mac80211.h revision b770b43e95a66587fbd8c1841de83da87fbf23ea
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80enum ieee80211_max_queues {
81	IEEE80211_MAX_QUEUES =		4,
82};
83
84/**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 *	2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96struct ieee80211_tx_queue_params {
97	u16 txop;
98	u16 cw_min;
99	u16 cw_max;
100	u8 aifs;
101};
102
103/**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110struct ieee80211_tx_queue_stats {
111	unsigned int len;
112	unsigned int limit;
113	unsigned int count;
114};
115
116struct ieee80211_low_level_stats {
117	unsigned int dot11ACKFailureCount;
118	unsigned int dot11RTSFailureCount;
119	unsigned int dot11FCSErrorCount;
120	unsigned int dot11RTSSuccessCount;
121};
122
123/**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 *	also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 *	reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 *	new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 *	enabled/disabled (beaconing modes)
143 */
144enum ieee80211_bss_change {
145	BSS_CHANGED_ASSOC		= 1<<0,
146	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
147	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
148	BSS_CHANGED_ERP_SLOT		= 1<<3,
149	BSS_CHANGED_HT                  = 1<<4,
150	BSS_CHANGED_BASIC_RATES		= 1<<5,
151	BSS_CHANGED_BEACON_INT		= 1<<6,
152	BSS_CHANGED_BSSID		= 1<<7,
153	BSS_CHANGED_BEACON		= 1<<8,
154	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
155};
156
157/**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 *	if the hardware cannot handle this it must set the
168 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 *	if the hardware cannot handle this it must set the
171 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @basic_rates: bitmap of basic rates, each bit stands for an
177 *	index into the rate table configured by the driver in
178 *	the current band.
179 * @bssid: The BSSID for this BSS
180 * @enable_beacon: whether beaconing should be enabled or not
181 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
182 *	This field is only valid when the channel type is one of the HT types.
183 */
184struct ieee80211_bss_conf {
185	const u8 *bssid;
186	/* association related data */
187	bool assoc;
188	u16 aid;
189	/* erp related data */
190	bool use_cts_prot;
191	bool use_short_preamble;
192	bool use_short_slot;
193	bool enable_beacon;
194	u8 dtim_period;
195	u16 beacon_int;
196	u16 assoc_capability;
197	u64 timestamp;
198	u32 basic_rates;
199	u16 ht_operation_mode;
200};
201
202/**
203 * enum mac80211_tx_control_flags - flags to describe transmission information/status
204 *
205 * These flags are used with the @flags member of &ieee80211_tx_info.
206 *
207 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
208 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
209 *	number to this frame, taking care of not overwriting the fragment
210 *	number and increasing the sequence number only when the
211 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
212 *	assign sequence numbers to QoS-data frames but cannot do so correctly
213 *	for non-QoS-data and management frames because beacons need them from
214 *	that counter as well and mac80211 cannot guarantee proper sequencing.
215 *	If this flag is set, the driver should instruct the hardware to
216 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
217 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
218 *	beacons and always be clear for frames without a sequence number field.
219 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
220 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
221 *	station
222 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
223 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
224 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
225 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
226 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
227 *	because the destination STA was in powersave mode.
228 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
229 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
230 * 	is for the whole aggregation.
231 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
232 * 	so consider using block ack request (BAR).
233 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
234 *	set by rate control algorithms to indicate probe rate, will
235 *	be cleared for fragmented frames (except on the last fragment)
236 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
237 *	set this flag in the driver; indicates that the rate control
238 *	algorithm was used and should be notified of TX status
239 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
240 *	used to indicate that a pending frame requires TX processing before
241 *	it can be sent out.
242 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
243 *	used to indicate that a frame was already retried due to PS
244 */
245enum mac80211_tx_control_flags {
246	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
247	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
248	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
249	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
250	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
251	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
252	IEEE80211_TX_CTL_AMPDU			= BIT(6),
253	IEEE80211_TX_CTL_INJECTED		= BIT(7),
254	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
255	IEEE80211_TX_STAT_ACK			= BIT(9),
256	IEEE80211_TX_STAT_AMPDU			= BIT(10),
257	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
258	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
259	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
260	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
261	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
262};
263
264/**
265 * enum mac80211_rate_control_flags - per-rate flags set by the
266 *	Rate Control algorithm.
267 *
268 * These flags are set by the Rate control algorithm for each rate during tx,
269 * in the @flags member of struct ieee80211_tx_rate.
270 *
271 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
272 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
273 *	This is set if the current BSS requires ERP protection.
274 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
275 * @IEEE80211_TX_RC_MCS: HT rate.
276 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
277 *	Greenfield mode.
278 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
279 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
280 *	adjacent 20 MHz channels, if the current channel type is
281 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
282 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
283 */
284enum mac80211_rate_control_flags {
285	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
286	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
287	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
288
289	/* rate index is an MCS rate number instead of an index */
290	IEEE80211_TX_RC_MCS			= BIT(3),
291	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
292	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
293	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
294	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
295};
296
297
298/* there are 40 bytes if you don't need the rateset to be kept */
299#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
300
301/* if you do need the rateset, then you have less space */
302#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
303
304/* maximum number of rate stages */
305#define IEEE80211_TX_MAX_RATES	5
306
307/**
308 * struct ieee80211_tx_rate - rate selection/status
309 *
310 * @idx: rate index to attempt to send with
311 * @flags: rate control flags (&enum mac80211_rate_control_flags)
312 * @count: number of tries in this rate before going to the next rate
313 *
314 * A value of -1 for @idx indicates an invalid rate and, if used
315 * in an array of retry rates, that no more rates should be tried.
316 *
317 * When used for transmit status reporting, the driver should
318 * always report the rate along with the flags it used.
319 */
320struct ieee80211_tx_rate {
321	s8 idx;
322	u8 count;
323	u8 flags;
324} __attribute__((packed));
325
326/**
327 * struct ieee80211_tx_info - skb transmit information
328 *
329 * This structure is placed in skb->cb for three uses:
330 *  (1) mac80211 TX control - mac80211 tells the driver what to do
331 *  (2) driver internal use (if applicable)
332 *  (3) TX status information - driver tells mac80211 what happened
333 *
334 * The TX control's sta pointer is only valid during the ->tx call,
335 * it may be NULL.
336 *
337 * @flags: transmit info flags, defined above
338 * @band: the band to transmit on (use for checking for races)
339 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
340 * @pad: padding, ignore
341 * @control: union for control data
342 * @status: union for status data
343 * @driver_data: array of driver_data pointers
344 * @ampdu_ack_len: number of aggregated frames.
345 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
346 * @ampdu_ack_map: block ack bit map for the aggregation.
347 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
348 * @ack_signal: signal strength of the ACK frame
349 */
350struct ieee80211_tx_info {
351	/* common information */
352	u32 flags;
353	u8 band;
354
355	u8 antenna_sel_tx;
356
357	/* 2 byte hole */
358	u8 pad[2];
359
360	union {
361		struct {
362			union {
363				/* rate control */
364				struct {
365					struct ieee80211_tx_rate rates[
366						IEEE80211_TX_MAX_RATES];
367					s8 rts_cts_rate_idx;
368				};
369				/* only needed before rate control */
370				unsigned long jiffies;
371			};
372			/* NB: vif can be NULL for injected frames */
373			struct ieee80211_vif *vif;
374			struct ieee80211_key_conf *hw_key;
375			struct ieee80211_sta *sta;
376		} control;
377		struct {
378			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
379			u8 ampdu_ack_len;
380			u64 ampdu_ack_map;
381			int ack_signal;
382			/* 8 bytes free */
383		} status;
384		struct {
385			struct ieee80211_tx_rate driver_rates[
386				IEEE80211_TX_MAX_RATES];
387			void *rate_driver_data[
388				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
389		};
390		void *driver_data[
391			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
392	};
393};
394
395static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
396{
397	return (struct ieee80211_tx_info *)skb->cb;
398}
399
400static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
401{
402	return (struct ieee80211_rx_status *)skb->cb;
403}
404
405/**
406 * ieee80211_tx_info_clear_status - clear TX status
407 *
408 * @info: The &struct ieee80211_tx_info to be cleared.
409 *
410 * When the driver passes an skb back to mac80211, it must report
411 * a number of things in TX status. This function clears everything
412 * in the TX status but the rate control information (it does clear
413 * the count since you need to fill that in anyway).
414 *
415 * NOTE: You can only use this function if you do NOT use
416 *	 info->driver_data! Use info->rate_driver_data
417 *	 instead if you need only the less space that allows.
418 */
419static inline void
420ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
421{
422	int i;
423
424	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
425		     offsetof(struct ieee80211_tx_info, control.rates));
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, driver_rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
429	/* clear the rate counts */
430	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
431		info->status.rates[i].count = 0;
432
433	BUILD_BUG_ON(
434	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
435	memset(&info->status.ampdu_ack_len, 0,
436	       sizeof(struct ieee80211_tx_info) -
437	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
438}
439
440
441/**
442 * enum mac80211_rx_flags - receive flags
443 *
444 * These flags are used with the @flag member of &struct ieee80211_rx_status.
445 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
446 *	Use together with %RX_FLAG_MMIC_STRIPPED.
447 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
448 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
449 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
450 *	verification has been done by the hardware.
451 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
452 *	If this flag is set, the stack cannot do any replay detection
453 *	hence the driver or hardware will have to do that.
454 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
455 *	the frame.
456 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
457 *	the frame.
458 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
459 *	is valid. This is useful in monitor mode and necessary for beacon frames
460 *	to enable IBSS merging.
461 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
462 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
463 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
464 * @RX_FLAG_SHORT_GI: Short guard interval was used
465 */
466enum mac80211_rx_flags {
467	RX_FLAG_MMIC_ERROR	= 1<<0,
468	RX_FLAG_DECRYPTED	= 1<<1,
469	RX_FLAG_RADIOTAP	= 1<<2,
470	RX_FLAG_MMIC_STRIPPED	= 1<<3,
471	RX_FLAG_IV_STRIPPED	= 1<<4,
472	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
473	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
474	RX_FLAG_TSFT		= 1<<7,
475	RX_FLAG_SHORTPRE	= 1<<8,
476	RX_FLAG_HT		= 1<<9,
477	RX_FLAG_40MHZ		= 1<<10,
478	RX_FLAG_SHORT_GI	= 1<<11,
479};
480
481/**
482 * struct ieee80211_rx_status - receive status
483 *
484 * The low-level driver should provide this information (the subset
485 * supported by hardware) to the 802.11 code with each received
486 * frame, in the skb's control buffer (cb).
487 *
488 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
489 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
490 * @band: the active band when this frame was received
491 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
492 * @signal: signal strength when receiving this frame, either in dBm, in dB or
493 *	unspecified depending on the hardware capabilities flags
494 *	@IEEE80211_HW_SIGNAL_*
495 * @noise: noise when receiving this frame, in dBm.
496 * @qual: overall signal quality indication, in percent (0-100).
497 * @antenna: antenna used
498 * @rate_idx: index of data rate into band's supported rates or MCS index if
499 *	HT rates are use (RX_FLAG_HT)
500 * @flag: %RX_FLAG_*
501 */
502struct ieee80211_rx_status {
503	u64 mactime;
504	enum ieee80211_band band;
505	int freq;
506	int signal;
507	int noise;
508	int qual;
509	int antenna;
510	int rate_idx;
511	int flag;
512};
513
514/**
515 * enum ieee80211_conf_flags - configuration flags
516 *
517 * Flags to define PHY configuration options
518 *
519 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
520 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
521 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
522 *	the driver should be prepared to handle configuration requests but
523 *	may turn the device off as much as possible. Typically, this flag will
524 *	be set when an interface is set UP but not associated or scanning, but
525 *	it can also be unset in that case when monitor interfaces are active.
526 */
527enum ieee80211_conf_flags {
528	IEEE80211_CONF_RADIOTAP		= (1<<0),
529	IEEE80211_CONF_PS		= (1<<1),
530	IEEE80211_CONF_IDLE		= (1<<2),
531};
532
533
534/**
535 * enum ieee80211_conf_changed - denotes which configuration changed
536 *
537 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
538 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
539 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
540 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
541 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
542 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
543 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
544 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
545 */
546enum ieee80211_conf_changed {
547	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
548	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
549	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
550	IEEE80211_CONF_CHANGE_PS		= BIT(4),
551	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
552	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
553	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
554	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
555};
556
557static inline __deprecated enum ieee80211_conf_changed
558__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
559{
560	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
561}
562#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
563	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
564
565/**
566 * struct ieee80211_conf - configuration of the device
567 *
568 * This struct indicates how the driver shall configure the hardware.
569 *
570 * @flags: configuration flags defined above
571 *
572 * @radio_enabled: when zero, driver is required to switch off the radio.
573 * @beacon_int: DEPRECATED, DO NOT USE
574 *
575 * @listen_interval: listen interval in units of beacon interval
576 * @max_sleep_period: the maximum number of beacon intervals to sleep for
577 *	before checking the beacon for a TIM bit (managed mode only); this
578 *	value will be only achievable between DTIM frames, the hardware
579 *	needs to check for the multicast traffic bit in DTIM beacons.
580 *	This variable is valid only when the CONF_PS flag is set.
581 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
582 *	powersave documentation below. This variable is valid only when
583 *	the CONF_PS flag is set.
584 *
585 * @power_level: requested transmit power (in dBm)
586 *
587 * @channel: the channel to tune to
588 * @channel_type: the channel (HT) type
589 *
590 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
591 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
592 *    but actually means the number of transmissions not the number of retries
593 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
594 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
595 *    number of transmissions not the number of retries
596 */
597struct ieee80211_conf {
598	int __deprecated beacon_int;
599	u32 flags;
600	int power_level, dynamic_ps_timeout;
601	int max_sleep_period;
602
603	u16 listen_interval;
604	bool __deprecated radio_enabled;
605
606	u8 long_frame_max_tx_count, short_frame_max_tx_count;
607
608	struct ieee80211_channel *channel;
609	enum nl80211_channel_type channel_type;
610};
611
612/**
613 * struct ieee80211_vif - per-interface data
614 *
615 * Data in this structure is continually present for driver
616 * use during the life of a virtual interface.
617 *
618 * @type: type of this virtual interface
619 * @bss_conf: BSS configuration for this interface, either our own
620 *	or the BSS we're associated to
621 * @drv_priv: data area for driver use, will always be aligned to
622 *	sizeof(void *).
623 */
624struct ieee80211_vif {
625	enum nl80211_iftype type;
626	struct ieee80211_bss_conf bss_conf;
627	/* must be last */
628	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
629};
630
631static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
632{
633#ifdef CONFIG_MAC80211_MESH
634	return vif->type == NL80211_IFTYPE_MESH_POINT;
635#endif
636	return false;
637}
638
639/**
640 * struct ieee80211_if_init_conf - initial configuration of an interface
641 *
642 * @vif: pointer to a driver-use per-interface structure. The pointer
643 *	itself is also used for various functions including
644 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
645 * @type: one of &enum nl80211_iftype constants. Determines the type of
646 *	added/removed interface.
647 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
648 *	until the interface is removed (i.e. it cannot be used after
649 *	remove_interface() callback was called for this interface).
650 *
651 * This structure is used in add_interface() and remove_interface()
652 * callbacks of &struct ieee80211_hw.
653 *
654 * When you allow multiple interfaces to be added to your PHY, take care
655 * that the hardware can actually handle multiple MAC addresses. However,
656 * also take care that when there's no interface left with mac_addr != %NULL
657 * you remove the MAC address from the device to avoid acknowledging packets
658 * in pure monitor mode.
659 */
660struct ieee80211_if_init_conf {
661	enum nl80211_iftype type;
662	struct ieee80211_vif *vif;
663	void *mac_addr;
664};
665
666/**
667 * enum ieee80211_key_alg - key algorithm
668 * @ALG_WEP: WEP40 or WEP104
669 * @ALG_TKIP: TKIP
670 * @ALG_CCMP: CCMP (AES)
671 * @ALG_AES_CMAC: AES-128-CMAC
672 */
673enum ieee80211_key_alg {
674	ALG_WEP,
675	ALG_TKIP,
676	ALG_CCMP,
677	ALG_AES_CMAC,
678};
679
680/**
681 * enum ieee80211_key_flags - key flags
682 *
683 * These flags are used for communication about keys between the driver
684 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
685 *
686 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
687 *	that the STA this key will be used with could be using QoS.
688 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
689 *	driver to indicate that it requires IV generation for this
690 *	particular key.
691 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
692 *	the driver for a TKIP key if it requires Michael MIC
693 *	generation in software.
694 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
695 *	that the key is pairwise rather then a shared key.
696 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
697 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
698 *	be done in software.
699 */
700enum ieee80211_key_flags {
701	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
702	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
703	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
704	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
705	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
706};
707
708/**
709 * struct ieee80211_key_conf - key information
710 *
711 * This key information is given by mac80211 to the driver by
712 * the set_key() callback in &struct ieee80211_ops.
713 *
714 * @hw_key_idx: To be set by the driver, this is the key index the driver
715 *	wants to be given when a frame is transmitted and needs to be
716 *	encrypted in hardware.
717 * @alg: The key algorithm.
718 * @flags: key flags, see &enum ieee80211_key_flags.
719 * @keyidx: the key index (0-3)
720 * @keylen: key material length
721 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
722 * 	data block:
723 * 	- Temporal Encryption Key (128 bits)
724 * 	- Temporal Authenticator Tx MIC Key (64 bits)
725 * 	- Temporal Authenticator Rx MIC Key (64 bits)
726 * @icv_len: The ICV length for this key type
727 * @iv_len: The IV length for this key type
728 */
729struct ieee80211_key_conf {
730	enum ieee80211_key_alg alg;
731	u8 icv_len;
732	u8 iv_len;
733	u8 hw_key_idx;
734	u8 flags;
735	s8 keyidx;
736	u8 keylen;
737	u8 key[0];
738};
739
740/**
741 * enum set_key_cmd - key command
742 *
743 * Used with the set_key() callback in &struct ieee80211_ops, this
744 * indicates whether a key is being removed or added.
745 *
746 * @SET_KEY: a key is set
747 * @DISABLE_KEY: a key must be disabled
748 */
749enum set_key_cmd {
750	SET_KEY, DISABLE_KEY,
751};
752
753/**
754 * struct ieee80211_sta - station table entry
755 *
756 * A station table entry represents a station we are possibly
757 * communicating with. Since stations are RCU-managed in
758 * mac80211, any ieee80211_sta pointer you get access to must
759 * either be protected by rcu_read_lock() explicitly or implicitly,
760 * or you must take good care to not use such a pointer after a
761 * call to your sta_notify callback that removed it.
762 *
763 * @addr: MAC address
764 * @aid: AID we assigned to the station if we're an AP
765 * @supp_rates: Bitmap of supported rates (per band)
766 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
767 * @drv_priv: data area for driver use, will always be aligned to
768 *	sizeof(void *), size is determined in hw information.
769 */
770struct ieee80211_sta {
771	u32 supp_rates[IEEE80211_NUM_BANDS];
772	u8 addr[ETH_ALEN];
773	u16 aid;
774	struct ieee80211_sta_ht_cap ht_cap;
775
776	/* must be last */
777	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
778};
779
780/**
781 * enum sta_notify_cmd - sta notify command
782 *
783 * Used with the sta_notify() callback in &struct ieee80211_ops, this
784 * indicates addition and removal of a station to station table,
785 * or if a associated station made a power state transition.
786 *
787 * @STA_NOTIFY_ADD: a station was added to the station table
788 * @STA_NOTIFY_REMOVE: a station being removed from the station table
789 * @STA_NOTIFY_SLEEP: a station is now sleeping
790 * @STA_NOTIFY_AWAKE: a sleeping station woke up
791 */
792enum sta_notify_cmd {
793	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
794	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
795};
796
797/**
798 * enum ieee80211_tkip_key_type - get tkip key
799 *
800 * Used by drivers which need to get a tkip key for skb. Some drivers need a
801 * phase 1 key, others need a phase 2 key. A single function allows the driver
802 * to get the key, this enum indicates what type of key is required.
803 *
804 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
805 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
806 */
807enum ieee80211_tkip_key_type {
808	IEEE80211_TKIP_P1_KEY,
809	IEEE80211_TKIP_P2_KEY,
810};
811
812/**
813 * enum ieee80211_hw_flags - hardware flags
814 *
815 * These flags are used to indicate hardware capabilities to
816 * the stack. Generally, flags here should have their meaning
817 * done in a way that the simplest hardware doesn't need setting
818 * any particular flags. There are some exceptions to this rule,
819 * however, so you are advised to review these flags carefully.
820 *
821 * @IEEE80211_HW_RX_INCLUDES_FCS:
822 *	Indicates that received frames passed to the stack include
823 *	the FCS at the end.
824 *
825 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
826 *	Some wireless LAN chipsets buffer broadcast/multicast frames
827 *	for power saving stations in the hardware/firmware and others
828 *	rely on the host system for such buffering. This option is used
829 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
830 *	multicast frames when there are power saving stations so that
831 *	the driver can fetch them with ieee80211_get_buffered_bc().
832 *
833 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
834 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
835 *
836 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
837 *	Hardware is not capable of receiving frames with short preamble on
838 *	the 2.4 GHz band.
839 *
840 * @IEEE80211_HW_SIGNAL_UNSPEC:
841 *	Hardware can provide signal values but we don't know its units. We
842 *	expect values between 0 and @max_signal.
843 *	If possible please provide dB or dBm instead.
844 *
845 * @IEEE80211_HW_SIGNAL_DBM:
846 *	Hardware gives signal values in dBm, decibel difference from
847 *	one milliwatt. This is the preferred method since it is standardized
848 *	between different devices. @max_signal does not need to be set.
849 *
850 * @IEEE80211_HW_NOISE_DBM:
851 *	Hardware can provide noise (radio interference) values in units dBm,
852 *      decibel difference from one milliwatt.
853 *
854 * @IEEE80211_HW_SPECTRUM_MGMT:
855 * 	Hardware supports spectrum management defined in 802.11h
856 * 	Measurement, Channel Switch, Quieting, TPC
857 *
858 * @IEEE80211_HW_AMPDU_AGGREGATION:
859 *	Hardware supports 11n A-MPDU aggregation.
860 *
861 * @IEEE80211_HW_SUPPORTS_PS:
862 *	Hardware has power save support (i.e. can go to sleep).
863 *
864 * @IEEE80211_HW_PS_NULLFUNC_STACK:
865 *	Hardware requires nullfunc frame handling in stack, implies
866 *	stack support for dynamic PS.
867 *
868 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
869 *	Hardware has support for dynamic PS.
870 *
871 * @IEEE80211_HW_MFP_CAPABLE:
872 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
873 *
874 * @IEEE80211_HW_BEACON_FILTER:
875 *	Hardware supports dropping of irrelevant beacon frames to
876 *	avoid waking up cpu.
877 */
878enum ieee80211_hw_flags {
879	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
880	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
881	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
882	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
883	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
884	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
885	IEEE80211_HW_NOISE_DBM				= 1<<7,
886	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
887	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
888	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
889	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
890	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
891	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
892	IEEE80211_HW_BEACON_FILTER			= 1<<14,
893};
894
895/**
896 * struct ieee80211_hw - hardware information and state
897 *
898 * This structure contains the configuration and hardware
899 * information for an 802.11 PHY.
900 *
901 * @wiphy: This points to the &struct wiphy allocated for this
902 *	802.11 PHY. You must fill in the @perm_addr and @dev
903 *	members of this structure using SET_IEEE80211_DEV()
904 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
905 *	bands (with channels, bitrates) are registered here.
906 *
907 * @conf: &struct ieee80211_conf, device configuration, don't use.
908 *
909 * @workqueue: single threaded workqueue available for driver use,
910 *	allocated by mac80211 on registration and flushed when an
911 *	interface is removed.
912 *	NOTICE: All work performed on this workqueue must not
913 *	acquire the RTNL lock.
914 *
915 * @priv: pointer to private area that was allocated for driver use
916 *	along with this structure.
917 *
918 * @flags: hardware flags, see &enum ieee80211_hw_flags.
919 *
920 * @extra_tx_headroom: headroom to reserve in each transmit skb
921 *	for use by the driver (e.g. for transmit headers.)
922 *
923 * @channel_change_time: time (in microseconds) it takes to change channels.
924 *
925 * @max_signal: Maximum value for signal (rssi) in RX information, used
926 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
927 *
928 * @max_listen_interval: max listen interval in units of beacon interval
929 *     that HW supports
930 *
931 * @queues: number of available hardware transmit queues for
932 *	data packets. WMM/QoS requires at least four, these
933 *	queues need to have configurable access parameters.
934 *
935 * @rate_control_algorithm: rate control algorithm for this hardware.
936 *	If unset (NULL), the default algorithm will be used. Must be
937 *	set before calling ieee80211_register_hw().
938 *
939 * @vif_data_size: size (in bytes) of the drv_priv data area
940 *	within &struct ieee80211_vif.
941 * @sta_data_size: size (in bytes) of the drv_priv data area
942 *	within &struct ieee80211_sta.
943 *
944 * @max_rates: maximum number of alternate rate retry stages
945 * @max_rate_tries: maximum number of tries for each stage
946 */
947struct ieee80211_hw {
948	struct ieee80211_conf conf;
949	struct wiphy *wiphy;
950	struct workqueue_struct *workqueue;
951	const char *rate_control_algorithm;
952	void *priv;
953	u32 flags;
954	unsigned int extra_tx_headroom;
955	int channel_change_time;
956	int vif_data_size;
957	int sta_data_size;
958	u16 queues;
959	u16 max_listen_interval;
960	s8 max_signal;
961	u8 max_rates;
962	u8 max_rate_tries;
963};
964
965/**
966 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
967 *
968 * @wiphy: the &struct wiphy which we want to query
969 *
970 * mac80211 drivers can use this to get to their respective
971 * &struct ieee80211_hw. Drivers wishing to get to their own private
972 * structure can then access it via hw->priv. Note that mac802111 drivers should
973 * not use wiphy_priv() to try to get their private driver structure as this
974 * is already used internally by mac80211.
975 */
976struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
977
978/**
979 * SET_IEEE80211_DEV - set device for 802.11 hardware
980 *
981 * @hw: the &struct ieee80211_hw to set the device for
982 * @dev: the &struct device of this 802.11 device
983 */
984static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
985{
986	set_wiphy_dev(hw->wiphy, dev);
987}
988
989/**
990 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
991 *
992 * @hw: the &struct ieee80211_hw to set the MAC address for
993 * @addr: the address to set
994 */
995static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
996{
997	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
998}
999
1000static inline struct ieee80211_rate *
1001ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1002		      const struct ieee80211_tx_info *c)
1003{
1004	if (WARN_ON(c->control.rates[0].idx < 0))
1005		return NULL;
1006	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1007}
1008
1009static inline struct ieee80211_rate *
1010ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1011			   const struct ieee80211_tx_info *c)
1012{
1013	if (c->control.rts_cts_rate_idx < 0)
1014		return NULL;
1015	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1016}
1017
1018static inline struct ieee80211_rate *
1019ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1020			     const struct ieee80211_tx_info *c, int idx)
1021{
1022	if (c->control.rates[idx + 1].idx < 0)
1023		return NULL;
1024	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1025}
1026
1027/**
1028 * DOC: Hardware crypto acceleration
1029 *
1030 * mac80211 is capable of taking advantage of many hardware
1031 * acceleration designs for encryption and decryption operations.
1032 *
1033 * The set_key() callback in the &struct ieee80211_ops for a given
1034 * device is called to enable hardware acceleration of encryption and
1035 * decryption. The callback takes a @sta parameter that will be NULL
1036 * for default keys or keys used for transmission only, or point to
1037 * the station information for the peer for individual keys.
1038 * Multiple transmission keys with the same key index may be used when
1039 * VLANs are configured for an access point.
1040 *
1041 * When transmitting, the TX control data will use the @hw_key_idx
1042 * selected by the driver by modifying the &struct ieee80211_key_conf
1043 * pointed to by the @key parameter to the set_key() function.
1044 *
1045 * The set_key() call for the %SET_KEY command should return 0 if
1046 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1047 * added; if you return 0 then hw_key_idx must be assigned to the
1048 * hardware key index, you are free to use the full u8 range.
1049 *
1050 * When the cmd is %DISABLE_KEY then it must succeed.
1051 *
1052 * Note that it is permissible to not decrypt a frame even if a key
1053 * for it has been uploaded to hardware, the stack will not make any
1054 * decision based on whether a key has been uploaded or not but rather
1055 * based on the receive flags.
1056 *
1057 * The &struct ieee80211_key_conf structure pointed to by the @key
1058 * parameter is guaranteed to be valid until another call to set_key()
1059 * removes it, but it can only be used as a cookie to differentiate
1060 * keys.
1061 *
1062 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1063 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1064 * handler.
1065 * The update_tkip_key() call updates the driver with the new phase 1 key.
1066 * This happens everytime the iv16 wraps around (every 65536 packets). The
1067 * set_key() call will happen only once for each key (unless the AP did
1068 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1069 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1070 * handler is software decryption with wrap around of iv16.
1071 */
1072
1073/**
1074 * DOC: Powersave support
1075 *
1076 * mac80211 has support for various powersave implementations.
1077 *
1078 * First, it can support hardware that handles all powersaving by
1079 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1080 * hardware flag. In that case, it will be told about the desired
1081 * powersave mode depending on the association status, and the driver
1082 * must take care of sending nullfunc frames when necessary, i.e. when
1083 * entering and leaving powersave mode. The driver is required to look at
1084 * the AID in beacons and signal to the AP that it woke up when it finds
1085 * traffic directed to it. This mode supports dynamic PS by simply
1086 * enabling/disabling PS.
1087 *
1088 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1089 * flag to indicate that it can support dynamic PS mode itself (see below).
1090 *
1091 * Other hardware designs cannot send nullfunc frames by themselves and also
1092 * need software support for parsing the TIM bitmap. This is also supported
1093 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1094 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1095 * required to pass up beacons. The hardware is still required to handle
1096 * waking up for multicast traffic; if it cannot the driver must handle that
1097 * as best as it can, mac80211 is too slow.
1098 *
1099 * Dynamic powersave mode is an extension to normal powersave mode in which
1100 * the hardware stays awake for a user-specified period of time after sending
1101 * a frame so that reply frames need not be buffered and therefore delayed
1102 * to the next wakeup. This can either be supported by hardware, in which case
1103 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1104 * value, or by the stack if all nullfunc handling is in the stack.
1105 */
1106
1107/**
1108 * DOC: Beacon filter support
1109 *
1110 * Some hardware have beacon filter support to reduce host cpu wakeups
1111 * which will reduce system power consumption. It usuallly works so that
1112 * the firmware creates a checksum of the beacon but omits all constantly
1113 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1114 * beacon is forwarded to the host, otherwise it will be just dropped. That
1115 * way the host will only receive beacons where some relevant information
1116 * (for example ERP protection or WMM settings) have changed.
1117 *
1118 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1119 * hardware capability. The driver needs to enable beacon filter support
1120 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1121 * power save is enabled, the stack will not check for beacon loss and the
1122 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1123 *
1124 * The time (or number of beacons missed) until the firmware notifies the
1125 * driver of a beacon loss event (which in turn causes the driver to call
1126 * ieee80211_beacon_loss()) should be configurable and will be controlled
1127 * by mac80211 and the roaming algorithm in the future.
1128 *
1129 * Since there may be constantly changing information elements that nothing
1130 * in the software stack cares about, we will, in the future, have mac80211
1131 * tell the driver which information elements are interesting in the sense
1132 * that we want to see changes in them. This will include
1133 *  - a list of information element IDs
1134 *  - a list of OUIs for the vendor information element
1135 *
1136 * Ideally, the hardware would filter out any beacons without changes in the
1137 * requested elements, but if it cannot support that it may, at the expense
1138 * of some efficiency, filter out only a subset. For example, if the device
1139 * doesn't support checking for OUIs it should pass up all changes in all
1140 * vendor information elements.
1141 *
1142 * Note that change, for the sake of simplification, also includes information
1143 * elements appearing or disappearing from the beacon.
1144 *
1145 * Some hardware supports an "ignore list" instead, just make sure nothing
1146 * that was requested is on the ignore list, and include commonly changing
1147 * information element IDs in the ignore list, for example 11 (BSS load) and
1148 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1149 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1150 * it could also include some currently unused IDs.
1151 *
1152 *
1153 * In addition to these capabilities, hardware should support notifying the
1154 * host of changes in the beacon RSSI. This is relevant to implement roaming
1155 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1156 * the received data packets). This can consist in notifying the host when
1157 * the RSSI changes significantly or when it drops below or rises above
1158 * configurable thresholds. In the future these thresholds will also be
1159 * configured by mac80211 (which gets them from userspace) to implement
1160 * them as the roaming algorithm requires.
1161 *
1162 * If the hardware cannot implement this, the driver should ask it to
1163 * periodically pass beacon frames to the host so that software can do the
1164 * signal strength threshold checking.
1165 */
1166
1167/**
1168 * DOC: Frame filtering
1169 *
1170 * mac80211 requires to see many management frames for proper
1171 * operation, and users may want to see many more frames when
1172 * in monitor mode. However, for best CPU usage and power consumption,
1173 * having as few frames as possible percolate through the stack is
1174 * desirable. Hence, the hardware should filter as much as possible.
1175 *
1176 * To achieve this, mac80211 uses filter flags (see below) to tell
1177 * the driver's configure_filter() function which frames should be
1178 * passed to mac80211 and which should be filtered out.
1179 *
1180 * The configure_filter() callback is invoked with the parameters
1181 * @mc_count and @mc_list for the combined multicast address list
1182 * of all virtual interfaces, @changed_flags telling which flags
1183 * were changed and @total_flags with the new flag states.
1184 *
1185 * If your device has no multicast address filters your driver will
1186 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1187 * parameter to see whether multicast frames should be accepted
1188 * or dropped.
1189 *
1190 * All unsupported flags in @total_flags must be cleared.
1191 * Hardware does not support a flag if it is incapable of _passing_
1192 * the frame to the stack. Otherwise the driver must ignore
1193 * the flag, but not clear it.
1194 * You must _only_ clear the flag (announce no support for the
1195 * flag to mac80211) if you are not able to pass the packet type
1196 * to the stack (so the hardware always filters it).
1197 * So for example, you should clear @FIF_CONTROL, if your hardware
1198 * always filters control frames. If your hardware always passes
1199 * control frames to the kernel and is incapable of filtering them,
1200 * you do _not_ clear the @FIF_CONTROL flag.
1201 * This rule applies to all other FIF flags as well.
1202 */
1203
1204/**
1205 * enum ieee80211_filter_flags - hardware filter flags
1206 *
1207 * These flags determine what the filter in hardware should be
1208 * programmed to let through and what should not be passed to the
1209 * stack. It is always safe to pass more frames than requested,
1210 * but this has negative impact on power consumption.
1211 *
1212 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1213 *	think of the BSS as your network segment and then this corresponds
1214 *	to the regular ethernet device promiscuous mode.
1215 *
1216 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1217 *	by the user or if the hardware is not capable of filtering by
1218 *	multicast address.
1219 *
1220 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1221 *	%RX_FLAG_FAILED_FCS_CRC for them)
1222 *
1223 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1224 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1225 *
1226 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1227 *	to the hardware that it should not filter beacons or probe responses
1228 *	by BSSID. Filtering them can greatly reduce the amount of processing
1229 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1230 *	honour this flag if possible.
1231 *
1232 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1233 *	only those addressed to this station
1234 *
1235 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1236 */
1237enum ieee80211_filter_flags {
1238	FIF_PROMISC_IN_BSS	= 1<<0,
1239	FIF_ALLMULTI		= 1<<1,
1240	FIF_FCSFAIL		= 1<<2,
1241	FIF_PLCPFAIL		= 1<<3,
1242	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1243	FIF_CONTROL		= 1<<5,
1244	FIF_OTHER_BSS		= 1<<6,
1245};
1246
1247/**
1248 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1249 *
1250 * These flags are used with the ampdu_action() callback in
1251 * &struct ieee80211_ops to indicate which action is needed.
1252 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1253 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1254 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1255 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1256 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1257 */
1258enum ieee80211_ampdu_mlme_action {
1259	IEEE80211_AMPDU_RX_START,
1260	IEEE80211_AMPDU_RX_STOP,
1261	IEEE80211_AMPDU_TX_START,
1262	IEEE80211_AMPDU_TX_STOP,
1263	IEEE80211_AMPDU_TX_OPERATIONAL,
1264};
1265
1266/**
1267 * struct ieee80211_ops - callbacks from mac80211 to the driver
1268 *
1269 * This structure contains various callbacks that the driver may
1270 * handle or, in some cases, must handle, for example to configure
1271 * the hardware to a new channel or to transmit a frame.
1272 *
1273 * @tx: Handler that 802.11 module calls for each transmitted frame.
1274 *	skb contains the buffer starting from the IEEE 802.11 header.
1275 *	The low-level driver should send the frame out based on
1276 *	configuration in the TX control data. This handler should,
1277 *	preferably, never fail and stop queues appropriately, more
1278 *	importantly, however, it must never fail for A-MPDU-queues.
1279 *	This function should return NETDEV_TX_OK except in very
1280 *	limited cases.
1281 *	Must be implemented and atomic.
1282 *
1283 * @start: Called before the first netdevice attached to the hardware
1284 *	is enabled. This should turn on the hardware and must turn on
1285 *	frame reception (for possibly enabled monitor interfaces.)
1286 *	Returns negative error codes, these may be seen in userspace,
1287 *	or zero.
1288 *	When the device is started it should not have a MAC address
1289 *	to avoid acknowledging frames before a non-monitor device
1290 *	is added.
1291 *	Must be implemented.
1292 *
1293 * @stop: Called after last netdevice attached to the hardware
1294 *	is disabled. This should turn off the hardware (at least
1295 *	it must turn off frame reception.)
1296 *	May be called right after add_interface if that rejects
1297 *	an interface.
1298 *	Must be implemented.
1299 *
1300 * @add_interface: Called when a netdevice attached to the hardware is
1301 *	enabled. Because it is not called for monitor mode devices, @start
1302 *	and @stop must be implemented.
1303 *	The driver should perform any initialization it needs before
1304 *	the device can be enabled. The initial configuration for the
1305 *	interface is given in the conf parameter.
1306 *	The callback may refuse to add an interface by returning a
1307 *	negative error code (which will be seen in userspace.)
1308 *	Must be implemented.
1309 *
1310 * @remove_interface: Notifies a driver that an interface is going down.
1311 *	The @stop callback is called after this if it is the last interface
1312 *	and no monitor interfaces are present.
1313 *	When all interfaces are removed, the MAC address in the hardware
1314 *	must be cleared so the device no longer acknowledges packets,
1315 *	the mac_addr member of the conf structure is, however, set to the
1316 *	MAC address of the device going away.
1317 *	Hence, this callback must be implemented.
1318 *
1319 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1320 *	function to change hardware configuration, e.g., channel.
1321 *	This function should never fail but returns a negative error code
1322 *	if it does.
1323 *
1324 * @bss_info_changed: Handler for configuration requests related to BSS
1325 *	parameters that may vary during BSS's lifespan, and may affect low
1326 *	level driver (e.g. assoc/disassoc status, erp parameters).
1327 *	This function should not be used if no BSS has been set, unless
1328 *	for association indication. The @changed parameter indicates which
1329 *	of the bss parameters has changed when a call is made.
1330 *
1331 * @configure_filter: Configure the device's RX filter.
1332 *	See the section "Frame filtering" for more information.
1333 *	This callback must be implemented and atomic.
1334 *
1335 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1336 * 	must be set or cleared for a given STA. Must be atomic.
1337 *
1338 * @set_key: See the section "Hardware crypto acceleration"
1339 *	This callback can sleep, and is only called between add_interface
1340 *	and remove_interface calls, i.e. while the given virtual interface
1341 *	is enabled.
1342 *	Returns a negative error code if the key can't be added.
1343 *
1344 * @update_tkip_key: See the section "Hardware crypto acceleration"
1345 * 	This callback will be called in the context of Rx. Called for drivers
1346 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1347 *
1348 * @hw_scan: Ask the hardware to service the scan request, no need to start
1349 *	the scan state machine in stack. The scan must honour the channel
1350 *	configuration done by the regulatory agent in the wiphy's
1351 *	registered bands. The hardware (or the driver) needs to make sure
1352 *	that power save is disabled.
1353 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1354 *	entire IEs after the SSID, so that drivers need not look at these
1355 *	at all but just send them after the SSID -- mac80211 includes the
1356 *	(extended) supported rates and HT information (where applicable).
1357 *	When the scan finishes, ieee80211_scan_completed() must be called;
1358 *	note that it also must be called when the scan cannot finish due to
1359 *	any error unless this callback returned a negative error code.
1360 *
1361 * @sw_scan_start: Notifier function that is called just before a software scan
1362 *	is started. Can be NULL, if the driver doesn't need this notification.
1363 *
1364 * @sw_scan_complete: Notifier function that is called just after a software scan
1365 *	finished. Can be NULL, if the driver doesn't need this notification.
1366 *
1367 * @get_stats: Return low-level statistics.
1368 * 	Returns zero if statistics are available.
1369 *
1370 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1371 *	callback should be provided to read the TKIP transmit IVs (both IV32
1372 *	and IV16) for the given key from hardware.
1373 *
1374 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1375 *
1376 * @sta_notify: Notifies low level driver about addition, removal or power
1377 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1378 *	Must be atomic.
1379 *
1380 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1381 *	bursting) for a hardware TX queue.
1382 *	Returns a negative error code on failure.
1383 *
1384 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1385 *	to get number of currently queued packets (queue length), maximum queue
1386 *	size (limit), and total number of packets sent using each TX queue
1387 *	(count). The 'stats' pointer points to an array that has hw->queues
1388 *	items.
1389 *
1390 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1391 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1392 *	required function.
1393 *
1394 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1395 *      Currently, this is only used for IBSS mode debugging. Is not a
1396 *	required function.
1397 *
1398 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1399 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1400 *	function is optional if the firmware/hardware takes full care of
1401 *	TSF synchronization.
1402 *
1403 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1404 *	This is needed only for IBSS mode and the result of this function is
1405 *	used to determine whether to reply to Probe Requests.
1406 *	Returns non-zero if this device sent the last beacon.
1407 *
1408 * @ampdu_action: Perform a certain A-MPDU action
1409 * 	The RA/TID combination determines the destination and TID we want
1410 * 	the ampdu action to be performed for. The action is defined through
1411 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1412 * 	is the first frame we expect to perform the action on. Notice
1413 * 	that TX/RX_STOP can pass NULL for this parameter.
1414 *	Returns a negative error code on failure.
1415 *
1416 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1417 *	need to set wiphy->rfkill_poll to %true before registration,
1418 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1419 *
1420 * @testmode_cmd: Implement a cfg80211 test mode command.
1421 */
1422struct ieee80211_ops {
1423	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1424	int (*start)(struct ieee80211_hw *hw);
1425	void (*stop)(struct ieee80211_hw *hw);
1426	int (*add_interface)(struct ieee80211_hw *hw,
1427			     struct ieee80211_if_init_conf *conf);
1428	void (*remove_interface)(struct ieee80211_hw *hw,
1429				 struct ieee80211_if_init_conf *conf);
1430	int (*config)(struct ieee80211_hw *hw, u32 changed);
1431	void (*bss_info_changed)(struct ieee80211_hw *hw,
1432				 struct ieee80211_vif *vif,
1433				 struct ieee80211_bss_conf *info,
1434				 u32 changed);
1435	void (*configure_filter)(struct ieee80211_hw *hw,
1436				 unsigned int changed_flags,
1437				 unsigned int *total_flags,
1438				 int mc_count, struct dev_addr_list *mc_list);
1439	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1440		       bool set);
1441	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1442		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1443		       struct ieee80211_key_conf *key);
1444	void (*update_tkip_key)(struct ieee80211_hw *hw,
1445			struct ieee80211_key_conf *conf, const u8 *address,
1446			u32 iv32, u16 *phase1key);
1447	int (*hw_scan)(struct ieee80211_hw *hw,
1448		       struct cfg80211_scan_request *req);
1449	void (*sw_scan_start)(struct ieee80211_hw *hw);
1450	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1451	int (*get_stats)(struct ieee80211_hw *hw,
1452			 struct ieee80211_low_level_stats *stats);
1453	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1454			     u32 *iv32, u16 *iv16);
1455	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1456	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1457			enum sta_notify_cmd, struct ieee80211_sta *sta);
1458	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1459		       const struct ieee80211_tx_queue_params *params);
1460	int (*get_tx_stats)(struct ieee80211_hw *hw,
1461			    struct ieee80211_tx_queue_stats *stats);
1462	u64 (*get_tsf)(struct ieee80211_hw *hw);
1463	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1464	void (*reset_tsf)(struct ieee80211_hw *hw);
1465	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1466	int (*ampdu_action)(struct ieee80211_hw *hw,
1467			    enum ieee80211_ampdu_mlme_action action,
1468			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1469
1470	void (*rfkill_poll)(struct ieee80211_hw *hw);
1471#ifdef CONFIG_NL80211_TESTMODE
1472	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1473#endif
1474};
1475
1476/**
1477 * ieee80211_alloc_hw -  Allocate a new hardware device
1478 *
1479 * This must be called once for each hardware device. The returned pointer
1480 * must be used to refer to this device when calling other functions.
1481 * mac80211 allocates a private data area for the driver pointed to by
1482 * @priv in &struct ieee80211_hw, the size of this area is given as
1483 * @priv_data_len.
1484 *
1485 * @priv_data_len: length of private data
1486 * @ops: callbacks for this device
1487 */
1488struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1489					const struct ieee80211_ops *ops);
1490
1491/**
1492 * ieee80211_register_hw - Register hardware device
1493 *
1494 * You must call this function before any other functions in
1495 * mac80211. Note that before a hardware can be registered, you
1496 * need to fill the contained wiphy's information.
1497 *
1498 * @hw: the device to register as returned by ieee80211_alloc_hw()
1499 */
1500int ieee80211_register_hw(struct ieee80211_hw *hw);
1501
1502#ifdef CONFIG_MAC80211_LEDS
1503extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1504extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1505extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1506extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1507#endif
1508/**
1509 * ieee80211_get_tx_led_name - get name of TX LED
1510 *
1511 * mac80211 creates a transmit LED trigger for each wireless hardware
1512 * that can be used to drive LEDs if your driver registers a LED device.
1513 * This function returns the name (or %NULL if not configured for LEDs)
1514 * of the trigger so you can automatically link the LED device.
1515 *
1516 * @hw: the hardware to get the LED trigger name for
1517 */
1518static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1519{
1520#ifdef CONFIG_MAC80211_LEDS
1521	return __ieee80211_get_tx_led_name(hw);
1522#else
1523	return NULL;
1524#endif
1525}
1526
1527/**
1528 * ieee80211_get_rx_led_name - get name of RX LED
1529 *
1530 * mac80211 creates a receive LED trigger for each wireless hardware
1531 * that can be used to drive LEDs if your driver registers a LED device.
1532 * This function returns the name (or %NULL if not configured for LEDs)
1533 * of the trigger so you can automatically link the LED device.
1534 *
1535 * @hw: the hardware to get the LED trigger name for
1536 */
1537static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1538{
1539#ifdef CONFIG_MAC80211_LEDS
1540	return __ieee80211_get_rx_led_name(hw);
1541#else
1542	return NULL;
1543#endif
1544}
1545
1546/**
1547 * ieee80211_get_assoc_led_name - get name of association LED
1548 *
1549 * mac80211 creates a association LED trigger for each wireless hardware
1550 * that can be used to drive LEDs if your driver registers a LED device.
1551 * This function returns the name (or %NULL if not configured for LEDs)
1552 * of the trigger so you can automatically link the LED device.
1553 *
1554 * @hw: the hardware to get the LED trigger name for
1555 */
1556static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1557{
1558#ifdef CONFIG_MAC80211_LEDS
1559	return __ieee80211_get_assoc_led_name(hw);
1560#else
1561	return NULL;
1562#endif
1563}
1564
1565/**
1566 * ieee80211_get_radio_led_name - get name of radio LED
1567 *
1568 * mac80211 creates a radio change LED trigger for each wireless hardware
1569 * that can be used to drive LEDs if your driver registers a LED device.
1570 * This function returns the name (or %NULL if not configured for LEDs)
1571 * of the trigger so you can automatically link the LED device.
1572 *
1573 * @hw: the hardware to get the LED trigger name for
1574 */
1575static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1576{
1577#ifdef CONFIG_MAC80211_LEDS
1578	return __ieee80211_get_radio_led_name(hw);
1579#else
1580	return NULL;
1581#endif
1582}
1583
1584/**
1585 * ieee80211_unregister_hw - Unregister a hardware device
1586 *
1587 * This function instructs mac80211 to free allocated resources
1588 * and unregister netdevices from the networking subsystem.
1589 *
1590 * @hw: the hardware to unregister
1591 */
1592void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1593
1594/**
1595 * ieee80211_free_hw - free hardware descriptor
1596 *
1597 * This function frees everything that was allocated, including the
1598 * private data for the driver. You must call ieee80211_unregister_hw()
1599 * before calling this function.
1600 *
1601 * @hw: the hardware to free
1602 */
1603void ieee80211_free_hw(struct ieee80211_hw *hw);
1604
1605/**
1606 * ieee80211_restart_hw - restart hardware completely
1607 *
1608 * Call this function when the hardware was restarted for some reason
1609 * (hardware error, ...) and the driver is unable to restore its state
1610 * by itself. mac80211 assumes that at this point the driver/hardware
1611 * is completely uninitialised and stopped, it starts the process by
1612 * calling the ->start() operation. The driver will need to reset all
1613 * internal state that it has prior to calling this function.
1614 *
1615 * @hw: the hardware to restart
1616 */
1617void ieee80211_restart_hw(struct ieee80211_hw *hw);
1618
1619/*
1620 * trick to avoid symbol clashes with the ieee80211 subsystem,
1621 * use the inline below instead
1622 */
1623void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1624
1625/**
1626 * ieee80211_rx - receive frame
1627 *
1628 * Use this function to hand received frames to mac80211. The receive
1629 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1630 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1631 *
1632 * This function may not be called in IRQ context. Calls to this function
1633 * for a single hardware must be synchronized against each other. Calls
1634 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1635 * single hardware.
1636 *
1637 * @hw: the hardware this frame came in on
1638 * @skb: the buffer to receive, owned by mac80211 after this call
1639 */
1640static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1641{
1642	__ieee80211_rx(hw, skb);
1643}
1644
1645/**
1646 * ieee80211_rx_irqsafe - receive frame
1647 *
1648 * Like ieee80211_rx() but can be called in IRQ context
1649 * (internally defers to a tasklet.)
1650 *
1651 * Calls to this function and ieee80211_rx() may not be mixed for a
1652 * single hardware.
1653 *
1654 * @hw: the hardware this frame came in on
1655 * @skb: the buffer to receive, owned by mac80211 after this call
1656 */
1657void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1658
1659/**
1660 * ieee80211_tx_status - transmit status callback
1661 *
1662 * Call this function for all transmitted frames after they have been
1663 * transmitted. It is permissible to not call this function for
1664 * multicast frames but this can affect statistics.
1665 *
1666 * This function may not be called in IRQ context. Calls to this function
1667 * for a single hardware must be synchronized against each other. Calls
1668 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1669 * for a single hardware.
1670 *
1671 * @hw: the hardware the frame was transmitted by
1672 * @skb: the frame that was transmitted, owned by mac80211 after this call
1673 */
1674void ieee80211_tx_status(struct ieee80211_hw *hw,
1675			 struct sk_buff *skb);
1676
1677/**
1678 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1679 *
1680 * Like ieee80211_tx_status() but can be called in IRQ context
1681 * (internally defers to a tasklet.)
1682 *
1683 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1684 * single hardware.
1685 *
1686 * @hw: the hardware the frame was transmitted by
1687 * @skb: the frame that was transmitted, owned by mac80211 after this call
1688 */
1689void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1690				 struct sk_buff *skb);
1691
1692/**
1693 * ieee80211_beacon_get - beacon generation function
1694 * @hw: pointer obtained from ieee80211_alloc_hw().
1695 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1696 *
1697 * If the beacon frames are generated by the host system (i.e., not in
1698 * hardware/firmware), the low-level driver uses this function to receive
1699 * the next beacon frame from the 802.11 code. The low-level is responsible
1700 * for calling this function before beacon data is needed (e.g., based on
1701 * hardware interrupt). Returned skb is used only once and low-level driver
1702 * is responsible for freeing it.
1703 */
1704struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1705				     struct ieee80211_vif *vif);
1706
1707/**
1708 * ieee80211_rts_get - RTS frame generation function
1709 * @hw: pointer obtained from ieee80211_alloc_hw().
1710 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1711 * @frame: pointer to the frame that is going to be protected by the RTS.
1712 * @frame_len: the frame length (in octets).
1713 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1714 * @rts: The buffer where to store the RTS frame.
1715 *
1716 * If the RTS frames are generated by the host system (i.e., not in
1717 * hardware/firmware), the low-level driver uses this function to receive
1718 * the next RTS frame from the 802.11 code. The low-level is responsible
1719 * for calling this function before and RTS frame is needed.
1720 */
1721void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1722		       const void *frame, size_t frame_len,
1723		       const struct ieee80211_tx_info *frame_txctl,
1724		       struct ieee80211_rts *rts);
1725
1726/**
1727 * ieee80211_rts_duration - Get the duration field for an RTS frame
1728 * @hw: pointer obtained from ieee80211_alloc_hw().
1729 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1730 * @frame_len: the length of the frame that is going to be protected by the RTS.
1731 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1732 *
1733 * If the RTS is generated in firmware, but the host system must provide
1734 * the duration field, the low-level driver uses this function to receive
1735 * the duration field value in little-endian byteorder.
1736 */
1737__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1738			      struct ieee80211_vif *vif, size_t frame_len,
1739			      const struct ieee80211_tx_info *frame_txctl);
1740
1741/**
1742 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1743 * @hw: pointer obtained from ieee80211_alloc_hw().
1744 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1745 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1746 * @frame_len: the frame length (in octets).
1747 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1748 * @cts: The buffer where to store the CTS-to-self frame.
1749 *
1750 * If the CTS-to-self frames are generated by the host system (i.e., not in
1751 * hardware/firmware), the low-level driver uses this function to receive
1752 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1753 * for calling this function before and CTS-to-self frame is needed.
1754 */
1755void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1756			     struct ieee80211_vif *vif,
1757			     const void *frame, size_t frame_len,
1758			     const struct ieee80211_tx_info *frame_txctl,
1759			     struct ieee80211_cts *cts);
1760
1761/**
1762 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1763 * @hw: pointer obtained from ieee80211_alloc_hw().
1764 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1765 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1766 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1767 *
1768 * If the CTS-to-self is generated in firmware, but the host system must provide
1769 * the duration field, the low-level driver uses this function to receive
1770 * the duration field value in little-endian byteorder.
1771 */
1772__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1773				    struct ieee80211_vif *vif,
1774				    size_t frame_len,
1775				    const struct ieee80211_tx_info *frame_txctl);
1776
1777/**
1778 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1779 * @hw: pointer obtained from ieee80211_alloc_hw().
1780 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1781 * @frame_len: the length of the frame.
1782 * @rate: the rate at which the frame is going to be transmitted.
1783 *
1784 * Calculate the duration field of some generic frame, given its
1785 * length and transmission rate (in 100kbps).
1786 */
1787__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1788					struct ieee80211_vif *vif,
1789					size_t frame_len,
1790					struct ieee80211_rate *rate);
1791
1792/**
1793 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1794 * @hw: pointer as obtained from ieee80211_alloc_hw().
1795 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1796 *
1797 * Function for accessing buffered broadcast and multicast frames. If
1798 * hardware/firmware does not implement buffering of broadcast/multicast
1799 * frames when power saving is used, 802.11 code buffers them in the host
1800 * memory. The low-level driver uses this function to fetch next buffered
1801 * frame. In most cases, this is used when generating beacon frame. This
1802 * function returns a pointer to the next buffered skb or NULL if no more
1803 * buffered frames are available.
1804 *
1805 * Note: buffered frames are returned only after DTIM beacon frame was
1806 * generated with ieee80211_beacon_get() and the low-level driver must thus
1807 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1808 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1809 * does not need to check for DTIM beacons separately and should be able to
1810 * use common code for all beacons.
1811 */
1812struct sk_buff *
1813ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1814
1815/**
1816 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1817 *
1818 * This function computes a TKIP rc4 key for an skb. It computes
1819 * a phase 1 key if needed (iv16 wraps around). This function is to
1820 * be used by drivers which can do HW encryption but need to compute
1821 * to phase 1/2 key in SW.
1822 *
1823 * @keyconf: the parameter passed with the set key
1824 * @skb: the skb for which the key is needed
1825 * @type: TBD
1826 * @key: a buffer to which the key will be written
1827 */
1828void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1829				struct sk_buff *skb,
1830				enum ieee80211_tkip_key_type type, u8 *key);
1831/**
1832 * ieee80211_wake_queue - wake specific queue
1833 * @hw: pointer as obtained from ieee80211_alloc_hw().
1834 * @queue: queue number (counted from zero).
1835 *
1836 * Drivers should use this function instead of netif_wake_queue.
1837 */
1838void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1839
1840/**
1841 * ieee80211_stop_queue - stop specific queue
1842 * @hw: pointer as obtained from ieee80211_alloc_hw().
1843 * @queue: queue number (counted from zero).
1844 *
1845 * Drivers should use this function instead of netif_stop_queue.
1846 */
1847void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1848
1849/**
1850 * ieee80211_queue_stopped - test status of the queue
1851 * @hw: pointer as obtained from ieee80211_alloc_hw().
1852 * @queue: queue number (counted from zero).
1853 *
1854 * Drivers should use this function instead of netif_stop_queue.
1855 */
1856
1857int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1858
1859/**
1860 * ieee80211_stop_queues - stop all queues
1861 * @hw: pointer as obtained from ieee80211_alloc_hw().
1862 *
1863 * Drivers should use this function instead of netif_stop_queue.
1864 */
1865void ieee80211_stop_queues(struct ieee80211_hw *hw);
1866
1867/**
1868 * ieee80211_wake_queues - wake all queues
1869 * @hw: pointer as obtained from ieee80211_alloc_hw().
1870 *
1871 * Drivers should use this function instead of netif_wake_queue.
1872 */
1873void ieee80211_wake_queues(struct ieee80211_hw *hw);
1874
1875/**
1876 * ieee80211_scan_completed - completed hardware scan
1877 *
1878 * When hardware scan offload is used (i.e. the hw_scan() callback is
1879 * assigned) this function needs to be called by the driver to notify
1880 * mac80211 that the scan finished.
1881 *
1882 * @hw: the hardware that finished the scan
1883 * @aborted: set to true if scan was aborted
1884 */
1885void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1886
1887/**
1888 * ieee80211_iterate_active_interfaces - iterate active interfaces
1889 *
1890 * This function iterates over the interfaces associated with a given
1891 * hardware that are currently active and calls the callback for them.
1892 * This function allows the iterator function to sleep, when the iterator
1893 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1894 * be used.
1895 *
1896 * @hw: the hardware struct of which the interfaces should be iterated over
1897 * @iterator: the iterator function to call
1898 * @data: first argument of the iterator function
1899 */
1900void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1901					 void (*iterator)(void *data, u8 *mac,
1902						struct ieee80211_vif *vif),
1903					 void *data);
1904
1905/**
1906 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1907 *
1908 * This function iterates over the interfaces associated with a given
1909 * hardware that are currently active and calls the callback for them.
1910 * This function requires the iterator callback function to be atomic,
1911 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1912 *
1913 * @hw: the hardware struct of which the interfaces should be iterated over
1914 * @iterator: the iterator function to call, cannot sleep
1915 * @data: first argument of the iterator function
1916 */
1917void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1918						void (*iterator)(void *data,
1919						    u8 *mac,
1920						    struct ieee80211_vif *vif),
1921						void *data);
1922
1923/**
1924 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1925 * @hw: pointer as obtained from ieee80211_alloc_hw().
1926 * @ra: receiver address of the BA session recipient
1927 * @tid: the TID to BA on.
1928 *
1929 * Return: success if addBA request was sent, failure otherwise
1930 *
1931 * Although mac80211/low level driver/user space application can estimate
1932 * the need to start aggregation on a certain RA/TID, the session level
1933 * will be managed by the mac80211.
1934 */
1935int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1936
1937/**
1938 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1939 * @hw: pointer as obtained from ieee80211_alloc_hw().
1940 * @ra: receiver address of the BA session recipient.
1941 * @tid: the TID to BA on.
1942 *
1943 * This function must be called by low level driver once it has
1944 * finished with preparations for the BA session.
1945 */
1946void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1947
1948/**
1949 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1950 * @hw: pointer as obtained from ieee80211_alloc_hw().
1951 * @ra: receiver address of the BA session recipient.
1952 * @tid: the TID to BA on.
1953 *
1954 * This function must be called by low level driver once it has
1955 * finished with preparations for the BA session.
1956 * This version of the function is IRQ-safe.
1957 */
1958void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1959				      u16 tid);
1960
1961/**
1962 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1963 * @hw: pointer as obtained from ieee80211_alloc_hw().
1964 * @ra: receiver address of the BA session recipient
1965 * @tid: the TID to stop BA.
1966 * @initiator: if indicates initiator DELBA frame will be sent.
1967 *
1968 * Return: error if no sta with matching da found, success otherwise
1969 *
1970 * Although mac80211/low level driver/user space application can estimate
1971 * the need to stop aggregation on a certain RA/TID, the session level
1972 * will be managed by the mac80211.
1973 */
1974int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1975				 u8 *ra, u16 tid,
1976				 enum ieee80211_back_parties initiator);
1977
1978/**
1979 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1980 * @hw: pointer as obtained from ieee80211_alloc_hw().
1981 * @ra: receiver address of the BA session recipient.
1982 * @tid: the desired TID to BA on.
1983 *
1984 * This function must be called by low level driver once it has
1985 * finished with preparations for the BA session tear down.
1986 */
1987void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1988
1989/**
1990 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1991 * @hw: pointer as obtained from ieee80211_alloc_hw().
1992 * @ra: receiver address of the BA session recipient.
1993 * @tid: the desired TID to BA on.
1994 *
1995 * This function must be called by low level driver once it has
1996 * finished with preparations for the BA session tear down.
1997 * This version of the function is IRQ-safe.
1998 */
1999void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2000				     u16 tid);
2001
2002/**
2003 * ieee80211_find_sta - find a station
2004 *
2005 * @hw: pointer as obtained from ieee80211_alloc_hw()
2006 * @addr: station's address
2007 *
2008 * This function must be called under RCU lock and the
2009 * resulting pointer is only valid under RCU lock as well.
2010 */
2011struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2012					 const u8 *addr);
2013
2014/**
2015 * ieee80211_beacon_loss - inform hardware does not receive beacons
2016 *
2017 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2018 *
2019 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2020 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2021 * hardware is not receiving beacons with this function.
2022 */
2023void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2024
2025/* Rate control API */
2026
2027/**
2028 * enum rate_control_changed - flags to indicate which parameter changed
2029 *
2030 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2031 *	changed, rate control algorithm can update its internal state if needed.
2032 */
2033enum rate_control_changed {
2034	IEEE80211_RC_HT_CHANGED = BIT(0)
2035};
2036
2037/**
2038 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2039 *
2040 * @hw: The hardware the algorithm is invoked for.
2041 * @sband: The band this frame is being transmitted on.
2042 * @bss_conf: the current BSS configuration
2043 * @reported_rate: The rate control algorithm can fill this in to indicate
2044 *	which rate should be reported to userspace as the current rate and
2045 *	used for rate calculations in the mesh network.
2046 * @rts: whether RTS will be used for this frame because it is longer than the
2047 *	RTS threshold
2048 * @short_preamble: whether mac80211 will request short-preamble transmission
2049 *	if the selected rate supports it
2050 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2051 * @skb: the skb that will be transmitted, the control information in it needs
2052 *	to be filled in
2053 */
2054struct ieee80211_tx_rate_control {
2055	struct ieee80211_hw *hw;
2056	struct ieee80211_supported_band *sband;
2057	struct ieee80211_bss_conf *bss_conf;
2058	struct sk_buff *skb;
2059	struct ieee80211_tx_rate reported_rate;
2060	bool rts, short_preamble;
2061	u8 max_rate_idx;
2062};
2063
2064struct rate_control_ops {
2065	struct module *module;
2066	const char *name;
2067	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2068	void (*free)(void *priv);
2069
2070	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2071	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2072			  struct ieee80211_sta *sta, void *priv_sta);
2073	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2074			    struct ieee80211_sta *sta,
2075			    void *priv_sta, u32 changed);
2076	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2077			 void *priv_sta);
2078
2079	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2080			  struct ieee80211_sta *sta, void *priv_sta,
2081			  struct sk_buff *skb);
2082	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2083			 struct ieee80211_tx_rate_control *txrc);
2084
2085	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2086				struct dentry *dir);
2087	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2088};
2089
2090static inline int rate_supported(struct ieee80211_sta *sta,
2091				 enum ieee80211_band band,
2092				 int index)
2093{
2094	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2095}
2096
2097static inline s8
2098rate_lowest_index(struct ieee80211_supported_band *sband,
2099		  struct ieee80211_sta *sta)
2100{
2101	int i;
2102
2103	for (i = 0; i < sband->n_bitrates; i++)
2104		if (rate_supported(sta, sband->band, i))
2105			return i;
2106
2107	/* warn when we cannot find a rate. */
2108	WARN_ON(1);
2109
2110	return 0;
2111}
2112
2113static inline
2114bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2115			      struct ieee80211_sta *sta)
2116{
2117	unsigned int i;
2118
2119	for (i = 0; i < sband->n_bitrates; i++)
2120		if (rate_supported(sta, sband->band, i))
2121			return true;
2122	return false;
2123}
2124
2125int ieee80211_rate_control_register(struct rate_control_ops *ops);
2126void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2127
2128static inline bool
2129conf_is_ht20(struct ieee80211_conf *conf)
2130{
2131	return conf->channel_type == NL80211_CHAN_HT20;
2132}
2133
2134static inline bool
2135conf_is_ht40_minus(struct ieee80211_conf *conf)
2136{
2137	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2138}
2139
2140static inline bool
2141conf_is_ht40_plus(struct ieee80211_conf *conf)
2142{
2143	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2144}
2145
2146static inline bool
2147conf_is_ht40(struct ieee80211_conf *conf)
2148{
2149	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2150}
2151
2152static inline bool
2153conf_is_ht(struct ieee80211_conf *conf)
2154{
2155	return conf->channel_type != NL80211_CHAN_NO_HT;
2156}
2157
2158#endif /* MAC80211_H */
2159