (or %NULL if not configured for LEDs)
1561 * of the trigger so you can automatically link the LED device.
1562 *
1563 * @hw: the hardware to get the LED trigger name for
1564 */
1565static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1566{
1567#ifdef CONFIG_MAC80211_LEDS
1568	return __ieee80211_get_radio_led_name(hw);
1569#else
1570	return NULL;
1571#endif
1572}
1573
1574/**
1575 * ieee80211_unregister_hw - Unregister a hardware device
1576 *
1577 * This function instructs mac80211 to free allocated resources
1578 * and unregister netdevices from the networking subsystem.
1579 *
1580 * @hw: the hardware to unregister
1581 */
1582void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1583
1584/**
1585 * ieee80211_free_hw - free hardware descriptor
1586 *
1587 * This function frees everything that was allocated, including the
1588 * private data for the driver. You must call ieee80211_unregister_hw()
1589 * before calling this function.
1590 *
1591 * @hw: the hardware to free
1592 */
1593void ieee80211_free_hw(struct ieee80211_hw *hw);
1594
1595/**
1596 * ieee80211_restart_hw - restart hardware completely
1597 *
1598 * Call this function when the hardware was restarted for some reason
1599 * (hardware error, ...) and the driver is unable to restore its state
1600 * by itself. mac80211 assumes that at this point the driver/hardware
1601 * is completely uninitialised and stopped, it starts the process by
1602 * calling the ->start() operation. The driver will need to reset all
1603 * internal state that it has prior to calling this function.
1604 *
1605 * @hw: the hardware to restart
1606 */
1607void ieee80211_restart_hw(struct ieee80211_hw *hw);
1608
1609/* trick to avoid symbol clashes with the ieee80211 subsystem */
1610void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1611		    struct ieee80211_rx_status *status);
1612
1613/**
1614 * ieee80211_rx - receive frame
1615 *
1616 * Use this function to hand received frames to mac80211. The receive
1617 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1618 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1619 *
1620 * This function may not be called in IRQ context. Calls to this function
1621 * for a single hardware must be synchronized against each other. Calls
1622 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1623 * single hardware.
1624 *
1625 * @hw: the hardware this frame came in on
1626 * @skb: the buffer to receive, owned by mac80211 after this call
1627 * @status: status of this frame; the status pointer need not be valid
1628 *	after this function returns
1629 */
1630static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1631				struct ieee80211_rx_status *status)
1632{
1633	__ieee80211_rx(hw, skb, status);
1634}
1635
1636/**
1637 * ieee80211_rx_irqsafe - receive frame
1638 *
1639 * Like ieee80211_rx() but can be called in IRQ context
1640 * (internally defers to a tasklet.)
1641 *
1642 * Calls to this function and ieee80211_rx() may not be mixed for a
1643 * single hardware.
1644 *
1645 * @hw: the hardware this frame came in on
1646 * @skb: the buffer to receive, owned by mac80211 after this call
1647 * @status: status of this frame; the status pointer need not be valid
1648 *	after this function returns and is not freed by mac80211,
1649 *	it is recommended that it points to a stack area
1650 */
1651void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1652			  struct sk_buff *skb,
1653			  struct ieee80211_rx_status *status);
1654
1655/**
1656 * ieee80211_tx_status - transmit status callback
1657 *
1658 * Call this function for all transmitted frames after they have been
1659 * transmitted. It is permissible to not call this function for
1660 * multicast frames but this can affect statistics.
1661 *
1662 * This function may not be called in IRQ context. Calls to this function
1663 * for a single hardware must be synchronized against each other. Calls
1664 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1665 * for a single hardware.
1666 *
1667 * @hw: the hardware the frame was transmitted by
1668 * @skb: the frame that was transmitted, owned by mac80211 after this call
1669 */
1670void ieee80211_tx_status(struct ieee80211_hw *hw,
1671			 struct sk_buff *skb);
1672
1673/**
1674 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1675 *
1676 * Like ieee80211_tx_status() but can be called in IRQ context
1677 * (internally defers to a tasklet.)
1678 *
1679 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1680 * single hardware.
1681 *
1682 * @hw: the hardware the frame was transmitted by
1683 * @skb: the frame that was transmitted, owned by mac80211 after this call
1684 */
1685void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1686				 struct sk_buff *skb);
1687
1688/**
1689 * ieee80211_beacon_get - beacon generation function
1690 * @hw: pointer obtained from ieee80211_alloc_hw().
1691 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1692 *
1693 * If the beacon frames are generated by the host system (i.e., not in
1694 * hardware/firmware), the low-level driver uses this function to receive
1695 * the next beacon frame from the 802.11 code. The low-level is responsible
1696 * for calling this function before beacon data is needed (e.g., based on
1697 * hardware interrupt). Returned skb is used only once and low-level driver
1698 * is responsible for freeing it.
1699 */
1700struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1701				     struct ieee80211_vif *vif);
1702
1703/**
1704 * ieee80211_rts_get - RTS frame generation function
1705 * @hw: pointer obtained from ieee80211_alloc_hw().
1706 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1707 * @frame: pointer to the frame that is going to be protected by the RTS.
1708 * @frame_len: the frame length (in octets).
1709 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1710 * @rts: The buffer where to store the RTS frame.
1711 *
1712 * If the RTS frames are generated by the host system (i.e., not in
1713 * hardware/firmware), the low-level driver uses this function to receive
1714 * the next RTS frame from the 802.11 code. The low-level is responsible
1715 * for calling this function before and RTS frame is needed.
1716 */
1717void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1718		       const void *frame, size_t frame_len,
1719		       const struct ieee80211_tx_info *frame_txctl,
1720		       struct ieee80211_rts *rts);
1721
1722/**
1723 * ieee80211_rts_duration - Get the duration field for an RTS frame
1724 * @hw: pointer obtained from ieee80211_alloc_hw().
1725 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1726 * @frame_len: the length of the frame that is going to be protected by the RTS.
1727 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1728 *
1729 * If the RTS is generated in firmware, but the host system must provide
1730 * the duration field, the low-level driver uses this function to receive
1731 * the duration field value in little-endian byteorder.
1732 */
1733__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1734			      struct ieee80211_vif *vif, size_t frame_len,
1735			      const struct ieee80211_tx_info *frame_txctl);
1736
1737/**
1738 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1739 * @hw: pointer obtained from ieee80211_alloc_hw().
1740 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1741 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1742 * @frame_len: the frame length (in octets).
1743 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1744 * @cts: The buffer where to store the CTS-to-self frame.
1745 *
1746 * If the CTS-to-self frames are generated by the host system (i.e., not in
1747 * hardware/firmware), the low-level driver uses this function to receive
1748 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1749 * for calling this function before and CTS-to-self frame is needed.
1750 */
1751void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1752			     struct ieee80211_vif *vif,
1753			     const void *frame, size_t frame_len,
1754			     const struct ieee80211_tx_info *frame_txctl,
1755			     struct ieee80211_cts *cts);
1756
1757/**
1758 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1759 * @hw: pointer obtained from ieee80211_alloc_hw().
1760 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1761 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1762 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1763 *
1764 * If the CTS-to-self is generated in firmware, but the host system must provide
1765 * the duration field, the low-level driver uses this function to receive
1766 * the duration field value in little-endian byteorder.
1767 */
1768__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1769				    struct ieee80211_vif *vif,
1770				    size_t frame_len,
1771				    const struct ieee80211_tx_info *frame_txctl);
1772
1773/**
1774 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1775 * @hw: pointer obtained from ieee80211_alloc_hw().
1776 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1777 * @frame_len: the length of the frame.
1778 * @rate: the rate at which the frame is going to be transmitted.
1779 *
1780 * Calculate the duration field of some generic frame, given its
1781 * length and transmission rate (in 100kbps).
1782 */
1783__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1784					struct ieee80211_vif *vif,
1785					size_t frame_len,
1786					struct ieee80211_rate *rate);
1787
1788/**
1789 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1790 * @hw: pointer as obtained from ieee80211_alloc_hw().
1791 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1792 *
1793 * Function for accessing buffered broadcast and multicast frames. If
1794 * hardware/firmware does not implement buffering of broadcast/multicast
1795 * frames when power saving is used, 802.11 code buffers them in the host
1796 * memory. The low-level driver uses this function to fetch next buffered
1797 * frame. In most cases, this is used when generating beacon frame. This
1798 * function returns a pointer to the next buffered skb or NULL if no more
1799 * buffered frames are available.
1800 *
1801 * Note: buffered frames are returned only after DTIM beacon frame was
1802 * generated with ieee80211_beacon_get() and the low-level driver must thus
1803 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1804 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1805 * does not need to check for DTIM beacons separately and should be able to
1806 * use common code for all beacons.
1807 */
1808struct sk_buff *
1809ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1810
1811/**
1812 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1813 *
1814 * This function computes a TKIP rc4 key for an skb. It computes
1815 * a phase 1 key if needed (iv16 wraps around). This function is to
1816 * be used by drivers which can do HW encryption but need to compute
1817 * to phase 1/2 key in SW.
1818 *
1819 * @keyconf: the parameter passed with the set key
1820 * @skb: the skb for which the key is needed
1821 * @type: TBD
1822 * @key: a buffer to which the key will be written
1823 */
1824void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1825				struct sk_buff *skb,
1826				enum ieee80211_tkip_key_type type, u8 *key);
1827/**
1828 * ieee80211_wake_queue - wake specific queue
1829 * @hw: pointer as obtained from ieee80211_alloc_hw().
1830 * @queue: queue number (counted from zero).
1831 *
1832 * Drivers should use this function instead of netif_wake_queue.
1833 */
1834void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1835
1836/**
1837 * ieee80211_stop_queue - stop specific queue
1838 * @hw: pointer as obtained from ieee80211_alloc_hw().
1839 * @queue: queue number (counted from zero).
1840 *
1841 * Drivers should use this function instead of netif_stop_queue.
1842 */
1843void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1844
1845/**
1846 * ieee80211_queue_stopped - test status of the queue
1847 * @hw: pointer as obtained from ieee80211_alloc_hw().
1848 * @queue: queue number (counted from zero).
1849 *
1850 * Drivers should use this function instead of netif_stop_queue.
1851 */
1852
1853int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1854
1855/**
1856 * ieee80211_stop_queues - stop all queues
1857 * @hw: pointer as obtained from ieee80211_alloc_hw().
1858 *
1859 * Drivers should use this function instead of netif_stop_queue.
1860 */
1861void ieee80211_stop_queues(struct ieee80211_hw *hw);
1862
1863/**
1864 * ieee80211_wake_queues - wake all queues
1865 * @hw: pointer as obtained from ieee80211_alloc_hw().
1866 *
1867 * Drivers should use this function instead of netif_wake_queue.
1868 */
1869void ieee80211_wake_queues(struct ieee80211_hw *hw);
1870
1871/**
1872 * ieee80211_scan_completed - completed hardware scan
1873 *
1874 * When hardware scan offload is used (i.e. the hw_scan() callback is
1875 * assigned) this function needs to be called by the driver to notify
1876 * mac80211 that the scan finished.
1877 *
1878 * @hw: the hardware that finished the scan
1879 * @aborted: set to true if scan was aborted
1880 */
1881void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1882
1883/**
1884 * ieee80211_iterate_active_interfaces - iterate active interfaces
1885 *
1886 * This function iterates over the interfaces associated with a given
1887 * hardware that are currently active and calls the callback for them.
1888 * This function allows the iterator function to sleep, when the iterator
1889 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1890 * be used.
1891 *
1892 * @hw: the hardware struct of which the interfaces should be iterated over
1893 * @iterator: the iterator function to call
1894 * @data: first argument of the iterator function
1895 */
1896void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1897					 void (*iterator)(void *data, u8 *mac,
1898						struct ieee80211_vif *vif),
1899					 void *data);
1900
1901/**
1902 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1903 *
1904 * This function iterates over the interfaces associated with a given
1905 * hardware that are currently active and calls the callback for them.
1906 * This function requires the iterator callback function to be atomic,
1907 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1908 *
1909 * @hw: the hardware struct of which the interfaces should be iterated over
1910 * @iterator: the iterator function to call, cannot sleep
1911 * @data: first argument of the iterator function
1912 */
1913void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1914						void (*iterator)(void *data,
1915						    u8 *mac,
1916						    struct ieee80211_vif *vif),
1917						void *data);
1918
1919/**
1920 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1921 * @hw: pointer as obtained from ieee80211_alloc_hw().
1922 * @ra: receiver address of the BA session recipient
1923 * @tid: the TID to BA on.
1924 *
1925 * Return: success if addBA request was sent, failure otherwise
1926 *
1927 * Although mac80211/low level driver/user space application can estimate
1928 * the need to start aggregation on a certain RA/TID, the session level
1929 * will be managed by the mac80211.
1930 */
1931int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1932
1933/**
1934 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1935 * @hw: pointer as obtained from ieee80211_alloc_hw().
1936 * @ra: receiver address of the BA session recipient.
1937 * @tid: the TID to BA on.
1938 *
1939 * This function must be called by low level driver once it has
1940 * finished with preparations for the BA session.
1941 */
1942void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1943
1944/**
1945 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1946 * @hw: pointer as obtained from ieee80211_alloc_hw().
1947 * @ra: receiver address of the BA session recipient.
1948 * @tid: the TID to BA on.
1949 *
1950 * This function must be called by low level driver once it has
1951 * finished with preparations for the BA session.
1952 * This version of the function is IRQ-safe.
1953 */
1954void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1955				      u16 tid);
1956
1957/**
1958 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1959 * @hw: pointer as obtained from ieee80211_alloc_hw().
1960 * @ra: receiver address of the BA session recipient
1961 * @tid: the TID to stop BA.
1962 * @initiator: if indicates initiator DELBA frame will be sent.
1963 *
1964 * Return: error if no sta with matching da found, success otherwise
1965 *
1966 * Although mac80211/low level driver/user space application can estimate
1967 * the need to stop aggregation on a certain RA/TID, the session level
1968 * will be managed by the mac80211.
1969 */
1970int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1971				 u8 *ra, u16 tid,
1972				 enum ieee80211_back_parties initiator);
1973
1974/**
1975 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1976 * @hw: pointer as obtained from ieee80211_alloc_hw().
1977 * @ra: receiver address of the BA session recipient.
1978 * @tid: the desired TID to BA on.
1979 *
1980 * This function must be called by low level driver once it has
1981 * finished with preparations for the BA session tear down.
1982 */
1983void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1984
1985/**
1986 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1987 * @hw: pointer as obtained from ieee80211_alloc_hw().
1988 * @ra: receiver address of the BA session recipient.
1989 * @tid: the desired TID to BA on.
1990 *
1991 * This function must be called by low level driver once it has
1992 * finished with preparations for the BA session tear down.
1993 * This version of the function is IRQ-safe.
1994 */
1995void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1996				     u16 tid);
1997
1998/**
1999 * ieee80211_find_sta - find a station
2000 *
2001 * @hw: pointer as obtained from ieee80211_alloc_hw()
2002 * @addr: station's address
2003 *
2004 * This function must be called under RCU lock and the
2005 * resulting pointer is only valid under RCU lock as well.
2006 */
2007struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2008					 const u8 *addr);
2009
2010/**
2011 * ieee80211_beacon_loss - inform hardware does not receive beacons
2012 *
2013 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2014 *
2015 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2016 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2017 * hardware is not receiving beacons with this function.
2018 */
2019void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2020
2021/* Rate control API */
2022
2023/**
2024 * enum rate_control_changed - flags to indicate which parameter changed
2025 *
2026 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2027 *	changed, rate control algorithm can update its internal state if needed.
2028 */
2029enum rate_control_changed {
2030	IEEE80211_RC_HT_CHANGED = BIT(0)
2031};
2032
2033/**
2034 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2035 *
2036 * @hw: The hardware the algorithm is invoked for.
2037 * @sband: The band this frame is being transmitted on.
2038 * @bss_conf: the current BSS configuration
2039 * @reported_rate: The rate control algorithm can fill this in to indicate
2040 *	which rate should be reported to userspace as the current rate and
2041 *	used for rate calculations in the mesh network.
2042 * @rts: whether RTS will be used for this frame because it is longer than the
2043 *	RTS threshold
2044 * @short_preamble: whether mac80211 will request short-preamble transmission
2045 *	if the selected rate supports it
2046 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2047 * @skb: the skb that will be transmitted, the control information in it needs
2048 *	to be filled in
2049 */
2050struct ieee80211_tx_rate_control {
2051	struct ieee80211_hw *hw;
2052	struct ieee80211_supported_band *sband;
2053	struct ieee80211_bss_conf *bss_conf;
2054	struct sk_buff *skb;
2055	struct ieee80211_tx_rate reported_rate;
2056	bool rts, short_preamble;
2057	u8 max_rate_idx;
2058};
2059
2060struct rate_control_ops {
2061	struct module *module;
2062	const char *name;
2063	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2064	void (*free)(void *priv);
2065
2066	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2067	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2068			  struct ieee80211_sta *sta, void *priv_sta);
2069	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2070			    struct ieee80211_sta *sta,
2071			    void *priv_sta, u32 changed);
2072	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2073			 void *priv_sta);
2074
2075	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2076			  struct ieee80211_sta *sta, void *priv_sta,
2077			  struct sk_buff *skb);
2078	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2079			 struct ieee80211_tx_rate_control *txrc);
2080
2081	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2082				struct dentry *dir);
2083	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2084};
2085
2086static inline int rate_supported(struct ieee80211_sta *sta,
2087				 enum ieee80211_band band,
2088				 int index)
2089{
2090	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2091}
2092
2093static inline s8
2094rate_lowest_index(struct ieee80211_supported_band *sband,
2095		  struct ieee80211_sta *sta)
2096{
2097	int i;
2098
2099	for (i = 0; i < sband->n_bitrates; i++)
2100		if (rate_supported(sta, sband->band, i))
2101			return i;
2102
2103	/* warn when we cannot find a rate. */
2104	WARN_ON(1);
2105
2106	return 0;
2107}
2108
2109
2110int ieee80211_rate_control_register(struct rate_control_ops *ops);
2111void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2112
2113static inline bool
2114conf_is_ht20(struct ieee80211_conf *conf)
2115{
2116	return conf->channel_type == NL80211_CHAN_HT20;
2117}
2118
2119static inline bool
2120conf_is_ht40_minus(struct ieee80211_conf *conf)
2121{
2122	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2123}
2124
2125static inline bool
2126conf_is_ht40_plus(struct ieee80211_conf *conf)
2127{
2128	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2129}
2130
2131static inline bool
2132conf_is_ht40(struct ieee80211_conf *conf)
2133{
2134	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2135}
2136
2137static inline bool
2138conf_is_ht(struct ieee80211_conf *conf)
2139{
2140	return conf->channel_type != NL80211_CHAN_NO_HT;
2141}
2142
2143#endif /* MAC80211_H */
2144