mac80211.h revision 9ed6bcce77f75d98af6ee07069deac6041948bee
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85struct ieee80211_ht_bss_info {
86	u8 primary_channel;
87	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
88	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89};
90
91/**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96enum ieee80211_max_queues {
97	IEEE80211_MAX_QUEUES =		4,
98};
99
100/**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 *	2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112struct ieee80211_tx_queue_params {
113	u16 txop;
114	u16 cw_min;
115	u16 cw_max;
116	u8 aifs;
117};
118
119/**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126struct ieee80211_tx_queue_stats {
127	unsigned int len;
128	unsigned int limit;
129	unsigned int count;
130};
131
132struct ieee80211_low_level_stats {
133	unsigned int dot11ACKFailureCount;
134	unsigned int dot11RTSFailureCount;
135	unsigned int dot11FCSErrorCount;
136	unsigned int dot11RTSSuccessCount;
137};
138
139/**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 *	also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
153 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
154 *	reason (IBSS and managed mode)
155 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
156 *	new beacon (beaconing modes)
157 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
158 *	enabled/disabled (beaconing modes)
159 */
160enum ieee80211_bss_change {
161	BSS_CHANGED_ASSOC		= 1<<0,
162	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
163	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
164	BSS_CHANGED_ERP_SLOT		= 1<<3,
165	BSS_CHANGED_HT                  = 1<<4,
166	BSS_CHANGED_BASIC_RATES		= 1<<5,
167	BSS_CHANGED_BEACON_INT		= 1<<6,
168	BSS_CHANGED_BSSID		= 1<<7,
169	BSS_CHANGED_BEACON		= 1<<8,
170	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
171};
172
173/**
174 * struct ieee80211_bss_conf - holds the BSS's changing parameters
175 *
176 * This structure keeps information about a BSS (and an association
177 * to that BSS) that can change during the lifetime of the BSS.
178 *
179 * @assoc: association status
180 * @aid: association ID number, valid only when @assoc is true
181 * @use_cts_prot: use CTS protection
182 * @use_short_preamble: use 802.11b short preamble;
183 *	if the hardware cannot handle this it must set the
184 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
185 * @use_short_slot: use short slot time (only relevant for ERP);
186 *	if the hardware cannot handle this it must set the
187 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
188 * @dtim_period: num of beacons before the next DTIM, for PSM
189 * @timestamp: beacon timestamp
190 * @beacon_int: beacon interval
191 * @assoc_capability: capabilities taken from assoc resp
192 * @ht: BSS's HT configuration
193 * @basic_rates: bitmap of basic rates, each bit stands for an
194 *	index into the rate table configured by the driver in
195 *	the current band.
196 * @bssid: The BSSID for this BSS
197 * @enable_beacon: whether beaconing should be enabled or not
198 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
199 *	This field is only valid when the channel type is one of the HT types.
200 */
201struct ieee80211_bss_conf {
202	const u8 *bssid;
203	/* association related data */
204	bool assoc;
205	u16 aid;
206	/* erp related data */
207	bool use_cts_prot;
208	bool use_short_preamble;
209	bool use_short_slot;
210	bool enable_beacon;
211	u8 dtim_period;
212	u16 beacon_int;
213	u16 assoc_capability;
214	u64 timestamp;
215	u32 basic_rates;
216	u16 ht_operation_mode;
217};
218
219/**
220 * enum mac80211_tx_control_flags - flags to describe transmission information/status
221 *
222 * These flags are used with the @flags member of &ieee80211_tx_info.
223 *
224 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
225 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
226 *	number to this frame, taking care of not overwriting the fragment
227 *	number and increasing the sequence number only when the
228 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
229 *	assign sequence numbers to QoS-data frames but cannot do so correctly
230 *	for non-QoS-data and management frames because beacons need them from
231 *	that counter as well and mac80211 cannot guarantee proper sequencing.
232 *	If this flag is set, the driver should instruct the hardware to
233 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
234 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
235 *	beacons and always be clear for frames without a sequence number field.
236 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
237 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
238 *	station
239 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
240 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
241 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
242 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
243 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
244 *	because the destination STA was in powersave mode.
245 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
246 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
247 * 	is for the whole aggregation.
248 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
249 * 	so consider using block ack request (BAR).
250 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
251 *	set by rate control algorithms to indicate probe rate, will
252 *	be cleared for fragmented frames (except on the last fragment)
253 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
254 *	set this flag in the driver; indicates that the rate control
255 *	algorithm was used and should be notified of TX status
256 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
257 *	used to indicate that a pending frame requires TX processing before
258 *	it can be sent out.
259 */
260enum mac80211_tx_control_flags {
261	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
262	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
263	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
264	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
265	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
266	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
267	IEEE80211_TX_CTL_AMPDU			= BIT(6),
268	IEEE80211_TX_CTL_INJECTED		= BIT(7),
269	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
270	IEEE80211_TX_STAT_ACK			= BIT(9),
271	IEEE80211_TX_STAT_AMPDU			= BIT(10),
272	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
273	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
274	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
275	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
276};
277
278/**
279 * enum mac80211_rate_control_flags - per-rate flags set by the
280 *	Rate Control algorithm.
281 *
282 * These flags are set by the Rate control algorithm for each rate during tx,
283 * in the @flags member of struct ieee80211_tx_rate.
284 *
285 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
286 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
287 *	This is set if the current BSS requires ERP protection.
288 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
289 * @IEEE80211_TX_RC_MCS: HT rate.
290 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
291 *	Greenfield mode.
292 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
293 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
294 *	adjacent 20 MHz channels, if the current channel type is
295 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
296 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
297 */
298enum mac80211_rate_control_flags {
299	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
300	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
301	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
302
303	/* rate index is an MCS rate number instead of an index */
304	IEEE80211_TX_RC_MCS			= BIT(3),
305	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
306	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
307	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
308	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
309};
310
311
312/* there are 40 bytes if you don't need the rateset to be kept */
313#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
314
315/* if you do need the rateset, then you have less space */
316#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
317
318/* maximum number of rate stages */
319#define IEEE80211_TX_MAX_RATES	5
320
321/**
322 * struct ieee80211_tx_rate - rate selection/status
323 *
324 * @idx: rate index to attempt to send with
325 * @flags: rate control flags (&enum mac80211_rate_control_flags)
326 * @count: number of tries in this rate before going to the next rate
327 *
328 * A value of -1 for @idx indicates an invalid rate and, if used
329 * in an array of retry rates, that no more rates should be tried.
330 *
331 * When used for transmit status reporting, the driver should
332 * always report the rate along with the flags it used.
333 */
334struct ieee80211_tx_rate {
335	s8 idx;
336	u8 count;
337	u8 flags;
338} __attribute__((packed));
339
340/**
341 * struct ieee80211_tx_info - skb transmit information
342 *
343 * This structure is placed in skb->cb for three uses:
344 *  (1) mac80211 TX control - mac80211 tells the driver what to do
345 *  (2) driver internal use (if applicable)
346 *  (3) TX status information - driver tells mac80211 what happened
347 *
348 * The TX control's sta pointer is only valid during the ->tx call,
349 * it may be NULL.
350 *
351 * @flags: transmit info flags, defined above
352 * @band: the band to transmit on (use for checking for races)
353 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
354 * @pad: padding, ignore
355 * @control: union for control data
356 * @status: union for status data
357 * @driver_data: array of driver_data pointers
358 * @ampdu_ack_len: number of aggregated frames.
359 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
360 * @ampdu_ack_map: block ack bit map for the aggregation.
361 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
362 * @ack_signal: signal strength of the ACK frame
363 */
364struct ieee80211_tx_info {
365	/* common information */
366	u32 flags;
367	u8 band;
368
369	u8 antenna_sel_tx;
370
371	/* 2 byte hole */
372	u8 pad[2];
373
374	union {
375		struct {
376			union {
377				/* rate control */
378				struct {
379					struct ieee80211_tx_rate rates[
380						IEEE80211_TX_MAX_RATES];
381					s8 rts_cts_rate_idx;
382				};
383				/* only needed before rate control */
384				unsigned long jiffies;
385			};
386			/* NB: vif can be NULL for injected frames */
387			struct ieee80211_vif *vif;
388			struct ieee80211_key_conf *hw_key;
389			struct ieee80211_sta *sta;
390		} control;
391		struct {
392			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
393			u8 ampdu_ack_len;
394			u64 ampdu_ack_map;
395			int ack_signal;
396			/* 8 bytes free */
397		} status;
398		struct {
399			struct ieee80211_tx_rate driver_rates[
400				IEEE80211_TX_MAX_RATES];
401			void *rate_driver_data[
402				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
403		};
404		void *driver_data[
405			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
406	};
407};
408
409static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
410{
411	return (struct ieee80211_tx_info *)skb->cb;
412}
413
414/**
415 * ieee80211_tx_info_clear_status - clear TX status
416 *
417 * @info: The &struct ieee80211_tx_info to be cleared.
418 *
419 * When the driver passes an skb back to mac80211, it must report
420 * a number of things in TX status. This function clears everything
421 * in the TX status but the rate control information (it does clear
422 * the count since you need to fill that in anyway).
423 *
424 * NOTE: You can only use this function if you do NOT use
425 *	 info->driver_data! Use info->rate_driver_data
426 *	 instead if you need only the less space that allows.
427 */
428static inline void
429ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
430{
431	int i;
432
433	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
434		     offsetof(struct ieee80211_tx_info, control.rates));
435	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
436		     offsetof(struct ieee80211_tx_info, driver_rates));
437	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
438	/* clear the rate counts */
439	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
440		info->status.rates[i].count = 0;
441
442	BUILD_BUG_ON(
443	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
444	memset(&info->status.ampdu_ack_len, 0,
445	       sizeof(struct ieee80211_tx_info) -
446	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
447}
448
449
450/**
451 * enum mac80211_rx_flags - receive flags
452 *
453 * These flags are used with the @flag member of &struct ieee80211_rx_status.
454 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
455 *	Use together with %RX_FLAG_MMIC_STRIPPED.
456 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
457 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
458 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
459 *	verification has been done by the hardware.
460 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
461 *	If this flag is set, the stack cannot do any replay detection
462 *	hence the driver or hardware will have to do that.
463 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
464 *	the frame.
465 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
466 *	the frame.
467 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
468 *	is valid. This is useful in monitor mode and necessary for beacon frames
469 *	to enable IBSS merging.
470 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
471 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
472 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
473 * @RX_FLAG_SHORT_GI: Short guard interval was used
474 */
475enum mac80211_rx_flags {
476	RX_FLAG_MMIC_ERROR	= 1<<0,
477	RX_FLAG_DECRYPTED	= 1<<1,
478	RX_FLAG_RADIOTAP	= 1<<2,
479	RX_FLAG_MMIC_STRIPPED	= 1<<3,
480	RX_FLAG_IV_STRIPPED	= 1<<4,
481	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
482	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
483	RX_FLAG_TSFT		= 1<<7,
484	RX_FLAG_SHORTPRE	= 1<<8,
485	RX_FLAG_HT		= 1<<9,
486	RX_FLAG_40MHZ		= 1<<10,
487	RX_FLAG_SHORT_GI	= 1<<11,
488};
489
490/**
491 * struct ieee80211_rx_status - receive status
492 *
493 * The low-level driver should provide this information (the subset
494 * supported by hardware) to the 802.11 code with each received
495 * frame.
496 *
497 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
498 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
499 * @band: the active band when this frame was received
500 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
501 * @signal: signal strength when receiving this frame, either in dBm, in dB or
502 *	unspecified depending on the hardware capabilities flags
503 *	@IEEE80211_HW_SIGNAL_*
504 * @noise: noise when receiving this frame, in dBm.
505 * @qual: overall signal quality indication, in percent (0-100).
506 * @antenna: antenna used
507 * @rate_idx: index of data rate into band's supported rates or MCS index if
508 *	HT rates are use (RX_FLAG_HT)
509 * @flag: %RX_FLAG_*
510 */
511struct ieee80211_rx_status {
512	u64 mactime;
513	enum ieee80211_band band;
514	int freq;
515	int signal;
516	int noise;
517	int qual;
518	int antenna;
519	int rate_idx;
520	int flag;
521};
522
523/**
524 * enum ieee80211_conf_flags - configuration flags
525 *
526 * Flags to define PHY configuration options
527 *
528 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
529 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
530 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
531 *	the driver should be prepared to handle configuration requests but
532 *	may turn the device off as much as possible. Typically, this flag will
533 *	be set when an interface is set UP but not associated or scanning, but
534 *	it can also be unset in that case when monitor interfaces are active.
535 */
536enum ieee80211_conf_flags {
537	IEEE80211_CONF_RADIOTAP		= (1<<0),
538	IEEE80211_CONF_PS		= (1<<1),
539	IEEE80211_CONF_IDLE		= (1<<2),
540};
541
542
543/**
544 * enum ieee80211_conf_changed - denotes which configuration changed
545 *
546 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
547 * @_IEEE80211_CONF_CHANGE_BEACON_INTERVAL: DEPRECATED
548 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
549 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
550 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
551 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
552 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
553 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
554 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
555 */
556enum ieee80211_conf_changed {
557	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
558	_IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
559	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
560	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
561	IEEE80211_CONF_CHANGE_PS		= BIT(4),
562	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
563	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
564	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
565	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
566};
567
568static inline __deprecated enum ieee80211_conf_changed
569__IEEE80211_CONF_CHANGE_BEACON_INTERVAL(void)
570{
571	return _IEEE80211_CONF_CHANGE_BEACON_INTERVAL;
572}
573#define IEEE80211_CONF_CHANGE_BEACON_INTERVAL \
574	__IEEE80211_CONF_CHANGE_BEACON_INTERVAL()
575
576/**
577 * struct ieee80211_conf - configuration of the device
578 *
579 * This struct indicates how the driver shall configure the hardware.
580 *
581 * @flags: configuration flags defined above
582 *
583 * @radio_enabled: when zero, driver is required to switch off the radio.
584 * @beacon_int: beacon interval (TODO make interface config)
585 *
586 * @listen_interval: listen interval in units of beacon interval
587 * @max_sleep_period: the maximum number of beacon intervals to sleep for
588 *	before checking the beacon for a TIM bit (managed mode only); this
589 *	value will be only achievable between DTIM frames, the hardware
590 *	needs to check for the multicast traffic bit in DTIM beacons.
591 *	This variable is valid only when the CONF_PS flag is set.
592 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
593 *	powersave documentation below. This variable is valid only when
594 *	the CONF_PS flag is set.
595 *
596 * @power_level: requested transmit power (in dBm)
597 *
598 * @channel: the channel to tune to
599 * @channel_type: the channel (HT) type
600 *
601 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
602 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
603 *    but actually means the number of transmissions not the number of retries
604 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
605 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
606 *    number of transmissions not the number of retries
607 */
608struct ieee80211_conf {
609	int beacon_int;
610	u32 flags;
611	int power_level, dynamic_ps_timeout;
612	int max_sleep_period;
613
614	u16 listen_interval;
615	bool radio_enabled;
616
617	u8 long_frame_max_tx_count, short_frame_max_tx_count;
618
619	struct ieee80211_channel *channel;
620	enum nl80211_channel_type channel_type;
621};
622
623/**
624 * struct ieee80211_vif - per-interface data
625 *
626 * Data in this structure is continually present for driver
627 * use during the life of a virtual interface.
628 *
629 * @type: type of this virtual interface
630 * @bss_conf: BSS configuration for this interface, either our own
631 *	or the BSS we're associated to
632 * @drv_priv: data area for driver use, will always be aligned to
633 *	sizeof(void *).
634 */
635struct ieee80211_vif {
636	enum nl80211_iftype type;
637	struct ieee80211_bss_conf bss_conf;
638	/* must be last */
639	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
640};
641
642static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
643{
644#ifdef CONFIG_MAC80211_MESH
645	return vif->type == NL80211_IFTYPE_MESH_POINT;
646#endif
647	return false;
648}
649
650/**
651 * struct ieee80211_if_init_conf - initial configuration of an interface
652 *
653 * @vif: pointer to a driver-use per-interface structure. The pointer
654 *	itself is also used for various functions including
655 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
656 * @type: one of &enum nl80211_iftype constants. Determines the type of
657 *	added/removed interface.
658 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
659 *	until the interface is removed (i.e. it cannot be used after
660 *	remove_interface() callback was called for this interface).
661 *
662 * This structure is used in add_interface() and remove_interface()
663 * callbacks of &struct ieee80211_hw.
664 *
665 * When you allow multiple interfaces to be added to your PHY, take care
666 * that the hardware can actually handle multiple MAC addresses. However,
667 * also take care that when there's no interface left with mac_addr != %NULL
668 * you remove the MAC address from the device to avoid acknowledging packets
669 * in pure monitor mode.
670 */
671struct ieee80211_if_init_conf {
672	enum nl80211_iftype type;
673	struct ieee80211_vif *vif;
674	void *mac_addr;
675};
676
677/**
678 * enum ieee80211_key_alg - key algorithm
679 * @ALG_WEP: WEP40 or WEP104
680 * @ALG_TKIP: TKIP
681 * @ALG_CCMP: CCMP (AES)
682 * @ALG_AES_CMAC: AES-128-CMAC
683 */
684enum ieee80211_key_alg {
685	ALG_WEP,
686	ALG_TKIP,
687	ALG_CCMP,
688	ALG_AES_CMAC,
689};
690
691/**
692 * enum ieee80211_key_len - key length
693 * @LEN_WEP40: WEP 5-byte long key
694 * @LEN_WEP104: WEP 13-byte long key
695 */
696enum ieee80211_key_len {
697	LEN_WEP40 = 5,
698	LEN_WEP104 = 13,
699};
700
701/**
702 * enum ieee80211_key_flags - key flags
703 *
704 * These flags are used for communication about keys between the driver
705 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
706 *
707 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
708 *	that the STA this key will be used with could be using QoS.
709 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
710 *	driver to indicate that it requires IV generation for this
711 *	particular key.
712 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
713 *	the driver for a TKIP key if it requires Michael MIC
714 *	generation in software.
715 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
716 *	that the key is pairwise rather then a shared key.
717 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
718 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
719 *	be done in software.
720 */
721enum ieee80211_key_flags {
722	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
723	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
724	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
725	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
726	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
727};
728
729/**
730 * struct ieee80211_key_conf - key information
731 *
732 * This key information is given by mac80211 to the driver by
733 * the set_key() callback in &struct ieee80211_ops.
734 *
735 * @hw_key_idx: To be set by the driver, this is the key index the driver
736 *	wants to be given when a frame is transmitted and needs to be
737 *	encrypted in hardware.
738 * @alg: The key algorithm.
739 * @flags: key flags, see &enum ieee80211_key_flags.
740 * @keyidx: the key index (0-3)
741 * @keylen: key material length
742 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
743 * 	data block:
744 * 	- Temporal Encryption Key (128 bits)
745 * 	- Temporal Authenticator Tx MIC Key (64 bits)
746 * 	- Temporal Authenticator Rx MIC Key (64 bits)
747 * @icv_len: The ICV length for this key type
748 * @iv_len: The IV length for this key type
749 */
750struct ieee80211_key_conf {
751	enum ieee80211_key_alg alg;
752	u8 icv_len;
753	u8 iv_len;
754	u8 hw_key_idx;
755	u8 flags;
756	s8 keyidx;
757	u8 keylen;
758	u8 key[0];
759};
760
761/**
762 * enum set_key_cmd - key command
763 *
764 * Used with the set_key() callback in &struct ieee80211_ops, this
765 * indicates whether a key is being removed or added.
766 *
767 * @SET_KEY: a key is set
768 * @DISABLE_KEY: a key must be disabled
769 */
770enum set_key_cmd {
771	SET_KEY, DISABLE_KEY,
772};
773
774/**
775 * struct ieee80211_sta - station table entry
776 *
777 * A station table entry represents a station we are possibly
778 * communicating with. Since stations are RCU-managed in
779 * mac80211, any ieee80211_sta pointer you get access to must
780 * either be protected by rcu_read_lock() explicitly or implicitly,
781 * or you must take good care to not use such a pointer after a
782 * call to your sta_notify callback that removed it.
783 *
784 * @addr: MAC address
785 * @aid: AID we assigned to the station if we're an AP
786 * @supp_rates: Bitmap of supported rates (per band)
787 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
788 * @drv_priv: data area for driver use, will always be aligned to
789 *	sizeof(void *), size is determined in hw information.
790 */
791struct ieee80211_sta {
792	u32 supp_rates[IEEE80211_NUM_BANDS];
793	u8 addr[ETH_ALEN];
794	u16 aid;
795	struct ieee80211_sta_ht_cap ht_cap;
796
797	/* must be last */
798	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
799};
800
801/**
802 * enum sta_notify_cmd - sta notify command
803 *
804 * Used with the sta_notify() callback in &struct ieee80211_ops, this
805 * indicates addition and removal of a station to station table,
806 * or if a associated station made a power state transition.
807 *
808 * @STA_NOTIFY_ADD: a station was added to the station table
809 * @STA_NOTIFY_REMOVE: a station being removed from the station table
810 * @STA_NOTIFY_SLEEP: a station is now sleeping
811 * @STA_NOTIFY_AWAKE: a sleeping station woke up
812 */
813enum sta_notify_cmd {
814	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
815	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
816};
817
818/**
819 * enum ieee80211_tkip_key_type - get tkip key
820 *
821 * Used by drivers which need to get a tkip key for skb. Some drivers need a
822 * phase 1 key, others need a phase 2 key. A single function allows the driver
823 * to get the key, this enum indicates what type of key is required.
824 *
825 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
826 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
827 */
828enum ieee80211_tkip_key_type {
829	IEEE80211_TKIP_P1_KEY,
830	IEEE80211_TKIP_P2_KEY,
831};
832
833/**
834 * enum ieee80211_hw_flags - hardware flags
835 *
836 * These flags are used to indicate hardware capabilities to
837 * the stack. Generally, flags here should have their meaning
838 * done in a way that the simplest hardware doesn't need setting
839 * any particular flags. There are some exceptions to this rule,
840 * however, so you are advised to review these flags carefully.
841 *
842 * @IEEE80211_HW_RX_INCLUDES_FCS:
843 *	Indicates that received frames passed to the stack include
844 *	the FCS at the end.
845 *
846 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
847 *	Some wireless LAN chipsets buffer broadcast/multicast frames
848 *	for power saving stations in the hardware/firmware and others
849 *	rely on the host system for such buffering. This option is used
850 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
851 *	multicast frames when there are power saving stations so that
852 *	the driver can fetch them with ieee80211_get_buffered_bc().
853 *
854 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
855 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
856 *
857 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
858 *	Hardware is not capable of receiving frames with short preamble on
859 *	the 2.4 GHz band.
860 *
861 * @IEEE80211_HW_SIGNAL_UNSPEC:
862 *	Hardware can provide signal values but we don't know its units. We
863 *	expect values between 0 and @max_signal.
864 *	If possible please provide dB or dBm instead.
865 *
866 * @IEEE80211_HW_SIGNAL_DBM:
867 *	Hardware gives signal values in dBm, decibel difference from
868 *	one milliwatt. This is the preferred method since it is standardized
869 *	between different devices. @max_signal does not need to be set.
870 *
871 * @IEEE80211_HW_NOISE_DBM:
872 *	Hardware can provide noise (radio interference) values in units dBm,
873 *      decibel difference from one milliwatt.
874 *
875 * @IEEE80211_HW_SPECTRUM_MGMT:
876 * 	Hardware supports spectrum management defined in 802.11h
877 * 	Measurement, Channel Switch, Quieting, TPC
878 *
879 * @IEEE80211_HW_AMPDU_AGGREGATION:
880 *	Hardware supports 11n A-MPDU aggregation.
881 *
882 * @IEEE80211_HW_SUPPORTS_PS:
883 *	Hardware has power save support (i.e. can go to sleep).
884 *
885 * @IEEE80211_HW_PS_NULLFUNC_STACK:
886 *	Hardware requires nullfunc frame handling in stack, implies
887 *	stack support for dynamic PS.
888 *
889 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
890 *	Hardware has support for dynamic PS.
891 *
892 * @IEEE80211_HW_MFP_CAPABLE:
893 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
894 *
895 * @IEEE80211_HW_BEACON_FILTER:
896 *	Hardware supports dropping of irrelevant beacon frames to
897 *	avoid waking up cpu.
898 */
899enum ieee80211_hw_flags {
900	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
901	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
902	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
903	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
904	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
905	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
906	IEEE80211_HW_NOISE_DBM				= 1<<7,
907	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
908	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
909	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
910	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
911	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
912	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
913	IEEE80211_HW_BEACON_FILTER			= 1<<14,
914};
915
916/**
917 * struct ieee80211_hw - hardware information and state
918 *
919 * This structure contains the configuration and hardware
920 * information for an 802.11 PHY.
921 *
922 * @wiphy: This points to the &struct wiphy allocated for this
923 *	802.11 PHY. You must fill in the @perm_addr and @dev
924 *	members of this structure using SET_IEEE80211_DEV()
925 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
926 *	bands (with channels, bitrates) are registered here.
927 *
928 * @conf: &struct ieee80211_conf, device configuration, don't use.
929 *
930 * @workqueue: single threaded workqueue available for driver use,
931 *	allocated by mac80211 on registration and flushed when an
932 *	interface is removed.
933 *	NOTICE: All work performed on this workqueue must not
934 *	acquire the RTNL lock.
935 *
936 * @priv: pointer to private area that was allocated for driver use
937 *	along with this structure.
938 *
939 * @flags: hardware flags, see &enum ieee80211_hw_flags.
940 *
941 * @extra_tx_headroom: headroom to reserve in each transmit skb
942 *	for use by the driver (e.g. for transmit headers.)
943 *
944 * @channel_change_time: time (in microseconds) it takes to change channels.
945 *
946 * @max_signal: Maximum value for signal (rssi) in RX information, used
947 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
948 *
949 * @max_listen_interval: max listen interval in units of beacon interval
950 *     that HW supports
951 *
952 * @queues: number of available hardware transmit queues for
953 *	data packets. WMM/QoS requires at least four, these
954 *	queues need to have configurable access parameters.
955 *
956 * @rate_control_algorithm: rate control algorithm for this hardware.
957 *	If unset (NULL), the default algorithm will be used. Must be
958 *	set before calling ieee80211_register_hw().
959 *
960 * @vif_data_size: size (in bytes) of the drv_priv data area
961 *	within &struct ieee80211_vif.
962 * @sta_data_size: size (in bytes) of the drv_priv data area
963 *	within &struct ieee80211_sta.
964 *
965 * @max_rates: maximum number of alternate rate retry stages
966 * @max_rate_tries: maximum number of tries for each stage
967 */
968struct ieee80211_hw {
969	struct ieee80211_conf conf;
970	struct wiphy *wiphy;
971	struct workqueue_struct *workqueue;
972	const char *rate_control_algorithm;
973	void *priv;
974	u32 flags;
975	unsigned int extra_tx_headroom;
976	int channel_change_time;
977	int vif_data_size;
978	int sta_data_size;
979	u16 queues;
980	u16 max_listen_interval;
981	s8 max_signal;
982	u8 max_rates;
983	u8 max_rate_tries;
984};
985
986/**
987 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
988 *
989 * @wiphy: the &struct wiphy which we want to query
990 *
991 * mac80211 drivers can use this to get to their respective
992 * &struct ieee80211_hw. Drivers wishing to get to their own private
993 * structure can then access it via hw->priv. Note that mac802111 drivers should
994 * not use wiphy_priv() to try to get their private driver structure as this
995 * is already used internally by mac80211.
996 */
997struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
998
999/**
1000 * SET_IEEE80211_DEV - set device for 802.11 hardware
1001 *
1002 * @hw: the &struct ieee80211_hw to set the device for
1003 * @dev: the &struct device of this 802.11 device
1004 */
1005static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1006{
1007	set_wiphy_dev(hw->wiphy, dev);
1008}
1009
1010/**
1011 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1012 *
1013 * @hw: the &struct ieee80211_hw to set the MAC address for
1014 * @addr: the address to set
1015 */
1016static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1017{
1018	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1019}
1020
1021static inline struct ieee80211_rate *
1022ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1023		      const struct ieee80211_tx_info *c)
1024{
1025	if (WARN_ON(c->control.rates[0].idx < 0))
1026		return NULL;
1027	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1028}
1029
1030static inline struct ieee80211_rate *
1031ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1032			   const struct ieee80211_tx_info *c)
1033{
1034	if (c->control.rts_cts_rate_idx < 0)
1035		return NULL;
1036	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1037}
1038
1039static inline struct ieee80211_rate *
1040ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1041			     const struct ieee80211_tx_info *c, int idx)
1042{
1043	if (c->control.rates[idx + 1].idx < 0)
1044		return NULL;
1045	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1046}
1047
1048/**
1049 * DOC: Hardware crypto acceleration
1050 *
1051 * mac80211 is capable of taking advantage of many hardware
1052 * acceleration designs for encryption and decryption operations.
1053 *
1054 * The set_key() callback in the &struct ieee80211_ops for a given
1055 * device is called to enable hardware acceleration of encryption and
1056 * decryption. The callback takes a @sta parameter that will be NULL
1057 * for default keys or keys used for transmission only, or point to
1058 * the station information for the peer for individual keys.
1059 * Multiple transmission keys with the same key index may be used when
1060 * VLANs are configured for an access point.
1061 *
1062 * When transmitting, the TX control data will use the @hw_key_idx
1063 * selected by the driver by modifying the &struct ieee80211_key_conf
1064 * pointed to by the @key parameter to the set_key() function.
1065 *
1066 * The set_key() call for the %SET_KEY command should return 0 if
1067 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1068 * added; if you return 0 then hw_key_idx must be assigned to the
1069 * hardware key index, you are free to use the full u8 range.
1070 *
1071 * When the cmd is %DISABLE_KEY then it must succeed.
1072 *
1073 * Note that it is permissible to not decrypt a frame even if a key
1074 * for it has been uploaded to hardware, the stack will not make any
1075 * decision based on whether a key has been uploaded or not but rather
1076 * based on the receive flags.
1077 *
1078 * The &struct ieee80211_key_conf structure pointed to by the @key
1079 * parameter is guaranteed to be valid until another call to set_key()
1080 * removes it, but it can only be used as a cookie to differentiate
1081 * keys.
1082 *
1083 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1084 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1085 * handler.
1086 * The update_tkip_key() call updates the driver with the new phase 1 key.
1087 * This happens everytime the iv16 wraps around (every 65536 packets). The
1088 * set_key() call will happen only once for each key (unless the AP did
1089 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1090 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1091 * handler is software decryption with wrap around of iv16.
1092 */
1093
1094/**
1095 * DOC: Powersave support
1096 *
1097 * mac80211 has support for various powersave implementations.
1098 *
1099 * First, it can support hardware that handles all powersaving by
1100 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1101 * hardware flag. In that case, it will be told about the desired
1102 * powersave mode depending on the association status, and the driver
1103 * must take care of sending nullfunc frames when necessary, i.e. when
1104 * entering and leaving powersave mode. The driver is required to look at
1105 * the AID in beacons and signal to the AP that it woke up when it finds
1106 * traffic directed to it. This mode supports dynamic PS by simply
1107 * enabling/disabling PS.
1108 *
1109 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1110 * flag to indicate that it can support dynamic PS mode itself (see below).
1111 *
1112 * Other hardware designs cannot send nullfunc frames by themselves and also
1113 * need software support for parsing the TIM bitmap. This is also supported
1114 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1115 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1116 * required to pass up beacons. The hardware is still required to handle
1117 * waking up for multicast traffic; if it cannot the driver must handle that
1118 * as best as it can, mac80211 is too slow.
1119 *
1120 * Dynamic powersave mode is an extension to normal powersave mode in which
1121 * the hardware stays awake for a user-specified period of time after sending
1122 * a frame so that reply frames need not be buffered and therefore delayed
1123 * to the next wakeup. This can either be supported by hardware, in which case
1124 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1125 * value, or by the stack if all nullfunc handling is in the stack.
1126 */
1127
1128/**
1129 * DOC: Beacon filter support
1130 *
1131 * Some hardware have beacon filter support to reduce host cpu wakeups
1132 * which will reduce system power consumption. It usuallly works so that
1133 * the firmware creates a checksum of the beacon but omits all constantly
1134 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1135 * beacon is forwarded to the host, otherwise it will be just dropped. That
1136 * way the host will only receive beacons where some relevant information
1137 * (for example ERP protection or WMM settings) have changed.
1138 *
1139 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1140 * hardware capability. The driver needs to enable beacon filter support
1141 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1142 * power save is enabled, the stack will not check for beacon loss and the
1143 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1144 *
1145 * The time (or number of beacons missed) until the firmware notifies the
1146 * driver of a beacon loss event (which in turn causes the driver to call
1147 * ieee80211_beacon_loss()) should be configurable and will be controlled
1148 * by mac80211 and the roaming algorithm in the future.
1149 *
1150 * Since there may be constantly changing information elements that nothing
1151 * in the software stack cares about, we will, in the future, have mac80211
1152 * tell the driver which information elements are interesting in the sense
1153 * that we want to see changes in them. This will include
1154 *  - a list of information element IDs
1155 *  - a list of OUIs for the vendor information element
1156 *
1157 * Ideally, the hardware would filter out any beacons without changes in the
1158 * requested elements, but if it cannot support that it may, at the expense
1159 * of some efficiency, filter out only a subset. For example, if the device
1160 * doesn't support checking for OUIs it should pass up all changes in all
1161 * vendor information elements.
1162 *
1163 * Note that change, for the sake of simplification, also includes information
1164 * elements appearing or disappearing from the beacon.
1165 *
1166 * Some hardware supports an "ignore list" instead, just make sure nothing
1167 * that was requested is on the ignore list, and include commonly changing
1168 * information element IDs in the ignore list, for example 11 (BSS load) and
1169 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1170 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1171 * it could also include some currently unused IDs.
1172 *
1173 *
1174 * In addition to these capabilities, hardware should support notifying the
1175 * host of changes in the beacon RSSI. This is relevant to implement roaming
1176 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1177 * the received data packets). This can consist in notifying the host when
1178 * the RSSI changes significantly or when it drops below or rises above
1179 * configurable thresholds. In the future these thresholds will also be
1180 * configured by mac80211 (which gets them from userspace) to implement
1181 * them as the roaming algorithm requires.
1182 *
1183 * If the hardware cannot implement this, the driver should ask it to
1184 * periodically pass beacon frames to the host so that software can do the
1185 * signal strength threshold checking.
1186 */
1187
1188/**
1189 * DOC: Frame filtering
1190 *
1191 * mac80211 requires to see many management frames for proper
1192 * operation, and users may want to see many more frames when
1193 * in monitor mode. However, for best CPU usage and power consumption,
1194 * having as few frames as possible percolate through the stack is
1195 * desirable. Hence, the hardware should filter as much as possible.
1196 *
1197 * To achieve this, mac80211 uses filter flags (see below) to tell
1198 * the driver's configure_filter() function which frames should be
1199 * passed to mac80211 and which should be filtered out.
1200 *
1201 * The configure_filter() callback is invoked with the parameters
1202 * @mc_count and @mc_list for the combined multicast address list
1203 * of all virtual interfaces, @changed_flags telling which flags
1204 * were changed and @total_flags with the new flag states.
1205 *
1206 * If your device has no multicast address filters your driver will
1207 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1208 * parameter to see whether multicast frames should be accepted
1209 * or dropped.
1210 *
1211 * All unsupported flags in @total_flags must be cleared.
1212 * Hardware does not support a flag if it is incapable of _passing_
1213 * the frame to the stack. Otherwise the driver must ignore
1214 * the flag, but not clear it.
1215 * You must _only_ clear the flag (announce no support for the
1216 * flag to mac80211) if you are not able to pass the packet type
1217 * to the stack (so the hardware always filters it).
1218 * So for example, you should clear @FIF_CONTROL, if your hardware
1219 * always filters control frames. If your hardware always passes
1220 * control frames to the kernel and is incapable of filtering them,
1221 * you do _not_ clear the @FIF_CONTROL flag.
1222 * This rule applies to all other FIF flags as well.
1223 */
1224
1225/**
1226 * enum ieee80211_filter_flags - hardware filter flags
1227 *
1228 * These flags determine what the filter in hardware should be
1229 * programmed to let through and what should not be passed to the
1230 * stack. It is always safe to pass more frames than requested,
1231 * but this has negative impact on power consumption.
1232 *
1233 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1234 *	think of the BSS as your network segment and then this corresponds
1235 *	to the regular ethernet device promiscuous mode.
1236 *
1237 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1238 *	by the user or if the hardware is not capable of filtering by
1239 *	multicast address.
1240 *
1241 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1242 *	%RX_FLAG_FAILED_FCS_CRC for them)
1243 *
1244 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1245 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1246 *
1247 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1248 *	to the hardware that it should not filter beacons or probe responses
1249 *	by BSSID. Filtering them can greatly reduce the amount of processing
1250 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1251 *	honour this flag if possible.
1252 *
1253 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1254 *	only those addressed to this station
1255 *
1256 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1257 */
1258enum ieee80211_filter_flags {
1259	FIF_PROMISC_IN_BSS	= 1<<0,
1260	FIF_ALLMULTI		= 1<<1,
1261	FIF_FCSFAIL		= 1<<2,
1262	FIF_PLCPFAIL		= 1<<3,
1263	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1264	FIF_CONTROL		= 1<<5,
1265	FIF_OTHER_BSS		= 1<<6,
1266};
1267
1268/**
1269 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1270 *
1271 * These flags are used with the ampdu_action() callback in
1272 * &struct ieee80211_ops to indicate which action is needed.
1273 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1274 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1275 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1276 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1277 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1278 */
1279enum ieee80211_ampdu_mlme_action {
1280	IEEE80211_AMPDU_RX_START,
1281	IEEE80211_AMPDU_RX_STOP,
1282	IEEE80211_AMPDU_TX_START,
1283	IEEE80211_AMPDU_TX_STOP,
1284	IEEE80211_AMPDU_TX_OPERATIONAL,
1285};
1286
1287/**
1288 * struct ieee80211_ops - callbacks from mac80211 to the driver
1289 *
1290 * This structure contains various callbacks that the driver may
1291 * handle or, in some cases, must handle, for example to configure
1292 * the hardware to a new channel or to transmit a frame.
1293 *
1294 * @tx: Handler that 802.11 module calls for each transmitted frame.
1295 *	skb contains the buffer starting from the IEEE 802.11 header.
1296 *	The low-level driver should send the frame out based on
1297 *	configuration in the TX control data. This handler should,
1298 *	preferably, never fail and stop queues appropriately, more
1299 *	importantly, however, it must never fail for A-MPDU-queues.
1300 *	This function should return NETDEV_TX_OK except in very
1301 *	limited cases.
1302 *	Must be implemented and atomic.
1303 *
1304 * @start: Called before the first netdevice attached to the hardware
1305 *	is enabled. This should turn on the hardware and must turn on
1306 *	frame reception (for possibly enabled monitor interfaces.)
1307 *	Returns negative error codes, these may be seen in userspace,
1308 *	or zero.
1309 *	When the device is started it should not have a MAC address
1310 *	to avoid acknowledging frames before a non-monitor device
1311 *	is added.
1312 *	Must be implemented.
1313 *
1314 * @stop: Called after last netdevice attached to the hardware
1315 *	is disabled. This should turn off the hardware (at least
1316 *	it must turn off frame reception.)
1317 *	May be called right after add_interface if that rejects
1318 *	an interface.
1319 *	Must be implemented.
1320 *
1321 * @add_interface: Called when a netdevice attached to the hardware is
1322 *	enabled. Because it is not called for monitor mode devices, @start
1323 *	and @stop must be implemented.
1324 *	The driver should perform any initialization it needs before
1325 *	the device can be enabled. The initial configuration for the
1326 *	interface is given in the conf parameter.
1327 *	The callback may refuse to add an interface by returning a
1328 *	negative error code (which will be seen in userspace.)
1329 *	Must be implemented.
1330 *
1331 * @remove_interface: Notifies a driver that an interface is going down.
1332 *	The @stop callback is called after this if it is the last interface
1333 *	and no monitor interfaces are present.
1334 *	When all interfaces are removed, the MAC address in the hardware
1335 *	must be cleared so the device no longer acknowledges packets,
1336 *	the mac_addr member of the conf structure is, however, set to the
1337 *	MAC address of the device going away.
1338 *	Hence, this callback must be implemented.
1339 *
1340 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1341 *	function to change hardware configuration, e.g., channel.
1342 *	This function should never fail but returns a negative error code
1343 *	if it does.
1344 *
1345 * @bss_info_changed: Handler for configuration requests related to BSS
1346 *	parameters that may vary during BSS's lifespan, and may affect low
1347 *	level driver (e.g. assoc/disassoc status, erp parameters).
1348 *	This function should not be used if no BSS has been set, unless
1349 *	for association indication. The @changed parameter indicates which
1350 *	of the bss parameters has changed when a call is made.
1351 *
1352 * @configure_filter: Configure the device's RX filter.
1353 *	See the section "Frame filtering" for more information.
1354 *	This callback must be implemented and atomic.
1355 *
1356 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1357 * 	must be set or cleared for a given STA. Must be atomic.
1358 *
1359 * @set_key: See the section "Hardware crypto acceleration"
1360 *	This callback can sleep, and is only called between add_interface
1361 *	and remove_interface calls, i.e. while the given virtual interface
1362 *	is enabled.
1363 *	Returns a negative error code if the key can't be added.
1364 *
1365 * @update_tkip_key: See the section "Hardware crypto acceleration"
1366 * 	This callback will be called in the context of Rx. Called for drivers
1367 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1368 *
1369 * @hw_scan: Ask the hardware to service the scan request, no need to start
1370 *	the scan state machine in stack. The scan must honour the channel
1371 *	configuration done by the regulatory agent in the wiphy's
1372 *	registered bands. The hardware (or the driver) needs to make sure
1373 *	that power save is disabled.
1374 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1375 *	entire IEs after the SSID, so that drivers need not look at these
1376 *	at all but just send them after the SSID -- mac80211 includes the
1377 *	(extended) supported rates and HT information (where applicable).
1378 *	When the scan finishes, ieee80211_scan_completed() must be called;
1379 *	note that it also must be called when the scan cannot finish due to
1380 *	any error unless this callback returned a negative error code.
1381 *
1382 * @sw_scan_start: Notifier function that is called just before a software scan
1383 *	is started. Can be NULL, if the driver doesn't need this notification.
1384 *
1385 * @sw_scan_complete: Notifier function that is called just after a software scan
1386 *	finished. Can be NULL, if the driver doesn't need this notification.
1387 *
1388 * @get_stats: Return low-level statistics.
1389 * 	Returns zero if statistics are available.
1390 *
1391 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1392 *	callback should be provided to read the TKIP transmit IVs (both IV32
1393 *	and IV16) for the given key from hardware.
1394 *
1395 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1396 *
1397 * @sta_notify: Notifies low level driver about addition, removal or power
1398 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1399 *	Must be atomic.
1400 *
1401 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1402 *	bursting) for a hardware TX queue.
1403 *	Returns a negative error code on failure.
1404 *
1405 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1406 *	to get number of currently queued packets (queue length), maximum queue
1407 *	size (limit), and total number of packets sent using each TX queue
1408 *	(count). The 'stats' pointer points to an array that has hw->queues
1409 *	items.
1410 *
1411 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1412 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1413 *	required function.
1414 *
1415 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1416 *      Currently, this is only used for IBSS mode debugging. Is not a
1417 *	required function.
1418 *
1419 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1420 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1421 *	function is optional if the firmware/hardware takes full care of
1422 *	TSF synchronization.
1423 *
1424 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1425 *	This is needed only for IBSS mode and the result of this function is
1426 *	used to determine whether to reply to Probe Requests.
1427 *	Returns non-zero if this device sent the last beacon.
1428 *
1429 * @ampdu_action: Perform a certain A-MPDU action
1430 * 	The RA/TID combination determines the destination and TID we want
1431 * 	the ampdu action to be performed for. The action is defined through
1432 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1433 * 	is the first frame we expect to perform the action on. Notice
1434 * 	that TX/RX_STOP can pass NULL for this parameter.
1435 *	Returns a negative error code on failure.
1436 */
1437struct ieee80211_ops {
1438	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1439	int (*start)(struct ieee80211_hw *hw);
1440	void (*stop)(struct ieee80211_hw *hw);
1441	int (*add_interface)(struct ieee80211_hw *hw,
1442			     struct ieee80211_if_init_conf *conf);
1443	void (*remove_interface)(struct ieee80211_hw *hw,
1444				 struct ieee80211_if_init_conf *conf);
1445	int (*config)(struct ieee80211_hw *hw, u32 changed);
1446	void (*bss_info_changed)(struct ieee80211_hw *hw,
1447				 struct ieee80211_vif *vif,
1448				 struct ieee80211_bss_conf *info,
1449				 u32 changed);
1450	void (*configure_filter)(struct ieee80211_hw *hw,
1451				 unsigned int changed_flags,
1452				 unsigned int *total_flags,
1453				 int mc_count, struct dev_addr_list *mc_list);
1454	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1455		       bool set);
1456	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1457		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1458		       struct ieee80211_key_conf *key);
1459	void (*update_tkip_key)(struct ieee80211_hw *hw,
1460			struct ieee80211_key_conf *conf, const u8 *address,
1461			u32 iv32, u16 *phase1key);
1462	int (*hw_scan)(struct ieee80211_hw *hw,
1463		       struct cfg80211_scan_request *req);
1464	void (*sw_scan_start)(struct ieee80211_hw *hw);
1465	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1466	int (*get_stats)(struct ieee80211_hw *hw,
1467			 struct ieee80211_low_level_stats *stats);
1468	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1469			     u32 *iv32, u16 *iv16);
1470	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1471	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1472			enum sta_notify_cmd, struct ieee80211_sta *sta);
1473	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1474		       const struct ieee80211_tx_queue_params *params);
1475	int (*get_tx_stats)(struct ieee80211_hw *hw,
1476			    struct ieee80211_tx_queue_stats *stats);
1477	u64 (*get_tsf)(struct ieee80211_hw *hw);
1478	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1479	void (*reset_tsf)(struct ieee80211_hw *hw);
1480	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1481	int (*ampdu_action)(struct ieee80211_hw *hw,
1482			    enum ieee80211_ampdu_mlme_action action,
1483			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1484};
1485
1486/**
1487 * ieee80211_alloc_hw -  Allocate a new hardware device
1488 *
1489 * This must be called once for each hardware device. The returned pointer
1490 * must be used to refer to this device when calling other functions.
1491 * mac80211 allocates a private data area for the driver pointed to by
1492 * @priv in &struct ieee80211_hw, the size of this area is given as
1493 * @priv_data_len.
1494 *
1495 * @priv_data_len: length of private data
1496 * @ops: callbacks for this device
1497 */
1498struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1499					const struct ieee80211_ops *ops);
1500
1501/**
1502 * ieee80211_register_hw - Register hardware device
1503 *
1504 * You must call this function before any other functions in
1505 * mac80211. Note that before a hardware can be registered, you
1506 * need to fill the contained wiphy's information.
1507 *
1508 * @hw: the device to register as returned by ieee80211_alloc_hw()
1509 */
1510int ieee80211_register_hw(struct ieee80211_hw *hw);
1511
1512#ifdef CONFIG_MAC80211_LEDS
1513extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1514extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1515extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1516extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1517#endif
1518/**
1519 * ieee80211_get_tx_led_name - get name of TX LED
1520 *
1521 * mac80211 creates a transmit LED trigger for each wireless hardware
1522 * that can be used to drive LEDs if your driver registers a LED device.
1523 * This function returns the name (or %NULL if not configured for LEDs)
1524 * of the trigger so you can automatically link the LED device.
1525 *
1526 * @hw: the hardware to get the LED trigger name for
1527 */
1528static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1529{
1530#ifdef CONFIG_MAC80211_LEDS
1531	return __ieee80211_get_tx_led_name(hw);
1532#else
1533	return NULL;
1534#endif
1535}
1536
1537/**
1538 * ieee80211_get_rx_led_name - get name of RX LED
1539 *
1540 * mac80211 creates a receive LED trigger for each wireless hardware
1541 * that can be used to drive LEDs if your driver registers a LED device.
1542 * This function returns the name (or %NULL if not configured for LEDs)
1543 * of the trigger so you can automatically link the LED device.
1544 *
1545 * @hw: the hardware to get the LED trigger name for
1546 */
1547static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1548{
1549#ifdef CONFIG_MAC80211_LEDS
1550	return __ieee80211_get_rx_led_name(hw);
1551#else
1552	return NULL;
1553#endif
1554}
1555
1556/**
1557 * ieee80211_get_assoc_led_name - get name of association LED
1558 *
1559 * mac80211 creates a association LED trigger for each wireless hardware
1560 * that can be used to drive LEDs if your driver registers a LED device.
1561 * This function returns the name (or %NULL if not configured for LEDs)
1562 * of the trigger so you can automatically link the LED device.
1563 *
1564 * @hw: the hardware to get the LED trigger name for
1565 */
1566static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1567{
1568#ifdef CONFIG_MAC80211_LEDS
1569	return __ieee80211_get_assoc_led_name(hw);
1570#else
1571	return NULL;
1572#endif
1573}
1574
1575/**
1576 * ieee80211_get_radio_led_name - get name of radio LED
1577 *
1578 * mac80211 creates a radio change LED trigger for each wireless hardware
1579 * that can be used to drive LEDs if your driver registers a LED device.
1580 * This function returns the name (or %NULL if not configured for LEDs)
1581 * of the trigger so you can automatically link the LED device.
1582 *
1583 * @hw: the hardware to get the LED trigger name for
1584 */
1585static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1586{
1587#ifdef CONFIG_MAC80211_LEDS
1588	return __ieee80211_get_radio_led_name(hw);
1589#else
1590	return NULL;
1591#endif
1592}
1593
1594/**
1595 * ieee80211_unregister_hw - Unregister a hardware device
1596 *
1597 * This function instructs mac80211 to free allocated resources
1598 * and unregister netdevices from the networking subsystem.
1599 *
1600 * @hw: the hardware to unregister
1601 */
1602void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1603
1604/**
1605 * ieee80211_free_hw - free hardware descriptor
1606 *
1607 * This function frees everything that was allocated, including the
1608 * private data for the driver. You must call ieee80211_unregister_hw()
1609 * before calling this function.
1610 *
1611 * @hw: the hardware to free
1612 */
1613void ieee80211_free_hw(struct ieee80211_hw *hw);
1614
1615/**
1616 * ieee80211_restart_hw - restart hardware completely
1617 *
1618 * Call this function when the hardware was restarted for some reason
1619 * (hardware error, ...) and the driver is unable to restore its state
1620 * by itself. mac80211 assumes that at this point the driver/hardware
1621 * is completely uninitialised and stopped, it starts the process by
1622 * calling the ->start() operation. The driver will need to reset all
1623 * internal state that it has prior to calling this function.
1624 *
1625 * @hw: the hardware to restart
1626 */
1627void ieee80211_restart_hw(struct ieee80211_hw *hw);
1628
1629/* trick to avoid symbol clashes with the ieee80211 subsystem */
1630void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1631		    struct ieee80211_rx_status *status);
1632
1633/**
1634 * ieee80211_rx - receive frame
1635 *
1636 * Use this function to hand received frames to mac80211. The receive
1637 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1638 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1639 *
1640 * This function may not be called in IRQ context. Calls to this function
1641 * for a single hardware must be synchronized against each other. Calls
1642 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1643 * single hardware.
1644 *
1645 * @hw: the hardware this frame came in on
1646 * @skb: the buffer to receive, owned by mac80211 after this call
1647 * @status: status of this frame; the status pointer need not be valid
1648 *	after this function returns
1649 */
1650static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1651				struct ieee80211_rx_status *status)
1652{
1653	__ieee80211_rx(hw, skb, status);
1654}
1655
1656/**
1657 * ieee80211_rx_irqsafe - receive frame
1658 *
1659 * Like ieee80211_rx() but can be called in IRQ context
1660 * (internally defers to a tasklet.)
1661 *
1662 * Calls to this function and ieee80211_rx() may not be mixed for a
1663 * single hardware.
1664 *
1665 * @hw: the hardware this frame came in on
1666 * @skb: the buffer to receive, owned by mac80211 after this call
1667 * @status: status of this frame; the status pointer need not be valid
1668 *	after this function returns and is not freed by mac80211,
1669 *	it is recommended that it points to a stack area
1670 */
1671void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1672			  struct sk_buff *skb,
1673			  struct ieee80211_rx_status *status);
1674
1675/**
1676 * ieee80211_tx_status - transmit status callback
1677 *
1678 * Call this function for all transmitted frames after they have been
1679 * transmitted. It is permissible to not call this function for
1680 * multicast frames but this can affect statistics.
1681 *
1682 * This function may not be called in IRQ context. Calls to this function
1683 * for a single hardware must be synchronized against each other. Calls
1684 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1685 * for a single hardware.
1686 *
1687 * @hw: the hardware the frame was transmitted by
1688 * @skb: the frame that was transmitted, owned by mac80211 after this call
1689 */
1690void ieee80211_tx_status(struct ieee80211_hw *hw,
1691			 struct sk_buff *skb);
1692
1693/**
1694 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1695 *
1696 * Like ieee80211_tx_status() but can be called in IRQ context
1697 * (internally defers to a tasklet.)
1698 *
1699 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1700 * single hardware.
1701 *
1702 * @hw: the hardware the frame was transmitted by
1703 * @skb: the frame that was transmitted, owned by mac80211 after this call
1704 */
1705void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1706				 struct sk_buff *skb);
1707
1708/**
1709 * ieee80211_beacon_get - beacon generation function
1710 * @hw: pointer obtained from ieee80211_alloc_hw().
1711 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1712 *
1713 * If the beacon frames are generated by the host system (i.e., not in
1714 * hardware/firmware), the low-level driver uses this function to receive
1715 * the next beacon frame from the 802.11 code. The low-level is responsible
1716 * for calling this function before beacon data is needed (e.g., based on
1717 * hardware interrupt). Returned skb is used only once and low-level driver
1718 * is responsible for freeing it.
1719 */
1720struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1721				     struct ieee80211_vif *vif);
1722
1723/**
1724 * ieee80211_rts_get - RTS frame generation function
1725 * @hw: pointer obtained from ieee80211_alloc_hw().
1726 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1727 * @frame: pointer to the frame that is going to be protected by the RTS.
1728 * @frame_len: the frame length (in octets).
1729 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1730 * @rts: The buffer where to store the RTS frame.
1731 *
1732 * If the RTS frames are generated by the host system (i.e., not in
1733 * hardware/firmware), the low-level driver uses this function to receive
1734 * the next RTS frame from the 802.11 code. The low-level is responsible
1735 * for calling this function before and RTS frame is needed.
1736 */
1737void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1738		       const void *frame, size_t frame_len,
1739		       const struct ieee80211_tx_info *frame_txctl,
1740		       struct ieee80211_rts *rts);
1741
1742/**
1743 * ieee80211_rts_duration - Get the duration field for an RTS frame
1744 * @hw: pointer obtained from ieee80211_alloc_hw().
1745 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1746 * @frame_len: the length of the frame that is going to be protected by the RTS.
1747 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1748 *
1749 * If the RTS is generated in firmware, but the host system must provide
1750 * the duration field, the low-level driver uses this function to receive
1751 * the duration field value in little-endian byteorder.
1752 */
1753__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1754			      struct ieee80211_vif *vif, size_t frame_len,
1755			      const struct ieee80211_tx_info *frame_txctl);
1756
1757/**
1758 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1759 * @hw: pointer obtained from ieee80211_alloc_hw().
1760 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1761 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1762 * @frame_len: the frame length (in octets).
1763 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1764 * @cts: The buffer where to store the CTS-to-self frame.
1765 *
1766 * If the CTS-to-self frames are generated by the host system (i.e., not in
1767 * hardware/firmware), the low-level driver uses this function to receive
1768 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1769 * for calling this function before and CTS-to-self frame is needed.
1770 */
1771void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1772			     struct ieee80211_vif *vif,
1773			     const void *frame, size_t frame_len,
1774			     const struct ieee80211_tx_info *frame_txctl,
1775			     struct ieee80211_cts *cts);
1776
1777/**
1778 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1779 * @hw: pointer obtained from ieee80211_alloc_hw().
1780 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1781 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1782 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1783 *
1784 * If the CTS-to-self is generated in firmware, but the host system must provide
1785 * the duration field, the low-level driver uses this function to receive
1786 * the duration field value in little-endian byteorder.
1787 */
1788__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1789				    struct ieee80211_vif *vif,
1790				    size_t frame_len,
1791				    const struct ieee80211_tx_info *frame_txctl);
1792
1793/**
1794 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1795 * @hw: pointer obtained from ieee80211_alloc_hw().
1796 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1797 * @frame_len: the length of the frame.
1798 * @rate: the rate at which the frame is going to be transmitted.
1799 *
1800 * Calculate the duration field of some generic frame, given its
1801 * length and transmission rate (in 100kbps).
1802 */
1803__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1804					struct ieee80211_vif *vif,
1805					size_t frame_len,
1806					struct ieee80211_rate *rate);
1807
1808/**
1809 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1810 * @hw: pointer as obtained from ieee80211_alloc_hw().
1811 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1812 *
1813 * Function for accessing buffered broadcast and multicast frames. If
1814 * hardware/firmware does not implement buffering of broadcast/multicast
1815 * frames when power saving is used, 802.11 code buffers them in the host
1816 * memory. The low-level driver uses this function to fetch next buffered
1817 * frame. In most cases, this is used when generating beacon frame. This
1818 * function returns a pointer to the next buffered skb or NULL if no more
1819 * buffered frames are available.
1820 *
1821 * Note: buffered frames are returned only after DTIM beacon frame was
1822 * generated with ieee80211_beacon_get() and the low-level driver must thus
1823 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1824 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1825 * does not need to check for DTIM beacons separately and should be able to
1826 * use common code for all beacons.
1827 */
1828struct sk_buff *
1829ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1830
1831/**
1832 * ieee80211_get_hdrlen_from_skb - get header length from data
1833 *
1834 * Given an skb with a raw 802.11 header at the data pointer this function
1835 * returns the 802.11 header length in bytes (not including encryption
1836 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1837 * header the function returns 0.
1838 *
1839 * @skb: the frame
1840 */
1841unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1842
1843/**
1844 * ieee80211_hdrlen - get header length in bytes from frame control
1845 * @fc: frame control field in little-endian format
1846 */
1847unsigned int ieee80211_hdrlen(__le16 fc);
1848
1849/**
1850 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1851 *
1852 * This function computes a TKIP rc4 key for an skb. It computes
1853 * a phase 1 key if needed (iv16 wraps around). This function is to
1854 * be used by drivers which can do HW encryption but need to compute
1855 * to phase 1/2 key in SW.
1856 *
1857 * @keyconf: the parameter passed with the set key
1858 * @skb: the skb for which the key is needed
1859 * @type: TBD
1860 * @key: a buffer to which the key will be written
1861 */
1862void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1863				struct sk_buff *skb,
1864				enum ieee80211_tkip_key_type type, u8 *key);
1865/**
1866 * ieee80211_wake_queue - wake specific queue
1867 * @hw: pointer as obtained from ieee80211_alloc_hw().
1868 * @queue: queue number (counted from zero).
1869 *
1870 * Drivers should use this function instead of netif_wake_queue.
1871 */
1872void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1873
1874/**
1875 * ieee80211_stop_queue - stop specific queue
1876 * @hw: pointer as obtained from ieee80211_alloc_hw().
1877 * @queue: queue number (counted from zero).
1878 *
1879 * Drivers should use this function instead of netif_stop_queue.
1880 */
1881void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1882
1883/**
1884 * ieee80211_queue_stopped - test status of the queue
1885 * @hw: pointer as obtained from ieee80211_alloc_hw().
1886 * @queue: queue number (counted from zero).
1887 *
1888 * Drivers should use this function instead of netif_stop_queue.
1889 */
1890
1891int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1892
1893/**
1894 * ieee80211_stop_queues - stop all queues
1895 * @hw: pointer as obtained from ieee80211_alloc_hw().
1896 *
1897 * Drivers should use this function instead of netif_stop_queue.
1898 */
1899void ieee80211_stop_queues(struct ieee80211_hw *hw);
1900
1901/**
1902 * ieee80211_wake_queues - wake all queues
1903 * @hw: pointer as obtained from ieee80211_alloc_hw().
1904 *
1905 * Drivers should use this function instead of netif_wake_queue.
1906 */
1907void ieee80211_wake_queues(struct ieee80211_hw *hw);
1908
1909/**
1910 * ieee80211_scan_completed - completed hardware scan
1911 *
1912 * When hardware scan offload is used (i.e. the hw_scan() callback is
1913 * assigned) this function needs to be called by the driver to notify
1914 * mac80211 that the scan finished.
1915 *
1916 * @hw: the hardware that finished the scan
1917 * @aborted: set to true if scan was aborted
1918 */
1919void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1920
1921/**
1922 * ieee80211_iterate_active_interfaces - iterate active interfaces
1923 *
1924 * This function iterates over the interfaces associated with a given
1925 * hardware that are currently active and calls the callback for them.
1926 * This function allows the iterator function to sleep, when the iterator
1927 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1928 * be used.
1929 *
1930 * @hw: the hardware struct of which the interfaces should be iterated over
1931 * @iterator: the iterator function to call
1932 * @data: first argument of the iterator function
1933 */
1934void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1935					 void (*iterator)(void *data, u8 *mac,
1936						struct ieee80211_vif *vif),
1937					 void *data);
1938
1939/**
1940 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1941 *
1942 * This function iterates over the interfaces associated with a given
1943 * hardware that are currently active and calls the callback for them.
1944 * This function requires the iterator callback function to be atomic,
1945 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1946 *
1947 * @hw: the hardware struct of which the interfaces should be iterated over
1948 * @iterator: the iterator function to call, cannot sleep
1949 * @data: first argument of the iterator function
1950 */
1951void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1952						void (*iterator)(void *data,
1953						    u8 *mac,
1954						    struct ieee80211_vif *vif),
1955						void *data);
1956
1957/**
1958 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1959 * @hw: pointer as obtained from ieee80211_alloc_hw().
1960 * @ra: receiver address of the BA session recipient
1961 * @tid: the TID to BA on.
1962 *
1963 * Return: success if addBA request was sent, failure otherwise
1964 *
1965 * Although mac80211/low level driver/user space application can estimate
1966 * the need to start aggregation on a certain RA/TID, the session level
1967 * will be managed by the mac80211.
1968 */
1969int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1970
1971/**
1972 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1973 * @hw: pointer as obtained from ieee80211_alloc_hw().
1974 * @ra: receiver address of the BA session recipient.
1975 * @tid: the TID to BA on.
1976 *
1977 * This function must be called by low level driver once it has
1978 * finished with preparations for the BA session.
1979 */
1980void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1981
1982/**
1983 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1984 * @hw: pointer as obtained from ieee80211_alloc_hw().
1985 * @ra: receiver address of the BA session recipient.
1986 * @tid: the TID to BA on.
1987 *
1988 * This function must be called by low level driver once it has
1989 * finished with preparations for the BA session.
1990 * This version of the function is IRQ-safe.
1991 */
1992void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1993				      u16 tid);
1994
1995/**
1996 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1997 * @hw: pointer as obtained from ieee80211_alloc_hw().
1998 * @ra: receiver address of the BA session recipient
1999 * @tid: the TID to stop BA.
2000 * @initiator: if indicates initiator DELBA frame will be sent.
2001 *
2002 * Return: error if no sta with matching da found, success otherwise
2003 *
2004 * Although mac80211/low level driver/user space application can estimate
2005 * the need to stop aggregation on a certain RA/TID, the session level
2006 * will be managed by the mac80211.
2007 */
2008int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2009				 u8 *ra, u16 tid,
2010				 enum ieee80211_back_parties initiator);
2011
2012/**
2013 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2014 * @hw: pointer as obtained from ieee80211_alloc_hw().
2015 * @ra: receiver address of the BA session recipient.
2016 * @tid: the desired TID to BA on.
2017 *
2018 * This function must be called by low level driver once it has
2019 * finished with preparations for the BA session tear down.
2020 */
2021void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2022
2023/**
2024 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2025 * @hw: pointer as obtained from ieee80211_alloc_hw().
2026 * @ra: receiver address of the BA session recipient.
2027 * @tid: the desired TID to BA on.
2028 *
2029 * This function must be called by low level driver once it has
2030 * finished with preparations for the BA session tear down.
2031 * This version of the function is IRQ-safe.
2032 */
2033void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2034				     u16 tid);
2035
2036/**
2037 * ieee80211_find_sta - find a station
2038 *
2039 * @hw: pointer as obtained from ieee80211_alloc_hw()
2040 * @addr: station's address
2041 *
2042 * This function must be called under RCU lock and the
2043 * resulting pointer is only valid under RCU lock as well.
2044 */
2045struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2046					 const u8 *addr);
2047
2048/**
2049 * ieee80211_beacon_loss - inform hardware does not receive beacons
2050 *
2051 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2052 *
2053 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2054 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2055 * hardware is not receiving beacons with this function.
2056 */
2057void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2058
2059/* Rate control API */
2060
2061/**
2062 * enum rate_control_changed - flags to indicate which parameter changed
2063 *
2064 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2065 *	changed, rate control algorithm can update its internal state if needed.
2066 */
2067enum rate_control_changed {
2068	IEEE80211_RC_HT_CHANGED = BIT(0)
2069};
2070
2071/**
2072 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2073 *
2074 * @hw: The hardware the algorithm is invoked for.
2075 * @sband: The band this frame is being transmitted on.
2076 * @bss_conf: the current BSS configuration
2077 * @reported_rate: The rate control algorithm can fill this in to indicate
2078 *	which rate should be reported to userspace as the current rate and
2079 *	used for rate calculations in the mesh network.
2080 * @rts: whether RTS will be used for this frame because it is longer than the
2081 *	RTS threshold
2082 * @short_preamble: whether mac80211 will request short-preamble transmission
2083 *	if the selected rate supports it
2084 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2085 * @skb: the skb that will be transmitted, the control information in it needs
2086 *	to be filled in
2087 */
2088struct ieee80211_tx_rate_control {
2089	struct ieee80211_hw *hw;
2090	struct ieee80211_supported_band *sband;
2091	struct ieee80211_bss_conf *bss_conf;
2092	struct sk_buff *skb;
2093	struct ieee80211_tx_rate reported_rate;
2094	bool rts, short_preamble;
2095	u8 max_rate_idx;
2096};
2097
2098struct rate_control_ops {
2099	struct module *module;
2100	const char *name;
2101	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2102	void (*free)(void *priv);
2103
2104	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2105	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2106			  struct ieee80211_sta *sta, void *priv_sta);
2107	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2108			    struct ieee80211_sta *sta,
2109			    void *priv_sta, u32 changed);
2110	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2111			 void *priv_sta);
2112
2113	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2114			  struct ieee80211_sta *sta, void *priv_sta,
2115			  struct sk_buff *skb);
2116	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2117			 struct ieee80211_tx_rate_control *txrc);
2118
2119	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2120				struct dentry *dir);
2121	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2122};
2123
2124static inline int rate_supported(struct ieee80211_sta *sta,
2125				 enum ieee80211_band band,
2126				 int index)
2127{
2128	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2129}
2130
2131static inline s8
2132rate_lowest_index(struct ieee80211_supported_band *sband,
2133		  struct ieee80211_sta *sta)
2134{
2135	int i;
2136
2137	for (i = 0; i < sband->n_bitrates; i++)
2138		if (rate_supported(sta, sband->band, i))
2139			return i;
2140
2141	/* warn when we cannot find a rate. */
2142	WARN_ON(1);
2143
2144	return 0;
2145}
2146
2147
2148int ieee80211_rate_control_register(struct rate_control_ops *ops);
2149void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2150
2151static inline bool
2152conf_is_ht20(struct ieee80211_conf *conf)
2153{
2154	return conf->channel_type == NL80211_CHAN_HT20;
2155}
2156
2157static inline bool
2158conf_is_ht40_minus(struct ieee80211_conf *conf)
2159{
2160	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2161}
2162
2163static inline bool
2164conf_is_ht40_plus(struct ieee80211_conf *conf)
2165{
2166	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2167}
2168
2169static inline bool
2170conf_is_ht40(struct ieee80211_conf *conf)
2171{
2172	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2173}
2174
2175static inline bool
2176conf_is_ht(struct ieee80211_conf *conf)
2177{
2178	return conf->channel_type != NL80211_CHAN_NO_HT;
2179}
2180
2181#endif /* MAC80211_H */
2182