mac80211.h revision ab5b5342fd0ba5b9a2f58a94c5d41dd074b7c48e
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * DOC: mac80211 workqueue
77 *
78 * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79 * The workqueue is a single threaded workqueue and can only be accessed by
80 * helpers for sanity checking. Drivers must ensure all work added onto the
81 * mac80211 workqueue should be cancelled on the driver stop() callback.
82 *
83 * mac80211 will flushed the workqueue upon interface removal and during
84 * suspend.
85 *
86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87 *
88 */
89
90/**
91 * enum ieee80211_max_queues - maximum number of queues
92 *
93 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94 */
95enum ieee80211_max_queues {
96	IEEE80211_MAX_QUEUES =		4,
97};
98
99/**
100 * struct ieee80211_tx_queue_params - transmit queue configuration
101 *
102 * The information provided in this structure is required for QoS
103 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104 *
105 * @aifs: arbitration interframe space [0..255]
106 * @cw_min: minimum contention window [a value of the form
107 *	2^n-1 in the range 1..32767]
108 * @cw_max: maximum contention window [like @cw_min]
109 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110 */
111struct ieee80211_tx_queue_params {
112	u16 txop;
113	u16 cw_min;
114	u16 cw_max;
115	u8 aifs;
116};
117
118/**
119 * struct ieee80211_tx_queue_stats - transmit queue statistics
120 *
121 * @len: number of packets in queue
122 * @limit: queue length limit
123 * @count: number of frames sent
124 */
125struct ieee80211_tx_queue_stats {
126	unsigned int len;
127	unsigned int limit;
128	unsigned int count;
129};
130
131struct ieee80211_low_level_stats {
132	unsigned int dot11ACKFailureCount;
133	unsigned int dot11RTSFailureCount;
134	unsigned int dot11FCSErrorCount;
135	unsigned int dot11RTSSuccessCount;
136};
137
138/**
139 * enum ieee80211_bss_change - BSS change notification flags
140 *
141 * These flags are used with the bss_info_changed() callback
142 * to indicate which BSS parameter changed.
143 *
144 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
145 *	also implies a change in the AID.
146 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
147 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
148 * @BSS_CHANGED_ERP_SLOT: slot timing changed
149 * @BSS_CHANGED_HT: 802.11n parameters changed
150 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
151 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
152 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
153 *	reason (IBSS and managed mode)
154 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
155 *	new beacon (beaconing modes)
156 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
157 *	enabled/disabled (beaconing modes)
158 */
159enum ieee80211_bss_change {
160	BSS_CHANGED_ASSOC		= 1<<0,
161	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
162	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
163	BSS_CHANGED_ERP_SLOT		= 1<<3,
164	BSS_CHANGED_HT                  = 1<<4,
165	BSS_CHANGED_BASIC_RATES		= 1<<5,
166	BSS_CHANGED_BEACON_INT		= 1<<6,
167	BSS_CHANGED_BSSID		= 1<<7,
168	BSS_CHANGED_BEACON		= 1<<8,
169	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
170};
171
172/**
173 * struct ieee80211_bss_conf - holds the BSS's changing parameters
174 *
175 * This structure keeps information about a BSS (and an association
176 * to that BSS) that can change during the lifetime of the BSS.
177 *
178 * @assoc: association status
179 * @aid: association ID number, valid only when @assoc is true
180 * @use_cts_prot: use CTS protection
181 * @use_short_preamble: use 802.11b short preamble;
182 *	if the hardware cannot handle this it must set the
183 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184 * @use_short_slot: use short slot time (only relevant for ERP);
185 *	if the hardware cannot handle this it must set the
186 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187 * @dtim_period: num of beacons before the next DTIM, for PSM
188 * @timestamp: beacon timestamp
189 * @beacon_int: beacon interval
190 * @assoc_capability: capabilities taken from assoc resp
191 * @basic_rates: bitmap of basic rates, each bit stands for an
192 *	index into the rate table configured by the driver in
193 *	the current band.
194 * @bssid: The BSSID for this BSS
195 * @enable_beacon: whether beaconing should be enabled or not
196 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
197 *	This field is only valid when the channel type is one of the HT types.
198 */
199struct ieee80211_bss_conf {
200	const u8 *bssid;
201	/* association related data */
202	bool assoc;
203	u16 aid;
204	/* erp related data */
205	bool use_cts_prot;
206	bool use_short_preamble;
207	bool use_short_slot;
208	bool enable_beacon;
209	u8 dtim_period;
210	u16 beacon_int;
211	u16 assoc_capability;
212	u64 timestamp;
213	u32 basic_rates;
214	u16 ht_operation_mode;
215};
216
217/**
218 * enum mac80211_tx_control_flags - flags to describe transmission information/status
219 *
220 * These flags are used with the @flags member of &ieee80211_tx_info.
221 *
222 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
223 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
224 *	number to this frame, taking care of not overwriting the fragment
225 *	number and increasing the sequence number only when the
226 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
227 *	assign sequence numbers to QoS-data frames but cannot do so correctly
228 *	for non-QoS-data and management frames because beacons need them from
229 *	that counter as well and mac80211 cannot guarantee proper sequencing.
230 *	If this flag is set, the driver should instruct the hardware to
231 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
232 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
233 *	beacons and always be clear for frames without a sequence number field.
234 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
235 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
236 *	station
237 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
238 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
239 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
240 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
241 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
242 *	because the destination STA was in powersave mode. Note that to
243 *	avoid race conditions, the filter must be set by the hardware or
244 *	firmware upon receiving a frame that indicates that the station
245 *	went to sleep (must be done on device to filter frames already on
246 *	the queue) and may only be unset after mac80211 gives the OK for
247 *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
248 *	since only then is it guaranteed that no more frames are in the
249 *	hardware queue.
250 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
251 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
252 * 	is for the whole aggregation.
253 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
254 * 	so consider using block ack request (BAR).
255 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
256 *	set by rate control algorithms to indicate probe rate, will
257 *	be cleared for fragmented frames (except on the last fragment)
258 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
259 *	set this flag in the driver; indicates that the rate control
260 *	algorithm was used and should be notified of TX status
261 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
262 *	used to indicate that a pending frame requires TX processing before
263 *	it can be sent out.
264 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
265 *	used to indicate that a frame was already retried due to PS
266 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
267 *	used to indicate frame should not be encrypted
268 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
269 *	This frame is a response to a PS-poll frame and should be sent
270 *	although the station is in powersave mode.
271 */
272enum mac80211_tx_control_flags {
273	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
274	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
275	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
276	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
277	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
278	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
279	IEEE80211_TX_CTL_AMPDU			= BIT(6),
280	IEEE80211_TX_CTL_INJECTED		= BIT(7),
281	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
282	IEEE80211_TX_STAT_ACK			= BIT(9),
283	IEEE80211_TX_STAT_AMPDU			= BIT(10),
284	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
285	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
286	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
287	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
288	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
289	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
290	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
291};
292
293/**
294 * enum mac80211_rate_control_flags - per-rate flags set by the
295 *	Rate Control algorithm.
296 *
297 * These flags are set by the Rate control algorithm for each rate during tx,
298 * in the @flags member of struct ieee80211_tx_rate.
299 *
300 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
301 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
302 *	This is set if the current BSS requires ERP protection.
303 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
304 * @IEEE80211_TX_RC_MCS: HT rate.
305 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
306 *	Greenfield mode.
307 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
308 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
309 *	adjacent 20 MHz channels, if the current channel type is
310 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
311 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
312 */
313enum mac80211_rate_control_flags {
314	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
315	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
316	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
317
318	/* rate index is an MCS rate number instead of an index */
319	IEEE80211_TX_RC_MCS			= BIT(3),
320	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
321	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
322	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
323	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
324};
325
326
327/* there are 40 bytes if you don't need the rateset to be kept */
328#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
329
330/* if you do need the rateset, then you have less space */
331#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
332
333/* maximum number of rate stages */
334#define IEEE80211_TX_MAX_RATES	5
335
336/**
337 * struct ieee80211_tx_rate - rate selection/status
338 *
339 * @idx: rate index to attempt to send with
340 * @flags: rate control flags (&enum mac80211_rate_control_flags)
341 * @count: number of tries in this rate before going to the next rate
342 *
343 * A value of -1 for @idx indicates an invalid rate and, if used
344 * in an array of retry rates, that no more rates should be tried.
345 *
346 * When used for transmit status reporting, the driver should
347 * always report the rate along with the flags it used.
348 *
349 * &struct ieee80211_tx_info contains an array of these structs
350 * in the control information, and it will be filled by the rate
351 * control algorithm according to what should be sent. For example,
352 * if this array contains, in the format { <idx>, <count> } the
353 * information
354 *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
355 * then this means that the frame should be transmitted
356 * up to twice at rate 3, up to twice at rate 2, and up to four
357 * times at rate 1 if it doesn't get acknowledged. Say it gets
358 * acknowledged by the peer after the fifth attempt, the status
359 * information should then contain
360 *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
361 * since it was transmitted twice at rate 3, twice at rate 2
362 * and once at rate 1 after which we received an acknowledgement.
363 */
364struct ieee80211_tx_rate {
365	s8 idx;
366	u8 count;
367	u8 flags;
368} __attribute__((packed));
369
370/**
371 * struct ieee80211_tx_info - skb transmit information
372 *
373 * This structure is placed in skb->cb for three uses:
374 *  (1) mac80211 TX control - mac80211 tells the driver what to do
375 *  (2) driver internal use (if applicable)
376 *  (3) TX status information - driver tells mac80211 what happened
377 *
378 * The TX control's sta pointer is only valid during the ->tx call,
379 * it may be NULL.
380 *
381 * @flags: transmit info flags, defined above
382 * @band: the band to transmit on (use for checking for races)
383 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
384 * @pad: padding, ignore
385 * @control: union for control data
386 * @status: union for status data
387 * @driver_data: array of driver_data pointers
388 * @ampdu_ack_len: number of aggregated frames.
389 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
390 * @ampdu_ack_map: block ack bit map for the aggregation.
391 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
392 * @ack_signal: signal strength of the ACK frame
393 */
394struct ieee80211_tx_info {
395	/* common information */
396	u32 flags;
397	u8 band;
398
399	u8 antenna_sel_tx;
400
401	/* 2 byte hole */
402	u8 pad[2];
403
404	union {
405		struct {
406			union {
407				/* rate control */
408				struct {
409					struct ieee80211_tx_rate rates[
410						IEEE80211_TX_MAX_RATES];
411					s8 rts_cts_rate_idx;
412				};
413				/* only needed before rate control */
414				unsigned long jiffies;
415			};
416			/* NB: vif can be NULL for injected frames */
417			struct ieee80211_vif *vif;
418			struct ieee80211_key_conf *hw_key;
419			struct ieee80211_sta *sta;
420		} control;
421		struct {
422			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
423			u8 ampdu_ack_len;
424			u64 ampdu_ack_map;
425			int ack_signal;
426			/* 8 bytes free */
427		} status;
428		struct {
429			struct ieee80211_tx_rate driver_rates[
430				IEEE80211_TX_MAX_RATES];
431			void *rate_driver_data[
432				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
433		};
434		void *driver_data[
435			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
436	};
437};
438
439static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
440{
441	return (struct ieee80211_tx_info *)skb->cb;
442}
443
444static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
445{
446	return (struct ieee80211_rx_status *)skb->cb;
447}
448
449/**
450 * ieee80211_tx_info_clear_status - clear TX status
451 *
452 * @info: The &struct ieee80211_tx_info to be cleared.
453 *
454 * When the driver passes an skb back to mac80211, it must report
455 * a number of things in TX status. This function clears everything
456 * in the TX status but the rate control information (it does clear
457 * the count since you need to fill that in anyway).
458 *
459 * NOTE: You can only use this function if you do NOT use
460 *	 info->driver_data! Use info->rate_driver_data
461 *	 instead if you need only the less space that allows.
462 */
463static inline void
464ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
465{
466	int i;
467
468	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
469		     offsetof(struct ieee80211_tx_info, control.rates));
470	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
471		     offsetof(struct ieee80211_tx_info, driver_rates));
472	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
473	/* clear the rate counts */
474	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
475		info->status.rates[i].count = 0;
476
477	BUILD_BUG_ON(
478	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
479	memset(&info->status.ampdu_ack_len, 0,
480	       sizeof(struct ieee80211_tx_info) -
481	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
482}
483
484
485/**
486 * enum mac80211_rx_flags - receive flags
487 *
488 * These flags are used with the @flag member of &struct ieee80211_rx_status.
489 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
490 *	Use together with %RX_FLAG_MMIC_STRIPPED.
491 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
492 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
493 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
494 *	verification has been done by the hardware.
495 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
496 *	If this flag is set, the stack cannot do any replay detection
497 *	hence the driver or hardware will have to do that.
498 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
499 *	the frame.
500 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
501 *	the frame.
502 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
503 *	is valid. This is useful in monitor mode and necessary for beacon frames
504 *	to enable IBSS merging.
505 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
506 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
507 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
508 * @RX_FLAG_SHORT_GI: Short guard interval was used
509 */
510enum mac80211_rx_flags {
511	RX_FLAG_MMIC_ERROR	= 1<<0,
512	RX_FLAG_DECRYPTED	= 1<<1,
513	RX_FLAG_RADIOTAP	= 1<<2,
514	RX_FLAG_MMIC_STRIPPED	= 1<<3,
515	RX_FLAG_IV_STRIPPED	= 1<<4,
516	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
517	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
518	RX_FLAG_TSFT		= 1<<7,
519	RX_FLAG_SHORTPRE	= 1<<8,
520	RX_FLAG_HT		= 1<<9,
521	RX_FLAG_40MHZ		= 1<<10,
522	RX_FLAG_SHORT_GI	= 1<<11,
523};
524
525/**
526 * struct ieee80211_rx_status - receive status
527 *
528 * The low-level driver should provide this information (the subset
529 * supported by hardware) to the 802.11 code with each received
530 * frame, in the skb's control buffer (cb).
531 *
532 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
533 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
534 * @band: the active band when this frame was received
535 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
536 * @signal: signal strength when receiving this frame, either in dBm, in dB or
537 *	unspecified depending on the hardware capabilities flags
538 *	@IEEE80211_HW_SIGNAL_*
539 * @noise: noise when receiving this frame, in dBm.
540 * @qual: overall signal quality indication, in percent (0-100).
541 * @antenna: antenna used
542 * @rate_idx: index of data rate into band's supported rates or MCS index if
543 *	HT rates are use (RX_FLAG_HT)
544 * @flag: %RX_FLAG_*
545 */
546struct ieee80211_rx_status {
547	u64 mactime;
548	enum ieee80211_band band;
549	int freq;
550	int signal;
551	int noise;
552	int qual;
553	int antenna;
554	int rate_idx;
555	int flag;
556};
557
558/**
559 * enum ieee80211_conf_flags - configuration flags
560 *
561 * Flags to define PHY configuration options
562 *
563 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
564 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
565 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
566 *	the driver should be prepared to handle configuration requests but
567 *	may turn the device off as much as possible. Typically, this flag will
568 *	be set when an interface is set UP but not associated or scanning, but
569 *	it can also be unset in that case when monitor interfaces are active.
570 */
571enum ieee80211_conf_flags {
572	IEEE80211_CONF_RADIOTAP		= (1<<0),
573	IEEE80211_CONF_PS		= (1<<1),
574	IEEE80211_CONF_IDLE		= (1<<2),
575};
576
577
578/**
579 * enum ieee80211_conf_changed - denotes which configuration changed
580 *
581 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
582 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
583 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
584 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
585 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
586 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
587 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
588 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
589 */
590enum ieee80211_conf_changed {
591	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
592	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
593	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
594	IEEE80211_CONF_CHANGE_PS		= BIT(4),
595	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
596	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
597	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
598	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
599};
600
601static inline __deprecated enum ieee80211_conf_changed
602__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
603{
604	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
605}
606#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
607	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
608
609/**
610 * struct ieee80211_conf - configuration of the device
611 *
612 * This struct indicates how the driver shall configure the hardware.
613 *
614 * @flags: configuration flags defined above
615 *
616 * @radio_enabled: when zero, driver is required to switch off the radio.
617 * @beacon_int: DEPRECATED, DO NOT USE
618 *
619 * @listen_interval: listen interval in units of beacon interval
620 * @max_sleep_period: the maximum number of beacon intervals to sleep for
621 *	before checking the beacon for a TIM bit (managed mode only); this
622 *	value will be only achievable between DTIM frames, the hardware
623 *	needs to check for the multicast traffic bit in DTIM beacons.
624 *	This variable is valid only when the CONF_PS flag is set.
625 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
626 *	powersave documentation below. This variable is valid only when
627 *	the CONF_PS flag is set.
628 *
629 * @power_level: requested transmit power (in dBm)
630 *
631 * @channel: the channel to tune to
632 * @channel_type: the channel (HT) type
633 *
634 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
635 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
636 *    but actually means the number of transmissions not the number of retries
637 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
638 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
639 *    number of transmissions not the number of retries
640 */
641struct ieee80211_conf {
642	int __deprecated beacon_int;
643	u32 flags;
644	int power_level, dynamic_ps_timeout;
645	int max_sleep_period;
646
647	u16 listen_interval;
648	bool __deprecated radio_enabled;
649
650	u8 long_frame_max_tx_count, short_frame_max_tx_count;
651
652	struct ieee80211_channel *channel;
653	enum nl80211_channel_type channel_type;
654};
655
656/**
657 * struct ieee80211_vif - per-interface data
658 *
659 * Data in this structure is continually present for driver
660 * use during the life of a virtual interface.
661 *
662 * @type: type of this virtual interface
663 * @bss_conf: BSS configuration for this interface, either our own
664 *	or the BSS we're associated to
665 * @drv_priv: data area for driver use, will always be aligned to
666 *	sizeof(void *).
667 */
668struct ieee80211_vif {
669	enum nl80211_iftype type;
670	struct ieee80211_bss_conf bss_conf;
671	/* must be last */
672	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
673};
674
675static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
676{
677#ifdef CONFIG_MAC80211_MESH
678	return vif->type == NL80211_IFTYPE_MESH_POINT;
679#endif
680	return false;
681}
682
683/**
684 * struct ieee80211_if_init_conf - initial configuration of an interface
685 *
686 * @vif: pointer to a driver-use per-interface structure. The pointer
687 *	itself is also used for various functions including
688 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
689 * @type: one of &enum nl80211_iftype constants. Determines the type of
690 *	added/removed interface.
691 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
692 *	until the interface is removed (i.e. it cannot be used after
693 *	remove_interface() callback was called for this interface).
694 *
695 * This structure is used in add_interface() and remove_interface()
696 * callbacks of &struct ieee80211_hw.
697 *
698 * When you allow multiple interfaces to be added to your PHY, take care
699 * that the hardware can actually handle multiple MAC addresses. However,
700 * also take care that when there's no interface left with mac_addr != %NULL
701 * you remove the MAC address from the device to avoid acknowledging packets
702 * in pure monitor mode.
703 */
704struct ieee80211_if_init_conf {
705	enum nl80211_iftype type;
706	struct ieee80211_vif *vif;
707	void *mac_addr;
708};
709
710/**
711 * enum ieee80211_key_alg - key algorithm
712 * @ALG_WEP: WEP40 or WEP104
713 * @ALG_TKIP: TKIP
714 * @ALG_CCMP: CCMP (AES)
715 * @ALG_AES_CMAC: AES-128-CMAC
716 */
717enum ieee80211_key_alg {
718	ALG_WEP,
719	ALG_TKIP,
720	ALG_CCMP,
721	ALG_AES_CMAC,
722};
723
724/**
725 * enum ieee80211_key_flags - key flags
726 *
727 * These flags are used for communication about keys between the driver
728 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
729 *
730 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
731 *	that the STA this key will be used with could be using QoS.
732 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
733 *	driver to indicate that it requires IV generation for this
734 *	particular key.
735 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
736 *	the driver for a TKIP key if it requires Michael MIC
737 *	generation in software.
738 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
739 *	that the key is pairwise rather then a shared key.
740 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
741 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
742 *	be done in software.
743 */
744enum ieee80211_key_flags {
745	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
746	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
747	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
748	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
749	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
750};
751
752/**
753 * struct ieee80211_key_conf - key information
754 *
755 * This key information is given by mac80211 to the driver by
756 * the set_key() callback in &struct ieee80211_ops.
757 *
758 * @hw_key_idx: To be set by the driver, this is the key index the driver
759 *	wants to be given when a frame is transmitted and needs to be
760 *	encrypted in hardware.
761 * @alg: The key algorithm.
762 * @flags: key flags, see &enum ieee80211_key_flags.
763 * @keyidx: the key index (0-3)
764 * @keylen: key material length
765 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
766 * 	data block:
767 * 	- Temporal Encryption Key (128 bits)
768 * 	- Temporal Authenticator Tx MIC Key (64 bits)
769 * 	- Temporal Authenticator Rx MIC Key (64 bits)
770 * @icv_len: The ICV length for this key type
771 * @iv_len: The IV length for this key type
772 */
773struct ieee80211_key_conf {
774	enum ieee80211_key_alg alg;
775	u8 icv_len;
776	u8 iv_len;
777	u8 hw_key_idx;
778	u8 flags;
779	s8 keyidx;
780	u8 keylen;
781	u8 key[0];
782};
783
784/**
785 * enum set_key_cmd - key command
786 *
787 * Used with the set_key() callback in &struct ieee80211_ops, this
788 * indicates whether a key is being removed or added.
789 *
790 * @SET_KEY: a key is set
791 * @DISABLE_KEY: a key must be disabled
792 */
793enum set_key_cmd {
794	SET_KEY, DISABLE_KEY,
795};
796
797/**
798 * struct ieee80211_sta - station table entry
799 *
800 * A station table entry represents a station we are possibly
801 * communicating with. Since stations are RCU-managed in
802 * mac80211, any ieee80211_sta pointer you get access to must
803 * either be protected by rcu_read_lock() explicitly or implicitly,
804 * or you must take good care to not use such a pointer after a
805 * call to your sta_notify callback that removed it.
806 *
807 * @addr: MAC address
808 * @aid: AID we assigned to the station if we're an AP
809 * @supp_rates: Bitmap of supported rates (per band)
810 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
811 * @drv_priv: data area for driver use, will always be aligned to
812 *	sizeof(void *), size is determined in hw information.
813 */
814struct ieee80211_sta {
815	u32 supp_rates[IEEE80211_NUM_BANDS];
816	u8 addr[ETH_ALEN];
817	u16 aid;
818	struct ieee80211_sta_ht_cap ht_cap;
819
820	/* must be last */
821	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
822};
823
824/**
825 * enum sta_notify_cmd - sta notify command
826 *
827 * Used with the sta_notify() callback in &struct ieee80211_ops, this
828 * indicates addition and removal of a station to station table,
829 * or if a associated station made a power state transition.
830 *
831 * @STA_NOTIFY_ADD: a station was added to the station table
832 * @STA_NOTIFY_REMOVE: a station being removed from the station table
833 * @STA_NOTIFY_SLEEP: a station is now sleeping
834 * @STA_NOTIFY_AWAKE: a sleeping station woke up
835 */
836enum sta_notify_cmd {
837	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
838	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
839};
840
841/**
842 * enum ieee80211_tkip_key_type - get tkip key
843 *
844 * Used by drivers which need to get a tkip key for skb. Some drivers need a
845 * phase 1 key, others need a phase 2 key. A single function allows the driver
846 * to get the key, this enum indicates what type of key is required.
847 *
848 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
849 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
850 */
851enum ieee80211_tkip_key_type {
852	IEEE80211_TKIP_P1_KEY,
853	IEEE80211_TKIP_P2_KEY,
854};
855
856/**
857 * enum ieee80211_hw_flags - hardware flags
858 *
859 * These flags are used to indicate hardware capabilities to
860 * the stack. Generally, flags here should have their meaning
861 * done in a way that the simplest hardware doesn't need setting
862 * any particular flags. There are some exceptions to this rule,
863 * however, so you are advised to review these flags carefully.
864 *
865 * @IEEE80211_HW_RX_INCLUDES_FCS:
866 *	Indicates that received frames passed to the stack include
867 *	the FCS at the end.
868 *
869 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
870 *	Some wireless LAN chipsets buffer broadcast/multicast frames
871 *	for power saving stations in the hardware/firmware and others
872 *	rely on the host system for such buffering. This option is used
873 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
874 *	multicast frames when there are power saving stations so that
875 *	the driver can fetch them with ieee80211_get_buffered_bc().
876 *
877 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
878 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
879 *
880 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
881 *	Hardware is not capable of receiving frames with short preamble on
882 *	the 2.4 GHz band.
883 *
884 * @IEEE80211_HW_SIGNAL_UNSPEC:
885 *	Hardware can provide signal values but we don't know its units. We
886 *	expect values between 0 and @max_signal.
887 *	If possible please provide dB or dBm instead.
888 *
889 * @IEEE80211_HW_SIGNAL_DBM:
890 *	Hardware gives signal values in dBm, decibel difference from
891 *	one milliwatt. This is the preferred method since it is standardized
892 *	between different devices. @max_signal does not need to be set.
893 *
894 * @IEEE80211_HW_NOISE_DBM:
895 *	Hardware can provide noise (radio interference) values in units dBm,
896 *      decibel difference from one milliwatt.
897 *
898 * @IEEE80211_HW_SPECTRUM_MGMT:
899 * 	Hardware supports spectrum management defined in 802.11h
900 * 	Measurement, Channel Switch, Quieting, TPC
901 *
902 * @IEEE80211_HW_AMPDU_AGGREGATION:
903 *	Hardware supports 11n A-MPDU aggregation.
904 *
905 * @IEEE80211_HW_SUPPORTS_PS:
906 *	Hardware has power save support (i.e. can go to sleep).
907 *
908 * @IEEE80211_HW_PS_NULLFUNC_STACK:
909 *	Hardware requires nullfunc frame handling in stack, implies
910 *	stack support for dynamic PS.
911 *
912 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
913 *	Hardware has support for dynamic PS.
914 *
915 * @IEEE80211_HW_MFP_CAPABLE:
916 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
917 *
918 * @IEEE80211_HW_BEACON_FILTER:
919 *	Hardware supports dropping of irrelevant beacon frames to
920 *	avoid waking up cpu.
921 */
922enum ieee80211_hw_flags {
923	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
924	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
925	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
926	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
927	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
928	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
929	IEEE80211_HW_NOISE_DBM				= 1<<7,
930	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
931	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
932	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
933	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
934	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
935	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
936	IEEE80211_HW_BEACON_FILTER			= 1<<14,
937};
938
939/**
940 * struct ieee80211_hw - hardware information and state
941 *
942 * This structure contains the configuration and hardware
943 * information for an 802.11 PHY.
944 *
945 * @wiphy: This points to the &struct wiphy allocated for this
946 *	802.11 PHY. You must fill in the @perm_addr and @dev
947 *	members of this structure using SET_IEEE80211_DEV()
948 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
949 *	bands (with channels, bitrates) are registered here.
950 *
951 * @conf: &struct ieee80211_conf, device configuration, don't use.
952 *
953 * @priv: pointer to private area that was allocated for driver use
954 *	along with this structure.
955 *
956 * @flags: hardware flags, see &enum ieee80211_hw_flags.
957 *
958 * @extra_tx_headroom: headroom to reserve in each transmit skb
959 *	for use by the driver (e.g. for transmit headers.)
960 *
961 * @channel_change_time: time (in microseconds) it takes to change channels.
962 *
963 * @max_signal: Maximum value for signal (rssi) in RX information, used
964 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
965 *
966 * @max_listen_interval: max listen interval in units of beacon interval
967 *     that HW supports
968 *
969 * @queues: number of available hardware transmit queues for
970 *	data packets. WMM/QoS requires at least four, these
971 *	queues need to have configurable access parameters.
972 *
973 * @rate_control_algorithm: rate control algorithm for this hardware.
974 *	If unset (NULL), the default algorithm will be used. Must be
975 *	set before calling ieee80211_register_hw().
976 *
977 * @vif_data_size: size (in bytes) of the drv_priv data area
978 *	within &struct ieee80211_vif.
979 * @sta_data_size: size (in bytes) of the drv_priv data area
980 *	within &struct ieee80211_sta.
981 *
982 * @max_rates: maximum number of alternate rate retry stages
983 * @max_rate_tries: maximum number of tries for each stage
984 */
985struct ieee80211_hw {
986	struct ieee80211_conf conf;
987	struct wiphy *wiphy;
988	const char *rate_control_algorithm;
989	void *priv;
990	u32 flags;
991	unsigned int extra_tx_headroom;
992	int channel_change_time;
993	int vif_data_size;
994	int sta_data_size;
995	u16 queues;
996	u16 max_listen_interval;
997	s8 max_signal;
998	u8 max_rates;
999	u8 max_rate_tries;
1000};
1001
1002/**
1003 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1004 *
1005 * @wiphy: the &struct wiphy which we want to query
1006 *
1007 * mac80211 drivers can use this to get to their respective
1008 * &struct ieee80211_hw. Drivers wishing to get to their own private
1009 * structure can then access it via hw->priv. Note that mac802111 drivers should
1010 * not use wiphy_priv() to try to get their private driver structure as this
1011 * is already used internally by mac80211.
1012 */
1013struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1014
1015/**
1016 * SET_IEEE80211_DEV - set device for 802.11 hardware
1017 *
1018 * @hw: the &struct ieee80211_hw to set the device for
1019 * @dev: the &struct device of this 802.11 device
1020 */
1021static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1022{
1023	set_wiphy_dev(hw->wiphy, dev);
1024}
1025
1026/**
1027 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1028 *
1029 * @hw: the &struct ieee80211_hw to set the MAC address for
1030 * @addr: the address to set
1031 */
1032static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1033{
1034	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1035}
1036
1037static inline struct ieee80211_rate *
1038ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1039		      const struct ieee80211_tx_info *c)
1040{
1041	if (WARN_ON(c->control.rates[0].idx < 0))
1042		return NULL;
1043	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1044}
1045
1046static inline struct ieee80211_rate *
1047ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1048			   const struct ieee80211_tx_info *c)
1049{
1050	if (c->control.rts_cts_rate_idx < 0)
1051		return NULL;
1052	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1053}
1054
1055static inline struct ieee80211_rate *
1056ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1057			     const struct ieee80211_tx_info *c, int idx)
1058{
1059	if (c->control.rates[idx + 1].idx < 0)
1060		return NULL;
1061	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1062}
1063
1064/**
1065 * DOC: Hardware crypto acceleration
1066 *
1067 * mac80211 is capable of taking advantage of many hardware
1068 * acceleration designs for encryption and decryption operations.
1069 *
1070 * The set_key() callback in the &struct ieee80211_ops for a given
1071 * device is called to enable hardware acceleration of encryption and
1072 * decryption. The callback takes a @sta parameter that will be NULL
1073 * for default keys or keys used for transmission only, or point to
1074 * the station information for the peer for individual keys.
1075 * Multiple transmission keys with the same key index may be used when
1076 * VLANs are configured for an access point.
1077 *
1078 * When transmitting, the TX control data will use the @hw_key_idx
1079 * selected by the driver by modifying the &struct ieee80211_key_conf
1080 * pointed to by the @key parameter to the set_key() function.
1081 *
1082 * The set_key() call for the %SET_KEY command should return 0 if
1083 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1084 * added; if you return 0 then hw_key_idx must be assigned to the
1085 * hardware key index, you are free to use the full u8 range.
1086 *
1087 * When the cmd is %DISABLE_KEY then it must succeed.
1088 *
1089 * Note that it is permissible to not decrypt a frame even if a key
1090 * for it has been uploaded to hardware, the stack will not make any
1091 * decision based on whether a key has been uploaded or not but rather
1092 * based on the receive flags.
1093 *
1094 * The &struct ieee80211_key_conf structure pointed to by the @key
1095 * parameter is guaranteed to be valid until another call to set_key()
1096 * removes it, but it can only be used as a cookie to differentiate
1097 * keys.
1098 *
1099 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1100 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1101 * handler.
1102 * The update_tkip_key() call updates the driver with the new phase 1 key.
1103 * This happens everytime the iv16 wraps around (every 65536 packets). The
1104 * set_key() call will happen only once for each key (unless the AP did
1105 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1106 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1107 * handler is software decryption with wrap around of iv16.
1108 */
1109
1110/**
1111 * DOC: Powersave support
1112 *
1113 * mac80211 has support for various powersave implementations.
1114 *
1115 * First, it can support hardware that handles all powersaving by
1116 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1117 * hardware flag. In that case, it will be told about the desired
1118 * powersave mode depending on the association status, and the driver
1119 * must take care of sending nullfunc frames when necessary, i.e. when
1120 * entering and leaving powersave mode. The driver is required to look at
1121 * the AID in beacons and signal to the AP that it woke up when it finds
1122 * traffic directed to it. This mode supports dynamic PS by simply
1123 * enabling/disabling PS.
1124 *
1125 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1126 * flag to indicate that it can support dynamic PS mode itself (see below).
1127 *
1128 * Other hardware designs cannot send nullfunc frames by themselves and also
1129 * need software support for parsing the TIM bitmap. This is also supported
1130 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1131 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1132 * required to pass up beacons. The hardware is still required to handle
1133 * waking up for multicast traffic; if it cannot the driver must handle that
1134 * as best as it can, mac80211 is too slow.
1135 *
1136 * Dynamic powersave mode is an extension to normal powersave mode in which
1137 * the hardware stays awake for a user-specified period of time after sending
1138 * a frame so that reply frames need not be buffered and therefore delayed
1139 * to the next wakeup. This can either be supported by hardware, in which case
1140 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1141 * value, or by the stack if all nullfunc handling is in the stack.
1142 */
1143
1144/**
1145 * DOC: Beacon filter support
1146 *
1147 * Some hardware have beacon filter support to reduce host cpu wakeups
1148 * which will reduce system power consumption. It usuallly works so that
1149 * the firmware creates a checksum of the beacon but omits all constantly
1150 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1151 * beacon is forwarded to the host, otherwise it will be just dropped. That
1152 * way the host will only receive beacons where some relevant information
1153 * (for example ERP protection or WMM settings) have changed.
1154 *
1155 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1156 * hardware capability. The driver needs to enable beacon filter support
1157 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1158 * power save is enabled, the stack will not check for beacon loss and the
1159 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1160 *
1161 * The time (or number of beacons missed) until the firmware notifies the
1162 * driver of a beacon loss event (which in turn causes the driver to call
1163 * ieee80211_beacon_loss()) should be configurable and will be controlled
1164 * by mac80211 and the roaming algorithm in the future.
1165 *
1166 * Since there may be constantly changing information elements that nothing
1167 * in the software stack cares about, we will, in the future, have mac80211
1168 * tell the driver which information elements are interesting in the sense
1169 * that we want to see changes in them. This will include
1170 *  - a list of information element IDs
1171 *  - a list of OUIs for the vendor information element
1172 *
1173 * Ideally, the hardware would filter out any beacons without changes in the
1174 * requested elements, but if it cannot support that it may, at the expense
1175 * of some efficiency, filter out only a subset. For example, if the device
1176 * doesn't support checking for OUIs it should pass up all changes in all
1177 * vendor information elements.
1178 *
1179 * Note that change, for the sake of simplification, also includes information
1180 * elements appearing or disappearing from the beacon.
1181 *
1182 * Some hardware supports an "ignore list" instead, just make sure nothing
1183 * that was requested is on the ignore list, and include commonly changing
1184 * information element IDs in the ignore list, for example 11 (BSS load) and
1185 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1186 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1187 * it could also include some currently unused IDs.
1188 *
1189 *
1190 * In addition to these capabilities, hardware should support notifying the
1191 * host of changes in the beacon RSSI. This is relevant to implement roaming
1192 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1193 * the received data packets). This can consist in notifying the host when
1194 * the RSSI changes significantly or when it drops below or rises above
1195 * configurable thresholds. In the future these thresholds will also be
1196 * configured by mac80211 (which gets them from userspace) to implement
1197 * them as the roaming algorithm requires.
1198 *
1199 * If the hardware cannot implement this, the driver should ask it to
1200 * periodically pass beacon frames to the host so that software can do the
1201 * signal strength threshold checking.
1202 */
1203
1204/**
1205 * DOC: Frame filtering
1206 *
1207 * mac80211 requires to see many management frames for proper
1208 * operation, and users may want to see many more frames when
1209 * in monitor mode. However, for best CPU usage and power consumption,
1210 * having as few frames as possible percolate through the stack is
1211 * desirable. Hence, the hardware should filter as much as possible.
1212 *
1213 * To achieve this, mac80211 uses filter flags (see below) to tell
1214 * the driver's configure_filter() function which frames should be
1215 * passed to mac80211 and which should be filtered out.
1216 *
1217 * The configure_filter() callback is invoked with the parameters
1218 * @mc_count and @mc_list for the combined multicast address list
1219 * of all virtual interfaces, @changed_flags telling which flags
1220 * were changed and @total_flags with the new flag states.
1221 *
1222 * If your device has no multicast address filters your driver will
1223 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1224 * parameter to see whether multicast frames should be accepted
1225 * or dropped.
1226 *
1227 * All unsupported flags in @total_flags must be cleared.
1228 * Hardware does not support a flag if it is incapable of _passing_
1229 * the frame to the stack. Otherwise the driver must ignore
1230 * the flag, but not clear it.
1231 * You must _only_ clear the flag (announce no support for the
1232 * flag to mac80211) if you are not able to pass the packet type
1233 * to the stack (so the hardware always filters it).
1234 * So for example, you should clear @FIF_CONTROL, if your hardware
1235 * always filters control frames. If your hardware always passes
1236 * control frames to the kernel and is incapable of filtering them,
1237 * you do _not_ clear the @FIF_CONTROL flag.
1238 * This rule applies to all other FIF flags as well.
1239 */
1240
1241/**
1242 * enum ieee80211_filter_flags - hardware filter flags
1243 *
1244 * These flags determine what the filter in hardware should be
1245 * programmed to let through and what should not be passed to the
1246 * stack. It is always safe to pass more frames than requested,
1247 * but this has negative impact on power consumption.
1248 *
1249 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1250 *	think of the BSS as your network segment and then this corresponds
1251 *	to the regular ethernet device promiscuous mode.
1252 *
1253 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1254 *	by the user or if the hardware is not capable of filtering by
1255 *	multicast address.
1256 *
1257 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1258 *	%RX_FLAG_FAILED_FCS_CRC for them)
1259 *
1260 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1261 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1262 *
1263 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1264 *	to the hardware that it should not filter beacons or probe responses
1265 *	by BSSID. Filtering them can greatly reduce the amount of processing
1266 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1267 *	honour this flag if possible.
1268 *
1269 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1270 *  is not set then only those addressed to this station.
1271 *
1272 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1273 *
1274 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1275 *  those addressed to this station.
1276 */
1277enum ieee80211_filter_flags {
1278	FIF_PROMISC_IN_BSS	= 1<<0,
1279	FIF_ALLMULTI		= 1<<1,
1280	FIF_FCSFAIL		= 1<<2,
1281	FIF_PLCPFAIL		= 1<<3,
1282	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1283	FIF_CONTROL		= 1<<5,
1284	FIF_OTHER_BSS		= 1<<6,
1285	FIF_PSPOLL		= 1<<7,
1286};
1287
1288/**
1289 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1290 *
1291 * These flags are used with the ampdu_action() callback in
1292 * &struct ieee80211_ops to indicate which action is needed.
1293 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1294 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1295 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1296 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1297 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1298 */
1299enum ieee80211_ampdu_mlme_action {
1300	IEEE80211_AMPDU_RX_START,
1301	IEEE80211_AMPDU_RX_STOP,
1302	IEEE80211_AMPDU_TX_START,
1303	IEEE80211_AMPDU_TX_STOP,
1304	IEEE80211_AMPDU_TX_OPERATIONAL,
1305};
1306
1307/**
1308 * struct ieee80211_ops - callbacks from mac80211 to the driver
1309 *
1310 * This structure contains various callbacks that the driver may
1311 * handle or, in some cases, must handle, for example to configure
1312 * the hardware to a new channel or to transmit a frame.
1313 *
1314 * @tx: Handler that 802.11 module calls for each transmitted frame.
1315 *	skb contains the buffer starting from the IEEE 802.11 header.
1316 *	The low-level driver should send the frame out based on
1317 *	configuration in the TX control data. This handler should,
1318 *	preferably, never fail and stop queues appropriately, more
1319 *	importantly, however, it must never fail for A-MPDU-queues.
1320 *	This function should return NETDEV_TX_OK except in very
1321 *	limited cases.
1322 *	Must be implemented and atomic.
1323 *
1324 * @start: Called before the first netdevice attached to the hardware
1325 *	is enabled. This should turn on the hardware and must turn on
1326 *	frame reception (for possibly enabled monitor interfaces.)
1327 *	Returns negative error codes, these may be seen in userspace,
1328 *	or zero.
1329 *	When the device is started it should not have a MAC address
1330 *	to avoid acknowledging frames before a non-monitor device
1331 *	is added.
1332 *	Must be implemented.
1333 *
1334 * @stop: Called after last netdevice attached to the hardware
1335 *	is disabled. This should turn off the hardware (at least
1336 *	it must turn off frame reception.)
1337 *	May be called right after add_interface if that rejects
1338 *	an interface. If you added any work onto the mac80211 workqueue
1339 *	you should ensure to cancel it on this callback.
1340 *	Must be implemented.
1341 *
1342 * @add_interface: Called when a netdevice attached to the hardware is
1343 *	enabled. Because it is not called for monitor mode devices, @start
1344 *	and @stop must be implemented.
1345 *	The driver should perform any initialization it needs before
1346 *	the device can be enabled. The initial configuration for the
1347 *	interface is given in the conf parameter.
1348 *	The callback may refuse to add an interface by returning a
1349 *	negative error code (which will be seen in userspace.)
1350 *	Must be implemented.
1351 *
1352 * @remove_interface: Notifies a driver that an interface is going down.
1353 *	The @stop callback is called after this if it is the last interface
1354 *	and no monitor interfaces are present.
1355 *	When all interfaces are removed, the MAC address in the hardware
1356 *	must be cleared so the device no longer acknowledges packets,
1357 *	the mac_addr member of the conf structure is, however, set to the
1358 *	MAC address of the device going away.
1359 *	Hence, this callback must be implemented.
1360 *
1361 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1362 *	function to change hardware configuration, e.g., channel.
1363 *	This function should never fail but returns a negative error code
1364 *	if it does.
1365 *
1366 * @bss_info_changed: Handler for configuration requests related to BSS
1367 *	parameters that may vary during BSS's lifespan, and may affect low
1368 *	level driver (e.g. assoc/disassoc status, erp parameters).
1369 *	This function should not be used if no BSS has been set, unless
1370 *	for association indication. The @changed parameter indicates which
1371 *	of the bss parameters has changed when a call is made.
1372 *
1373 * @configure_filter: Configure the device's RX filter.
1374 *	See the section "Frame filtering" for more information.
1375 *	This callback must be implemented and atomic.
1376 *
1377 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1378 * 	must be set or cleared for a given STA. Must be atomic.
1379 *
1380 * @set_key: See the section "Hardware crypto acceleration"
1381 *	This callback can sleep, and is only called between add_interface
1382 *	and remove_interface calls, i.e. while the given virtual interface
1383 *	is enabled.
1384 *	Returns a negative error code if the key can't be added.
1385 *
1386 * @update_tkip_key: See the section "Hardware crypto acceleration"
1387 * 	This callback will be called in the context of Rx. Called for drivers
1388 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1389 *
1390 * @hw_scan: Ask the hardware to service the scan request, no need to start
1391 *	the scan state machine in stack. The scan must honour the channel
1392 *	configuration done by the regulatory agent in the wiphy's
1393 *	registered bands. The hardware (or the driver) needs to make sure
1394 *	that power save is disabled.
1395 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1396 *	entire IEs after the SSID, so that drivers need not look at these
1397 *	at all but just send them after the SSID -- mac80211 includes the
1398 *	(extended) supported rates and HT information (where applicable).
1399 *	When the scan finishes, ieee80211_scan_completed() must be called;
1400 *	note that it also must be called when the scan cannot finish due to
1401 *	any error unless this callback returned a negative error code.
1402 *
1403 * @sw_scan_start: Notifier function that is called just before a software scan
1404 *	is started. Can be NULL, if the driver doesn't need this notification.
1405 *
1406 * @sw_scan_complete: Notifier function that is called just after a software scan
1407 *	finished. Can be NULL, if the driver doesn't need this notification.
1408 *
1409 * @get_stats: Return low-level statistics.
1410 * 	Returns zero if statistics are available.
1411 *
1412 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1413 *	callback should be provided to read the TKIP transmit IVs (both IV32
1414 *	and IV16) for the given key from hardware.
1415 *
1416 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1417 *
1418 * @sta_notify: Notifies low level driver about addition, removal or power
1419 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1420 *	Must be atomic.
1421 *
1422 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1423 *	bursting) for a hardware TX queue.
1424 *	Returns a negative error code on failure.
1425 *
1426 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1427 *	to get number of currently queued packets (queue length), maximum queue
1428 *	size (limit), and total number of packets sent using each TX queue
1429 *	(count). The 'stats' pointer points to an array that has hw->queues
1430 *	items.
1431 *
1432 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1433 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1434 *	required function.
1435 *
1436 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1437 *      Currently, this is only used for IBSS mode debugging. Is not a
1438 *	required function.
1439 *
1440 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1441 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1442 *	function is optional if the firmware/hardware takes full care of
1443 *	TSF synchronization.
1444 *
1445 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1446 *	This is needed only for IBSS mode and the result of this function is
1447 *	used to determine whether to reply to Probe Requests.
1448 *	Returns non-zero if this device sent the last beacon.
1449 *
1450 * @ampdu_action: Perform a certain A-MPDU action
1451 * 	The RA/TID combination determines the destination and TID we want
1452 * 	the ampdu action to be performed for. The action is defined through
1453 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1454 * 	is the first frame we expect to perform the action on. Notice
1455 * 	that TX/RX_STOP can pass NULL for this parameter.
1456 *	Returns a negative error code on failure.
1457 *
1458 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1459 *	need to set wiphy->rfkill_poll to %true before registration,
1460 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1461 *
1462 * @testmode_cmd: Implement a cfg80211 test mode command.
1463 */
1464struct ieee80211_ops {
1465	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1466	int (*start)(struct ieee80211_hw *hw);
1467	void (*stop)(struct ieee80211_hw *hw);
1468	int (*add_interface)(struct ieee80211_hw *hw,
1469			     struct ieee80211_if_init_conf *conf);
1470	void (*remove_interface)(struct ieee80211_hw *hw,
1471				 struct ieee80211_if_init_conf *conf);
1472	int (*config)(struct ieee80211_hw *hw, u32 changed);
1473	void (*bss_info_changed)(struct ieee80211_hw *hw,
1474				 struct ieee80211_vif *vif,
1475				 struct ieee80211_bss_conf *info,
1476				 u32 changed);
1477	void (*configure_filter)(struct ieee80211_hw *hw,
1478				 unsigned int changed_flags,
1479				 unsigned int *total_flags,
1480				 int mc_count, struct dev_addr_list *mc_list);
1481	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1482		       bool set);
1483	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1484		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1485		       struct ieee80211_key_conf *key);
1486	void (*update_tkip_key)(struct ieee80211_hw *hw,
1487			struct ieee80211_key_conf *conf, const u8 *address,
1488			u32 iv32, u16 *phase1key);
1489	int (*hw_scan)(struct ieee80211_hw *hw,
1490		       struct cfg80211_scan_request *req);
1491	void (*sw_scan_start)(struct ieee80211_hw *hw);
1492	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1493	int (*get_stats)(struct ieee80211_hw *hw,
1494			 struct ieee80211_low_level_stats *stats);
1495	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1496			     u32 *iv32, u16 *iv16);
1497	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1498	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1499			enum sta_notify_cmd, struct ieee80211_sta *sta);
1500	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1501		       const struct ieee80211_tx_queue_params *params);
1502	int (*get_tx_stats)(struct ieee80211_hw *hw,
1503			    struct ieee80211_tx_queue_stats *stats);
1504	u64 (*get_tsf)(struct ieee80211_hw *hw);
1505	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1506	void (*reset_tsf)(struct ieee80211_hw *hw);
1507	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1508	int (*ampdu_action)(struct ieee80211_hw *hw,
1509			    enum ieee80211_ampdu_mlme_action action,
1510			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1511
1512	void (*rfkill_poll)(struct ieee80211_hw *hw);
1513#ifdef CONFIG_NL80211_TESTMODE
1514	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1515#endif
1516};
1517
1518/**
1519 * ieee80211_alloc_hw -  Allocate a new hardware device
1520 *
1521 * This must be called once for each hardware device. The returned pointer
1522 * must be used to refer to this device when calling other functions.
1523 * mac80211 allocates a private data area for the driver pointed to by
1524 * @priv in &struct ieee80211_hw, the size of this area is given as
1525 * @priv_data_len.
1526 *
1527 * @priv_data_len: length of private data
1528 * @ops: callbacks for this device
1529 */
1530struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1531					const struct ieee80211_ops *ops);
1532
1533/**
1534 * ieee80211_register_hw - Register hardware device
1535 *
1536 * You must call this function before any other functions in
1537 * mac80211. Note that before a hardware can be registered, you
1538 * need to fill the contained wiphy's information.
1539 *
1540 * @hw: the device to register as returned by ieee80211_alloc_hw()
1541 */
1542int ieee80211_register_hw(struct ieee80211_hw *hw);
1543
1544#ifdef CONFIG_MAC80211_LEDS
1545extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1546extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1547extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1548extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1549#endif
1550/**
1551 * ieee80211_get_tx_led_name - get name of TX LED
1552 *
1553 * mac80211 creates a transmit LED trigger for each wireless hardware
1554 * that can be used to drive LEDs if your driver registers a LED device.
1555 * This function returns the name (or %NULL if not configured for LEDs)
1556 * of the trigger so you can automatically link the LED device.
1557 *
1558 * @hw: the hardware to get the LED trigger name for
1559 */
1560static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1561{
1562#ifdef CONFIG_MAC80211_LEDS
1563	return __ieee80211_get_tx_led_name(hw);
1564#else
1565	return NULL;
1566#endif
1567}
1568
1569/**
1570 * ieee80211_get_rx_led_name - get name of RX LED
1571 *
1572 * mac80211 creates a receive LED trigger for each wireless hardware
1573 * that can be used to drive LEDs if your driver registers a LED device.
1574 * This function returns the name (or %NULL if not configured for LEDs)
1575 * of the trigger so you can automatically link the LED device.
1576 *
1577 * @hw: the hardware to get the LED trigger name for
1578 */
1579static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1580{
1581#ifdef CONFIG_MAC80211_LEDS
1582	return __ieee80211_get_rx_led_name(hw);
1583#else
1584	return NULL;
1585#endif
1586}
1587
1588/**
1589 * ieee80211_get_assoc_led_name - get name of association LED
1590 *
1591 * mac80211 creates a association LED trigger for each wireless hardware
1592 * that can be used to drive LEDs if your driver registers a LED device.
1593 * This function returns the name (or %NULL if not configured for LEDs)
1594 * of the trigger so you can automatically link the LED device.
1595 *
1596 * @hw: the hardware to get the LED trigger name for
1597 */
1598static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1599{
1600#ifdef CONFIG_MAC80211_LEDS
1601	return __ieee80211_get_assoc_led_name(hw);
1602#else
1603	return NULL;
1604#endif
1605}
1606
1607/**
1608 * ieee80211_get_radio_led_name - get name of radio LED
1609 *
1610 * mac80211 creates a radio change LED trigger for each wireless hardware
1611 * that can be used to drive LEDs if your driver registers a LED device.
1612 * This function returns the name (or %NULL if not configured for LEDs)
1613 * of the trigger so you can automatically link the LED device.
1614 *
1615 * @hw: the hardware to get the LED trigger name for
1616 */
1617static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1618{
1619#ifdef CONFIG_MAC80211_LEDS
1620	return __ieee80211_get_radio_led_name(hw);
1621#else
1622	return NULL;
1623#endif
1624}
1625
1626/**
1627 * ieee80211_unregister_hw - Unregister a hardware device
1628 *
1629 * This function instructs mac80211 to free allocated resources
1630 * and unregister netdevices from the networking subsystem.
1631 *
1632 * @hw: the hardware to unregister
1633 */
1634void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1635
1636/**
1637 * ieee80211_free_hw - free hardware descriptor
1638 *
1639 * This function frees everything that was allocated, including the
1640 * private data for the driver. You must call ieee80211_unregister_hw()
1641 * before calling this function.
1642 *
1643 * @hw: the hardware to free
1644 */
1645void ieee80211_free_hw(struct ieee80211_hw *hw);
1646
1647/**
1648 * ieee80211_restart_hw - restart hardware completely
1649 *
1650 * Call this function when the hardware was restarted for some reason
1651 * (hardware error, ...) and the driver is unable to restore its state
1652 * by itself. mac80211 assumes that at this point the driver/hardware
1653 * is completely uninitialised and stopped, it starts the process by
1654 * calling the ->start() operation. The driver will need to reset all
1655 * internal state that it has prior to calling this function.
1656 *
1657 * @hw: the hardware to restart
1658 */
1659void ieee80211_restart_hw(struct ieee80211_hw *hw);
1660
1661/*
1662 * trick to avoid symbol clashes with the ieee80211 subsystem,
1663 * use the inline below instead
1664 */
1665void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1666
1667/**
1668 * ieee80211_rx - receive frame
1669 *
1670 * Use this function to hand received frames to mac80211. The receive
1671 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1672 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1673 *
1674 * This function may not be called in IRQ context. Calls to this function
1675 * for a single hardware must be synchronized against each other. Calls
1676 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1677 * single hardware.
1678 *
1679 * @hw: the hardware this frame came in on
1680 * @skb: the buffer to receive, owned by mac80211 after this call
1681 */
1682static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1683{
1684	__ieee80211_rx(hw, skb);
1685}
1686
1687/**
1688 * ieee80211_rx_irqsafe - receive frame
1689 *
1690 * Like ieee80211_rx() but can be called in IRQ context
1691 * (internally defers to a tasklet.)
1692 *
1693 * Calls to this function and ieee80211_rx() may not be mixed for a
1694 * single hardware.
1695 *
1696 * @hw: the hardware this frame came in on
1697 * @skb: the buffer to receive, owned by mac80211 after this call
1698 */
1699void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1700
1701/**
1702 * ieee80211_tx_status - transmit status callback
1703 *
1704 * Call this function for all transmitted frames after they have been
1705 * transmitted. It is permissible to not call this function for
1706 * multicast frames but this can affect statistics.
1707 *
1708 * This function may not be called in IRQ context. Calls to this function
1709 * for a single hardware must be synchronized against each other. Calls
1710 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1711 * for a single hardware.
1712 *
1713 * @hw: the hardware the frame was transmitted by
1714 * @skb: the frame that was transmitted, owned by mac80211 after this call
1715 */
1716void ieee80211_tx_status(struct ieee80211_hw *hw,
1717			 struct sk_buff *skb);
1718
1719/**
1720 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1721 *
1722 * Like ieee80211_tx_status() but can be called in IRQ context
1723 * (internally defers to a tasklet.)
1724 *
1725 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1726 * single hardware.
1727 *
1728 * @hw: the hardware the frame was transmitted by
1729 * @skb: the frame that was transmitted, owned by mac80211 after this call
1730 */
1731void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1732				 struct sk_buff *skb);
1733
1734/**
1735 * ieee80211_beacon_get - beacon generation function
1736 * @hw: pointer obtained from ieee80211_alloc_hw().
1737 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1738 *
1739 * If the beacon frames are generated by the host system (i.e., not in
1740 * hardware/firmware), the low-level driver uses this function to receive
1741 * the next beacon frame from the 802.11 code. The low-level is responsible
1742 * for calling this function before beacon data is needed (e.g., based on
1743 * hardware interrupt). Returned skb is used only once and low-level driver
1744 * is responsible for freeing it.
1745 */
1746struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1747				     struct ieee80211_vif *vif);
1748
1749/**
1750 * ieee80211_rts_get - RTS frame generation function
1751 * @hw: pointer obtained from ieee80211_alloc_hw().
1752 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1753 * @frame: pointer to the frame that is going to be protected by the RTS.
1754 * @frame_len: the frame length (in octets).
1755 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1756 * @rts: The buffer where to store the RTS frame.
1757 *
1758 * If the RTS frames are generated by the host system (i.e., not in
1759 * hardware/firmware), the low-level driver uses this function to receive
1760 * the next RTS frame from the 802.11 code. The low-level is responsible
1761 * for calling this function before and RTS frame is needed.
1762 */
1763void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1764		       const void *frame, size_t frame_len,
1765		       const struct ieee80211_tx_info *frame_txctl,
1766		       struct ieee80211_rts *rts);
1767
1768/**
1769 * ieee80211_rts_duration - Get the duration field for an RTS frame
1770 * @hw: pointer obtained from ieee80211_alloc_hw().
1771 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1772 * @frame_len: the length of the frame that is going to be protected by the RTS.
1773 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1774 *
1775 * If the RTS is generated in firmware, but the host system must provide
1776 * the duration field, the low-level driver uses this function to receive
1777 * the duration field value in little-endian byteorder.
1778 */
1779__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1780			      struct ieee80211_vif *vif, size_t frame_len,
1781			      const struct ieee80211_tx_info *frame_txctl);
1782
1783/**
1784 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1785 * @hw: pointer obtained from ieee80211_alloc_hw().
1786 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1787 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1788 * @frame_len: the frame length (in octets).
1789 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1790 * @cts: The buffer where to store the CTS-to-self frame.
1791 *
1792 * If the CTS-to-self frames are generated by the host system (i.e., not in
1793 * hardware/firmware), the low-level driver uses this function to receive
1794 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1795 * for calling this function before and CTS-to-self frame is needed.
1796 */
1797void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1798			     struct ieee80211_vif *vif,
1799			     const void *frame, size_t frame_len,
1800			     const struct ieee80211_tx_info *frame_txctl,
1801			     struct ieee80211_cts *cts);
1802
1803/**
1804 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1805 * @hw: pointer obtained from ieee80211_alloc_hw().
1806 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1807 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1808 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1809 *
1810 * If the CTS-to-self is generated in firmware, but the host system must provide
1811 * the duration field, the low-level driver uses this function to receive
1812 * the duration field value in little-endian byteorder.
1813 */
1814__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1815				    struct ieee80211_vif *vif,
1816				    size_t frame_len,
1817				    const struct ieee80211_tx_info *frame_txctl);
1818
1819/**
1820 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1821 * @hw: pointer obtained from ieee80211_alloc_hw().
1822 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1823 * @frame_len: the length of the frame.
1824 * @rate: the rate at which the frame is going to be transmitted.
1825 *
1826 * Calculate the duration field of some generic frame, given its
1827 * length and transmission rate (in 100kbps).
1828 */
1829__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1830					struct ieee80211_vif *vif,
1831					size_t frame_len,
1832					struct ieee80211_rate *rate);
1833
1834/**
1835 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1836 * @hw: pointer as obtained from ieee80211_alloc_hw().
1837 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1838 *
1839 * Function for accessing buffered broadcast and multicast frames. If
1840 * hardware/firmware does not implement buffering of broadcast/multicast
1841 * frames when power saving is used, 802.11 code buffers them in the host
1842 * memory. The low-level driver uses this function to fetch next buffered
1843 * frame. In most cases, this is used when generating beacon frame. This
1844 * function returns a pointer to the next buffered skb or NULL if no more
1845 * buffered frames are available.
1846 *
1847 * Note: buffered frames are returned only after DTIM beacon frame was
1848 * generated with ieee80211_beacon_get() and the low-level driver must thus
1849 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1850 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1851 * does not need to check for DTIM beacons separately and should be able to
1852 * use common code for all beacons.
1853 */
1854struct sk_buff *
1855ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1856
1857/**
1858 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1859 *
1860 * This function computes a TKIP rc4 key for an skb. It computes
1861 * a phase 1 key if needed (iv16 wraps around). This function is to
1862 * be used by drivers which can do HW encryption but need to compute
1863 * to phase 1/2 key in SW.
1864 *
1865 * @keyconf: the parameter passed with the set key
1866 * @skb: the skb for which the key is needed
1867 * @type: TBD
1868 * @key: a buffer to which the key will be written
1869 */
1870void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1871				struct sk_buff *skb,
1872				enum ieee80211_tkip_key_type type, u8 *key);
1873/**
1874 * ieee80211_wake_queue - wake specific queue
1875 * @hw: pointer as obtained from ieee80211_alloc_hw().
1876 * @queue: queue number (counted from zero).
1877 *
1878 * Drivers should use this function instead of netif_wake_queue.
1879 */
1880void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1881
1882/**
1883 * ieee80211_stop_queue - stop specific queue
1884 * @hw: pointer as obtained from ieee80211_alloc_hw().
1885 * @queue: queue number (counted from zero).
1886 *
1887 * Drivers should use this function instead of netif_stop_queue.
1888 */
1889void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1890
1891/**
1892 * ieee80211_queue_stopped - test status of the queue
1893 * @hw: pointer as obtained from ieee80211_alloc_hw().
1894 * @queue: queue number (counted from zero).
1895 *
1896 * Drivers should use this function instead of netif_stop_queue.
1897 */
1898
1899int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1900
1901/**
1902 * ieee80211_stop_queues - stop all queues
1903 * @hw: pointer as obtained from ieee80211_alloc_hw().
1904 *
1905 * Drivers should use this function instead of netif_stop_queue.
1906 */
1907void ieee80211_stop_queues(struct ieee80211_hw *hw);
1908
1909/**
1910 * ieee80211_wake_queues - wake all queues
1911 * @hw: pointer as obtained from ieee80211_alloc_hw().
1912 *
1913 * Drivers should use this function instead of netif_wake_queue.
1914 */
1915void ieee80211_wake_queues(struct ieee80211_hw *hw);
1916
1917/**
1918 * ieee80211_scan_completed - completed hardware scan
1919 *
1920 * When hardware scan offload is used (i.e. the hw_scan() callback is
1921 * assigned) this function needs to be called by the driver to notify
1922 * mac80211 that the scan finished.
1923 *
1924 * @hw: the hardware that finished the scan
1925 * @aborted: set to true if scan was aborted
1926 */
1927void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1928
1929/**
1930 * ieee80211_iterate_active_interfaces - iterate active interfaces
1931 *
1932 * This function iterates over the interfaces associated with a given
1933 * hardware that are currently active and calls the callback for them.
1934 * This function allows the iterator function to sleep, when the iterator
1935 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1936 * be used.
1937 *
1938 * @hw: the hardware struct of which the interfaces should be iterated over
1939 * @iterator: the iterator function to call
1940 * @data: first argument of the iterator function
1941 */
1942void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1943					 void (*iterator)(void *data, u8 *mac,
1944						struct ieee80211_vif *vif),
1945					 void *data);
1946
1947/**
1948 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1949 *
1950 * This function iterates over the interfaces associated with a given
1951 * hardware that are currently active and calls the callback for them.
1952 * This function requires the iterator callback function to be atomic,
1953 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1954 *
1955 * @hw: the hardware struct of which the interfaces should be iterated over
1956 * @iterator: the iterator function to call, cannot sleep
1957 * @data: first argument of the iterator function
1958 */
1959void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1960						void (*iterator)(void *data,
1961						    u8 *mac,
1962						    struct ieee80211_vif *vif),
1963						void *data);
1964
1965/**
1966 * ieee80211_queue_work - add work onto the mac80211 workqueue
1967 *
1968 * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
1969 * This helper ensures drivers are not queueing work when they should not be.
1970 *
1971 * @hw: the hardware struct for the interface we are adding work for
1972 * @work: the work we want to add onto the mac80211 workqueue
1973 */
1974void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
1975
1976/**
1977 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
1978 *
1979 * Drivers and mac80211 use this to queue delayed work onto the mac80211
1980 * workqueue.
1981 *
1982 * @hw: the hardware struct for the interface we are adding work for
1983 * @dwork: delayable work to queue onto the mac80211 workqueue
1984 * @delay: number of jiffies to wait before queueing
1985 */
1986void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
1987				  struct delayed_work *dwork,
1988				  unsigned long delay);
1989
1990/**
1991 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1992 * @hw: pointer as obtained from ieee80211_alloc_hw().
1993 * @ra: receiver address of the BA session recipient
1994 * @tid: the TID to BA on.
1995 *
1996 * Return: success if addBA request was sent, failure otherwise
1997 *
1998 * Although mac80211/low level driver/user space application can estimate
1999 * the need to start aggregation on a certain RA/TID, the session level
2000 * will be managed by the mac80211.
2001 */
2002int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2003
2004/**
2005 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
2006 * @hw: pointer as obtained from ieee80211_alloc_hw().
2007 * @ra: receiver address of the BA session recipient.
2008 * @tid: the TID to BA on.
2009 *
2010 * This function must be called by low level driver once it has
2011 * finished with preparations for the BA session.
2012 */
2013void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2014
2015/**
2016 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2017 * @hw: pointer as obtained from ieee80211_alloc_hw().
2018 * @ra: receiver address of the BA session recipient.
2019 * @tid: the TID to BA on.
2020 *
2021 * This function must be called by low level driver once it has
2022 * finished with preparations for the BA session.
2023 * This version of the function is IRQ-safe.
2024 */
2025void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2026				      u16 tid);
2027
2028/**
2029 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2030 * @hw: pointer as obtained from ieee80211_alloc_hw().
2031 * @ra: receiver address of the BA session recipient
2032 * @tid: the TID to stop BA.
2033 * @initiator: if indicates initiator DELBA frame will be sent.
2034 *
2035 * Return: error if no sta with matching da found, success otherwise
2036 *
2037 * Although mac80211/low level driver/user space application can estimate
2038 * the need to stop aggregation on a certain RA/TID, the session level
2039 * will be managed by the mac80211.
2040 */
2041int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2042				 u8 *ra, u16 tid,
2043				 enum ieee80211_back_parties initiator);
2044
2045/**
2046 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2047 * @hw: pointer as obtained from ieee80211_alloc_hw().
2048 * @ra: receiver address of the BA session recipient.
2049 * @tid: the desired TID to BA on.
2050 *
2051 * This function must be called by low level driver once it has
2052 * finished with preparations for the BA session tear down.
2053 */
2054void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2055
2056/**
2057 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2058 * @hw: pointer as obtained from ieee80211_alloc_hw().
2059 * @ra: receiver address of the BA session recipient.
2060 * @tid: the desired TID to BA on.
2061 *
2062 * This function must be called by low level driver once it has
2063 * finished with preparations for the BA session tear down.
2064 * This version of the function is IRQ-safe.
2065 */
2066void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2067				     u16 tid);
2068
2069/**
2070 * ieee80211_find_sta - find a station
2071 *
2072 * @hw: pointer as obtained from ieee80211_alloc_hw()
2073 * @addr: station's address
2074 *
2075 * This function must be called under RCU lock and the
2076 * resulting pointer is only valid under RCU lock as well.
2077 */
2078struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2079					 const u8 *addr);
2080
2081/**
2082 * ieee80211_beacon_loss - inform hardware does not receive beacons
2083 *
2084 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2085 *
2086 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2087 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2088 * hardware is not receiving beacons with this function.
2089 */
2090void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2091
2092/* Rate control API */
2093
2094/**
2095 * enum rate_control_changed - flags to indicate which parameter changed
2096 *
2097 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2098 *	changed, rate control algorithm can update its internal state if needed.
2099 */
2100enum rate_control_changed {
2101	IEEE80211_RC_HT_CHANGED = BIT(0)
2102};
2103
2104/**
2105 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2106 *
2107 * @hw: The hardware the algorithm is invoked for.
2108 * @sband: The band this frame is being transmitted on.
2109 * @bss_conf: the current BSS configuration
2110 * @reported_rate: The rate control algorithm can fill this in to indicate
2111 *	which rate should be reported to userspace as the current rate and
2112 *	used for rate calculations in the mesh network.
2113 * @rts: whether RTS will be used for this frame because it is longer than the
2114 *	RTS threshold
2115 * @short_preamble: whether mac80211 will request short-preamble transmission
2116 *	if the selected rate supports it
2117 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2118 * @skb: the skb that will be transmitted, the control information in it needs
2119 *	to be filled in
2120 */
2121struct ieee80211_tx_rate_control {
2122	struct ieee80211_hw *hw;
2123	struct ieee80211_supported_band *sband;
2124	struct ieee80211_bss_conf *bss_conf;
2125	struct sk_buff *skb;
2126	struct ieee80211_tx_rate reported_rate;
2127	bool rts, short_preamble;
2128	u8 max_rate_idx;
2129};
2130
2131struct rate_control_ops {
2132	struct module *module;
2133	const char *name;
2134	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2135	void (*free)(void *priv);
2136
2137	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2138	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2139			  struct ieee80211_sta *sta, void *priv_sta);
2140	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2141			    struct ieee80211_sta *sta,
2142			    void *priv_sta, u32 changed);
2143	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2144			 void *priv_sta);
2145
2146	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2147			  struct ieee80211_sta *sta, void *priv_sta,
2148			  struct sk_buff *skb);
2149	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2150			 struct ieee80211_tx_rate_control *txrc);
2151
2152	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2153				struct dentry *dir);
2154	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2155};
2156
2157static inline int rate_supported(struct ieee80211_sta *sta,
2158				 enum ieee80211_band band,
2159				 int index)
2160{
2161	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2162}
2163
2164/**
2165 * rate_control_send_low - helper for drivers for management/no-ack frames
2166 *
2167 * Rate control algorithms that agree to use the lowest rate to
2168 * send management frames and NO_ACK data with the respective hw
2169 * retries should use this in the beginning of their mac80211 get_rate
2170 * callback. If true is returned the rate control can simply return.
2171 * If false is returned we guarantee that sta and sta and priv_sta is
2172 * not null.
2173 *
2174 * Rate control algorithms wishing to do more intelligent selection of
2175 * rate for multicast/broadcast frames may choose to not use this.
2176 *
2177 * @sta: &struct ieee80211_sta pointer to the target destination. Note
2178 * 	that this may be null.
2179 * @priv_sta: private rate control structure. This may be null.
2180 * @txrc: rate control information we sholud populate for mac80211.
2181 */
2182bool rate_control_send_low(struct ieee80211_sta *sta,
2183			   void *priv_sta,
2184			   struct ieee80211_tx_rate_control *txrc);
2185
2186
2187static inline s8
2188rate_lowest_index(struct ieee80211_supported_band *sband,
2189		  struct ieee80211_sta *sta)
2190{
2191	int i;
2192
2193	for (i = 0; i < sband->n_bitrates; i++)
2194		if (rate_supported(sta, sband->band, i))
2195			return i;
2196
2197	/* warn when we cannot find a rate. */
2198	WARN_ON(1);
2199
2200	return 0;
2201}
2202
2203static inline
2204bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2205			      struct ieee80211_sta *sta)
2206{
2207	unsigned int i;
2208
2209	for (i = 0; i < sband->n_bitrates; i++)
2210		if (rate_supported(sta, sband->band, i))
2211			return true;
2212	return false;
2213}
2214
2215int ieee80211_rate_control_register(struct rate_control_ops *ops);
2216void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2217
2218static inline bool
2219conf_is_ht20(struct ieee80211_conf *conf)
2220{
2221	return conf->channel_type == NL80211_CHAN_HT20;
2222}
2223
2224static inline bool
2225conf_is_ht40_minus(struct ieee80211_conf *conf)
2226{
2227	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2228}
2229
2230static inline bool
2231conf_is_ht40_plus(struct ieee80211_conf *conf)
2232{
2233	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2234}
2235
2236static inline bool
2237conf_is_ht40(struct ieee80211_conf *conf)
2238{
2239	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2240}
2241
2242static inline bool
2243conf_is_ht(struct ieee80211_conf *conf)
2244{
2245	return conf->channel_type != NL80211_CHAN_NO_HT;
2246}
2247
2248#endif /* MAC80211_H */
2249