mac80211.h revision c555b9b3713e05586fabe85f4e46f28859e72930
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * DOC: mac80211 workqueue
77 *
78 * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79 * The workqueue is a single threaded workqueue and can only be accessed by
80 * helpers for sanity checking. Drivers must ensure all work added onto the
81 * mac80211 workqueue should be cancelled on the driver stop() callback.
82 *
83 * mac80211 will flushed the workqueue upon interface removal and during
84 * suspend.
85 *
86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87 *
88 */
89
90/**
91 * enum ieee80211_max_queues - maximum number of queues
92 *
93 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94 */
95enum ieee80211_max_queues {
96	IEEE80211_MAX_QUEUES =		4,
97};
98
99/**
100 * struct ieee80211_tx_queue_params - transmit queue configuration
101 *
102 * The information provided in this structure is required for QoS
103 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104 *
105 * @aifs: arbitration interframe space [0..255]
106 * @cw_min: minimum contention window [a value of the form
107 *	2^n-1 in the range 1..32767]
108 * @cw_max: maximum contention window [like @cw_min]
109 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110 */
111struct ieee80211_tx_queue_params {
112	u16 txop;
113	u16 cw_min;
114	u16 cw_max;
115	u8 aifs;
116};
117
118/**
119 * struct ieee80211_tx_queue_stats - transmit queue statistics
120 *
121 * @len: number of packets in queue
122 * @limit: queue length limit
123 * @count: number of frames sent
124 */
125struct ieee80211_tx_queue_stats {
126	unsigned int len;
127	unsigned int limit;
128	unsigned int count;
129};
130
131struct ieee80211_low_level_stats {
132	unsigned int dot11ACKFailureCount;
133	unsigned int dot11RTSFailureCount;
134	unsigned int dot11FCSErrorCount;
135	unsigned int dot11RTSSuccessCount;
136};
137
138/**
139 * enum ieee80211_bss_change - BSS change notification flags
140 *
141 * These flags are used with the bss_info_changed() callback
142 * to indicate which BSS parameter changed.
143 *
144 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
145 *	also implies a change in the AID.
146 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
147 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
148 * @BSS_CHANGED_ERP_SLOT: slot timing changed
149 * @BSS_CHANGED_HT: 802.11n parameters changed
150 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
151 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
152 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
153 *	reason (IBSS and managed mode)
154 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
155 *	new beacon (beaconing modes)
156 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
157 *	enabled/disabled (beaconing modes)
158 */
159enum ieee80211_bss_change {
160	BSS_CHANGED_ASSOC		= 1<<0,
161	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
162	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
163	BSS_CHANGED_ERP_SLOT		= 1<<3,
164	BSS_CHANGED_HT                  = 1<<4,
165	BSS_CHANGED_BASIC_RATES		= 1<<5,
166	BSS_CHANGED_BEACON_INT		= 1<<6,
167	BSS_CHANGED_BSSID		= 1<<7,
168	BSS_CHANGED_BEACON		= 1<<8,
169	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
170};
171
172/**
173 * struct ieee80211_bss_conf - holds the BSS's changing parameters
174 *
175 * This structure keeps information about a BSS (and an association
176 * to that BSS) that can change during the lifetime of the BSS.
177 *
178 * @assoc: association status
179 * @aid: association ID number, valid only when @assoc is true
180 * @use_cts_prot: use CTS protection
181 * @use_short_preamble: use 802.11b short preamble;
182 *	if the hardware cannot handle this it must set the
183 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184 * @use_short_slot: use short slot time (only relevant for ERP);
185 *	if the hardware cannot handle this it must set the
186 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187 * @dtim_period: num of beacons before the next DTIM, for PSM
188 * @timestamp: beacon timestamp
189 * @beacon_int: beacon interval
190 * @assoc_capability: capabilities taken from assoc resp
191 * @basic_rates: bitmap of basic rates, each bit stands for an
192 *	index into the rate table configured by the driver in
193 *	the current band.
194 * @bssid: The BSSID for this BSS
195 * @enable_beacon: whether beaconing should be enabled or not
196 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
197 *	This field is only valid when the channel type is one of the HT types.
198 */
199struct ieee80211_bss_conf {
200	const u8 *bssid;
201	/* association related data */
202	bool assoc;
203	u16 aid;
204	/* erp related data */
205	bool use_cts_prot;
206	bool use_short_preamble;
207	bool use_short_slot;
208	bool enable_beacon;
209	u8 dtim_period;
210	u16 beacon_int;
211	u16 assoc_capability;
212	u64 timestamp;
213	u32 basic_rates;
214	u16 ht_operation_mode;
215};
216
217/**
218 * enum mac80211_tx_control_flags - flags to describe transmission information/status
219 *
220 * These flags are used with the @flags member of &ieee80211_tx_info.
221 *
222 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
223 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
224 *	number to this frame, taking care of not overwriting the fragment
225 *	number and increasing the sequence number only when the
226 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
227 *	assign sequence numbers to QoS-data frames but cannot do so correctly
228 *	for non-QoS-data and management frames because beacons need them from
229 *	that counter as well and mac80211 cannot guarantee proper sequencing.
230 *	If this flag is set, the driver should instruct the hardware to
231 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
232 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
233 *	beacons and always be clear for frames without a sequence number field.
234 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
235 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
236 *	station
237 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
238 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
239 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
240 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
241 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
242 *	because the destination STA was in powersave mode.
243 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
244 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
245 * 	is for the whole aggregation.
246 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
247 * 	so consider using block ack request (BAR).
248 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
249 *	set by rate control algorithms to indicate probe rate, will
250 *	be cleared for fragmented frames (except on the last fragment)
251 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
252 *	set this flag in the driver; indicates that the rate control
253 *	algorithm was used and should be notified of TX status
254 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
255 *	used to indicate that a pending frame requires TX processing before
256 *	it can be sent out.
257 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
258 *	used to indicate that a frame was already retried due to PS
259 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
260 *	used to indicate frame should not be encrypted
261 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
262 *	This frame is a response to a PS-poll frame and should be sent
263 *	although the station is in powersave mode.
264 */
265enum mac80211_tx_control_flags {
266	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
267	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
268	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
269	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
270	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
271	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
272	IEEE80211_TX_CTL_AMPDU			= BIT(6),
273	IEEE80211_TX_CTL_INJECTED		= BIT(7),
274	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
275	IEEE80211_TX_STAT_ACK			= BIT(9),
276	IEEE80211_TX_STAT_AMPDU			= BIT(10),
277	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
278	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
279	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
280	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
281	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
282	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
283	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
284};
285
286/**
287 * enum mac80211_rate_control_flags - per-rate flags set by the
288 *	Rate Control algorithm.
289 *
290 * These flags are set by the Rate control algorithm for each rate during tx,
291 * in the @flags member of struct ieee80211_tx_rate.
292 *
293 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
294 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
295 *	This is set if the current BSS requires ERP protection.
296 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
297 * @IEEE80211_TX_RC_MCS: HT rate.
298 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
299 *	Greenfield mode.
300 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
301 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
302 *	adjacent 20 MHz channels, if the current channel type is
303 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
304 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
305 */
306enum mac80211_rate_control_flags {
307	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
308	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
309	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
310
311	/* rate index is an MCS rate number instead of an index */
312	IEEE80211_TX_RC_MCS			= BIT(3),
313	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
314	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
315	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
316	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
317};
318
319
320/* there are 40 bytes if you don't need the rateset to be kept */
321#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
322
323/* if you do need the rateset, then you have less space */
324#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
325
326/* maximum number of rate stages */
327#define IEEE80211_TX_MAX_RATES	5
328
329/**
330 * struct ieee80211_tx_rate - rate selection/status
331 *
332 * @idx: rate index to attempt to send with
333 * @flags: rate control flags (&enum mac80211_rate_control_flags)
334 * @count: number of tries in this rate before going to the next rate
335 *
336 * A value of -1 for @idx indicates an invalid rate and, if used
337 * in an array of retry rates, that no more rates should be tried.
338 *
339 * When used for transmit status reporting, the driver should
340 * always report the rate along with the flags it used.
341 *
342 * &struct ieee80211_tx_info contains an array of these structs
343 * in the control information, and it will be filled by the rate
344 * control algorithm according to what should be sent. For example,
345 * if this array contains, in the format { <idx>, <count> } the
346 * information
347 *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
348 * then this means that the frame should be transmitted
349 * up to twice at rate 3, up to twice at rate 2, and up to four
350 * times at rate 1 if it doesn't get acknowledged. Say it gets
351 * acknowledged by the peer after the fifth attempt, the status
352 * information should then contain
353 *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
354 * since it was transmitted twice at rate 3, twice at rate 2
355 * and once at rate 1 after which we received an acknowledgement.
356 */
357struct ieee80211_tx_rate {
358	s8 idx;
359	u8 count;
360	u8 flags;
361} __attribute__((packed));
362
363/**
364 * struct ieee80211_tx_info - skb transmit information
365 *
366 * This structure is placed in skb->cb for three uses:
367 *  (1) mac80211 TX control - mac80211 tells the driver what to do
368 *  (2) driver internal use (if applicable)
369 *  (3) TX status information - driver tells mac80211 what happened
370 *
371 * The TX control's sta pointer is only valid during the ->tx call,
372 * it may be NULL.
373 *
374 * @flags: transmit info flags, defined above
375 * @band: the band to transmit on (use for checking for races)
376 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
377 * @pad: padding, ignore
378 * @control: union for control data
379 * @status: union for status data
380 * @driver_data: array of driver_data pointers
381 * @ampdu_ack_len: number of aggregated frames.
382 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
383 * @ampdu_ack_map: block ack bit map for the aggregation.
384 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
385 * @ack_signal: signal strength of the ACK frame
386 */
387struct ieee80211_tx_info {
388	/* common information */
389	u32 flags;
390	u8 band;
391
392	u8 antenna_sel_tx;
393
394	/* 2 byte hole */
395	u8 pad[2];
396
397	union {
398		struct {
399			union {
400				/* rate control */
401				struct {
402					struct ieee80211_tx_rate rates[
403						IEEE80211_TX_MAX_RATES];
404					s8 rts_cts_rate_idx;
405				};
406				/* only needed before rate control */
407				unsigned long jiffies;
408			};
409			/* NB: vif can be NULL for injected frames */
410			struct ieee80211_vif *vif;
411			struct ieee80211_key_conf *hw_key;
412			struct ieee80211_sta *sta;
413		} control;
414		struct {
415			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
416			u8 ampdu_ack_len;
417			u64 ampdu_ack_map;
418			int ack_signal;
419			/* 8 bytes free */
420		} status;
421		struct {
422			struct ieee80211_tx_rate driver_rates[
423				IEEE80211_TX_MAX_RATES];
424			void *rate_driver_data[
425				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
426		};
427		void *driver_data[
428			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
429	};
430};
431
432static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
433{
434	return (struct ieee80211_tx_info *)skb->cb;
435}
436
437static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
438{
439	return (struct ieee80211_rx_status *)skb->cb;
440}
441
442/**
443 * ieee80211_tx_info_clear_status - clear TX status
444 *
445 * @info: The &struct ieee80211_tx_info to be cleared.
446 *
447 * When the driver passes an skb back to mac80211, it must report
448 * a number of things in TX status. This function clears everything
449 * in the TX status but the rate control information (it does clear
450 * the count since you need to fill that in anyway).
451 *
452 * NOTE: You can only use this function if you do NOT use
453 *	 info->driver_data! Use info->rate_driver_data
454 *	 instead if you need only the less space that allows.
455 */
456static inline void
457ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
458{
459	int i;
460
461	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
462		     offsetof(struct ieee80211_tx_info, control.rates));
463	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
464		     offsetof(struct ieee80211_tx_info, driver_rates));
465	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
466	/* clear the rate counts */
467	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
468		info->status.rates[i].count = 0;
469
470	BUILD_BUG_ON(
471	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
472	memset(&info->status.ampdu_ack_len, 0,
473	       sizeof(struct ieee80211_tx_info) -
474	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
475}
476
477
478/**
479 * enum mac80211_rx_flags - receive flags
480 *
481 * These flags are used with the @flag member of &struct ieee80211_rx_status.
482 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
483 *	Use together with %RX_FLAG_MMIC_STRIPPED.
484 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
485 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
486 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
487 *	verification has been done by the hardware.
488 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
489 *	If this flag is set, the stack cannot do any replay detection
490 *	hence the driver or hardware will have to do that.
491 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
492 *	the frame.
493 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
494 *	the frame.
495 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
496 *	is valid. This is useful in monitor mode and necessary for beacon frames
497 *	to enable IBSS merging.
498 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
499 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
500 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
501 * @RX_FLAG_SHORT_GI: Short guard interval was used
502 */
503enum mac80211_rx_flags {
504	RX_FLAG_MMIC_ERROR	= 1<<0,
505	RX_FLAG_DECRYPTED	= 1<<1,
506	RX_FLAG_RADIOTAP	= 1<<2,
507	RX_FLAG_MMIC_STRIPPED	= 1<<3,
508	RX_FLAG_IV_STRIPPED	= 1<<4,
509	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
510	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
511	RX_FLAG_TSFT		= 1<<7,
512	RX_FLAG_SHORTPRE	= 1<<8,
513	RX_FLAG_HT		= 1<<9,
514	RX_FLAG_40MHZ		= 1<<10,
515	RX_FLAG_SHORT_GI	= 1<<11,
516};
517
518/**
519 * struct ieee80211_rx_status - receive status
520 *
521 * The low-level driver should provide this information (the subset
522 * supported by hardware) to the 802.11 code with each received
523 * frame, in the skb's control buffer (cb).
524 *
525 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
526 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
527 * @band: the active band when this frame was received
528 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
529 * @signal: signal strength when receiving this frame, either in dBm, in dB or
530 *	unspecified depending on the hardware capabilities flags
531 *	@IEEE80211_HW_SIGNAL_*
532 * @noise: noise when receiving this frame, in dBm.
533 * @qual: overall signal quality indication, in percent (0-100).
534 * @antenna: antenna used
535 * @rate_idx: index of data rate into band's supported rates or MCS index if
536 *	HT rates are use (RX_FLAG_HT)
537 * @flag: %RX_FLAG_*
538 */
539struct ieee80211_rx_status {
540	u64 mactime;
541	enum ieee80211_band band;
542	int freq;
543	int signal;
544	int noise;
545	int qual;
546	int antenna;
547	int rate_idx;
548	int flag;
549};
550
551/**
552 * enum ieee80211_conf_flags - configuration flags
553 *
554 * Flags to define PHY configuration options
555 *
556 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
557 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
558 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
559 *	the driver should be prepared to handle configuration requests but
560 *	may turn the device off as much as possible. Typically, this flag will
561 *	be set when an interface is set UP but not associated or scanning, but
562 *	it can also be unset in that case when monitor interfaces are active.
563 */
564enum ieee80211_conf_flags {
565	IEEE80211_CONF_RADIOTAP		= (1<<0),
566	IEEE80211_CONF_PS		= (1<<1),
567	IEEE80211_CONF_IDLE		= (1<<2),
568};
569
570
571/**
572 * enum ieee80211_conf_changed - denotes which configuration changed
573 *
574 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
575 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
576 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
577 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
578 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
579 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
580 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
581 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
582 */
583enum ieee80211_conf_changed {
584	_IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
585	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
586	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
587	IEEE80211_CONF_CHANGE_PS		= BIT(4),
588	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
589	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
590	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
591	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
592};
593
594static inline __deprecated enum ieee80211_conf_changed
595__IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
596{
597	return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
598}
599#define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
600	__IEEE80211_CONF_CHANGE_RADIO_ENABLED()
601
602/**
603 * struct ieee80211_conf - configuration of the device
604 *
605 * This struct indicates how the driver shall configure the hardware.
606 *
607 * @flags: configuration flags defined above
608 *
609 * @radio_enabled: when zero, driver is required to switch off the radio.
610 * @beacon_int: DEPRECATED, DO NOT USE
611 *
612 * @listen_interval: listen interval in units of beacon interval
613 * @max_sleep_period: the maximum number of beacon intervals to sleep for
614 *	before checking the beacon for a TIM bit (managed mode only); this
615 *	value will be only achievable between DTIM frames, the hardware
616 *	needs to check for the multicast traffic bit in DTIM beacons.
617 *	This variable is valid only when the CONF_PS flag is set.
618 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
619 *	powersave documentation below. This variable is valid only when
620 *	the CONF_PS flag is set.
621 *
622 * @power_level: requested transmit power (in dBm)
623 *
624 * @channel: the channel to tune to
625 * @channel_type: the channel (HT) type
626 *
627 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
628 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
629 *    but actually means the number of transmissions not the number of retries
630 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
631 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
632 *    number of transmissions not the number of retries
633 */
634struct ieee80211_conf {
635	int __deprecated beacon_int;
636	u32 flags;
637	int power_level, dynamic_ps_timeout;
638	int max_sleep_period;
639
640	u16 listen_interval;
641	bool __deprecated radio_enabled;
642
643	u8 long_frame_max_tx_count, short_frame_max_tx_count;
644
645	struct ieee80211_channel *channel;
646	enum nl80211_channel_type channel_type;
647};
648
649/**
650 * struct ieee80211_vif - per-interface data
651 *
652 * Data in this structure is continually present for driver
653 * use during the life of a virtual interface.
654 *
655 * @type: type of this virtual interface
656 * @bss_conf: BSS configuration for this interface, either our own
657 *	or the BSS we're associated to
658 * @drv_priv: data area for driver use, will always be aligned to
659 *	sizeof(void *).
660 */
661struct ieee80211_vif {
662	enum nl80211_iftype type;
663	struct ieee80211_bss_conf bss_conf;
664	/* must be last */
665	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
666};
667
668static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
669{
670#ifdef CONFIG_MAC80211_MESH
671	return vif->type == NL80211_IFTYPE_MESH_POINT;
672#endif
673	return false;
674}
675
676/**
677 * struct ieee80211_if_init_conf - initial configuration of an interface
678 *
679 * @vif: pointer to a driver-use per-interface structure. The pointer
680 *	itself is also used for various functions including
681 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
682 * @type: one of &enum nl80211_iftype constants. Determines the type of
683 *	added/removed interface.
684 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
685 *	until the interface is removed (i.e. it cannot be used after
686 *	remove_interface() callback was called for this interface).
687 *
688 * This structure is used in add_interface() and remove_interface()
689 * callbacks of &struct ieee80211_hw.
690 *
691 * When you allow multiple interfaces to be added to your PHY, take care
692 * that the hardware can actually handle multiple MAC addresses. However,
693 * also take care that when there's no interface left with mac_addr != %NULL
694 * you remove the MAC address from the device to avoid acknowledging packets
695 * in pure monitor mode.
696 */
697struct ieee80211_if_init_conf {
698	enum nl80211_iftype type;
699	struct ieee80211_vif *vif;
700	void *mac_addr;
701};
702
703/**
704 * enum ieee80211_key_alg - key algorithm
705 * @ALG_WEP: WEP40 or WEP104
706 * @ALG_TKIP: TKIP
707 * @ALG_CCMP: CCMP (AES)
708 * @ALG_AES_CMAC: AES-128-CMAC
709 */
710enum ieee80211_key_alg {
711	ALG_WEP,
712	ALG_TKIP,
713	ALG_CCMP,
714	ALG_AES_CMAC,
715};
716
717/**
718 * enum ieee80211_key_flags - key flags
719 *
720 * These flags are used for communication about keys between the driver
721 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
722 *
723 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
724 *	that the STA this key will be used with could be using QoS.
725 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
726 *	driver to indicate that it requires IV generation for this
727 *	particular key.
728 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
729 *	the driver for a TKIP key if it requires Michael MIC
730 *	generation in software.
731 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
732 *	that the key is pairwise rather then a shared key.
733 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
734 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
735 *	be done in software.
736 */
737enum ieee80211_key_flags {
738	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
739	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
740	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
741	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
742	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
743};
744
745/**
746 * struct ieee80211_key_conf - key information
747 *
748 * This key information is given by mac80211 to the driver by
749 * the set_key() callback in &struct ieee80211_ops.
750 *
751 * @hw_key_idx: To be set by the driver, this is the key index the driver
752 *	wants to be given when a frame is transmitted and needs to be
753 *	encrypted in hardware.
754 * @alg: The key algorithm.
755 * @flags: key flags, see &enum ieee80211_key_flags.
756 * @keyidx: the key index (0-3)
757 * @keylen: key material length
758 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
759 * 	data block:
760 * 	- Temporal Encryption Key (128 bits)
761 * 	- Temporal Authenticator Tx MIC Key (64 bits)
762 * 	- Temporal Authenticator Rx MIC Key (64 bits)
763 * @icv_len: The ICV length for this key type
764 * @iv_len: The IV length for this key type
765 */
766struct ieee80211_key_conf {
767	enum ieee80211_key_alg alg;
768	u8 icv_len;
769	u8 iv_len;
770	u8 hw_key_idx;
771	u8 flags;
772	s8 keyidx;
773	u8 keylen;
774	u8 key[0];
775};
776
777/**
778 * enum set_key_cmd - key command
779 *
780 * Used with the set_key() callback in &struct ieee80211_ops, this
781 * indicates whether a key is being removed or added.
782 *
783 * @SET_KEY: a key is set
784 * @DISABLE_KEY: a key must be disabled
785 */
786enum set_key_cmd {
787	SET_KEY, DISABLE_KEY,
788};
789
790/**
791 * struct ieee80211_sta - station table entry
792 *
793 * A station table entry represents a station we are possibly
794 * communicating with. Since stations are RCU-managed in
795 * mac80211, any ieee80211_sta pointer you get access to must
796 * either be protected by rcu_read_lock() explicitly or implicitly,
797 * or you must take good care to not use such a pointer after a
798 * call to your sta_notify callback that removed it.
799 *
800 * @addr: MAC address
801 * @aid: AID we assigned to the station if we're an AP
802 * @supp_rates: Bitmap of supported rates (per band)
803 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
804 * @drv_priv: data area for driver use, will always be aligned to
805 *	sizeof(void *), size is determined in hw information.
806 */
807struct ieee80211_sta {
808	u32 supp_rates[IEEE80211_NUM_BANDS];
809	u8 addr[ETH_ALEN];
810	u16 aid;
811	struct ieee80211_sta_ht_cap ht_cap;
812
813	/* must be last */
814	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
815};
816
817/**
818 * enum sta_notify_cmd - sta notify command
819 *
820 * Used with the sta_notify() callback in &struct ieee80211_ops, this
821 * indicates addition and removal of a station to station table,
822 * or if a associated station made a power state transition.
823 *
824 * @STA_NOTIFY_ADD: a station was added to the station table
825 * @STA_NOTIFY_REMOVE: a station being removed from the station table
826 * @STA_NOTIFY_SLEEP: a station is now sleeping
827 * @STA_NOTIFY_AWAKE: a sleeping station woke up
828 */
829enum sta_notify_cmd {
830	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
831	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
832};
833
834/**
835 * enum ieee80211_tkip_key_type - get tkip key
836 *
837 * Used by drivers which need to get a tkip key for skb. Some drivers need a
838 * phase 1 key, others need a phase 2 key. A single function allows the driver
839 * to get the key, this enum indicates what type of key is required.
840 *
841 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
842 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
843 */
844enum ieee80211_tkip_key_type {
845	IEEE80211_TKIP_P1_KEY,
846	IEEE80211_TKIP_P2_KEY,
847};
848
849/**
850 * enum ieee80211_hw_flags - hardware flags
851 *
852 * These flags are used to indicate hardware capabilities to
853 * the stack. Generally, flags here should have their meaning
854 * done in a way that the simplest hardware doesn't need setting
855 * any particular flags. There are some exceptions to this rule,
856 * however, so you are advised to review these flags carefully.
857 *
858 * @IEEE80211_HW_RX_INCLUDES_FCS:
859 *	Indicates that received frames passed to the stack include
860 *	the FCS at the end.
861 *
862 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
863 *	Some wireless LAN chipsets buffer broadcast/multicast frames
864 *	for power saving stations in the hardware/firmware and others
865 *	rely on the host system for such buffering. This option is used
866 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
867 *	multicast frames when there are power saving stations so that
868 *	the driver can fetch them with ieee80211_get_buffered_bc().
869 *
870 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
871 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
872 *
873 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
874 *	Hardware is not capable of receiving frames with short preamble on
875 *	the 2.4 GHz band.
876 *
877 * @IEEE80211_HW_SIGNAL_UNSPEC:
878 *	Hardware can provide signal values but we don't know its units. We
879 *	expect values between 0 and @max_signal.
880 *	If possible please provide dB or dBm instead.
881 *
882 * @IEEE80211_HW_SIGNAL_DBM:
883 *	Hardware gives signal values in dBm, decibel difference from
884 *	one milliwatt. This is the preferred method since it is standardized
885 *	between different devices. @max_signal does not need to be set.
886 *
887 * @IEEE80211_HW_NOISE_DBM:
888 *	Hardware can provide noise (radio interference) values in units dBm,
889 *      decibel difference from one milliwatt.
890 *
891 * @IEEE80211_HW_SPECTRUM_MGMT:
892 * 	Hardware supports spectrum management defined in 802.11h
893 * 	Measurement, Channel Switch, Quieting, TPC
894 *
895 * @IEEE80211_HW_AMPDU_AGGREGATION:
896 *	Hardware supports 11n A-MPDU aggregation.
897 *
898 * @IEEE80211_HW_SUPPORTS_PS:
899 *	Hardware has power save support (i.e. can go to sleep).
900 *
901 * @IEEE80211_HW_PS_NULLFUNC_STACK:
902 *	Hardware requires nullfunc frame handling in stack, implies
903 *	stack support for dynamic PS.
904 *
905 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
906 *	Hardware has support for dynamic PS.
907 *
908 * @IEEE80211_HW_MFP_CAPABLE:
909 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
910 *
911 * @IEEE80211_HW_BEACON_FILTER:
912 *	Hardware supports dropping of irrelevant beacon frames to
913 *	avoid waking up cpu.
914 */
915enum ieee80211_hw_flags {
916	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
917	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
918	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
919	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
920	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
921	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
922	IEEE80211_HW_NOISE_DBM				= 1<<7,
923	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
924	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
925	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
926	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
927	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
928	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
929	IEEE80211_HW_BEACON_FILTER			= 1<<14,
930};
931
932/**
933 * struct ieee80211_hw - hardware information and state
934 *
935 * This structure contains the configuration and hardware
936 * information for an 802.11 PHY.
937 *
938 * @wiphy: This points to the &struct wiphy allocated for this
939 *	802.11 PHY. You must fill in the @perm_addr and @dev
940 *	members of this structure using SET_IEEE80211_DEV()
941 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
942 *	bands (with channels, bitrates) are registered here.
943 *
944 * @conf: &struct ieee80211_conf, device configuration, don't use.
945 *
946 * @priv: pointer to private area that was allocated for driver use
947 *	along with this structure.
948 *
949 * @flags: hardware flags, see &enum ieee80211_hw_flags.
950 *
951 * @extra_tx_headroom: headroom to reserve in each transmit skb
952 *	for use by the driver (e.g. for transmit headers.)
953 *
954 * @channel_change_time: time (in microseconds) it takes to change channels.
955 *
956 * @max_signal: Maximum value for signal (rssi) in RX information, used
957 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
958 *
959 * @max_listen_interval: max listen interval in units of beacon interval
960 *     that HW supports
961 *
962 * @queues: number of available hardware transmit queues for
963 *	data packets. WMM/QoS requires at least four, these
964 *	queues need to have configurable access parameters.
965 *
966 * @rate_control_algorithm: rate control algorithm for this hardware.
967 *	If unset (NULL), the default algorithm will be used. Must be
968 *	set before calling ieee80211_register_hw().
969 *
970 * @vif_data_size: size (in bytes) of the drv_priv data area
971 *	within &struct ieee80211_vif.
972 * @sta_data_size: size (in bytes) of the drv_priv data area
973 *	within &struct ieee80211_sta.
974 *
975 * @max_rates: maximum number of alternate rate retry stages
976 * @max_rate_tries: maximum number of tries for each stage
977 */
978struct ieee80211_hw {
979	struct ieee80211_conf conf;
980	struct wiphy *wiphy;
981	const char *rate_control_algorithm;
982	void *priv;
983	u32 flags;
984	unsigned int extra_tx_headroom;
985	int channel_change_time;
986	int vif_data_size;
987	int sta_data_size;
988	u16 queues;
989	u16 max_listen_interval;
990	s8 max_signal;
991	u8 max_rates;
992	u8 max_rate_tries;
993};
994
995/**
996 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
997 *
998 * @wiphy: the &struct wiphy which we want to query
999 *
1000 * mac80211 drivers can use this to get to their respective
1001 * &struct ieee80211_hw. Drivers wishing to get to their own private
1002 * structure can then access it via hw->priv. Note that mac802111 drivers should
1003 * not use wiphy_priv() to try to get their private driver structure as this
1004 * is already used internally by mac80211.
1005 */
1006struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1007
1008/**
1009 * SET_IEEE80211_DEV - set device for 802.11 hardware
1010 *
1011 * @hw: the &struct ieee80211_hw to set the device for
1012 * @dev: the &struct device of this 802.11 device
1013 */
1014static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1015{
1016	set_wiphy_dev(hw->wiphy, dev);
1017}
1018
1019/**
1020 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1021 *
1022 * @hw: the &struct ieee80211_hw to set the MAC address for
1023 * @addr: the address to set
1024 */
1025static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1026{
1027	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1028}
1029
1030static inline struct ieee80211_rate *
1031ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1032		      const struct ieee80211_tx_info *c)
1033{
1034	if (WARN_ON(c->control.rates[0].idx < 0))
1035		return NULL;
1036	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1037}
1038
1039static inline struct ieee80211_rate *
1040ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1041			   const struct ieee80211_tx_info *c)
1042{
1043	if (c->control.rts_cts_rate_idx < 0)
1044		return NULL;
1045	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1046}
1047
1048static inline struct ieee80211_rate *
1049ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1050			     const struct ieee80211_tx_info *c, int idx)
1051{
1052	if (c->control.rates[idx + 1].idx < 0)
1053		return NULL;
1054	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1055}
1056
1057/**
1058 * DOC: Hardware crypto acceleration
1059 *
1060 * mac80211 is capable of taking advantage of many hardware
1061 * acceleration designs for encryption and decryption operations.
1062 *
1063 * The set_key() callback in the &struct ieee80211_ops for a given
1064 * device is called to enable hardware acceleration of encryption and
1065 * decryption. The callback takes a @sta parameter that will be NULL
1066 * for default keys or keys used for transmission only, or point to
1067 * the station information for the peer for individual keys.
1068 * Multiple transmission keys with the same key index may be used when
1069 * VLANs are configured for an access point.
1070 *
1071 * When transmitting, the TX control data will use the @hw_key_idx
1072 * selected by the driver by modifying the &struct ieee80211_key_conf
1073 * pointed to by the @key parameter to the set_key() function.
1074 *
1075 * The set_key() call for the %SET_KEY command should return 0 if
1076 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1077 * added; if you return 0 then hw_key_idx must be assigned to the
1078 * hardware key index, you are free to use the full u8 range.
1079 *
1080 * When the cmd is %DISABLE_KEY then it must succeed.
1081 *
1082 * Note that it is permissible to not decrypt a frame even if a key
1083 * for it has been uploaded to hardware, the stack will not make any
1084 * decision based on whether a key has been uploaded or not but rather
1085 * based on the receive flags.
1086 *
1087 * The &struct ieee80211_key_conf structure pointed to by the @key
1088 * parameter is guaranteed to be valid until another call to set_key()
1089 * removes it, but it can only be used as a cookie to differentiate
1090 * keys.
1091 *
1092 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1093 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1094 * handler.
1095 * The update_tkip_key() call updates the driver with the new phase 1 key.
1096 * This happens everytime the iv16 wraps around (every 65536 packets). The
1097 * set_key() call will happen only once for each key (unless the AP did
1098 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1099 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1100 * handler is software decryption with wrap around of iv16.
1101 */
1102
1103/**
1104 * DOC: Powersave support
1105 *
1106 * mac80211 has support for various powersave implementations.
1107 *
1108 * First, it can support hardware that handles all powersaving by
1109 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1110 * hardware flag. In that case, it will be told about the desired
1111 * powersave mode depending on the association status, and the driver
1112 * must take care of sending nullfunc frames when necessary, i.e. when
1113 * entering and leaving powersave mode. The driver is required to look at
1114 * the AID in beacons and signal to the AP that it woke up when it finds
1115 * traffic directed to it. This mode supports dynamic PS by simply
1116 * enabling/disabling PS.
1117 *
1118 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1119 * flag to indicate that it can support dynamic PS mode itself (see below).
1120 *
1121 * Other hardware designs cannot send nullfunc frames by themselves and also
1122 * need software support for parsing the TIM bitmap. This is also supported
1123 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1124 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1125 * required to pass up beacons. The hardware is still required to handle
1126 * waking up for multicast traffic; if it cannot the driver must handle that
1127 * as best as it can, mac80211 is too slow.
1128 *
1129 * Dynamic powersave mode is an extension to normal powersave mode in which
1130 * the hardware stays awake for a user-specified period of time after sending
1131 * a frame so that reply frames need not be buffered and therefore delayed
1132 * to the next wakeup. This can either be supported by hardware, in which case
1133 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1134 * value, or by the stack if all nullfunc handling is in the stack.
1135 */
1136
1137/**
1138 * DOC: Beacon filter support
1139 *
1140 * Some hardware have beacon filter support to reduce host cpu wakeups
1141 * which will reduce system power consumption. It usuallly works so that
1142 * the firmware creates a checksum of the beacon but omits all constantly
1143 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1144 * beacon is forwarded to the host, otherwise it will be just dropped. That
1145 * way the host will only receive beacons where some relevant information
1146 * (for example ERP protection or WMM settings) have changed.
1147 *
1148 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1149 * hardware capability. The driver needs to enable beacon filter support
1150 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1151 * power save is enabled, the stack will not check for beacon loss and the
1152 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1153 *
1154 * The time (or number of beacons missed) until the firmware notifies the
1155 * driver of a beacon loss event (which in turn causes the driver to call
1156 * ieee80211_beacon_loss()) should be configurable and will be controlled
1157 * by mac80211 and the roaming algorithm in the future.
1158 *
1159 * Since there may be constantly changing information elements that nothing
1160 * in the software stack cares about, we will, in the future, have mac80211
1161 * tell the driver which information elements are interesting in the sense
1162 * that we want to see changes in them. This will include
1163 *  - a list of information element IDs
1164 *  - a list of OUIs for the vendor information element
1165 *
1166 * Ideally, the hardware would filter out any beacons without changes in the
1167 * requested elements, but if it cannot support that it may, at the expense
1168 * of some efficiency, filter out only a subset. For example, if the device
1169 * doesn't support checking for OUIs it should pass up all changes in all
1170 * vendor information elements.
1171 *
1172 * Note that change, for the sake of simplification, also includes information
1173 * elements appearing or disappearing from the beacon.
1174 *
1175 * Some hardware supports an "ignore list" instead, just make sure nothing
1176 * that was requested is on the ignore list, and include commonly changing
1177 * information element IDs in the ignore list, for example 11 (BSS load) and
1178 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1179 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1180 * it could also include some currently unused IDs.
1181 *
1182 *
1183 * In addition to these capabilities, hardware should support notifying the
1184 * host of changes in the beacon RSSI. This is relevant to implement roaming
1185 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1186 * the received data packets). This can consist in notifying the host when
1187 * the RSSI changes significantly or when it drops below or rises above
1188 * configurable thresholds. In the future these thresholds will also be
1189 * configured by mac80211 (which gets them from userspace) to implement
1190 * them as the roaming algorithm requires.
1191 *
1192 * If the hardware cannot implement this, the driver should ask it to
1193 * periodically pass beacon frames to the host so that software can do the
1194 * signal strength threshold checking.
1195 */
1196
1197/**
1198 * DOC: Frame filtering
1199 *
1200 * mac80211 requires to see many management frames for proper
1201 * operation, and users may want to see many more frames when
1202 * in monitor mode. However, for best CPU usage and power consumption,
1203 * having as few frames as possible percolate through the stack is
1204 * desirable. Hence, the hardware should filter as much as possible.
1205 *
1206 * To achieve this, mac80211 uses filter flags (see below) to tell
1207 * the driver's configure_filter() function which frames should be
1208 * passed to mac80211 and which should be filtered out.
1209 *
1210 * The configure_filter() callback is invoked with the parameters
1211 * @mc_count and @mc_list for the combined multicast address list
1212 * of all virtual interfaces, @changed_flags telling which flags
1213 * were changed and @total_flags with the new flag states.
1214 *
1215 * If your device has no multicast address filters your driver will
1216 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1217 * parameter to see whether multicast frames should be accepted
1218 * or dropped.
1219 *
1220 * All unsupported flags in @total_flags must be cleared.
1221 * Hardware does not support a flag if it is incapable of _passing_
1222 * the frame to the stack. Otherwise the driver must ignore
1223 * the flag, but not clear it.
1224 * You must _only_ clear the flag (announce no support for the
1225 * flag to mac80211) if you are not able to pass the packet type
1226 * to the stack (so the hardware always filters it).
1227 * So for example, you should clear @FIF_CONTROL, if your hardware
1228 * always filters control frames. If your hardware always passes
1229 * control frames to the kernel and is incapable of filtering them,
1230 * you do _not_ clear the @FIF_CONTROL flag.
1231 * This rule applies to all other FIF flags as well.
1232 */
1233
1234/**
1235 * enum ieee80211_filter_flags - hardware filter flags
1236 *
1237 * These flags determine what the filter in hardware should be
1238 * programmed to let through and what should not be passed to the
1239 * stack. It is always safe to pass more frames than requested,
1240 * but this has negative impact on power consumption.
1241 *
1242 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1243 *	think of the BSS as your network segment and then this corresponds
1244 *	to the regular ethernet device promiscuous mode.
1245 *
1246 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1247 *	by the user or if the hardware is not capable of filtering by
1248 *	multicast address.
1249 *
1250 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1251 *	%RX_FLAG_FAILED_FCS_CRC for them)
1252 *
1253 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1254 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1255 *
1256 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1257 *	to the hardware that it should not filter beacons or probe responses
1258 *	by BSSID. Filtering them can greatly reduce the amount of processing
1259 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1260 *	honour this flag if possible.
1261 *
1262 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1263 *  is not set then only those addressed to this station.
1264 *
1265 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1266 *
1267 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1268 *  those addressed to this station.
1269 */
1270enum ieee80211_filter_flags {
1271	FIF_PROMISC_IN_BSS	= 1<<0,
1272	FIF_ALLMULTI		= 1<<1,
1273	FIF_FCSFAIL		= 1<<2,
1274	FIF_PLCPFAIL		= 1<<3,
1275	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1276	FIF_CONTROL		= 1<<5,
1277	FIF_OTHER_BSS		= 1<<6,
1278	FIF_PSPOLL		= 1<<7,
1279};
1280
1281/**
1282 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1283 *
1284 * These flags are used with the ampdu_action() callback in
1285 * &struct ieee80211_ops to indicate which action is needed.
1286 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1287 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1288 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1289 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1290 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1291 */
1292enum ieee80211_ampdu_mlme_action {
1293	IEEE80211_AMPDU_RX_START,
1294	IEEE80211_AMPDU_RX_STOP,
1295	IEEE80211_AMPDU_TX_START,
1296	IEEE80211_AMPDU_TX_STOP,
1297	IEEE80211_AMPDU_TX_OPERATIONAL,
1298};
1299
1300/**
1301 * struct ieee80211_ops - callbacks from mac80211 to the driver
1302 *
1303 * This structure contains various callbacks that the driver may
1304 * handle or, in some cases, must handle, for example to configure
1305 * the hardware to a new channel or to transmit a frame.
1306 *
1307 * @tx: Handler that 802.11 module calls for each transmitted frame.
1308 *	skb contains the buffer starting from the IEEE 802.11 header.
1309 *	The low-level driver should send the frame out based on
1310 *	configuration in the TX control data. This handler should,
1311 *	preferably, never fail and stop queues appropriately, more
1312 *	importantly, however, it must never fail for A-MPDU-queues.
1313 *	This function should return NETDEV_TX_OK except in very
1314 *	limited cases.
1315 *	Must be implemented and atomic.
1316 *
1317 * @start: Called before the first netdevice attached to the hardware
1318 *	is enabled. This should turn on the hardware and must turn on
1319 *	frame reception (for possibly enabled monitor interfaces.)
1320 *	Returns negative error codes, these may be seen in userspace,
1321 *	or zero.
1322 *	When the device is started it should not have a MAC address
1323 *	to avoid acknowledging frames before a non-monitor device
1324 *	is added.
1325 *	Must be implemented.
1326 *
1327 * @stop: Called after last netdevice attached to the hardware
1328 *	is disabled. This should turn off the hardware (at least
1329 *	it must turn off frame reception.)
1330 *	May be called right after add_interface if that rejects
1331 *	an interface. If you added any work onto the mac80211 workqueue
1332 *	you should ensure to cancel it on this callback.
1333 *	Must be implemented.
1334 *
1335 * @add_interface: Called when a netdevice attached to the hardware is
1336 *	enabled. Because it is not called for monitor mode devices, @start
1337 *	and @stop must be implemented.
1338 *	The driver should perform any initialization it needs before
1339 *	the device can be enabled. The initial configuration for the
1340 *	interface is given in the conf parameter.
1341 *	The callback may refuse to add an interface by returning a
1342 *	negative error code (which will be seen in userspace.)
1343 *	Must be implemented.
1344 *
1345 * @remove_interface: Notifies a driver that an interface is going down.
1346 *	The @stop callback is called after this if it is the last interface
1347 *	and no monitor interfaces are present.
1348 *	When all interfaces are removed, the MAC address in the hardware
1349 *	must be cleared so the device no longer acknowledges packets,
1350 *	the mac_addr member of the conf structure is, however, set to the
1351 *	MAC address of the device going away.
1352 *	Hence, this callback must be implemented.
1353 *
1354 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1355 *	function to change hardware configuration, e.g., channel.
1356 *	This function should never fail but returns a negative error code
1357 *	if it does.
1358 *
1359 * @bss_info_changed: Handler for configuration requests related to BSS
1360 *	parameters that may vary during BSS's lifespan, and may affect low
1361 *	level driver (e.g. assoc/disassoc status, erp parameters).
1362 *	This function should not be used if no BSS has been set, unless
1363 *	for association indication. The @changed parameter indicates which
1364 *	of the bss parameters has changed when a call is made.
1365 *
1366 * @configure_filter: Configure the device's RX filter.
1367 *	See the section "Frame filtering" for more information.
1368 *	This callback must be implemented and atomic.
1369 *
1370 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1371 * 	must be set or cleared for a given STA. Must be atomic.
1372 *
1373 * @set_key: See the section "Hardware crypto acceleration"
1374 *	This callback can sleep, and is only called between add_interface
1375 *	and remove_interface calls, i.e. while the given virtual interface
1376 *	is enabled.
1377 *	Returns a negative error code if the key can't be added.
1378 *
1379 * @update_tkip_key: See the section "Hardware crypto acceleration"
1380 * 	This callback will be called in the context of Rx. Called for drivers
1381 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1382 *
1383 * @hw_scan: Ask the hardware to service the scan request, no need to start
1384 *	the scan state machine in stack. The scan must honour the channel
1385 *	configuration done by the regulatory agent in the wiphy's
1386 *	registered bands. The hardware (or the driver) needs to make sure
1387 *	that power save is disabled.
1388 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1389 *	entire IEs after the SSID, so that drivers need not look at these
1390 *	at all but just send them after the SSID -- mac80211 includes the
1391 *	(extended) supported rates and HT information (where applicable).
1392 *	When the scan finishes, ieee80211_scan_completed() must be called;
1393 *	note that it also must be called when the scan cannot finish due to
1394 *	any error unless this callback returned a negative error code.
1395 *
1396 * @sw_scan_start: Notifier function that is called just before a software scan
1397 *	is started. Can be NULL, if the driver doesn't need this notification.
1398 *
1399 * @sw_scan_complete: Notifier function that is called just after a software scan
1400 *	finished. Can be NULL, if the driver doesn't need this notification.
1401 *
1402 * @get_stats: Return low-level statistics.
1403 * 	Returns zero if statistics are available.
1404 *
1405 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1406 *	callback should be provided to read the TKIP transmit IVs (both IV32
1407 *	and IV16) for the given key from hardware.
1408 *
1409 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1410 *
1411 * @sta_notify: Notifies low level driver about addition, removal or power
1412 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1413 *	Must be atomic.
1414 *
1415 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1416 *	bursting) for a hardware TX queue.
1417 *	Returns a negative error code on failure.
1418 *
1419 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1420 *	to get number of currently queued packets (queue length), maximum queue
1421 *	size (limit), and total number of packets sent using each TX queue
1422 *	(count). The 'stats' pointer points to an array that has hw->queues
1423 *	items.
1424 *
1425 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1426 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1427 *	required function.
1428 *
1429 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1430 *      Currently, this is only used for IBSS mode debugging. Is not a
1431 *	required function.
1432 *
1433 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1434 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1435 *	function is optional if the firmware/hardware takes full care of
1436 *	TSF synchronization.
1437 *
1438 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1439 *	This is needed only for IBSS mode and the result of this function is
1440 *	used to determine whether to reply to Probe Requests.
1441 *	Returns non-zero if this device sent the last beacon.
1442 *
1443 * @ampdu_action: Perform a certain A-MPDU action
1444 * 	The RA/TID combination determines the destination and TID we want
1445 * 	the ampdu action to be performed for. The action is defined through
1446 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1447 * 	is the first frame we expect to perform the action on. Notice
1448 * 	that TX/RX_STOP can pass NULL for this parameter.
1449 *	Returns a negative error code on failure.
1450 *
1451 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1452 *	need to set wiphy->rfkill_poll to %true before registration,
1453 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1454 *
1455 * @testmode_cmd: Implement a cfg80211 test mode command.
1456 */
1457struct ieee80211_ops {
1458	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1459	int (*start)(struct ieee80211_hw *hw);
1460	void (*stop)(struct ieee80211_hw *hw);
1461	int (*add_interface)(struct ieee80211_hw *hw,
1462			     struct ieee80211_if_init_conf *conf);
1463	void (*remove_interface)(struct ieee80211_hw *hw,
1464				 struct ieee80211_if_init_conf *conf);
1465	int (*config)(struct ieee80211_hw *hw, u32 changed);
1466	void (*bss_info_changed)(struct ieee80211_hw *hw,
1467				 struct ieee80211_vif *vif,
1468				 struct ieee80211_bss_conf *info,
1469				 u32 changed);
1470	void (*configure_filter)(struct ieee80211_hw *hw,
1471				 unsigned int changed_flags,
1472				 unsigned int *total_flags,
1473				 int mc_count, struct dev_addr_list *mc_list);
1474	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1475		       bool set);
1476	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1477		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1478		       struct ieee80211_key_conf *key);
1479	void (*update_tkip_key)(struct ieee80211_hw *hw,
1480			struct ieee80211_key_conf *conf, const u8 *address,
1481			u32 iv32, u16 *phase1key);
1482	int (*hw_scan)(struct ieee80211_hw *hw,
1483		       struct cfg80211_scan_request *req);
1484	void (*sw_scan_start)(struct ieee80211_hw *hw);
1485	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1486	int (*get_stats)(struct ieee80211_hw *hw,
1487			 struct ieee80211_low_level_stats *stats);
1488	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1489			     u32 *iv32, u16 *iv16);
1490	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1491	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1492			enum sta_notify_cmd, struct ieee80211_sta *sta);
1493	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1494		       const struct ieee80211_tx_queue_params *params);
1495	int (*get_tx_stats)(struct ieee80211_hw *hw,
1496			    struct ieee80211_tx_queue_stats *stats);
1497	u64 (*get_tsf)(struct ieee80211_hw *hw);
1498	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1499	void (*reset_tsf)(struct ieee80211_hw *hw);
1500	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1501	int (*ampdu_action)(struct ieee80211_hw *hw,
1502			    enum ieee80211_ampdu_mlme_action action,
1503			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1504
1505	void (*rfkill_poll)(struct ieee80211_hw *hw);
1506#ifdef CONFIG_NL80211_TESTMODE
1507	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1508#endif
1509};
1510
1511/**
1512 * ieee80211_alloc_hw -  Allocate a new hardware device
1513 *
1514 * This must be called once for each hardware device. The returned pointer
1515 * must be used to refer to this device when calling other functions.
1516 * mac80211 allocates a private data area for the driver pointed to by
1517 * @priv in &struct ieee80211_hw, the size of this area is given as
1518 * @priv_data_len.
1519 *
1520 * @priv_data_len: length of private data
1521 * @ops: callbacks for this device
1522 */
1523struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1524					const struct ieee80211_ops *ops);
1525
1526/**
1527 * ieee80211_register_hw - Register hardware device
1528 *
1529 * You must call this function before any other functions in
1530 * mac80211. Note that before a hardware can be registered, you
1531 * need to fill the contained wiphy's information.
1532 *
1533 * @hw: the device to register as returned by ieee80211_alloc_hw()
1534 */
1535int ieee80211_register_hw(struct ieee80211_hw *hw);
1536
1537#ifdef CONFIG_MAC80211_LEDS
1538extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1539extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1540extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1541extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1542#endif
1543/**
1544 * ieee80211_get_tx_led_name - get name of TX LED
1545 *
1546 * mac80211 creates a transmit LED trigger for each wireless hardware
1547 * that can be used to drive LEDs if your driver registers a LED device.
1548 * This function returns the name (or %NULL if not configured for LEDs)
1549 * of the trigger so you can automatically link the LED device.
1550 *
1551 * @hw: the hardware to get the LED trigger name for
1552 */
1553static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1554{
1555#ifdef CONFIG_MAC80211_LEDS
1556	return __ieee80211_get_tx_led_name(hw);
1557#else
1558	return NULL;
1559#endif
1560}
1561
1562/**
1563 * ieee80211_get_rx_led_name - get name of RX LED
1564 *
1565 * mac80211 creates a receive LED trigger for each wireless hardware
1566 * that can be used to drive LEDs if your driver registers a LED device.
1567 * This function returns the name (or %NULL if not configured for LEDs)
1568 * of the trigger so you can automatically link the LED device.
1569 *
1570 * @hw: the hardware to get the LED trigger name for
1571 */
1572static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1573{
1574#ifdef CONFIG_MAC80211_LEDS
1575	return __ieee80211_get_rx_led_name(hw);
1576#else
1577	return NULL;
1578#endif
1579}
1580
1581/**
1582 * ieee80211_get_assoc_led_name - get name of association LED
1583 *
1584 * mac80211 creates a association LED trigger for each wireless hardware
1585 * that can be used to drive LEDs if your driver registers a LED device.
1586 * This function returns the name (or %NULL if not configured for LEDs)
1587 * of the trigger so you can automatically link the LED device.
1588 *
1589 * @hw: the hardware to get the LED trigger name for
1590 */
1591static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1592{
1593#ifdef CONFIG_MAC80211_LEDS
1594	return __ieee80211_get_assoc_led_name(hw);
1595#else
1596	return NULL;
1597#endif
1598}
1599
1600/**
1601 * ieee80211_get_radio_led_name - get name of radio LED
1602 *
1603 * mac80211 creates a radio change LED trigger for each wireless hardware
1604 * that can be used to drive LEDs if your driver registers a LED device.
1605 * This function returns the name (or %NULL if not configured for LEDs)
1606 * of the trigger so you can automatically link the LED device.
1607 *
1608 * @hw: the hardware to get the LED trigger name for
1609 */
1610static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1611{
1612#ifdef CONFIG_MAC80211_LEDS
1613	return __ieee80211_get_radio_led_name(hw);
1614#else
1615	return NULL;
1616#endif
1617}
1618
1619/**
1620 * ieee80211_unregister_hw - Unregister a hardware device
1621 *
1622 * This function instructs mac80211 to free allocated resources
1623 * and unregister netdevices from the networking subsystem.
1624 *
1625 * @hw: the hardware to unregister
1626 */
1627void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1628
1629/**
1630 * ieee80211_free_hw - free hardware descriptor
1631 *
1632 * This function frees everything that was allocated, including the
1633 * private data for the driver. You must call ieee80211_unregister_hw()
1634 * before calling this function.
1635 *
1636 * @hw: the hardware to free
1637 */
1638void ieee80211_free_hw(struct ieee80211_hw *hw);
1639
1640/**
1641 * ieee80211_restart_hw - restart hardware completely
1642 *
1643 * Call this function when the hardware was restarted for some reason
1644 * (hardware error, ...) and the driver is unable to restore its state
1645 * by itself. mac80211 assumes that at this point the driver/hardware
1646 * is completely uninitialised and stopped, it starts the process by
1647 * calling the ->start() operation. The driver will need to reset all
1648 * internal state that it has prior to calling this function.
1649 *
1650 * @hw: the hardware to restart
1651 */
1652void ieee80211_restart_hw(struct ieee80211_hw *hw);
1653
1654/*
1655 * trick to avoid symbol clashes with the ieee80211 subsystem,
1656 * use the inline below instead
1657 */
1658void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1659
1660/**
1661 * ieee80211_rx - receive frame
1662 *
1663 * Use this function to hand received frames to mac80211. The receive
1664 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1665 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1666 *
1667 * This function may not be called in IRQ context. Calls to this function
1668 * for a single hardware must be synchronized against each other. Calls
1669 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1670 * single hardware.
1671 *
1672 * @hw: the hardware this frame came in on
1673 * @skb: the buffer to receive, owned by mac80211 after this call
1674 */
1675static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1676{
1677	__ieee80211_rx(hw, skb);
1678}
1679
1680/**
1681 * ieee80211_rx_irqsafe - receive frame
1682 *
1683 * Like ieee80211_rx() but can be called in IRQ context
1684 * (internally defers to a tasklet.)
1685 *
1686 * Calls to this function and ieee80211_rx() may not be mixed for a
1687 * single hardware.
1688 *
1689 * @hw: the hardware this frame came in on
1690 * @skb: the buffer to receive, owned by mac80211 after this call
1691 */
1692void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1693
1694/**
1695 * ieee80211_tx_status - transmit status callback
1696 *
1697 * Call this function for all transmitted frames after they have been
1698 * transmitted. It is permissible to not call this function for
1699 * multicast frames but this can affect statistics.
1700 *
1701 * This function may not be called in IRQ context. Calls to this function
1702 * for a single hardware must be synchronized against each other. Calls
1703 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1704 * for a single hardware.
1705 *
1706 * @hw: the hardware the frame was transmitted by
1707 * @skb: the frame that was transmitted, owned by mac80211 after this call
1708 */
1709void ieee80211_tx_status(struct ieee80211_hw *hw,
1710			 struct sk_buff *skb);
1711
1712/**
1713 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1714 *
1715 * Like ieee80211_tx_status() but can be called in IRQ context
1716 * (internally defers to a tasklet.)
1717 *
1718 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1719 * single hardware.
1720 *
1721 * @hw: the hardware the frame was transmitted by
1722 * @skb: the frame that was transmitted, owned by mac80211 after this call
1723 */
1724void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1725				 struct sk_buff *skb);
1726
1727/**
1728 * ieee80211_beacon_get - beacon generation function
1729 * @hw: pointer obtained from ieee80211_alloc_hw().
1730 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1731 *
1732 * If the beacon frames are generated by the host system (i.e., not in
1733 * hardware/firmware), the low-level driver uses this function to receive
1734 * the next beacon frame from the 802.11 code. The low-level is responsible
1735 * for calling this function before beacon data is needed (e.g., based on
1736 * hardware interrupt). Returned skb is used only once and low-level driver
1737 * is responsible for freeing it.
1738 */
1739struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1740				     struct ieee80211_vif *vif);
1741
1742/**
1743 * ieee80211_rts_get - RTS frame generation function
1744 * @hw: pointer obtained from ieee80211_alloc_hw().
1745 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1746 * @frame: pointer to the frame that is going to be protected by the RTS.
1747 * @frame_len: the frame length (in octets).
1748 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1749 * @rts: The buffer where to store the RTS frame.
1750 *
1751 * If the RTS frames are generated by the host system (i.e., not in
1752 * hardware/firmware), the low-level driver uses this function to receive
1753 * the next RTS frame from the 802.11 code. The low-level is responsible
1754 * for calling this function before and RTS frame is needed.
1755 */
1756void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1757		       const void *frame, size_t frame_len,
1758		       const struct ieee80211_tx_info *frame_txctl,
1759		       struct ieee80211_rts *rts);
1760
1761/**
1762 * ieee80211_rts_duration - Get the duration field for an RTS frame
1763 * @hw: pointer obtained from ieee80211_alloc_hw().
1764 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1765 * @frame_len: the length of the frame that is going to be protected by the RTS.
1766 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1767 *
1768 * If the RTS is generated in firmware, but the host system must provide
1769 * the duration field, the low-level driver uses this function to receive
1770 * the duration field value in little-endian byteorder.
1771 */
1772__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1773			      struct ieee80211_vif *vif, size_t frame_len,
1774			      const struct ieee80211_tx_info *frame_txctl);
1775
1776/**
1777 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1778 * @hw: pointer obtained from ieee80211_alloc_hw().
1779 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1780 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1781 * @frame_len: the frame length (in octets).
1782 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1783 * @cts: The buffer where to store the CTS-to-self frame.
1784 *
1785 * If the CTS-to-self frames are generated by the host system (i.e., not in
1786 * hardware/firmware), the low-level driver uses this function to receive
1787 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1788 * for calling this function before and CTS-to-self frame is needed.
1789 */
1790void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1791			     struct ieee80211_vif *vif,
1792			     const void *frame, size_t frame_len,
1793			     const struct ieee80211_tx_info *frame_txctl,
1794			     struct ieee80211_cts *cts);
1795
1796/**
1797 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1798 * @hw: pointer obtained from ieee80211_alloc_hw().
1799 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1800 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1801 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1802 *
1803 * If the CTS-to-self is generated in firmware, but the host system must provide
1804 * the duration field, the low-level driver uses this function to receive
1805 * the duration field value in little-endian byteorder.
1806 */
1807__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1808				    struct ieee80211_vif *vif,
1809				    size_t frame_len,
1810				    const struct ieee80211_tx_info *frame_txctl);
1811
1812/**
1813 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1814 * @hw: pointer obtained from ieee80211_alloc_hw().
1815 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1816 * @frame_len: the length of the frame.
1817 * @rate: the rate at which the frame is going to be transmitted.
1818 *
1819 * Calculate the duration field of some generic frame, given its
1820 * length and transmission rate (in 100kbps).
1821 */
1822__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1823					struct ieee80211_vif *vif,
1824					size_t frame_len,
1825					struct ieee80211_rate *rate);
1826
1827/**
1828 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1829 * @hw: pointer as obtained from ieee80211_alloc_hw().
1830 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1831 *
1832 * Function for accessing buffered broadcast and multicast frames. If
1833 * hardware/firmware does not implement buffering of broadcast/multicast
1834 * frames when power saving is used, 802.11 code buffers them in the host
1835 * memory. The low-level driver uses this function to fetch next buffered
1836 * frame. In most cases, this is used when generating beacon frame. This
1837 * function returns a pointer to the next buffered skb or NULL if no more
1838 * buffered frames are available.
1839 *
1840 * Note: buffered frames are returned only after DTIM beacon frame was
1841 * generated with ieee80211_beacon_get() and the low-level driver must thus
1842 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1843 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1844 * does not need to check for DTIM beacons separately and should be able to
1845 * use common code for all beacons.
1846 */
1847struct sk_buff *
1848ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1849
1850/**
1851 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1852 *
1853 * This function computes a TKIP rc4 key for an skb. It computes
1854 * a phase 1 key if needed (iv16 wraps around). This function is to
1855 * be used by drivers which can do HW encryption but need to compute
1856 * to phase 1/2 key in SW.
1857 *
1858 * @keyconf: the parameter passed with the set key
1859 * @skb: the skb for which the key is needed
1860 * @type: TBD
1861 * @key: a buffer to which the key will be written
1862 */
1863void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1864				struct sk_buff *skb,
1865				enum ieee80211_tkip_key_type type, u8 *key);
1866/**
1867 * ieee80211_wake_queue - wake specific queue
1868 * @hw: pointer as obtained from ieee80211_alloc_hw().
1869 * @queue: queue number (counted from zero).
1870 *
1871 * Drivers should use this function instead of netif_wake_queue.
1872 */
1873void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1874
1875/**
1876 * ieee80211_stop_queue - stop specific queue
1877 * @hw: pointer as obtained from ieee80211_alloc_hw().
1878 * @queue: queue number (counted from zero).
1879 *
1880 * Drivers should use this function instead of netif_stop_queue.
1881 */
1882void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1883
1884/**
1885 * ieee80211_queue_stopped - test status of the queue
1886 * @hw: pointer as obtained from ieee80211_alloc_hw().
1887 * @queue: queue number (counted from zero).
1888 *
1889 * Drivers should use this function instead of netif_stop_queue.
1890 */
1891
1892int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1893
1894/**
1895 * ieee80211_stop_queues - stop all queues
1896 * @hw: pointer as obtained from ieee80211_alloc_hw().
1897 *
1898 * Drivers should use this function instead of netif_stop_queue.
1899 */
1900void ieee80211_stop_queues(struct ieee80211_hw *hw);
1901
1902/**
1903 * ieee80211_wake_queues - wake all queues
1904 * @hw: pointer as obtained from ieee80211_alloc_hw().
1905 *
1906 * Drivers should use this function instead of netif_wake_queue.
1907 */
1908void ieee80211_wake_queues(struct ieee80211_hw *hw);
1909
1910/**
1911 * ieee80211_scan_completed - completed hardware scan
1912 *
1913 * When hardware scan offload is used (i.e. the hw_scan() callback is
1914 * assigned) this function needs to be called by the driver to notify
1915 * mac80211 that the scan finished.
1916 *
1917 * @hw: the hardware that finished the scan
1918 * @aborted: set to true if scan was aborted
1919 */
1920void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1921
1922/**
1923 * ieee80211_iterate_active_interfaces - iterate active interfaces
1924 *
1925 * This function iterates over the interfaces associated with a given
1926 * hardware that are currently active and calls the callback for them.
1927 * This function allows the iterator function to sleep, when the iterator
1928 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1929 * be used.
1930 *
1931 * @hw: the hardware struct of which the interfaces should be iterated over
1932 * @iterator: the iterator function to call
1933 * @data: first argument of the iterator function
1934 */
1935void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1936					 void (*iterator)(void *data, u8 *mac,
1937						struct ieee80211_vif *vif),
1938					 void *data);
1939
1940/**
1941 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1942 *
1943 * This function iterates over the interfaces associated with a given
1944 * hardware that are currently active and calls the callback for them.
1945 * This function requires the iterator callback function to be atomic,
1946 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1947 *
1948 * @hw: the hardware struct of which the interfaces should be iterated over
1949 * @iterator: the iterator function to call, cannot sleep
1950 * @data: first argument of the iterator function
1951 */
1952void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1953						void (*iterator)(void *data,
1954						    u8 *mac,
1955						    struct ieee80211_vif *vif),
1956						void *data);
1957
1958/**
1959 * ieee80211_queue_work - add work onto the mac80211 workqueue
1960 *
1961 * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
1962 * This helper ensures drivers are not queueing work when they should not be.
1963 *
1964 * @hw: the hardware struct for the interface we are adding work for
1965 * @work: the work we want to add onto the mac80211 workqueue
1966 */
1967void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
1968
1969/**
1970 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
1971 *
1972 * Drivers and mac80211 use this to queue delayed work onto the mac80211
1973 * workqueue.
1974 *
1975 * @hw: the hardware struct for the interface we are adding work for
1976 * @dwork: delayable work to queue onto the mac80211 workqueue
1977 * @delay: number of jiffies to wait before queueing
1978 */
1979void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
1980				  struct delayed_work *dwork,
1981				  unsigned long delay);
1982
1983/**
1984 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1985 * @hw: pointer as obtained from ieee80211_alloc_hw().
1986 * @ra: receiver address of the BA session recipient
1987 * @tid: the TID to BA on.
1988 *
1989 * Return: success if addBA request was sent, failure otherwise
1990 *
1991 * Although mac80211/low level driver/user space application can estimate
1992 * the need to start aggregation on a certain RA/TID, the session level
1993 * will be managed by the mac80211.
1994 */
1995int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1996
1997/**
1998 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1999 * @hw: pointer as obtained from ieee80211_alloc_hw().
2000 * @ra: receiver address of the BA session recipient.
2001 * @tid: the TID to BA on.
2002 *
2003 * This function must be called by low level driver once it has
2004 * finished with preparations for the BA session.
2005 */
2006void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2007
2008/**
2009 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2010 * @hw: pointer as obtained from ieee80211_alloc_hw().
2011 * @ra: receiver address of the BA session recipient.
2012 * @tid: the TID to BA on.
2013 *
2014 * This function must be called by low level driver once it has
2015 * finished with preparations for the BA session.
2016 * This version of the function is IRQ-safe.
2017 */
2018void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2019				      u16 tid);
2020
2021/**
2022 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2023 * @hw: pointer as obtained from ieee80211_alloc_hw().
2024 * @ra: receiver address of the BA session recipient
2025 * @tid: the TID to stop BA.
2026 * @initiator: if indicates initiator DELBA frame will be sent.
2027 *
2028 * Return: error if no sta with matching da found, success otherwise
2029 *
2030 * Although mac80211/low level driver/user space application can estimate
2031 * the need to stop aggregation on a certain RA/TID, the session level
2032 * will be managed by the mac80211.
2033 */
2034int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2035				 u8 *ra, u16 tid,
2036				 enum ieee80211_back_parties initiator);
2037
2038/**
2039 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2040 * @hw: pointer as obtained from ieee80211_alloc_hw().
2041 * @ra: receiver address of the BA session recipient.
2042 * @tid: the desired TID to BA on.
2043 *
2044 * This function must be called by low level driver once it has
2045 * finished with preparations for the BA session tear down.
2046 */
2047void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2048
2049/**
2050 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2051 * @hw: pointer as obtained from ieee80211_alloc_hw().
2052 * @ra: receiver address of the BA session recipient.
2053 * @tid: the desired TID to BA on.
2054 *
2055 * This function must be called by low level driver once it has
2056 * finished with preparations for the BA session tear down.
2057 * This version of the function is IRQ-safe.
2058 */
2059void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2060				     u16 tid);
2061
2062/**
2063 * ieee80211_find_sta - find a station
2064 *
2065 * @hw: pointer as obtained from ieee80211_alloc_hw()
2066 * @addr: station's address
2067 *
2068 * This function must be called under RCU lock and the
2069 * resulting pointer is only valid under RCU lock as well.
2070 */
2071struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2072					 const u8 *addr);
2073
2074/**
2075 * ieee80211_beacon_loss - inform hardware does not receive beacons
2076 *
2077 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2078 *
2079 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2080 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2081 * hardware is not receiving beacons with this function.
2082 */
2083void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2084
2085/* Rate control API */
2086
2087/**
2088 * enum rate_control_changed - flags to indicate which parameter changed
2089 *
2090 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2091 *	changed, rate control algorithm can update its internal state if needed.
2092 */
2093enum rate_control_changed {
2094	IEEE80211_RC_HT_CHANGED = BIT(0)
2095};
2096
2097/**
2098 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2099 *
2100 * @hw: The hardware the algorithm is invoked for.
2101 * @sband: The band this frame is being transmitted on.
2102 * @bss_conf: the current BSS configuration
2103 * @reported_rate: The rate control algorithm can fill this in to indicate
2104 *	which rate should be reported to userspace as the current rate and
2105 *	used for rate calculations in the mesh network.
2106 * @rts: whether RTS will be used for this frame because it is longer than the
2107 *	RTS threshold
2108 * @short_preamble: whether mac80211 will request short-preamble transmission
2109 *	if the selected rate supports it
2110 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2111 * @skb: the skb that will be transmitted, the control information in it needs
2112 *	to be filled in
2113 */
2114struct ieee80211_tx_rate_control {
2115	struct ieee80211_hw *hw;
2116	struct ieee80211_supported_band *sband;
2117	struct ieee80211_bss_conf *bss_conf;
2118	struct sk_buff *skb;
2119	struct ieee80211_tx_rate reported_rate;
2120	bool rts, short_preamble;
2121	u8 max_rate_idx;
2122};
2123
2124struct rate_control_ops {
2125	struct module *module;
2126	const char *name;
2127	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2128	void (*free)(void *priv);
2129
2130	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2131	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2132			  struct ieee80211_sta *sta, void *priv_sta);
2133	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2134			    struct ieee80211_sta *sta,
2135			    void *priv_sta, u32 changed);
2136	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2137			 void *priv_sta);
2138
2139	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2140			  struct ieee80211_sta *sta, void *priv_sta,
2141			  struct sk_buff *skb);
2142	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2143			 struct ieee80211_tx_rate_control *txrc);
2144
2145	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2146				struct dentry *dir);
2147	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2148};
2149
2150static inline int rate_supported(struct ieee80211_sta *sta,
2151				 enum ieee80211_band band,
2152				 int index)
2153{
2154	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2155}
2156
2157/**
2158 * rate_control_send_low - helper for drivers for management/no-ack frames
2159 *
2160 * Rate control algorithms that agree to use the lowest rate to
2161 * send management frames and NO_ACK data with the respective hw
2162 * retries should use this in the beginning of their mac80211 get_rate
2163 * callback. If true is returned the rate control can simply return.
2164 * If false is returned we guarantee that sta and sta and priv_sta is
2165 * not null.
2166 *
2167 * Rate control algorithms wishing to do more intelligent selection of
2168 * rate for multicast/broadcast frames may choose to not use this.
2169 *
2170 * @sta: &struct ieee80211_sta pointer to the target destination. Note
2171 * 	that this may be null.
2172 * @priv_sta: private rate control structure. This may be null.
2173 * @txrc: rate control information we sholud populate for mac80211.
2174 */
2175bool rate_control_send_low(struct ieee80211_sta *sta,
2176			   void *priv_sta,
2177			   struct ieee80211_tx_rate_control *txrc);
2178
2179
2180static inline s8
2181rate_lowest_index(struct ieee80211_supported_band *sband,
2182		  struct ieee80211_sta *sta)
2183{
2184	int i;
2185
2186	for (i = 0; i < sband->n_bitrates; i++)
2187		if (rate_supported(sta, sband->band, i))
2188			return i;
2189
2190	/* warn when we cannot find a rate. */
2191	WARN_ON(1);
2192
2193	return 0;
2194}
2195
2196static inline
2197bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2198			      struct ieee80211_sta *sta)
2199{
2200	unsigned int i;
2201
2202	for (i = 0; i < sband->n_bitrates; i++)
2203		if (rate_supported(sta, sband->band, i))
2204			return true;
2205	return false;
2206}
2207
2208int ieee80211_rate_control_register(struct rate_control_ops *ops);
2209void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2210
2211static inline bool
2212conf_is_ht20(struct ieee80211_conf *conf)
2213{
2214	return conf->channel_type == NL80211_CHAN_HT20;
2215}
2216
2217static inline bool
2218conf_is_ht40_minus(struct ieee80211_conf *conf)
2219{
2220	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2221}
2222
2223static inline bool
2224conf_is_ht40_plus(struct ieee80211_conf *conf)
2225{
2226	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2227}
2228
2229static inline bool
2230conf_is_ht40(struct ieee80211_conf *conf)
2231{
2232	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2233}
2234
2235static inline bool
2236conf_is_ht(struct ieee80211_conf *conf)
2237{
2238	return conf->channel_type != NL80211_CHAN_NO_HT;
2239}
2240
2241#endif /* MAC80211_H */
2242