mac80211.h revision cce4c77b87ce7e71a0f244a3dfb6ac1c3a1bc67e
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80enum ieee80211_max_queues {
81	IEEE80211_MAX_QUEUES =		4,
82};
83
84/**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 *	2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96struct ieee80211_tx_queue_params {
97	u16 txop;
98	u16 cw_min;
99	u16 cw_max;
100	u8 aifs;
101};
102
103/**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110struct ieee80211_tx_queue_stats {
111	unsigned int len;
112	unsigned int limit;
113	unsigned int count;
114};
115
116struct ieee80211_low_level_stats {
117	unsigned int dot11ACKFailureCount;
118	unsigned int dot11RTSFailureCount;
119	unsigned int dot11FCSErrorCount;
120	unsigned int dot11RTSSuccessCount;
121};
122
123/**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 *	also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 *	reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 *	new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 *	enabled/disabled (beaconing modes)
143 */
144enum ieee80211_bss_change {
145	BSS_CHANGED_ASSOC		= 1<<0,
146	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
147	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
148	BSS_CHANGED_ERP_SLOT		= 1<<3,
149	BSS_CHANGED_HT                  = 1<<4,
150	BSS_CHANGED_BASIC_RATES		= 1<<5,
151	BSS_CHANGED_BEACON_INT		= 1<<6,
152	BSS_CHANGED_BSSID		= 1<<7,
153	BSS_CHANGED_BEACON		= 1<<8,
154	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
155};
156
157/**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 *	if the hardware cannot handle this it must set the
168 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 *	if the hardware cannot handle this it must set the
171 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @basic_rates: bitmap of basic rates, each bit stands for an
177 *	index into the rate table configured by the driver in
178 *	the current band.
179 * @bssid: The BSSID for this BSS
180 * @enable_beacon: whether beaconing should be enabled or not
181 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
182 *	This field is only valid when the channel type is one of the HT types.
183 */
184struct ieee80211_bss_conf {
185	const u8 *bssid;
186	/* association related data */
187	bool assoc;
188	u16 aid;
189	/* erp related data */
190	bool use_cts_prot;
191	bool use_short_preamble;
192	bool use_short_slot;
193	bool enable_beacon;
194	u8 dtim_period;
195	u16 beacon_int;
196	u16 assoc_capability;
197	u64 timestamp;
198	u32 basic_rates;
199	u16 ht_operation_mode;
200};
201
202/**
203 * enum mac80211_tx_control_flags - flags to describe transmission information/status
204 *
205 * These flags are used with the @flags member of &ieee80211_tx_info.
206 *
207 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
208 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
209 *	number to this frame, taking care of not overwriting the fragment
210 *	number and increasing the sequence number only when the
211 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
212 *	assign sequence numbers to QoS-data frames but cannot do so correctly
213 *	for non-QoS-data and management frames because beacons need them from
214 *	that counter as well and mac80211 cannot guarantee proper sequencing.
215 *	If this flag is set, the driver should instruct the hardware to
216 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
217 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
218 *	beacons and always be clear for frames without a sequence number field.
219 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
220 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
221 *	station
222 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
223 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
224 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
225 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
226 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
227 *	because the destination STA was in powersave mode.
228 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
229 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
230 * 	is for the whole aggregation.
231 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
232 * 	so consider using block ack request (BAR).
233 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
234 *	set by rate control algorithms to indicate probe rate, will
235 *	be cleared for fragmented frames (except on the last fragment)
236 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
237 *	set this flag in the driver; indicates that the rate control
238 *	algorithm was used and should be notified of TX status
239 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
240 *	used to indicate that a pending frame requires TX processing before
241 *	it can be sent out.
242 */
243enum mac80211_tx_control_flags {
244	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
245	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
246	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
247	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
248	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
249	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
250	IEEE80211_TX_CTL_AMPDU			= BIT(6),
251	IEEE80211_TX_CTL_INJECTED		= BIT(7),
252	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
253	IEEE80211_TX_STAT_ACK			= BIT(9),
254	IEEE80211_TX_STAT_AMPDU			= BIT(10),
255	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
256	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
257	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
258	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
259};
260
261/**
262 * enum mac80211_rate_control_flags - per-rate flags set by the
263 *	Rate Control algorithm.
264 *
265 * These flags are set by the Rate control algorithm for each rate during tx,
266 * in the @flags member of struct ieee80211_tx_rate.
267 *
268 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
269 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
270 *	This is set if the current BSS requires ERP protection.
271 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
272 * @IEEE80211_TX_RC_MCS: HT rate.
273 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
274 *	Greenfield mode.
275 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
276 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
277 *	adjacent 20 MHz channels, if the current channel type is
278 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
279 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
280 */
281enum mac80211_rate_control_flags {
282	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
283	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
284	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
285
286	/* rate index is an MCS rate number instead of an index */
287	IEEE80211_TX_RC_MCS			= BIT(3),
288	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
289	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
290	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
291	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
292};
293
294
295/* there are 40 bytes if you don't need the rateset to be kept */
296#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
297
298/* if you do need the rateset, then you have less space */
299#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
300
301/* maximum number of rate stages */
302#define IEEE80211_TX_MAX_RATES	5
303
304/**
305 * struct ieee80211_tx_rate - rate selection/status
306 *
307 * @idx: rate index to attempt to send with
308 * @flags: rate control flags (&enum mac80211_rate_control_flags)
309 * @count: number of tries in this rate before going to the next rate
310 *
311 * A value of -1 for @idx indicates an invalid rate and, if used
312 * in an array of retry rates, that no more rates should be tried.
313 *
314 * When used for transmit status reporting, the driver should
315 * always report the rate along with the flags it used.
316 */
317struct ieee80211_tx_rate {
318	s8 idx;
319	u8 count;
320	u8 flags;
321} __attribute__((packed));
322
323/**
324 * struct ieee80211_tx_info - skb transmit information
325 *
326 * This structure is placed in skb->cb for three uses:
327 *  (1) mac80211 TX control - mac80211 tells the driver what to do
328 *  (2) driver internal use (if applicable)
329 *  (3) TX status information - driver tells mac80211 what happened
330 *
331 * The TX control's sta pointer is only valid during the ->tx call,
332 * it may be NULL.
333 *
334 * @flags: transmit info flags, defined above
335 * @band: the band to transmit on (use for checking for races)
336 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
337 * @pad: padding, ignore
338 * @control: union for control data
339 * @status: union for status data
340 * @driver_data: array of driver_data pointers
341 * @ampdu_ack_len: number of aggregated frames.
342 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
343 * @ampdu_ack_map: block ack bit map for the aggregation.
344 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
345 * @ack_signal: signal strength of the ACK frame
346 */
347struct ieee80211_tx_info {
348	/* common information */
349	u32 flags;
350	u8 band;
351
352	u8 antenna_sel_tx;
353
354	/* 2 byte hole */
355	u8 pad[2];
356
357	union {
358		struct {
359			union {
360				/* rate control */
361				struct {
362					struct ieee80211_tx_rate rates[
363						IEEE80211_TX_MAX_RATES];
364					s8 rts_cts_rate_idx;
365				};
366				/* only needed before rate control */
367				unsigned long jiffies;
368			};
369			/* NB: vif can be NULL for injected frames */
370			struct ieee80211_vif *vif;
371			struct ieee80211_key_conf *hw_key;
372			struct ieee80211_sta *sta;
373		} control;
374		struct {
375			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
376			u8 ampdu_ack_len;
377			u64 ampdu_ack_map;
378			int ack_signal;
379			/* 8 bytes free */
380		} status;
381		struct {
382			struct ieee80211_tx_rate driver_rates[
383				IEEE80211_TX_MAX_RATES];
384			void *rate_driver_data[
385				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
386		};
387		void *driver_data[
388			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
389	};
390};
391
392static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
393{
394	return (struct ieee80211_tx_info *)skb->cb;
395}
396
397/**
398 * ieee80211_tx_info_clear_status - clear TX status
399 *
400 * @info: The &struct ieee80211_tx_info to be cleared.
401 *
402 * When the driver passes an skb back to mac80211, it must report
403 * a number of things in TX status. This function clears everything
404 * in the TX status but the rate control information (it does clear
405 * the count since you need to fill that in anyway).
406 *
407 * NOTE: You can only use this function if you do NOT use
408 *	 info->driver_data! Use info->rate_driver_data
409 *	 instead if you need only the less space that allows.
410 */
411static inline void
412ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
413{
414	int i;
415
416	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
417		     offsetof(struct ieee80211_tx_info, control.rates));
418	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
419		     offsetof(struct ieee80211_tx_info, driver_rates));
420	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
421	/* clear the rate counts */
422	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
423		info->status.rates[i].count = 0;
424
425	BUILD_BUG_ON(
426	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
427	memset(&info->status.ampdu_ack_len, 0,
428	       sizeof(struct ieee80211_tx_info) -
429	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
430}
431
432
433/**
434 * enum mac80211_rx_flags - receive flags
435 *
436 * These flags are used with the @flag member of &struct ieee80211_rx_status.
437 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
438 *	Use together with %RX_FLAG_MMIC_STRIPPED.
439 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
440 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
441 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
442 *	verification has been done by the hardware.
443 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
444 *	If this flag is set, the stack cannot do any replay detection
445 *	hence the driver or hardware will have to do that.
446 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
447 *	the frame.
448 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
449 *	the frame.
450 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
451 *	is valid. This is useful in monitor mode and necessary for beacon frames
452 *	to enable IBSS merging.
453 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
454 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
455 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
456 * @RX_FLAG_SHORT_GI: Short guard interval was used
457 */
458enum mac80211_rx_flags {
459	RX_FLAG_MMIC_ERROR	= 1<<0,
460	RX_FLAG_DECRYPTED	= 1<<1,
461	RX_FLAG_RADIOTAP	= 1<<2,
462	RX_FLAG_MMIC_STRIPPED	= 1<<3,
463	RX_FLAG_IV_STRIPPED	= 1<<4,
464	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
465	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
466	RX_FLAG_TSFT		= 1<<7,
467	RX_FLAG_SHORTPRE	= 1<<8,
468	RX_FLAG_HT		= 1<<9,
469	RX_FLAG_40MHZ		= 1<<10,
470	RX_FLAG_SHORT_GI	= 1<<11,
471};
472
473/**
474 * struct ieee80211_rx_status - receive status
475 *
476 * The low-level driver should provide this information (the subset
477 * supported by hardware) to the 802.11 code with each received
478 * frame.
479 *
480 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
481 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
482 * @band: the active band when this frame was received
483 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
484 * @signal: signal strength when receiving this frame, either in dBm, in dB or
485 *	unspecified depending on the hardware capabilities flags
486 *	@IEEE80211_HW_SIGNAL_*
487 * @noise: noise when receiving this frame, in dBm.
488 * @qual: overall signal quality indication, in percent (0-100).
489 * @antenna: antenna used
490 * @rate_idx: index of data rate into band's supported rates or MCS index if
491 *	HT rates are use (RX_FLAG_HT)
492 * @flag: %RX_FLAG_*
493 */
494struct ieee80211_rx_status {
495	u64 mactime;
496	enum ieee80211_band band;
497	int freq;
498	int signal;
499	int noise;
500	int qual;
501	int antenna;
502	int rate_idx;
503	int flag;
504};
505
506/**
507 * enum ieee80211_conf_flags - configuration flags
508 *
509 * Flags to define PHY configuration options
510 *
511 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
512 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
513 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
514 *	the driver should be prepared to handle configuration requests but
515 *	may turn the device off as much as possible. Typically, this flag will
516 *	be set when an interface is set UP but not associated or scanning, but
517 *	it can also be unset in that case when monitor interfaces are active.
518 */
519enum ieee80211_conf_flags {
520	IEEE80211_CONF_RADIOTAP		= (1<<0),
521	IEEE80211_CONF_PS		= (1<<1),
522	IEEE80211_CONF_IDLE		= (1<<2),
523};
524
525
526/**
527 * enum ieee80211_conf_changed - denotes which configuration changed
528 *
529 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
530 * @_IEEE80211_CONF_CHANGE_BEACON_INTERVAL: DEPRECATED
531 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
532 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
533 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
534 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
535 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
536 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
537 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
538 */
539enum ieee80211_conf_changed {
540	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
541	_IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
542	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
543	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
544	IEEE80211_CONF_CHANGE_PS		= BIT(4),
545	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
546	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
547	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
548	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
549};
550
551static inline __deprecated enum ieee80211_conf_changed
552__IEEE80211_CONF_CHANGE_BEACON_INTERVAL(void)
553{
554	return _IEEE80211_CONF_CHANGE_BEACON_INTERVAL;
555}
556#define IEEE80211_CONF_CHANGE_BEACON_INTERVAL \
557	__IEEE80211_CONF_CHANGE_BEACON_INTERVAL()
558
559/**
560 * struct ieee80211_conf - configuration of the device
561 *
562 * This struct indicates how the driver shall configure the hardware.
563 *
564 * @flags: configuration flags defined above
565 *
566 * @radio_enabled: when zero, driver is required to switch off the radio.
567 * @beacon_int: beacon interval (TODO make interface config)
568 *
569 * @listen_interval: listen interval in units of beacon interval
570 * @max_sleep_period: the maximum number of beacon intervals to sleep for
571 *	before checking the beacon for a TIM bit (managed mode only); this
572 *	value will be only achievable between DTIM frames, the hardware
573 *	needs to check for the multicast traffic bit in DTIM beacons.
574 *	This variable is valid only when the CONF_PS flag is set.
575 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
576 *	powersave documentation below. This variable is valid only when
577 *	the CONF_PS flag is set.
578 *
579 * @power_level: requested transmit power (in dBm)
580 *
581 * @channel: the channel to tune to
582 * @channel_type: the channel (HT) type
583 *
584 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
585 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
586 *    but actually means the number of transmissions not the number of retries
587 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
588 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
589 *    number of transmissions not the number of retries
590 */
591struct ieee80211_conf {
592	int beacon_int;
593	u32 flags;
594	int power_level, dynamic_ps_timeout;
595	int max_sleep_period;
596
597	u16 listen_interval;
598	bool radio_enabled;
599
600	u8 long_frame_max_tx_count, short_frame_max_tx_count;
601
602	struct ieee80211_channel *channel;
603	enum nl80211_channel_type channel_type;
604};
605
606/**
607 * struct ieee80211_vif - per-interface data
608 *
609 * Data in this structure is continually present for driver
610 * use during the life of a virtual interface.
611 *
612 * @type: type of this virtual interface
613 * @bss_conf: BSS configuration for this interface, either our own
614 *	or the BSS we're associated to
615 * @drv_priv: data area for driver use, will always be aligned to
616 *	sizeof(void *).
617 */
618struct ieee80211_vif {
619	enum nl80211_iftype type;
620	struct ieee80211_bss_conf bss_conf;
621	/* must be last */
622	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
623};
624
625static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
626{
627#ifdef CONFIG_MAC80211_MESH
628	return vif->type == NL80211_IFTYPE_MESH_POINT;
629#endif
630	return false;
631}
632
633/**
634 * struct ieee80211_if_init_conf - initial configuration of an interface
635 *
636 * @vif: pointer to a driver-use per-interface structure. The pointer
637 *	itself is also used for various functions including
638 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
639 * @type: one of &enum nl80211_iftype constants. Determines the type of
640 *	added/removed interface.
641 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
642 *	until the interface is removed (i.e. it cannot be used after
643 *	remove_interface() callback was called for this interface).
644 *
645 * This structure is used in add_interface() and remove_interface()
646 * callbacks of &struct ieee80211_hw.
647 *
648 * When you allow multiple interfaces to be added to your PHY, take care
649 * that the hardware can actually handle multiple MAC addresses. However,
650 * also take care that when there's no interface left with mac_addr != %NULL
651 * you remove the MAC address from the device to avoid acknowledging packets
652 * in pure monitor mode.
653 */
654struct ieee80211_if_init_conf {
655	enum nl80211_iftype type;
656	struct ieee80211_vif *vif;
657	void *mac_addr;
658};
659
660/**
661 * enum ieee80211_key_alg - key algorithm
662 * @ALG_WEP: WEP40 or WEP104
663 * @ALG_TKIP: TKIP
664 * @ALG_CCMP: CCMP (AES)
665 * @ALG_AES_CMAC: AES-128-CMAC
666 */
667enum ieee80211_key_alg {
668	ALG_WEP,
669	ALG_TKIP,
670	ALG_CCMP,
671	ALG_AES_CMAC,
672};
673
674/**
675 * enum ieee80211_key_len - key length
676 * @LEN_WEP40: WEP 5-byte long key
677 * @LEN_WEP104: WEP 13-byte long key
678 */
679enum ieee80211_key_len {
680	LEN_WEP40 = 5,
681	LEN_WEP104 = 13,
682};
683
684/**
685 * enum ieee80211_key_flags - key flags
686 *
687 * These flags are used for communication about keys between the driver
688 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
689 *
690 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
691 *	that the STA this key will be used with could be using QoS.
692 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
693 *	driver to indicate that it requires IV generation for this
694 *	particular key.
695 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
696 *	the driver for a TKIP key if it requires Michael MIC
697 *	generation in software.
698 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
699 *	that the key is pairwise rather then a shared key.
700 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
701 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
702 *	be done in software.
703 */
704enum ieee80211_key_flags {
705	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
706	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
707	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
708	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
709	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
710};
711
712/**
713 * struct ieee80211_key_conf - key information
714 *
715 * This key information is given by mac80211 to the driver by
716 * the set_key() callback in &struct ieee80211_ops.
717 *
718 * @hw_key_idx: To be set by the driver, this is the key index the driver
719 *	wants to be given when a frame is transmitted and needs to be
720 *	encrypted in hardware.
721 * @alg: The key algorithm.
722 * @flags: key flags, see &enum ieee80211_key_flags.
723 * @keyidx: the key index (0-3)
724 * @keylen: key material length
725 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
726 * 	data block:
727 * 	- Temporal Encryption Key (128 bits)
728 * 	- Temporal Authenticator Tx MIC Key (64 bits)
729 * 	- Temporal Authenticator Rx MIC Key (64 bits)
730 * @icv_len: The ICV length for this key type
731 * @iv_len: The IV length for this key type
732 */
733struct ieee80211_key_conf {
734	enum ieee80211_key_alg alg;
735	u8 icv_len;
736	u8 iv_len;
737	u8 hw_key_idx;
738	u8 flags;
739	s8 keyidx;
740	u8 keylen;
741	u8 key[0];
742};
743
744/**
745 * enum set_key_cmd - key command
746 *
747 * Used with the set_key() callback in &struct ieee80211_ops, this
748 * indicates whether a key is being removed or added.
749 *
750 * @SET_KEY: a key is set
751 * @DISABLE_KEY: a key must be disabled
752 */
753enum set_key_cmd {
754	SET_KEY, DISABLE_KEY,
755};
756
757/**
758 * struct ieee80211_sta - station table entry
759 *
760 * A station table entry represents a station we are possibly
761 * communicating with. Since stations are RCU-managed in
762 * mac80211, any ieee80211_sta pointer you get access to must
763 * either be protected by rcu_read_lock() explicitly or implicitly,
764 * or you must take good care to not use such a pointer after a
765 * call to your sta_notify callback that removed it.
766 *
767 * @addr: MAC address
768 * @aid: AID we assigned to the station if we're an AP
769 * @supp_rates: Bitmap of supported rates (per band)
770 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
771 * @drv_priv: data area for driver use, will always be aligned to
772 *	sizeof(void *), size is determined in hw information.
773 */
774struct ieee80211_sta {
775	u32 supp_rates[IEEE80211_NUM_BANDS];
776	u8 addr[ETH_ALEN];
777	u16 aid;
778	struct ieee80211_sta_ht_cap ht_cap;
779
780	/* must be last */
781	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
782};
783
784/**
785 * enum sta_notify_cmd - sta notify command
786 *
787 * Used with the sta_notify() callback in &struct ieee80211_ops, this
788 * indicates addition and removal of a station to station table,
789 * or if a associated station made a power state transition.
790 *
791 * @STA_NOTIFY_ADD: a station was added to the station table
792 * @STA_NOTIFY_REMOVE: a station being removed from the station table
793 * @STA_NOTIFY_SLEEP: a station is now sleeping
794 * @STA_NOTIFY_AWAKE: a sleeping station woke up
795 */
796enum sta_notify_cmd {
797	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
798	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
799};
800
801/**
802 * enum ieee80211_tkip_key_type - get tkip key
803 *
804 * Used by drivers which need to get a tkip key for skb. Some drivers need a
805 * phase 1 key, others need a phase 2 key. A single function allows the driver
806 * to get the key, this enum indicates what type of key is required.
807 *
808 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
809 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
810 */
811enum ieee80211_tkip_key_type {
812	IEEE80211_TKIP_P1_KEY,
813	IEEE80211_TKIP_P2_KEY,
814};
815
816/**
817 * enum ieee80211_hw_flags - hardware flags
818 *
819 * These flags are used to indicate hardware capabilities to
820 * the stack. Generally, flags here should have their meaning
821 * done in a way that the simplest hardware doesn't need setting
822 * any particular flags. There are some exceptions to this rule,
823 * however, so you are advised to review these flags carefully.
824 *
825 * @IEEE80211_HW_RX_INCLUDES_FCS:
826 *	Indicates that received frames passed to the stack include
827 *	the FCS at the end.
828 *
829 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
830 *	Some wireless LAN chipsets buffer broadcast/multicast frames
831 *	for power saving stations in the hardware/firmware and others
832 *	rely on the host system for such buffering. This option is used
833 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
834 *	multicast frames when there are power saving stations so that
835 *	the driver can fetch them with ieee80211_get_buffered_bc().
836 *
837 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
838 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
839 *
840 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
841 *	Hardware is not capable of receiving frames with short preamble on
842 *	the 2.4 GHz band.
843 *
844 * @IEEE80211_HW_SIGNAL_UNSPEC:
845 *	Hardware can provide signal values but we don't know its units. We
846 *	expect values between 0 and @max_signal.
847 *	If possible please provide dB or dBm instead.
848 *
849 * @IEEE80211_HW_SIGNAL_DBM:
850 *	Hardware gives signal values in dBm, decibel difference from
851 *	one milliwatt. This is the preferred method since it is standardized
852 *	between different devices. @max_signal does not need to be set.
853 *
854 * @IEEE80211_HW_NOISE_DBM:
855 *	Hardware can provide noise (radio interference) values in units dBm,
856 *      decibel difference from one milliwatt.
857 *
858 * @IEEE80211_HW_SPECTRUM_MGMT:
859 * 	Hardware supports spectrum management defined in 802.11h
860 * 	Measurement, Channel Switch, Quieting, TPC
861 *
862 * @IEEE80211_HW_AMPDU_AGGREGATION:
863 *	Hardware supports 11n A-MPDU aggregation.
864 *
865 * @IEEE80211_HW_SUPPORTS_PS:
866 *	Hardware has power save support (i.e. can go to sleep).
867 *
868 * @IEEE80211_HW_PS_NULLFUNC_STACK:
869 *	Hardware requires nullfunc frame handling in stack, implies
870 *	stack support for dynamic PS.
871 *
872 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
873 *	Hardware has support for dynamic PS.
874 *
875 * @IEEE80211_HW_MFP_CAPABLE:
876 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
877 *
878 * @IEEE80211_HW_BEACON_FILTER:
879 *	Hardware supports dropping of irrelevant beacon frames to
880 *	avoid waking up cpu.
881 */
882enum ieee80211_hw_flags {
883	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
884	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
885	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
886	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
887	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
888	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
889	IEEE80211_HW_NOISE_DBM				= 1<<7,
890	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
891	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
892	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
893	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
894	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
895	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
896	IEEE80211_HW_BEACON_FILTER			= 1<<14,
897};
898
899/**
900 * struct ieee80211_hw - hardware information and state
901 *
902 * This structure contains the configuration and hardware
903 * information for an 802.11 PHY.
904 *
905 * @wiphy: This points to the &struct wiphy allocated for this
906 *	802.11 PHY. You must fill in the @perm_addr and @dev
907 *	members of this structure using SET_IEEE80211_DEV()
908 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
909 *	bands (with channels, bitrates) are registered here.
910 *
911 * @conf: &struct ieee80211_conf, device configuration, don't use.
912 *
913 * @workqueue: single threaded workqueue available for driver use,
914 *	allocated by mac80211 on registration and flushed when an
915 *	interface is removed.
916 *	NOTICE: All work performed on this workqueue must not
917 *	acquire the RTNL lock.
918 *
919 * @priv: pointer to private area that was allocated for driver use
920 *	along with this structure.
921 *
922 * @flags: hardware flags, see &enum ieee80211_hw_flags.
923 *
924 * @extra_tx_headroom: headroom to reserve in each transmit skb
925 *	for use by the driver (e.g. for transmit headers.)
926 *
927 * @channel_change_time: time (in microseconds) it takes to change channels.
928 *
929 * @max_signal: Maximum value for signal (rssi) in RX information, used
930 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
931 *
932 * @max_listen_interval: max listen interval in units of beacon interval
933 *     that HW supports
934 *
935 * @queues: number of available hardware transmit queues for
936 *	data packets. WMM/QoS requires at least four, these
937 *	queues need to have configurable access parameters.
938 *
939 * @rate_control_algorithm: rate control algorithm for this hardware.
940 *	If unset (NULL), the default algorithm will be used. Must be
941 *	set before calling ieee80211_register_hw().
942 *
943 * @vif_data_size: size (in bytes) of the drv_priv data area
944 *	within &struct ieee80211_vif.
945 * @sta_data_size: size (in bytes) of the drv_priv data area
946 *	within &struct ieee80211_sta.
947 *
948 * @max_rates: maximum number of alternate rate retry stages
949 * @max_rate_tries: maximum number of tries for each stage
950 */
951struct ieee80211_hw {
952	struct ieee80211_conf conf;
953	struct wiphy *wiphy;
954	struct workqueue_struct *workqueue;
955	const char *rate_control_algorithm;
956	void *priv;
957	u32 flags;
958	unsigned int extra_tx_headroom;
959	int channel_change_time;
960	int vif_data_size;
961	int sta_data_size;
962	u16 queues;
963	u16 max_listen_interval;
964	s8 max_signal;
965	u8 max_rates;
966	u8 max_rate_tries;
967};
968
969/**
970 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
971 *
972 * @wiphy: the &struct wiphy which we want to query
973 *
974 * mac80211 drivers can use this to get to their respective
975 * &struct ieee80211_hw. Drivers wishing to get to their own private
976 * structure can then access it via hw->priv. Note that mac802111 drivers should
977 * not use wiphy_priv() to try to get their private driver structure as this
978 * is already used internally by mac80211.
979 */
980struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
981
982/**
983 * SET_IEEE80211_DEV - set device for 802.11 hardware
984 *
985 * @hw: the &struct ieee80211_hw to set the device for
986 * @dev: the &struct device of this 802.11 device
987 */
988static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
989{
990	set_wiphy_dev(hw->wiphy, dev);
991}
992
993/**
994 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
995 *
996 * @hw: the &struct ieee80211_hw to set the MAC address for
997 * @addr: the address to set
998 */
999static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1000{
1001	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1002}
1003
1004static inline struct ieee80211_rate *
1005ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1006		      const struct ieee80211_tx_info *c)
1007{
1008	if (WARN_ON(c->control.rates[0].idx < 0))
1009		return NULL;
1010	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1011}
1012
1013static inline struct ieee80211_rate *
1014ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1015			   const struct ieee80211_tx_info *c)
1016{
1017	if (c->control.rts_cts_rate_idx < 0)
1018		return NULL;
1019	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1020}
1021
1022static inline struct ieee80211_rate *
1023ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1024			     const struct ieee80211_tx_info *c, int idx)
1025{
1026	if (c->control.rates[idx + 1].idx < 0)
1027		return NULL;
1028	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1029}
1030
1031/**
1032 * DOC: Hardware crypto acceleration
1033 *
1034 * mac80211 is capable of taking advantage of many hardware
1035 * acceleration designs for encryption and decryption operations.
1036 *
1037 * The set_key() callback in the &struct ieee80211_ops for a given
1038 * device is called to enable hardware acceleration of encryption and
1039 * decryption. The callback takes a @sta parameter that will be NULL
1040 * for default keys or keys used for transmission only, or point to
1041 * the station information for the peer for individual keys.
1042 * Multiple transmission keys with the same key index may be used when
1043 * VLANs are configured for an access point.
1044 *
1045 * When transmitting, the TX control data will use the @hw_key_idx
1046 * selected by the driver by modifying the &struct ieee80211_key_conf
1047 * pointed to by the @key parameter to the set_key() function.
1048 *
1049 * The set_key() call for the %SET_KEY command should return 0 if
1050 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1051 * added; if you return 0 then hw_key_idx must be assigned to the
1052 * hardware key index, you are free to use the full u8 range.
1053 *
1054 * When the cmd is %DISABLE_KEY then it must succeed.
1055 *
1056 * Note that it is permissible to not decrypt a frame even if a key
1057 * for it has been uploaded to hardware, the stack will not make any
1058 * decision based on whether a key has been uploaded or not but rather
1059 * based on the receive flags.
1060 *
1061 * The &struct ieee80211_key_conf structure pointed to by the @key
1062 * parameter is guaranteed to be valid until another call to set_key()
1063 * removes it, but it can only be used as a cookie to differentiate
1064 * keys.
1065 *
1066 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1067 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1068 * handler.
1069 * The update_tkip_key() call updates the driver with the new phase 1 key.
1070 * This happens everytime the iv16 wraps around (every 65536 packets). The
1071 * set_key() call will happen only once for each key (unless the AP did
1072 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1073 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1074 * handler is software decryption with wrap around of iv16.
1075 */
1076
1077/**
1078 * DOC: Powersave support
1079 *
1080 * mac80211 has support for various powersave implementations.
1081 *
1082 * First, it can support hardware that handles all powersaving by
1083 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1084 * hardware flag. In that case, it will be told about the desired
1085 * powersave mode depending on the association status, and the driver
1086 * must take care of sending nullfunc frames when necessary, i.e. when
1087 * entering and leaving powersave mode. The driver is required to look at
1088 * the AID in beacons and signal to the AP that it woke up when it finds
1089 * traffic directed to it. This mode supports dynamic PS by simply
1090 * enabling/disabling PS.
1091 *
1092 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1093 * flag to indicate that it can support dynamic PS mode itself (see below).
1094 *
1095 * Other hardware designs cannot send nullfunc frames by themselves and also
1096 * need software support for parsing the TIM bitmap. This is also supported
1097 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1098 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1099 * required to pass up beacons. The hardware is still required to handle
1100 * waking up for multicast traffic; if it cannot the driver must handle that
1101 * as best as it can, mac80211 is too slow.
1102 *
1103 * Dynamic powersave mode is an extension to normal powersave mode in which
1104 * the hardware stays awake for a user-specified period of time after sending
1105 * a frame so that reply frames need not be buffered and therefore delayed
1106 * to the next wakeup. This can either be supported by hardware, in which case
1107 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1108 * value, or by the stack if all nullfunc handling is in the stack.
1109 */
1110
1111/**
1112 * DOC: Beacon filter support
1113 *
1114 * Some hardware have beacon filter support to reduce host cpu wakeups
1115 * which will reduce system power consumption. It usuallly works so that
1116 * the firmware creates a checksum of the beacon but omits all constantly
1117 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1118 * beacon is forwarded to the host, otherwise it will be just dropped. That
1119 * way the host will only receive beacons where some relevant information
1120 * (for example ERP protection or WMM settings) have changed.
1121 *
1122 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1123 * hardware capability. The driver needs to enable beacon filter support
1124 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1125 * power save is enabled, the stack will not check for beacon loss and the
1126 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1127 *
1128 * The time (or number of beacons missed) until the firmware notifies the
1129 * driver of a beacon loss event (which in turn causes the driver to call
1130 * ieee80211_beacon_loss()) should be configurable and will be controlled
1131 * by mac80211 and the roaming algorithm in the future.
1132 *
1133 * Since there may be constantly changing information elements that nothing
1134 * in the software stack cares about, we will, in the future, have mac80211
1135 * tell the driver which information elements are interesting in the sense
1136 * that we want to see changes in them. This will include
1137 *  - a list of information element IDs
1138 *  - a list of OUIs for the vendor information element
1139 *
1140 * Ideally, the hardware would filter out any beacons without changes in the
1141 * requested elements, but if it cannot support that it may, at the expense
1142 * of some efficiency, filter out only a subset. For example, if the device
1143 * doesn't support checking for OUIs it should pass up all changes in all
1144 * vendor information elements.
1145 *
1146 * Note that change, for the sake of simplification, also includes information
1147 * elements appearing or disappearing from the beacon.
1148 *
1149 * Some hardware supports an "ignore list" instead, just make sure nothing
1150 * that was requested is on the ignore list, and include commonly changing
1151 * information element IDs in the ignore list, for example 11 (BSS load) and
1152 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1153 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1154 * it could also include some currently unused IDs.
1155 *
1156 *
1157 * In addition to these capabilities, hardware should support notifying the
1158 * host of changes in the beacon RSSI. This is relevant to implement roaming
1159 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1160 * the received data packets). This can consist in notifying the host when
1161 * the RSSI changes significantly or when it drops below or rises above
1162 * configurable thresholds. In the future these thresholds will also be
1163 * configured by mac80211 (which gets them from userspace) to implement
1164 * them as the roaming algorithm requires.
1165 *
1166 * If the hardware cannot implement this, the driver should ask it to
1167 * periodically pass beacon frames to the host so that software can do the
1168 * signal strength threshold checking.
1169 */
1170
1171/**
1172 * DOC: Frame filtering
1173 *
1174 * mac80211 requires to see many management frames for proper
1175 * operation, and users may want to see many more frames when
1176 * in monitor mode. However, for best CPU usage and power consumption,
1177 * having as few frames as possible percolate through the stack is
1178 * desirable. Hence, the hardware should filter as much as possible.
1179 *
1180 * To achieve this, mac80211 uses filter flags (see below) to tell
1181 * the driver's configure_filter() function which frames should be
1182 * passed to mac80211 and which should be filtered out.
1183 *
1184 * The configure_filter() callback is invoked with the parameters
1185 * @mc_count and @mc_list for the combined multicast address list
1186 * of all virtual interfaces, @changed_flags telling which flags
1187 * were changed and @total_flags with the new flag states.
1188 *
1189 * If your device has no multicast address filters your driver will
1190 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1191 * parameter to see whether multicast frames should be accepted
1192 * or dropped.
1193 *
1194 * All unsupported flags in @total_flags must be cleared.
1195 * Hardware does not support a flag if it is incapable of _passing_
1196 * the frame to the stack. Otherwise the driver must ignore
1197 * the flag, but not clear it.
1198 * You must _only_ clear the flag (announce no support for the
1199 * flag to mac80211) if you are not able to pass the packet type
1200 * to the stack (so the hardware always filters it).
1201 * So for example, you should clear @FIF_CONTROL, if your hardware
1202 * always filters control frames. If your hardware always passes
1203 * control frames to the kernel and is incapable of filtering them,
1204 * you do _not_ clear the @FIF_CONTROL flag.
1205 * This rule applies to all other FIF flags as well.
1206 */
1207
1208/**
1209 * enum ieee80211_filter_flags - hardware filter flags
1210 *
1211 * These flags determine what the filter in hardware should be
1212 * programmed to let through and what should not be passed to the
1213 * stack. It is always safe to pass more frames than requested,
1214 * but this has negative impact on power consumption.
1215 *
1216 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1217 *	think of the BSS as your network segment and then this corresponds
1218 *	to the regular ethernet device promiscuous mode.
1219 *
1220 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1221 *	by the user or if the hardware is not capable of filtering by
1222 *	multicast address.
1223 *
1224 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1225 *	%RX_FLAG_FAILED_FCS_CRC for them)
1226 *
1227 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1228 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1229 *
1230 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1231 *	to the hardware that it should not filter beacons or probe responses
1232 *	by BSSID. Filtering them can greatly reduce the amount of processing
1233 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1234 *	honour this flag if possible.
1235 *
1236 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1237 *	only those addressed to this station
1238 *
1239 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1240 */
1241enum ieee80211_filter_flags {
1242	FIF_PROMISC_IN_BSS	= 1<<0,
1243	FIF_ALLMULTI		= 1<<1,
1244	FIF_FCSFAIL		= 1<<2,
1245	FIF_PLCPFAIL		= 1<<3,
1246	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1247	FIF_CONTROL		= 1<<5,
1248	FIF_OTHER_BSS		= 1<<6,
1249};
1250
1251/**
1252 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1253 *
1254 * These flags are used with the ampdu_action() callback in
1255 * &struct ieee80211_ops to indicate which action is needed.
1256 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1257 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1258 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1259 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1260 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1261 */
1262enum ieee80211_ampdu_mlme_action {
1263	IEEE80211_AMPDU_RX_START,
1264	IEEE80211_AMPDU_RX_STOP,
1265	IEEE80211_AMPDU_TX_START,
1266	IEEE80211_AMPDU_TX_STOP,
1267	IEEE80211_AMPDU_TX_OPERATIONAL,
1268};
1269
1270/**
1271 * struct ieee80211_ops - callbacks from mac80211 to the driver
1272 *
1273 * This structure contains various callbacks that the driver may
1274 * handle or, in some cases, must handle, for example to configure
1275 * the hardware to a new channel or to transmit a frame.
1276 *
1277 * @tx: Handler that 802.11 module calls for each transmitted frame.
1278 *	skb contains the buffer starting from the IEEE 802.11 header.
1279 *	The low-level driver should send the frame out based on
1280 *	configuration in the TX control data. This handler should,
1281 *	preferably, never fail and stop queues appropriately, more
1282 *	importantly, however, it must never fail for A-MPDU-queues.
1283 *	This function should return NETDEV_TX_OK except in very
1284 *	limited cases.
1285 *	Must be implemented and atomic.
1286 *
1287 * @start: Called before the first netdevice attached to the hardware
1288 *	is enabled. This should turn on the hardware and must turn on
1289 *	frame reception (for possibly enabled monitor interfaces.)
1290 *	Returns negative error codes, these may be seen in userspace,
1291 *	or zero.
1292 *	When the device is started it should not have a MAC address
1293 *	to avoid acknowledging frames before a non-monitor device
1294 *	is added.
1295 *	Must be implemented.
1296 *
1297 * @stop: Called after last netdevice attached to the hardware
1298 *	is disabled. This should turn off the hardware (at least
1299 *	it must turn off frame reception.)
1300 *	May be called right after add_interface if that rejects
1301 *	an interface.
1302 *	Must be implemented.
1303 *
1304 * @add_interface: Called when a netdevice attached to the hardware is
1305 *	enabled. Because it is not called for monitor mode devices, @start
1306 *	and @stop must be implemented.
1307 *	The driver should perform any initialization it needs before
1308 *	the device can be enabled. The initial configuration for the
1309 *	interface is given in the conf parameter.
1310 *	The callback may refuse to add an interface by returning a
1311 *	negative error code (which will be seen in userspace.)
1312 *	Must be implemented.
1313 *
1314 * @remove_interface: Notifies a driver that an interface is going down.
1315 *	The @stop callback is called after this if it is the last interface
1316 *	and no monitor interfaces are present.
1317 *	When all interfaces are removed, the MAC address in the hardware
1318 *	must be cleared so the device no longer acknowledges packets,
1319 *	the mac_addr member of the conf structure is, however, set to the
1320 *	MAC address of the device going away.
1321 *	Hence, this callback must be implemented.
1322 *
1323 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1324 *	function to change hardware configuration, e.g., channel.
1325 *	This function should never fail but returns a negative error code
1326 *	if it does.
1327 *
1328 * @bss_info_changed: Handler for configuration requests related to BSS
1329 *	parameters that may vary during BSS's lifespan, and may affect low
1330 *	level driver (e.g. assoc/disassoc status, erp parameters).
1331 *	This function should not be used if no BSS has been set, unless
1332 *	for association indication. The @changed parameter indicates which
1333 *	of the bss parameters has changed when a call is made.
1334 *
1335 * @configure_filter: Configure the device's RX filter.
1336 *	See the section "Frame filtering" for more information.
1337 *	This callback must be implemented and atomic.
1338 *
1339 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1340 * 	must be set or cleared for a given STA. Must be atomic.
1341 *
1342 * @set_key: See the section "Hardware crypto acceleration"
1343 *	This callback can sleep, and is only called between add_interface
1344 *	and remove_interface calls, i.e. while the given virtual interface
1345 *	is enabled.
1346 *	Returns a negative error code if the key can't be added.
1347 *
1348 * @update_tkip_key: See the section "Hardware crypto acceleration"
1349 * 	This callback will be called in the context of Rx. Called for drivers
1350 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1351 *
1352 * @hw_scan: Ask the hardware to service the scan request, no need to start
1353 *	the scan state machine in stack. The scan must honour the channel
1354 *	configuration done by the regulatory agent in the wiphy's
1355 *	registered bands. The hardware (or the driver) needs to make sure
1356 *	that power save is disabled.
1357 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1358 *	entire IEs after the SSID, so that drivers need not look at these
1359 *	at all but just send them after the SSID -- mac80211 includes the
1360 *	(extended) supported rates and HT information (where applicable).
1361 *	When the scan finishes, ieee80211_scan_completed() must be called;
1362 *	note that it also must be called when the scan cannot finish due to
1363 *	any error unless this callback returned a negative error code.
1364 *
1365 * @sw_scan_start: Notifier function that is called just before a software scan
1366 *	is started. Can be NULL, if the driver doesn't need this notification.
1367 *
1368 * @sw_scan_complete: Notifier function that is called just after a software scan
1369 *	finished. Can be NULL, if the driver doesn't need this notification.
1370 *
1371 * @get_stats: Return low-level statistics.
1372 * 	Returns zero if statistics are available.
1373 *
1374 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1375 *	callback should be provided to read the TKIP transmit IVs (both IV32
1376 *	and IV16) for the given key from hardware.
1377 *
1378 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1379 *
1380 * @sta_notify: Notifies low level driver about addition, removal or power
1381 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1382 *	Must be atomic.
1383 *
1384 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1385 *	bursting) for a hardware TX queue.
1386 *	Returns a negative error code on failure.
1387 *
1388 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1389 *	to get number of currently queued packets (queue length), maximum queue
1390 *	size (limit), and total number of packets sent using each TX queue
1391 *	(count). The 'stats' pointer points to an array that has hw->queues
1392 *	items.
1393 *
1394 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1395 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1396 *	required function.
1397 *
1398 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1399 *      Currently, this is only used for IBSS mode debugging. Is not a
1400 *	required function.
1401 *
1402 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1403 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1404 *	function is optional if the firmware/hardware takes full care of
1405 *	TSF synchronization.
1406 *
1407 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1408 *	This is needed only for IBSS mode and the result of this function is
1409 *	used to determine whether to reply to Probe Requests.
1410 *	Returns non-zero if this device sent the last beacon.
1411 *
1412 * @ampdu_action: Perform a certain A-MPDU action
1413 * 	The RA/TID combination determines the destination and TID we want
1414 * 	the ampdu action to be performed for. The action is defined through
1415 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1416 * 	is the first frame we expect to perform the action on. Notice
1417 * 	that TX/RX_STOP can pass NULL for this parameter.
1418 *	Returns a negative error code on failure.
1419 */
1420struct ieee80211_ops {
1421	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1422	int (*start)(struct ieee80211_hw *hw);
1423	void (*stop)(struct ieee80211_hw *hw);
1424	int (*add_interface)(struct ieee80211_hw *hw,
1425			     struct ieee80211_if_init_conf *conf);
1426	void (*remove_interface)(struct ieee80211_hw *hw,
1427				 struct ieee80211_if_init_conf *conf);
1428	int (*config)(struct ieee80211_hw *hw, u32 changed);
1429	void (*bss_info_changed)(struct ieee80211_hw *hw,
1430				 struct ieee80211_vif *vif,
1431				 struct ieee80211_bss_conf *info,
1432				 u32 changed);
1433	void (*configure_filter)(struct ieee80211_hw *hw,
1434				 unsigned int changed_flags,
1435				 unsigned int *total_flags,
1436				 int mc_count, struct dev_addr_list *mc_list);
1437	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1438		       bool set);
1439	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1440		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1441		       struct ieee80211_key_conf *key);
1442	void (*update_tkip_key)(struct ieee80211_hw *hw,
1443			struct ieee80211_key_conf *conf, const u8 *address,
1444			u32 iv32, u16 *phase1key);
1445	int (*hw_scan)(struct ieee80211_hw *hw,
1446		       struct cfg80211_scan_request *req);
1447	void (*sw_scan_start)(struct ieee80211_hw *hw);
1448	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1449	int (*get_stats)(struct ieee80211_hw *hw,
1450			 struct ieee80211_low_level_stats *stats);
1451	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1452			     u32 *iv32, u16 *iv16);
1453	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1454	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1455			enum sta_notify_cmd, struct ieee80211_sta *sta);
1456	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1457		       const struct ieee80211_tx_queue_params *params);
1458	int (*get_tx_stats)(struct ieee80211_hw *hw,
1459			    struct ieee80211_tx_queue_stats *stats);
1460	u64 (*get_tsf)(struct ieee80211_hw *hw);
1461	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1462	void (*reset_tsf)(struct ieee80211_hw *hw);
1463	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1464	int (*ampdu_action)(struct ieee80211_hw *hw,
1465			    enum ieee80211_ampdu_mlme_action action,
1466			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1467};
1468
1469/**
1470 * ieee80211_alloc_hw -  Allocate a new hardware device
1471 *
1472 * This must be called once for each hardware device. The returned pointer
1473 * must be used to refer to this device when calling other functions.
1474 * mac80211 allocates a private data area for the driver pointed to by
1475 * @priv in &struct ieee80211_hw, the size of this area is given as
1476 * @priv_data_len.
1477 *
1478 * @priv_data_len: length of private data
1479 * @ops: callbacks for this device
1480 */
1481struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1482					const struct ieee80211_ops *ops);
1483
1484/**
1485 * ieee80211_register_hw - Register hardware device
1486 *
1487 * You must call this function before any other functions in
1488 * mac80211. Note that before a hardware can be registered, you
1489 * need to fill the contained wiphy's information.
1490 *
1491 * @hw: the device to register as returned by ieee80211_alloc_hw()
1492 */
1493int ieee80211_register_hw(struct ieee80211_hw *hw);
1494
1495#ifdef CONFIG_MAC80211_LEDS
1496extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1497extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1498extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1499extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1500#endif
1501/**
1502 * ieee80211_get_tx_led_name - get name of TX LED
1503 *
1504 * mac80211 creates a transmit LED trigger for each wireless hardware
1505 * that can be used to drive LEDs if your driver registers a LED device.
1506 * This function returns the name (or %NULL if not configured for LEDs)
1507 * of the trigger so you can automatically link the LED device.
1508 *
1509 * @hw: the hardware to get the LED trigger name for
1510 */
1511static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1512{
1513#ifdef CONFIG_MAC80211_LEDS
1514	return __ieee80211_get_tx_led_name(hw);
1515#else
1516	return NULL;
1517#endif
1518}
1519
1520/**
1521 * ieee80211_get_rx_led_name - get name of RX LED
1522 *
1523 * mac80211 creates a receive LED trigger for each wireless hardware
1524 * that can be used to drive LEDs if your driver registers a LED device.
1525 * This function returns the name (or %NULL if not configured for LEDs)
1526 * of the trigger so you can automatically link the LED device.
1527 *
1528 * @hw: the hardware to get the LED trigger name for
1529 */
1530static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1531{
1532#ifdef CONFIG_MAC80211_LEDS
1533	return __ieee80211_get_rx_led_name(hw);
1534#else
1535	return NULL;
1536#endif
1537}
1538
1539/**
1540 * ieee80211_get_assoc_led_name - get name of association LED
1541 *
1542 * mac80211 creates a association LED trigger for each wireless hardware
1543 * that can be used to drive LEDs if your driver registers a LED device.
1544 * This function returns the name (or %NULL if not configured for LEDs)
1545 * of the trigger so you can automatically link the LED device.
1546 *
1547 * @hw: the hardware to get the LED trigger name for
1548 */
1549static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1550{
1551#ifdef CONFIG_MAC80211_LEDS
1552	return __ieee80211_get_assoc_led_name(hw);
1553#else
1554	return NULL;
1555#endif
1556}
1557
1558/**
1559 * ieee80211_get_radio_led_name - get name of radio LED
1560 *
1561 * mac80211 creates a radio change LED trigger for each wireless hardware
1562 * that can be used to drive LEDs if your driver registers a LED device.
1563 * This function returns the name (or %NULL if not configured for LEDs)
1564 * of the trigger so you can automatically link the LED device.
1565 *
1566 * @hw: the hardware to get the LED trigger name for
1567 */
1568static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1569{
1570#ifdef CONFIG_MAC80211_LEDS
1571	return __ieee80211_get_radio_led_name(hw);
1572#else
1573	return NULL;
1574#endif
1575}
1576
1577/**
1578 * ieee80211_unregister_hw - Unregister a hardware device
1579 *
1580 * This function instructs mac80211 to free allocated resources
1581 * and unregister netdevices from the networking subsystem.
1582 *
1583 * @hw: the hardware to unregister
1584 */
1585void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1586
1587/**
1588 * ieee80211_free_hw - free hardware descriptor
1589 *
1590 * This function frees everything that was allocated, including the
1591 * private data for the driver. You must call ieee80211_unregister_hw()
1592 * before calling this function.
1593 *
1594 * @hw: the hardware to free
1595 */
1596void ieee80211_free_hw(struct ieee80211_hw *hw);
1597
1598/**
1599 * ieee80211_restart_hw - restart hardware completely
1600 *
1601 * Call this function when the hardware was restarted for some reason
1602 * (hardware error, ...) and the driver is unable to restore its state
1603 * by itself. mac80211 assumes that at this point the driver/hardware
1604 * is completely uninitialised and stopped, it starts the process by
1605 * calling the ->start() operation. The driver will need to reset all
1606 * internal state that it has prior to calling this function.
1607 *
1608 * @hw: the hardware to restart
1609 */
1610void ieee80211_restart_hw(struct ieee80211_hw *hw);
1611
1612/* trick to avoid symbol clashes with the ieee80211 subsystem */
1613void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1614		    struct ieee80211_rx_status *status);
1615
1616/**
1617 * ieee80211_rx - receive frame
1618 *
1619 * Use this function to hand received frames to mac80211. The receive
1620 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1621 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1622 *
1623 * This function may not be called in IRQ context. Calls to this function
1624 * for a single hardware must be synchronized against each other. Calls
1625 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1626 * single hardware.
1627 *
1628 * @hw: the hardware this frame came in on
1629 * @skb: the buffer to receive, owned by mac80211 after this call
1630 * @status: status of this frame; the status pointer need not be valid
1631 *	after this function returns
1632 */
1633static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1634				struct ieee80211_rx_status *status)
1635{
1636	__ieee80211_rx(hw, skb, status);
1637}
1638
1639/**
1640 * ieee80211_rx_irqsafe - receive frame
1641 *
1642 * Like ieee80211_rx() but can be called in IRQ context
1643 * (internally defers to a tasklet.)
1644 *
1645 * Calls to this function and ieee80211_rx() may not be mixed for a
1646 * single hardware.
1647 *
1648 * @hw: the hardware this frame came in on
1649 * @skb: the buffer to receive, owned by mac80211 after this call
1650 * @status: status of this frame; the status pointer need not be valid
1651 *	after this function returns and is not freed by mac80211,
1652 *	it is recommended that it points to a stack area
1653 */
1654void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1655			  struct sk_buff *skb,
1656			  struct ieee80211_rx_status *status);
1657
1658/**
1659 * ieee80211_tx_status - transmit status callback
1660 *
1661 * Call this function for all transmitted frames after they have been
1662 * transmitted. It is permissible to not call this function for
1663 * multicast frames but this can affect statistics.
1664 *
1665 * This function may not be called in IRQ context. Calls to this function
1666 * for a single hardware must be synchronized against each other. Calls
1667 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1668 * for a single hardware.
1669 *
1670 * @hw: the hardware the frame was transmitted by
1671 * @skb: the frame that was transmitted, owned by mac80211 after this call
1672 */
1673void ieee80211_tx_status(struct ieee80211_hw *hw,
1674			 struct sk_buff *skb);
1675
1676/**
1677 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1678 *
1679 * Like ieee80211_tx_status() but can be called in IRQ context
1680 * (internally defers to a tasklet.)
1681 *
1682 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1683 * single hardware.
1684 *
1685 * @hw: the hardware the frame was transmitted by
1686 * @skb: the frame that was transmitted, owned by mac80211 after this call
1687 */
1688void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1689				 struct sk_buff *skb);
1690
1691/**
1692 * ieee80211_beacon_get - beacon generation function
1693 * @hw: pointer obtained from ieee80211_alloc_hw().
1694 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1695 *
1696 * If the beacon frames are generated by the host system (i.e., not in
1697 * hardware/firmware), the low-level driver uses this function to receive
1698 * the next beacon frame from the 802.11 code. The low-level is responsible
1699 * for calling this function before beacon data is needed (e.g., based on
1700 * hardware interrupt). Returned skb is used only once and low-level driver
1701 * is responsible for freeing it.
1702 */
1703struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1704				     struct ieee80211_vif *vif);
1705
1706/**
1707 * ieee80211_rts_get - RTS frame generation function
1708 * @hw: pointer obtained from ieee80211_alloc_hw().
1709 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1710 * @frame: pointer to the frame that is going to be protected by the RTS.
1711 * @frame_len: the frame length (in octets).
1712 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1713 * @rts: The buffer where to store the RTS frame.
1714 *
1715 * If the RTS frames are generated by the host system (i.e., not in
1716 * hardware/firmware), the low-level driver uses this function to receive
1717 * the next RTS frame from the 802.11 code. The low-level is responsible
1718 * for calling this function before and RTS frame is needed.
1719 */
1720void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1721		       const void *frame, size_t frame_len,
1722		       const struct ieee80211_tx_info *frame_txctl,
1723		       struct ieee80211_rts *rts);
1724
1725/**
1726 * ieee80211_rts_duration - Get the duration field for an RTS frame
1727 * @hw: pointer obtained from ieee80211_alloc_hw().
1728 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1729 * @frame_len: the length of the frame that is going to be protected by the RTS.
1730 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1731 *
1732 * If the RTS is generated in firmware, but the host system must provide
1733 * the duration field, the low-level driver uses this function to receive
1734 * the duration field value in little-endian byteorder.
1735 */
1736__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1737			      struct ieee80211_vif *vif, size_t frame_len,
1738			      const struct ieee80211_tx_info *frame_txctl);
1739
1740/**
1741 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1742 * @hw: pointer obtained from ieee80211_alloc_hw().
1743 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1744 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1745 * @frame_len: the frame length (in octets).
1746 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1747 * @cts: The buffer where to store the CTS-to-self frame.
1748 *
1749 * If the CTS-to-self frames are generated by the host system (i.e., not in
1750 * hardware/firmware), the low-level driver uses this function to receive
1751 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1752 * for calling this function before and CTS-to-self frame is needed.
1753 */
1754void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1755			     struct ieee80211_vif *vif,
1756			     const void *frame, size_t frame_len,
1757			     const struct ieee80211_tx_info *frame_txctl,
1758			     struct ieee80211_cts *cts);
1759
1760/**
1761 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1762 * @hw: pointer obtained from ieee80211_alloc_hw().
1763 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1764 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1765 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1766 *
1767 * If the CTS-to-self is generated in firmware, but the host system must provide
1768 * the duration field, the low-level driver uses this function to receive
1769 * the duration field value in little-endian byteorder.
1770 */
1771__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1772				    struct ieee80211_vif *vif,
1773				    size_t frame_len,
1774				    const struct ieee80211_tx_info *frame_txctl);
1775
1776/**
1777 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1778 * @hw: pointer obtained from ieee80211_alloc_hw().
1779 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1780 * @frame_len: the length of the frame.
1781 * @rate: the rate at which the frame is going to be transmitted.
1782 *
1783 * Calculate the duration field of some generic frame, given its
1784 * length and transmission rate (in 100kbps).
1785 */
1786__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1787					struct ieee80211_vif *vif,
1788					size_t frame_len,
1789					struct ieee80211_rate *rate);
1790
1791/**
1792 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1793 * @hw: pointer as obtained from ieee80211_alloc_hw().
1794 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1795 *
1796 * Function for accessing buffered broadcast and multicast frames. If
1797 * hardware/firmware does not implement buffering of broadcast/multicast
1798 * frames when power saving is used, 802.11 code buffers them in the host
1799 * memory. The low-level driver uses this function to fetch next buffered
1800 * frame. In most cases, this is used when generating beacon frame. This
1801 * function returns a pointer to the next buffered skb or NULL if no more
1802 * buffered frames are available.
1803 *
1804 * Note: buffered frames are returned only after DTIM beacon frame was
1805 * generated with ieee80211_beacon_get() and the low-level driver must thus
1806 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1807 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1808 * does not need to check for DTIM beacons separately and should be able to
1809 * use common code for all beacons.
1810 */
1811struct sk_buff *
1812ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1813
1814/**
1815 * ieee80211_get_hdrlen_from_skb - get header length from data
1816 *
1817 * Given an skb with a raw 802.11 header at the data pointer this function
1818 * returns the 802.11 header length in bytes (not including encryption
1819 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1820 * header the function returns 0.
1821 *
1822 * @skb: the frame
1823 */
1824unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1825
1826/**
1827 * ieee80211_hdrlen - get header length in bytes from frame control
1828 * @fc: frame control field in little-endian format
1829 */
1830unsigned int ieee80211_hdrlen(__le16 fc);
1831
1832/**
1833 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1834 *
1835 * This function computes a TKIP rc4 key for an skb. It computes
1836 * a phase 1 key if needed (iv16 wraps around). This function is to
1837 * be used by drivers which can do HW encryption but need to compute
1838 * to phase 1/2 key in SW.
1839 *
1840 * @keyconf: the parameter passed with the set key
1841 * @skb: the skb for which the key is needed
1842 * @type: TBD
1843 * @key: a buffer to which the key will be written
1844 */
1845void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1846				struct sk_buff *skb,
1847				enum ieee80211_tkip_key_type type, u8 *key);
1848/**
1849 * ieee80211_wake_queue - wake specific queue
1850 * @hw: pointer as obtained from ieee80211_alloc_hw().
1851 * @queue: queue number (counted from zero).
1852 *
1853 * Drivers should use this function instead of netif_wake_queue.
1854 */
1855void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1856
1857/**
1858 * ieee80211_stop_queue - stop specific queue
1859 * @hw: pointer as obtained from ieee80211_alloc_hw().
1860 * @queue: queue number (counted from zero).
1861 *
1862 * Drivers should use this function instead of netif_stop_queue.
1863 */
1864void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1865
1866/**
1867 * ieee80211_queue_stopped - test status of the queue
1868 * @hw: pointer as obtained from ieee80211_alloc_hw().
1869 * @queue: queue number (counted from zero).
1870 *
1871 * Drivers should use this function instead of netif_stop_queue.
1872 */
1873
1874int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1875
1876/**
1877 * ieee80211_stop_queues - stop all queues
1878 * @hw: pointer as obtained from ieee80211_alloc_hw().
1879 *
1880 * Drivers should use this function instead of netif_stop_queue.
1881 */
1882void ieee80211_stop_queues(struct ieee80211_hw *hw);
1883
1884/**
1885 * ieee80211_wake_queues - wake all queues
1886 * @hw: pointer as obtained from ieee80211_alloc_hw().
1887 *
1888 * Drivers should use this function instead of netif_wake_queue.
1889 */
1890void ieee80211_wake_queues(struct ieee80211_hw *hw);
1891
1892/**
1893 * ieee80211_scan_completed - completed hardware scan
1894 *
1895 * When hardware scan offload is used (i.e. the hw_scan() callback is
1896 * assigned) this function needs to be called by the driver to notify
1897 * mac80211 that the scan finished.
1898 *
1899 * @hw: the hardware that finished the scan
1900 * @aborted: set to true if scan was aborted
1901 */
1902void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1903
1904/**
1905 * ieee80211_iterate_active_interfaces - iterate active interfaces
1906 *
1907 * This function iterates over the interfaces associated with a given
1908 * hardware that are currently active and calls the callback for them.
1909 * This function allows the iterator function to sleep, when the iterator
1910 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1911 * be used.
1912 *
1913 * @hw: the hardware struct of which the interfaces should be iterated over
1914 * @iterator: the iterator function to call
1915 * @data: first argument of the iterator function
1916 */
1917void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1918					 void (*iterator)(void *data, u8 *mac,
1919						struct ieee80211_vif *vif),
1920					 void *data);
1921
1922/**
1923 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1924 *
1925 * This function iterates over the interfaces associated with a given
1926 * hardware that are currently active and calls the callback for them.
1927 * This function requires the iterator callback function to be atomic,
1928 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1929 *
1930 * @hw: the hardware struct of which the interfaces should be iterated over
1931 * @iterator: the iterator function to call, cannot sleep
1932 * @data: first argument of the iterator function
1933 */
1934void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1935						void (*iterator)(void *data,
1936						    u8 *mac,
1937						    struct ieee80211_vif *vif),
1938						void *data);
1939
1940/**
1941 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1942 * @hw: pointer as obtained from ieee80211_alloc_hw().
1943 * @ra: receiver address of the BA session recipient
1944 * @tid: the TID to BA on.
1945 *
1946 * Return: success if addBA request was sent, failure otherwise
1947 *
1948 * Although mac80211/low level driver/user space application can estimate
1949 * the need to start aggregation on a certain RA/TID, the session level
1950 * will be managed by the mac80211.
1951 */
1952int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1953
1954/**
1955 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1956 * @hw: pointer as obtained from ieee80211_alloc_hw().
1957 * @ra: receiver address of the BA session recipient.
1958 * @tid: the TID to BA on.
1959 *
1960 * This function must be called by low level driver once it has
1961 * finished with preparations for the BA session.
1962 */
1963void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1964
1965/**
1966 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1967 * @hw: pointer as obtained from ieee80211_alloc_hw().
1968 * @ra: receiver address of the BA session recipient.
1969 * @tid: the TID to BA on.
1970 *
1971 * This function must be called by low level driver once it has
1972 * finished with preparations for the BA session.
1973 * This version of the function is IRQ-safe.
1974 */
1975void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1976				      u16 tid);
1977
1978/**
1979 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1980 * @hw: pointer as obtained from ieee80211_alloc_hw().
1981 * @ra: receiver address of the BA session recipient
1982 * @tid: the TID to stop BA.
1983 * @initiator: if indicates initiator DELBA frame will be sent.
1984 *
1985 * Return: error if no sta with matching da found, success otherwise
1986 *
1987 * Although mac80211/low level driver/user space application can estimate
1988 * the need to stop aggregation on a certain RA/TID, the session level
1989 * will be managed by the mac80211.
1990 */
1991int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1992				 u8 *ra, u16 tid,
1993				 enum ieee80211_back_parties initiator);
1994
1995/**
1996 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1997 * @hw: pointer as obtained from ieee80211_alloc_hw().
1998 * @ra: receiver address of the BA session recipient.
1999 * @tid: the desired TID to BA on.
2000 *
2001 * This function must be called by low level driver once it has
2002 * finished with preparations for the BA session tear down.
2003 */
2004void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2005
2006/**
2007 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2008 * @hw: pointer as obtained from ieee80211_alloc_hw().
2009 * @ra: receiver address of the BA session recipient.
2010 * @tid: the desired TID to BA on.
2011 *
2012 * This function must be called by low level driver once it has
2013 * finished with preparations for the BA session tear down.
2014 * This version of the function is IRQ-safe.
2015 */
2016void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2017				     u16 tid);
2018
2019/**
2020 * ieee80211_find_sta - find a station
2021 *
2022 * @hw: pointer as obtained from ieee80211_alloc_hw()
2023 * @addr: station's address
2024 *
2025 * This function must be called under RCU lock and the
2026 * resulting pointer is only valid under RCU lock as well.
2027 */
2028struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2029					 const u8 *addr);
2030
2031/**
2032 * ieee80211_beacon_loss - inform hardware does not receive beacons
2033 *
2034 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2035 *
2036 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2037 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2038 * hardware is not receiving beacons with this function.
2039 */
2040void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2041
2042/* Rate control API */
2043
2044/**
2045 * enum rate_control_changed - flags to indicate which parameter changed
2046 *
2047 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2048 *	changed, rate control algorithm can update its internal state if needed.
2049 */
2050enum rate_control_changed {
2051	IEEE80211_RC_HT_CHANGED = BIT(0)
2052};
2053
2054/**
2055 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2056 *
2057 * @hw: The hardware the algorithm is invoked for.
2058 * @sband: The band this frame is being transmitted on.
2059 * @bss_conf: the current BSS configuration
2060 * @reported_rate: The rate control algorithm can fill this in to indicate
2061 *	which rate should be reported to userspace as the current rate and
2062 *	used for rate calculations in the mesh network.
2063 * @rts: whether RTS will be used for this frame because it is longer than the
2064 *	RTS threshold
2065 * @short_preamble: whether mac80211 will request short-preamble transmission
2066 *	if the selected rate supports it
2067 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2068 * @skb: the skb that will be transmitted, the control information in it needs
2069 *	to be filled in
2070 */
2071struct ieee80211_tx_rate_control {
2072	struct ieee80211_hw *hw;
2073	struct ieee80211_supported_band *sband;
2074	struct ieee80211_bss_conf *bss_conf;
2075	struct sk_buff *skb;
2076	struct ieee80211_tx_rate reported_rate;
2077	bool rts, short_preamble;
2078	u8 max_rate_idx;
2079};
2080
2081struct rate_control_ops {
2082	struct module *module;
2083	const char *name;
2084	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2085	void (*free)(void *priv);
2086
2087	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2088	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2089			  struct ieee80211_sta *sta, void *priv_sta);
2090	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2091			    struct ieee80211_sta *sta,
2092			    void *priv_sta, u32 changed);
2093	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2094			 void *priv_sta);
2095
2096	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2097			  struct ieee80211_sta *sta, void *priv_sta,
2098			  struct sk_buff *skb);
2099	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2100			 struct ieee80211_tx_rate_control *txrc);
2101
2102	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2103				struct dentry *dir);
2104	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2105};
2106
2107static inline int rate_supported(struct ieee80211_sta *sta,
2108				 enum ieee80211_band band,
2109				 int index)
2110{
2111	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2112}
2113
2114static inline s8
2115rate_lowest_index(struct ieee80211_supported_band *sband,
2116		  struct ieee80211_sta *sta)
2117{
2118	int i;
2119
2120	for (i = 0; i < sband->n_bitrates; i++)
2121		if (rate_supported(sta, sband->band, i))
2122			return i;
2123
2124	/* warn when we cannot find a rate. */
2125	WARN_ON(1);
2126
2127	return 0;
2128}
2129
2130
2131int ieee80211_rate_control_register(struct rate_control_ops *ops);
2132void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2133
2134static inline bool
2135conf_is_ht20(struct ieee80211_conf *conf)
2136{
2137	return conf->channel_type == NL80211_CHAN_HT20;
2138}
2139
2140static inline bool
2141conf_is_ht40_minus(struct ieee80211_conf *conf)
2142{
2143	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2144}
2145
2146static inline bool
2147conf_is_ht40_plus(struct ieee80211_conf *conf)
2148{
2149	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2150}
2151
2152static inline bool
2153conf_is_ht40(struct ieee80211_conf *conf)
2154{
2155	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2156}
2157
2158static inline bool
2159conf_is_ht(struct ieee80211_conf *conf)
2160{
2161	return conf->channel_type != NL80211_CHAN_NO_HT;
2162}
2163
2164#endif /* MAC80211_H */
2165