mac80211.h revision d323655372590c533c275b1d798f9d1221efb5c6
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85struct ieee80211_ht_bss_info {
86	u8 primary_channel;
87	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
88	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89};
90
91/**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96enum ieee80211_max_queues {
97	IEEE80211_MAX_QUEUES =		4,
98};
99
100/**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 *	2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112struct ieee80211_tx_queue_params {
113	u16 txop;
114	u16 cw_min;
115	u16 cw_max;
116	u8 aifs;
117};
118
119/**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126struct ieee80211_tx_queue_stats {
127	unsigned int len;
128	unsigned int limit;
129	unsigned int count;
130};
131
132struct ieee80211_low_level_stats {
133	unsigned int dot11ACKFailureCount;
134	unsigned int dot11RTSFailureCount;
135	unsigned int dot11FCSErrorCount;
136	unsigned int dot11RTSSuccessCount;
137};
138
139/**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 *	also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 */
153enum ieee80211_bss_change {
154	BSS_CHANGED_ASSOC		= 1<<0,
155	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
156	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
157	BSS_CHANGED_ERP_SLOT		= 1<<3,
158	BSS_CHANGED_HT                  = 1<<4,
159	BSS_CHANGED_BASIC_RATES		= 1<<5,
160};
161
162/**
163 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
164 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
165 */
166struct ieee80211_bss_ht_conf {
167	u16 operation_mode;
168};
169
170/**
171 * struct ieee80211_bss_conf - holds the BSS's changing parameters
172 *
173 * This structure keeps information about a BSS (and an association
174 * to that BSS) that can change during the lifetime of the BSS.
175 *
176 * @assoc: association status
177 * @aid: association ID number, valid only when @assoc is true
178 * @use_cts_prot: use CTS protection
179 * @use_short_preamble: use 802.11b short preamble;
180 *	if the hardware cannot handle this it must set the
181 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
182 * @use_short_slot: use short slot time (only relevant for ERP);
183 *	if the hardware cannot handle this it must set the
184 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
185 * @dtim_period: num of beacons before the next DTIM, for PSM
186 * @timestamp: beacon timestamp
187 * @beacon_int: beacon interval
188 * @assoc_capability: capabilities taken from assoc resp
189 * @ht: BSS's HT configuration
190 * @basic_rates: bitmap of basic rates, each bit stands for an
191 *	index into the rate table configured by the driver in
192 *	the current band.
193 */
194struct ieee80211_bss_conf {
195	/* association related data */
196	bool assoc;
197	u16 aid;
198	/* erp related data */
199	bool use_cts_prot;
200	bool use_short_preamble;
201	bool use_short_slot;
202	u8 dtim_period;
203	u16 beacon_int;
204	u16 assoc_capability;
205	u64 timestamp;
206	u32 basic_rates;
207	struct ieee80211_bss_ht_conf ht;
208};
209
210/**
211 * enum mac80211_tx_control_flags - flags to describe transmission information/status
212 *
213 * These flags are used with the @flags member of &ieee80211_tx_info.
214 *
215 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
216 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
217 *	number to this frame, taking care of not overwriting the fragment
218 *	number and increasing the sequence number only when the
219 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
220 *	assign sequence numbers to QoS-data frames but cannot do so correctly
221 *	for non-QoS-data and management frames because beacons need them from
222 *	that counter as well and mac80211 cannot guarantee proper sequencing.
223 *	If this flag is set, the driver should instruct the hardware to
224 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
225 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
226 *	beacons and always be clear for frames without a sequence number field.
227 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
228 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
229 *	station
230 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
231 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
232 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
233 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
234 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
235 *	because the destination STA was in powersave mode.
236 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
237 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
238 * 	is for the whole aggregation.
239 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
240 * 	so consider using block ack request (BAR).
241 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
242 *	set by rate control algorithms to indicate probe rate, will
243 *	be cleared for fragmented frames (except on the last fragment)
244 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
245 *	set this flag in the driver; indicates that the rate control
246 *	algorithm was used and should be notified of TX status
247 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
248 *	used to indicate that a pending frame requires TX processing before
249 *	it can be sent out.
250 */
251enum mac80211_tx_control_flags {
252	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
253	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
254	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
255	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
256	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
257	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
258	IEEE80211_TX_CTL_AMPDU			= BIT(6),
259	IEEE80211_TX_CTL_INJECTED		= BIT(7),
260	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
261	IEEE80211_TX_STAT_ACK			= BIT(9),
262	IEEE80211_TX_STAT_AMPDU			= BIT(10),
263	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
264	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
265	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
266	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
267};
268
269/**
270 * enum mac80211_rate_control_flags - per-rate flags set by the
271 *	Rate Control algorithm.
272 *
273 * These flags are set by the Rate control algorithm for each rate during tx,
274 * in the @flags member of struct ieee80211_tx_rate.
275 *
276 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
277 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
278 *	This is set if the current BSS requires ERP protection.
279 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
280 * @IEEE80211_TX_RC_MCS: HT rate.
281 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
282 *	Greenfield mode.
283 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
284 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
285 *	adjacent 20 MHz channels, if the current channel type is
286 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
287 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
288 */
289enum mac80211_rate_control_flags {
290	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
291	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
292	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
293
294	/* rate index is an MCS rate number instead of an index */
295	IEEE80211_TX_RC_MCS			= BIT(3),
296	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
297	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
298	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
299	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
300};
301
302
303/* there are 40 bytes if you don't need the rateset to be kept */
304#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
305
306/* if you do need the rateset, then you have less space */
307#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
308
309/* maximum number of rate stages */
310#define IEEE80211_TX_MAX_RATES	5
311
312/**
313 * struct ieee80211_tx_rate - rate selection/status
314 *
315 * @idx: rate index to attempt to send with
316 * @flags: rate control flags (&enum mac80211_rate_control_flags)
317 * @count: number of tries in this rate before going to the next rate
318 *
319 * A value of -1 for @idx indicates an invalid rate and, if used
320 * in an array of retry rates, that no more rates should be tried.
321 *
322 * When used for transmit status reporting, the driver should
323 * always report the rate along with the flags it used.
324 */
325struct ieee80211_tx_rate {
326	s8 idx;
327	u8 count;
328	u8 flags;
329} __attribute__((packed));
330
331/**
332 * struct ieee80211_tx_info - skb transmit information
333 *
334 * This structure is placed in skb->cb for three uses:
335 *  (1) mac80211 TX control - mac80211 tells the driver what to do
336 *  (2) driver internal use (if applicable)
337 *  (3) TX status information - driver tells mac80211 what happened
338 *
339 * The TX control's sta pointer is only valid during the ->tx call,
340 * it may be NULL.
341 *
342 * @flags: transmit info flags, defined above
343 * @band: the band to transmit on (use for checking for races)
344 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
345 * @pad: padding, ignore
346 * @control: union for control data
347 * @status: union for status data
348 * @driver_data: array of driver_data pointers
349 * @ampdu_ack_len: number of aggregated frames.
350 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
351 * @ampdu_ack_map: block ack bit map for the aggregation.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ack_signal: signal strength of the ACK frame
354 */
355struct ieee80211_tx_info {
356	/* common information */
357	u32 flags;
358	u8 band;
359
360	u8 antenna_sel_tx;
361
362	/* 2 byte hole */
363	u8 pad[2];
364
365	union {
366		struct {
367			union {
368				/* rate control */
369				struct {
370					struct ieee80211_tx_rate rates[
371						IEEE80211_TX_MAX_RATES];
372					s8 rts_cts_rate_idx;
373				};
374				/* only needed before rate control */
375				unsigned long jiffies;
376			};
377			/* NB: vif can be NULL for injected frames */
378			struct ieee80211_vif *vif;
379			struct ieee80211_key_conf *hw_key;
380			struct ieee80211_sta *sta;
381		} control;
382		struct {
383			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
384			u8 ampdu_ack_len;
385			u64 ampdu_ack_map;
386			int ack_signal;
387			/* 8 bytes free */
388		} status;
389		struct {
390			struct ieee80211_tx_rate driver_rates[
391				IEEE80211_TX_MAX_RATES];
392			void *rate_driver_data[
393				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
394		};
395		void *driver_data[
396			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
397	};
398};
399
400static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
401{
402	return (struct ieee80211_tx_info *)skb->cb;
403}
404
405/**
406 * ieee80211_tx_info_clear_status - clear TX status
407 *
408 * @info: The &struct ieee80211_tx_info to be cleared.
409 *
410 * When the driver passes an skb back to mac80211, it must report
411 * a number of things in TX status. This function clears everything
412 * in the TX status but the rate control information (it does clear
413 * the count since you need to fill that in anyway).
414 *
415 * NOTE: You can only use this function if you do NOT use
416 *	 info->driver_data! Use info->rate_driver_data
417 *	 instead if you need only the less space that allows.
418 */
419static inline void
420ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
421{
422	int i;
423
424	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
425		     offsetof(struct ieee80211_tx_info, control.rates));
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, driver_rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
429	/* clear the rate counts */
430	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
431		info->status.rates[i].count = 0;
432
433	BUILD_BUG_ON(
434	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
435	memset(&info->status.ampdu_ack_len, 0,
436	       sizeof(struct ieee80211_tx_info) -
437	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
438}
439
440
441/**
442 * enum mac80211_rx_flags - receive flags
443 *
444 * These flags are used with the @flag member of &struct ieee80211_rx_status.
445 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
446 *	Use together with %RX_FLAG_MMIC_STRIPPED.
447 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
448 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
449 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
450 *	verification has been done by the hardware.
451 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
452 *	If this flag is set, the stack cannot do any replay detection
453 *	hence the driver or hardware will have to do that.
454 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
455 *	the frame.
456 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
457 *	the frame.
458 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
459 *	is valid. This is useful in monitor mode and necessary for beacon frames
460 *	to enable IBSS merging.
461 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
462 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
463 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
464 * @RX_FLAG_SHORT_GI: Short guard interval was used
465 */
466enum mac80211_rx_flags {
467	RX_FLAG_MMIC_ERROR	= 1<<0,
468	RX_FLAG_DECRYPTED	= 1<<1,
469	RX_FLAG_RADIOTAP	= 1<<2,
470	RX_FLAG_MMIC_STRIPPED	= 1<<3,
471	RX_FLAG_IV_STRIPPED	= 1<<4,
472	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
473	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
474	RX_FLAG_TSFT		= 1<<7,
475	RX_FLAG_SHORTPRE	= 1<<8,
476	RX_FLAG_HT		= 1<<9,
477	RX_FLAG_40MHZ		= 1<<10,
478	RX_FLAG_SHORT_GI	= 1<<11,
479};
480
481/**
482 * struct ieee80211_rx_status - receive status
483 *
484 * The low-level driver should provide this information (the subset
485 * supported by hardware) to the 802.11 code with each received
486 * frame.
487 *
488 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
489 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
490 * @band: the active band when this frame was received
491 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
492 * @signal: signal strength when receiving this frame, either in dBm, in dB or
493 *	unspecified depending on the hardware capabilities flags
494 *	@IEEE80211_HW_SIGNAL_*
495 * @noise: noise when receiving this frame, in dBm.
496 * @qual: overall signal quality indication, in percent (0-100).
497 * @antenna: antenna used
498 * @rate_idx: index of data rate into band's supported rates or MCS index if
499 *	HT rates are use (RX_FLAG_HT)
500 * @flag: %RX_FLAG_*
501 */
502struct ieee80211_rx_status {
503	u64 mactime;
504	enum ieee80211_band band;
505	int freq;
506	int signal;
507	int noise;
508	int qual;
509	int antenna;
510	int rate_idx;
511	int flag;
512};
513
514/**
515 * enum ieee80211_conf_flags - configuration flags
516 *
517 * Flags to define PHY configuration options
518 *
519 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
520 * @IEEE80211_CONF_PS: Enable 802.11 power save mode
521 */
522enum ieee80211_conf_flags {
523	IEEE80211_CONF_RADIOTAP		= (1<<0),
524	IEEE80211_CONF_PS		= (1<<1),
525};
526
527
528/**
529 * enum ieee80211_conf_changed - denotes which configuration changed
530 *
531 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
532 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
533 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
534 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
535 * @IEEE80211_CONF_CHANGE_PS: the PS flag changed
536 * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed
537 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
538 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
539 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
540 */
541enum ieee80211_conf_changed {
542	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
543	IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
544	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
545	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
546	IEEE80211_CONF_CHANGE_PS		= BIT(4),
547	IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT	= BIT(5),
548	IEEE80211_CONF_CHANGE_POWER		= BIT(6),
549	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(7),
550	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(8),
551};
552
553/**
554 * struct ieee80211_conf - configuration of the device
555 *
556 * This struct indicates how the driver shall configure the hardware.
557 *
558 * @radio_enabled: when zero, driver is required to switch off the radio.
559 * @beacon_int: beacon interval (TODO make interface config)
560 * @listen_interval: listen interval in units of beacon interval
561 * @flags: configuration flags defined above
562 * @power_level: requested transmit power (in dBm)
563 * @dynamic_ps_timeout: dynamic powersave timeout (in ms)
564 * @channel: the channel to tune to
565 * @channel_type: the channel (HT) type
566 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
567 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
568 *    but actually means the number of transmissions not the number of retries
569 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
570 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
571 *    number of transmissions not the number of retries
572 */
573struct ieee80211_conf {
574	int beacon_int;
575	u32 flags;
576	int power_level, dynamic_ps_timeout;
577
578	u16 listen_interval;
579	bool radio_enabled;
580
581	u8 long_frame_max_tx_count, short_frame_max_tx_count;
582
583	struct ieee80211_channel *channel;
584	enum nl80211_channel_type channel_type;
585};
586
587/**
588 * struct ieee80211_vif - per-interface data
589 *
590 * Data in this structure is continually present for driver
591 * use during the life of a virtual interface.
592 *
593 * @type: type of this virtual interface
594 * @bss_conf: BSS configuration for this interface, either our own
595 *	or the BSS we're associated to
596 * @drv_priv: data area for driver use, will always be aligned to
597 *	sizeof(void *).
598 */
599struct ieee80211_vif {
600	enum nl80211_iftype type;
601	struct ieee80211_bss_conf bss_conf;
602	/* must be last */
603	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
604};
605
606static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
607{
608#ifdef CONFIG_MAC80211_MESH
609	return vif->type == NL80211_IFTYPE_MESH_POINT;
610#endif
611	return false;
612}
613
614/**
615 * struct ieee80211_if_init_conf - initial configuration of an interface
616 *
617 * @vif: pointer to a driver-use per-interface structure. The pointer
618 *	itself is also used for various functions including
619 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
620 * @type: one of &enum nl80211_iftype constants. Determines the type of
621 *	added/removed interface.
622 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
623 *	until the interface is removed (i.e. it cannot be used after
624 *	remove_interface() callback was called for this interface).
625 *
626 * This structure is used in add_interface() and remove_interface()
627 * callbacks of &struct ieee80211_hw.
628 *
629 * When you allow multiple interfaces to be added to your PHY, take care
630 * that the hardware can actually handle multiple MAC addresses. However,
631 * also take care that when there's no interface left with mac_addr != %NULL
632 * you remove the MAC address from the device to avoid acknowledging packets
633 * in pure monitor mode.
634 */
635struct ieee80211_if_init_conf {
636	enum nl80211_iftype type;
637	struct ieee80211_vif *vif;
638	void *mac_addr;
639};
640
641/**
642 * enum ieee80211_if_conf_change - interface config change flags
643 *
644 * @IEEE80211_IFCC_BSSID: The BSSID changed.
645 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
646 *	(currently AP and MESH only), use ieee80211_beacon_get().
647 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
648 */
649enum ieee80211_if_conf_change {
650	IEEE80211_IFCC_BSSID		= BIT(0),
651	IEEE80211_IFCC_BEACON		= BIT(1),
652	IEEE80211_IFCC_BEACON_ENABLED	= BIT(2),
653};
654
655/**
656 * struct ieee80211_if_conf - configuration of an interface
657 *
658 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
659 * @bssid: BSSID of the network we are associated to/creating.
660 * @enable_beacon: Indicates whether beacons can be sent.
661 *	This is valid only for AP/IBSS/MESH modes.
662 *
663 * This structure is passed to the config_interface() callback of
664 * &struct ieee80211_hw.
665 */
666struct ieee80211_if_conf {
667	u32 changed;
668	const u8 *bssid;
669	bool enable_beacon;
670};
671
672/**
673 * enum ieee80211_key_alg - key algorithm
674 * @ALG_WEP: WEP40 or WEP104
675 * @ALG_TKIP: TKIP
676 * @ALG_CCMP: CCMP (AES)
677 * @ALG_AES_CMAC: AES-128-CMAC
678 */
679enum ieee80211_key_alg {
680	ALG_WEP,
681	ALG_TKIP,
682	ALG_CCMP,
683	ALG_AES_CMAC,
684};
685
686/**
687 * enum ieee80211_key_len - key length
688 * @LEN_WEP40: WEP 5-byte long key
689 * @LEN_WEP104: WEP 13-byte long key
690 */
691enum ieee80211_key_len {
692	LEN_WEP40 = 5,
693	LEN_WEP104 = 13,
694};
695
696/**
697 * enum ieee80211_key_flags - key flags
698 *
699 * These flags are used for communication about keys between the driver
700 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
701 *
702 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
703 *	that the STA this key will be used with could be using QoS.
704 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
705 *	driver to indicate that it requires IV generation for this
706 *	particular key.
707 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
708 *	the driver for a TKIP key if it requires Michael MIC
709 *	generation in software.
710 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
711 *	that the key is pairwise rather then a shared key.
712 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
713 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
714 *	be done in software.
715 */
716enum ieee80211_key_flags {
717	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
718	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
719	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
720	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
721	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
722};
723
724/**
725 * struct ieee80211_key_conf - key information
726 *
727 * This key information is given by mac80211 to the driver by
728 * the set_key() callback in &struct ieee80211_ops.
729 *
730 * @hw_key_idx: To be set by the driver, this is the key index the driver
731 *	wants to be given when a frame is transmitted and needs to be
732 *	encrypted in hardware.
733 * @alg: The key algorithm.
734 * @flags: key flags, see &enum ieee80211_key_flags.
735 * @keyidx: the key index (0-3)
736 * @keylen: key material length
737 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
738 * 	data block:
739 * 	- Temporal Encryption Key (128 bits)
740 * 	- Temporal Authenticator Tx MIC Key (64 bits)
741 * 	- Temporal Authenticator Rx MIC Key (64 bits)
742 * @icv_len: The ICV length for this key type
743 * @iv_len: The IV length for this key type
744 */
745struct ieee80211_key_conf {
746	enum ieee80211_key_alg alg;
747	u8 icv_len;
748	u8 iv_len;
749	u8 hw_key_idx;
750	u8 flags;
751	s8 keyidx;
752	u8 keylen;
753	u8 key[0];
754};
755
756/**
757 * enum set_key_cmd - key command
758 *
759 * Used with the set_key() callback in &struct ieee80211_ops, this
760 * indicates whether a key is being removed or added.
761 *
762 * @SET_KEY: a key is set
763 * @DISABLE_KEY: a key must be disabled
764 */
765enum set_key_cmd {
766	SET_KEY, DISABLE_KEY,
767};
768
769/**
770 * struct ieee80211_sta - station table entry
771 *
772 * A station table entry represents a station we are possibly
773 * communicating with. Since stations are RCU-managed in
774 * mac80211, any ieee80211_sta pointer you get access to must
775 * either be protected by rcu_read_lock() explicitly or implicitly,
776 * or you must take good care to not use such a pointer after a
777 * call to your sta_notify callback that removed it.
778 *
779 * @addr: MAC address
780 * @aid: AID we assigned to the station if we're an AP
781 * @supp_rates: Bitmap of supported rates (per band)
782 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
783 * @drv_priv: data area for driver use, will always be aligned to
784 *	sizeof(void *), size is determined in hw information.
785 */
786struct ieee80211_sta {
787	u32 supp_rates[IEEE80211_NUM_BANDS];
788	u8 addr[ETH_ALEN];
789	u16 aid;
790	struct ieee80211_sta_ht_cap ht_cap;
791
792	/* must be last */
793	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
794};
795
796/**
797 * enum sta_notify_cmd - sta notify command
798 *
799 * Used with the sta_notify() callback in &struct ieee80211_ops, this
800 * indicates addition and removal of a station to station table,
801 * or if a associated station made a power state transition.
802 *
803 * @STA_NOTIFY_ADD: a station was added to the station table
804 * @STA_NOTIFY_REMOVE: a station being removed from the station table
805 * @STA_NOTIFY_SLEEP: a station is now sleeping
806 * @STA_NOTIFY_AWAKE: a sleeping station woke up
807 */
808enum sta_notify_cmd {
809	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
810	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
811};
812
813/**
814 * enum ieee80211_tkip_key_type - get tkip key
815 *
816 * Used by drivers which need to get a tkip key for skb. Some drivers need a
817 * phase 1 key, others need a phase 2 key. A single function allows the driver
818 * to get the key, this enum indicates what type of key is required.
819 *
820 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
821 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
822 */
823enum ieee80211_tkip_key_type {
824	IEEE80211_TKIP_P1_KEY,
825	IEEE80211_TKIP_P2_KEY,
826};
827
828/**
829 * enum ieee80211_hw_flags - hardware flags
830 *
831 * These flags are used to indicate hardware capabilities to
832 * the stack. Generally, flags here should have their meaning
833 * done in a way that the simplest hardware doesn't need setting
834 * any particular flags. There are some exceptions to this rule,
835 * however, so you are advised to review these flags carefully.
836 *
837 * @IEEE80211_HW_RX_INCLUDES_FCS:
838 *	Indicates that received frames passed to the stack include
839 *	the FCS at the end.
840 *
841 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
842 *	Some wireless LAN chipsets buffer broadcast/multicast frames
843 *	for power saving stations in the hardware/firmware and others
844 *	rely on the host system for such buffering. This option is used
845 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
846 *	multicast frames when there are power saving stations so that
847 *	the driver can fetch them with ieee80211_get_buffered_bc().
848 *
849 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
850 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
851 *
852 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
853 *	Hardware is not capable of receiving frames with short preamble on
854 *	the 2.4 GHz band.
855 *
856 * @IEEE80211_HW_SIGNAL_UNSPEC:
857 *	Hardware can provide signal values but we don't know its units. We
858 *	expect values between 0 and @max_signal.
859 *	If possible please provide dB or dBm instead.
860 *
861 * @IEEE80211_HW_SIGNAL_DBM:
862 *	Hardware gives signal values in dBm, decibel difference from
863 *	one milliwatt. This is the preferred method since it is standardized
864 *	between different devices. @max_signal does not need to be set.
865 *
866 * @IEEE80211_HW_NOISE_DBM:
867 *	Hardware can provide noise (radio interference) values in units dBm,
868 *      decibel difference from one milliwatt.
869 *
870 * @IEEE80211_HW_SPECTRUM_MGMT:
871 * 	Hardware supports spectrum management defined in 802.11h
872 * 	Measurement, Channel Switch, Quieting, TPC
873 *
874 * @IEEE80211_HW_AMPDU_AGGREGATION:
875 *	Hardware supports 11n A-MPDU aggregation.
876 *
877 * @IEEE80211_HW_SUPPORTS_PS:
878 *	Hardware has power save support (i.e. can go to sleep).
879 *
880 * @IEEE80211_HW_PS_NULLFUNC_STACK:
881 *	Hardware requires nullfunc frame handling in stack, implies
882 *	stack support for dynamic PS.
883 *
884 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
885 *	Hardware has support for dynamic PS.
886 *
887 * @IEEE80211_HW_MFP_CAPABLE:
888 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
889 *
890 * @IEEE80211_HW_BEACON_FILTER:
891 *	Hardware supports dropping of irrelevant beacon frames to
892 *	avoid waking up cpu.
893 */
894enum ieee80211_hw_flags {
895	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
896	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
897	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
898	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
899	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
900	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
901	IEEE80211_HW_NOISE_DBM				= 1<<7,
902	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
903	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
904	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
905	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
906	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
907	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
908	IEEE80211_HW_BEACON_FILTER			= 1<<14,
909};
910
911/**
912 * struct ieee80211_hw - hardware information and state
913 *
914 * This structure contains the configuration and hardware
915 * information for an 802.11 PHY.
916 *
917 * @wiphy: This points to the &struct wiphy allocated for this
918 *	802.11 PHY. You must fill in the @perm_addr and @dev
919 *	members of this structure using SET_IEEE80211_DEV()
920 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
921 *	bands (with channels, bitrates) are registered here.
922 *
923 * @conf: &struct ieee80211_conf, device configuration, don't use.
924 *
925 * @workqueue: single threaded workqueue available for driver use,
926 *	allocated by mac80211 on registration and flushed when an
927 *	interface is removed.
928 *	NOTICE: All work performed on this workqueue must not
929 *	acquire the RTNL lock.
930 *
931 * @priv: pointer to private area that was allocated for driver use
932 *	along with this structure.
933 *
934 * @flags: hardware flags, see &enum ieee80211_hw_flags.
935 *
936 * @extra_tx_headroom: headroom to reserve in each transmit skb
937 *	for use by the driver (e.g. for transmit headers.)
938 *
939 * @channel_change_time: time (in microseconds) it takes to change channels.
940 *
941 * @max_signal: Maximum value for signal (rssi) in RX information, used
942 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
943 *
944 * @max_listen_interval: max listen interval in units of beacon interval
945 *     that HW supports
946 *
947 * @queues: number of available hardware transmit queues for
948 *	data packets. WMM/QoS requires at least four, these
949 *	queues need to have configurable access parameters.
950 *
951 * @rate_control_algorithm: rate control algorithm for this hardware.
952 *	If unset (NULL), the default algorithm will be used. Must be
953 *	set before calling ieee80211_register_hw().
954 *
955 * @vif_data_size: size (in bytes) of the drv_priv data area
956 *	within &struct ieee80211_vif.
957 * @sta_data_size: size (in bytes) of the drv_priv data area
958 *	within &struct ieee80211_sta.
959 *
960 * @max_rates: maximum number of alternate rate retry stages
961 * @max_rate_tries: maximum number of tries for each stage
962 */
963struct ieee80211_hw {
964	struct ieee80211_conf conf;
965	struct wiphy *wiphy;
966	struct workqueue_struct *workqueue;
967	const char *rate_control_algorithm;
968	void *priv;
969	u32 flags;
970	unsigned int extra_tx_headroom;
971	int channel_change_time;
972	int vif_data_size;
973	int sta_data_size;
974	u16 queues;
975	u16 max_listen_interval;
976	s8 max_signal;
977	u8 max_rates;
978	u8 max_rate_tries;
979};
980
981/**
982 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
983 *
984 * @wiphy: the &struct wiphy which we want to query
985 *
986 * mac80211 drivers can use this to get to their respective
987 * &struct ieee80211_hw. Drivers wishing to get to their own private
988 * structure can then access it via hw->priv. Note that mac802111 drivers should
989 * not use wiphy_priv() to try to get their private driver structure as this
990 * is already used internally by mac80211.
991 */
992struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
993
994/**
995 * SET_IEEE80211_DEV - set device for 802.11 hardware
996 *
997 * @hw: the &struct ieee80211_hw to set the device for
998 * @dev: the &struct device of this 802.11 device
999 */
1000static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1001{
1002	set_wiphy_dev(hw->wiphy, dev);
1003}
1004
1005/**
1006 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1007 *
1008 * @hw: the &struct ieee80211_hw to set the MAC address for
1009 * @addr: the address to set
1010 */
1011static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1012{
1013	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1014}
1015
1016static inline struct ieee80211_rate *
1017ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1018		      const struct ieee80211_tx_info *c)
1019{
1020	if (WARN_ON(c->control.rates[0].idx < 0))
1021		return NULL;
1022	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1023}
1024
1025static inline struct ieee80211_rate *
1026ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1027			   const struct ieee80211_tx_info *c)
1028{
1029	if (c->control.rts_cts_rate_idx < 0)
1030		return NULL;
1031	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1032}
1033
1034static inline struct ieee80211_rate *
1035ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1036			     const struct ieee80211_tx_info *c, int idx)
1037{
1038	if (c->control.rates[idx + 1].idx < 0)
1039		return NULL;
1040	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1041}
1042
1043/**
1044 * DOC: Hardware crypto acceleration
1045 *
1046 * mac80211 is capable of taking advantage of many hardware
1047 * acceleration designs for encryption and decryption operations.
1048 *
1049 * The set_key() callback in the &struct ieee80211_ops for a given
1050 * device is called to enable hardware acceleration of encryption and
1051 * decryption. The callback takes a @sta parameter that will be NULL
1052 * for default keys or keys used for transmission only, or point to
1053 * the station information for the peer for individual keys.
1054 * Multiple transmission keys with the same key index may be used when
1055 * VLANs are configured for an access point.
1056 *
1057 * When transmitting, the TX control data will use the @hw_key_idx
1058 * selected by the driver by modifying the &struct ieee80211_key_conf
1059 * pointed to by the @key parameter to the set_key() function.
1060 *
1061 * The set_key() call for the %SET_KEY command should return 0 if
1062 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1063 * added; if you return 0 then hw_key_idx must be assigned to the
1064 * hardware key index, you are free to use the full u8 range.
1065 *
1066 * When the cmd is %DISABLE_KEY then it must succeed.
1067 *
1068 * Note that it is permissible to not decrypt a frame even if a key
1069 * for it has been uploaded to hardware, the stack will not make any
1070 * decision based on whether a key has been uploaded or not but rather
1071 * based on the receive flags.
1072 *
1073 * The &struct ieee80211_key_conf structure pointed to by the @key
1074 * parameter is guaranteed to be valid until another call to set_key()
1075 * removes it, but it can only be used as a cookie to differentiate
1076 * keys.
1077 *
1078 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1079 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1080 * handler.
1081 * The update_tkip_key() call updates the driver with the new phase 1 key.
1082 * This happens everytime the iv16 wraps around (every 65536 packets). The
1083 * set_key() call will happen only once for each key (unless the AP did
1084 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1085 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1086 * handler is software decryption with wrap around of iv16.
1087 */
1088
1089/**
1090 * DOC: Powersave support
1091 *
1092 * mac80211 has support for various powersave implementations.
1093 *
1094 * First, it can support hardware that handles all powersaving by
1095 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1096 * hardware flag. In that case, it will be told about the desired
1097 * powersave mode depending on the association status, and the driver
1098 * must take care of sending nullfunc frames when necessary, i.e. when
1099 * entering and leaving powersave mode. The driver is required to look at
1100 * the AID in beacons and signal to the AP that it woke up when it finds
1101 * traffic directed to it. This mode supports dynamic PS by simply
1102 * enabling/disabling PS.
1103 *
1104 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1105 * flag to indicate that it can support dynamic PS mode itself (see below).
1106 *
1107 * Other hardware designs cannot send nullfunc frames by themselves and also
1108 * need software support for parsing the TIM bitmap. This is also supported
1109 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1110 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1111 * required to pass up beacons. The hardware is still required to handle
1112 * waking up for multicast traffic; if it cannot the driver must handle that
1113 * as best as it can, mac80211 is too slow.
1114 *
1115 * Dynamic powersave mode is an extension to normal powersave mode in which
1116 * the hardware stays awake for a user-specified period of time after sending
1117 * a frame so that reply frames need not be buffered and therefore delayed
1118 * to the next wakeup. This can either be supported by hardware, in which case
1119 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1120 * value, or by the stack if all nullfunc handling is in the stack.
1121 */
1122
1123/**
1124 * DOC: Beacon filter support
1125 *
1126 * Some hardware have beacon filter support to reduce host cpu wakeups
1127 * which will reduce system power consumption. It usuallly works so that
1128 * the firmware creates a checksum of the beacon but omits all constantly
1129 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1130 * beacon is forwarded to the host, otherwise it will be just dropped. That
1131 * way the host will only receive beacons where some relevant information
1132 * (for example ERP protection or WMM settings) have changed.
1133 *
1134 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1135 * hardware capability. The driver needs to enable beacon filter support
1136 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1137 * power save is enabled, the stack will not check for beacon loss and the
1138 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1139 *
1140 * The time (or number of beacons missed) until the firmware notifies the
1141 * driver of a beacon loss event (which in turn causes the driver to call
1142 * ieee80211_beacon_loss()) should be configurable and will be controlled
1143 * by mac80211 and the roaming algorithm in the future.
1144 *
1145 * Since there may be constantly changing information elements that nothing
1146 * in the software stack cares about, we will, in the future, have mac80211
1147 * tell the driver which information elements are interesting in the sense
1148 * that we want to see changes in them. This will include
1149 *  - a list of information element IDs
1150 *  - a list of OUIs for the vendor information element
1151 *
1152 * Ideally, the hardware would filter out any beacons without changes in the
1153 * requested elements, but if it cannot support that it may, at the expense
1154 * of some efficiency, filter out only a subset. For example, if the device
1155 * doesn't support checking for OUIs it should pass up all changes in all
1156 * vendor information elements.
1157 *
1158 * Note that change, for the sake of simplification, also includes information
1159 * elements appearing or disappearing from the beacon.
1160 *
1161 * Some hardware supports an "ignore list" instead, just make sure nothing
1162 * that was requested is on the ignore list, and include commonly changing
1163 * information element IDs in the ignore list, for example 11 (BSS load) and
1164 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1165 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1166 * it could also include some currently unused IDs.
1167 *
1168 *
1169 * In addition to these capabilities, hardware should support notifying the
1170 * host of changes in the beacon RSSI. This is relevant to implement roaming
1171 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1172 * the received data packets). This can consist in notifying the host when
1173 * the RSSI changes significantly or when it drops below or rises above
1174 * configurable thresholds. In the future these thresholds will also be
1175 * configured by mac80211 (which gets them from userspace) to implement
1176 * them as the roaming algorithm requires.
1177 *
1178 * If the hardware cannot implement this, the driver should ask it to
1179 * periodically pass beacon frames to the host so that software can do the
1180 * signal strength threshold checking.
1181 */
1182
1183/**
1184 * DOC: Frame filtering
1185 *
1186 * mac80211 requires to see many management frames for proper
1187 * operation, and users may want to see many more frames when
1188 * in monitor mode. However, for best CPU usage and power consumption,
1189 * having as few frames as possible percolate through the stack is
1190 * desirable. Hence, the hardware should filter as much as possible.
1191 *
1192 * To achieve this, mac80211 uses filter flags (see below) to tell
1193 * the driver's configure_filter() function which frames should be
1194 * passed to mac80211 and which should be filtered out.
1195 *
1196 * The configure_filter() callback is invoked with the parameters
1197 * @mc_count and @mc_list for the combined multicast address list
1198 * of all virtual interfaces, @changed_flags telling which flags
1199 * were changed and @total_flags with the new flag states.
1200 *
1201 * If your device has no multicast address filters your driver will
1202 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1203 * parameter to see whether multicast frames should be accepted
1204 * or dropped.
1205 *
1206 * All unsupported flags in @total_flags must be cleared.
1207 * Hardware does not support a flag if it is incapable of _passing_
1208 * the frame to the stack. Otherwise the driver must ignore
1209 * the flag, but not clear it.
1210 * You must _only_ clear the flag (announce no support for the
1211 * flag to mac80211) if you are not able to pass the packet type
1212 * to the stack (so the hardware always filters it).
1213 * So for example, you should clear @FIF_CONTROL, if your hardware
1214 * always filters control frames. If your hardware always passes
1215 * control frames to the kernel and is incapable of filtering them,
1216 * you do _not_ clear the @FIF_CONTROL flag.
1217 * This rule applies to all other FIF flags as well.
1218 */
1219
1220/**
1221 * enum ieee80211_filter_flags - hardware filter flags
1222 *
1223 * These flags determine what the filter in hardware should be
1224 * programmed to let through and what should not be passed to the
1225 * stack. It is always safe to pass more frames than requested,
1226 * but this has negative impact on power consumption.
1227 *
1228 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1229 *	think of the BSS as your network segment and then this corresponds
1230 *	to the regular ethernet device promiscuous mode.
1231 *
1232 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1233 *	by the user or if the hardware is not capable of filtering by
1234 *	multicast address.
1235 *
1236 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1237 *	%RX_FLAG_FAILED_FCS_CRC for them)
1238 *
1239 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1240 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1241 *
1242 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1243 *	to the hardware that it should not filter beacons or probe responses
1244 *	by BSSID. Filtering them can greatly reduce the amount of processing
1245 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1246 *	honour this flag if possible.
1247 *
1248 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1249 *	only those addressed to this station
1250 *
1251 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1252 */
1253enum ieee80211_filter_flags {
1254	FIF_PROMISC_IN_BSS	= 1<<0,
1255	FIF_ALLMULTI		= 1<<1,
1256	FIF_FCSFAIL		= 1<<2,
1257	FIF_PLCPFAIL		= 1<<3,
1258	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1259	FIF_CONTROL		= 1<<5,
1260	FIF_OTHER_BSS		= 1<<6,
1261};
1262
1263/**
1264 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1265 *
1266 * These flags are used with the ampdu_action() callback in
1267 * &struct ieee80211_ops to indicate which action is needed.
1268 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1269 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1270 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1271 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1272 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1273 */
1274enum ieee80211_ampdu_mlme_action {
1275	IEEE80211_AMPDU_RX_START,
1276	IEEE80211_AMPDU_RX_STOP,
1277	IEEE80211_AMPDU_TX_START,
1278	IEEE80211_AMPDU_TX_STOP,
1279	IEEE80211_AMPDU_TX_OPERATIONAL,
1280};
1281
1282/**
1283 * struct ieee80211_ops - callbacks from mac80211 to the driver
1284 *
1285 * This structure contains various callbacks that the driver may
1286 * handle or, in some cases, must handle, for example to configure
1287 * the hardware to a new channel or to transmit a frame.
1288 *
1289 * @tx: Handler that 802.11 module calls for each transmitted frame.
1290 *	skb contains the buffer starting from the IEEE 802.11 header.
1291 *	The low-level driver should send the frame out based on
1292 *	configuration in the TX control data. This handler should,
1293 *	preferably, never fail and stop queues appropriately, more
1294 *	importantly, however, it must never fail for A-MPDU-queues.
1295 *	This function should return NETDEV_TX_OK except in very
1296 *	limited cases.
1297 *	Must be implemented and atomic.
1298 *
1299 * @start: Called before the first netdevice attached to the hardware
1300 *	is enabled. This should turn on the hardware and must turn on
1301 *	frame reception (for possibly enabled monitor interfaces.)
1302 *	Returns negative error codes, these may be seen in userspace,
1303 *	or zero.
1304 *	When the device is started it should not have a MAC address
1305 *	to avoid acknowledging frames before a non-monitor device
1306 *	is added.
1307 *	Must be implemented.
1308 *
1309 * @stop: Called after last netdevice attached to the hardware
1310 *	is disabled. This should turn off the hardware (at least
1311 *	it must turn off frame reception.)
1312 *	May be called right after add_interface if that rejects
1313 *	an interface.
1314 *	Must be implemented.
1315 *
1316 * @add_interface: Called when a netdevice attached to the hardware is
1317 *	enabled. Because it is not called for monitor mode devices, @start
1318 *	and @stop must be implemented.
1319 *	The driver should perform any initialization it needs before
1320 *	the device can be enabled. The initial configuration for the
1321 *	interface is given in the conf parameter.
1322 *	The callback may refuse to add an interface by returning a
1323 *	negative error code (which will be seen in userspace.)
1324 *	Must be implemented.
1325 *
1326 * @remove_interface: Notifies a driver that an interface is going down.
1327 *	The @stop callback is called after this if it is the last interface
1328 *	and no monitor interfaces are present.
1329 *	When all interfaces are removed, the MAC address in the hardware
1330 *	must be cleared so the device no longer acknowledges packets,
1331 *	the mac_addr member of the conf structure is, however, set to the
1332 *	MAC address of the device going away.
1333 *	Hence, this callback must be implemented.
1334 *
1335 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1336 *	function to change hardware configuration, e.g., channel.
1337 *	This function should never fail but returns a negative error code
1338 *	if it does.
1339 *
1340 * @config_interface: Handler for configuration requests related to interfaces
1341 *	(e.g. BSSID changes.)
1342 *	Returns a negative error code which will be seen in userspace.
1343 *
1344 * @bss_info_changed: Handler for configuration requests related to BSS
1345 *	parameters that may vary during BSS's lifespan, and may affect low
1346 *	level driver (e.g. assoc/disassoc status, erp parameters).
1347 *	This function should not be used if no BSS has been set, unless
1348 *	for association indication. The @changed parameter indicates which
1349 *	of the bss parameters has changed when a call is made.
1350 *
1351 * @configure_filter: Configure the device's RX filter.
1352 *	See the section "Frame filtering" for more information.
1353 *	This callback must be implemented and atomic.
1354 *
1355 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1356 * 	must be set or cleared for a given STA. Must be atomic.
1357 *
1358 * @set_key: See the section "Hardware crypto acceleration"
1359 *	This callback can sleep, and is only called between add_interface
1360 *	and remove_interface calls, i.e. while the given virtual interface
1361 *	is enabled.
1362 *	Returns a negative error code if the key can't be added.
1363 *
1364 * @update_tkip_key: See the section "Hardware crypto acceleration"
1365 * 	This callback will be called in the context of Rx. Called for drivers
1366 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1367 *
1368 * @hw_scan: Ask the hardware to service the scan request, no need to start
1369 *	the scan state machine in stack. The scan must honour the channel
1370 *	configuration done by the regulatory agent in the wiphy's
1371 *	registered bands. The hardware (or the driver) needs to make sure
1372 *	that power save is disabled.
1373 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1374 *	entire IEs after the SSID, so that drivers need not look at these
1375 *	at all but just send them after the SSID -- mac80211 includes the
1376 *	(extended) supported rates and HT information (where applicable).
1377 *	When the scan finishes, ieee80211_scan_completed() must be called;
1378 *	note that it also must be called when the scan cannot finish due to
1379 *	any error unless this callback returned a negative error code.
1380 *
1381 * @sw_scan_start: Notifier function that is called just before a software scan
1382 *	is started. Can be NULL, if the driver doesn't need this notification.
1383 *
1384 * @sw_scan_complete: Notifier function that is called just after a software scan
1385 *	finished. Can be NULL, if the driver doesn't need this notification.
1386 *
1387 * @get_stats: Return low-level statistics.
1388 * 	Returns zero if statistics are available.
1389 *
1390 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1391 *	callback should be provided to read the TKIP transmit IVs (both IV32
1392 *	and IV16) for the given key from hardware.
1393 *
1394 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1395 *
1396 * @sta_notify: Notifies low level driver about addition, removal or power
1397 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1398 *	Must be atomic.
1399 *
1400 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1401 *	bursting) for a hardware TX queue.
1402 *	Returns a negative error code on failure.
1403 *
1404 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1405 *	to get number of currently queued packets (queue length), maximum queue
1406 *	size (limit), and total number of packets sent using each TX queue
1407 *	(count). The 'stats' pointer points to an array that has hw->queues
1408 *	items.
1409 *
1410 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1411 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1412 *	required function.
1413 *
1414 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1415 *      Currently, this is only used for IBSS mode debugging. Is not a
1416 *	required function.
1417 *
1418 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1419 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1420 *	function is optional if the firmware/hardware takes full care of
1421 *	TSF synchronization.
1422 *
1423 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1424 *	This is needed only for IBSS mode and the result of this function is
1425 *	used to determine whether to reply to Probe Requests.
1426 *	Returns non-zero if this device sent the last beacon.
1427 *
1428 * @ampdu_action: Perform a certain A-MPDU action
1429 * 	The RA/TID combination determines the destination and TID we want
1430 * 	the ampdu action to be performed for. The action is defined through
1431 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1432 * 	is the first frame we expect to perform the action on. Notice
1433 * 	that TX/RX_STOP can pass NULL for this parameter.
1434 *	Returns a negative error code on failure.
1435 */
1436struct ieee80211_ops {
1437	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1438	int (*start)(struct ieee80211_hw *hw);
1439	void (*stop)(struct ieee80211_hw *hw);
1440	int (*add_interface)(struct ieee80211_hw *hw,
1441			     struct ieee80211_if_init_conf *conf);
1442	void (*remove_interface)(struct ieee80211_hw *hw,
1443				 struct ieee80211_if_init_conf *conf);
1444	int (*config)(struct ieee80211_hw *hw, u32 changed);
1445	int (*config_interface)(struct ieee80211_hw *hw,
1446				struct ieee80211_vif *vif,
1447				struct ieee80211_if_conf *conf);
1448	void (*bss_info_changed)(struct ieee80211_hw *hw,
1449				 struct ieee80211_vif *vif,
1450				 struct ieee80211_bss_conf *info,
1451				 u32 changed);
1452	void (*configure_filter)(struct ieee80211_hw *hw,
1453				 unsigned int changed_flags,
1454				 unsigned int *total_flags,
1455				 int mc_count, struct dev_addr_list *mc_list);
1456	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1457		       bool set);
1458	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1459		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1460		       struct ieee80211_key_conf *key);
1461	void (*update_tkip_key)(struct ieee80211_hw *hw,
1462			struct ieee80211_key_conf *conf, const u8 *address,
1463			u32 iv32, u16 *phase1key);
1464	int (*hw_scan)(struct ieee80211_hw *hw,
1465		       struct cfg80211_scan_request *req);
1466	void (*sw_scan_start)(struct ieee80211_hw *hw);
1467	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1468	int (*get_stats)(struct ieee80211_hw *hw,
1469			 struct ieee80211_low_level_stats *stats);
1470	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1471			     u32 *iv32, u16 *iv16);
1472	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1473	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1474			enum sta_notify_cmd, struct ieee80211_sta *sta);
1475	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1476		       const struct ieee80211_tx_queue_params *params);
1477	int (*get_tx_stats)(struct ieee80211_hw *hw,
1478			    struct ieee80211_tx_queue_stats *stats);
1479	u64 (*get_tsf)(struct ieee80211_hw *hw);
1480	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1481	void (*reset_tsf)(struct ieee80211_hw *hw);
1482	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1483	int (*ampdu_action)(struct ieee80211_hw *hw,
1484			    enum ieee80211_ampdu_mlme_action action,
1485			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1486};
1487
1488/**
1489 * ieee80211_alloc_hw -  Allocate a new hardware device
1490 *
1491 * This must be called once for each hardware device. The returned pointer
1492 * must be used to refer to this device when calling other functions.
1493 * mac80211 allocates a private data area for the driver pointed to by
1494 * @priv in &struct ieee80211_hw, the size of this area is given as
1495 * @priv_data_len.
1496 *
1497 * @priv_data_len: length of private data
1498 * @ops: callbacks for this device
1499 */
1500struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1501					const struct ieee80211_ops *ops);
1502
1503/**
1504 * ieee80211_register_hw - Register hardware device
1505 *
1506 * You must call this function before any other functions in
1507 * mac80211. Note that before a hardware can be registered, you
1508 * need to fill the contained wiphy's information.
1509 *
1510 * @hw: the device to register as returned by ieee80211_alloc_hw()
1511 */
1512int ieee80211_register_hw(struct ieee80211_hw *hw);
1513
1514#ifdef CONFIG_MAC80211_LEDS
1515extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1516extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1517extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1518extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1519#endif
1520/**
1521 * ieee80211_get_tx_led_name - get name of TX LED
1522 *
1523 * mac80211 creates a transmit LED trigger for each wireless hardware
1524 * that can be used to drive LEDs if your driver registers a LED device.
1525 * This function returns the name (or %NULL if not configured for LEDs)
1526 * of the trigger so you can automatically link the LED device.
1527 *
1528 * @hw: the hardware to get the LED trigger name for
1529 */
1530static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1531{
1532#ifdef CONFIG_MAC80211_LEDS
1533	return __ieee80211_get_tx_led_name(hw);
1534#else
1535	return NULL;
1536#endif
1537}
1538
1539/**
1540 * ieee80211_get_rx_led_name - get name of RX LED
1541 *
1542 * mac80211 creates a receive LED trigger for each wireless hardware
1543 * that can be used to drive LEDs if your driver registers a LED device.
1544 * This function returns the name (or %NULL if not configured for LEDs)
1545 * of the trigger so you can automatically link the LED device.
1546 *
1547 * @hw: the hardware to get the LED trigger name for
1548 */
1549static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1550{
1551#ifdef CONFIG_MAC80211_LEDS
1552	return __ieee80211_get_rx_led_name(hw);
1553#else
1554	return NULL;
1555#endif
1556}
1557
1558/**
1559 * ieee80211_get_assoc_led_name - get name of association LED
1560 *
1561 * mac80211 creates a association LED trigger for each wireless hardware
1562 * that can be used to drive LEDs if your driver registers a LED device.
1563 * This function returns the name (or %NULL if not configured for LEDs)
1564 * of the trigger so you can automatically link the LED device.
1565 *
1566 * @hw: the hardware to get the LED trigger name for
1567 */
1568static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1569{
1570#ifdef CONFIG_MAC80211_LEDS
1571	return __ieee80211_get_assoc_led_name(hw);
1572#else
1573	return NULL;
1574#endif
1575}
1576
1577/**
1578 * ieee80211_get_radio_led_name - get name of radio LED
1579 *
1580 * mac80211 creates a radio change LED trigger for each wireless hardware
1581 * that can be used to drive LEDs if your driver registers a LED device.
1582 * This function returns the name (or %NULL if not configured for LEDs)
1583 * of the trigger so you can automatically link the LED device.
1584 *
1585 * @hw: the hardware to get the LED trigger name for
1586 */
1587static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1588{
1589#ifdef CONFIG_MAC80211_LEDS
1590	return __ieee80211_get_radio_led_name(hw);
1591#else
1592	return NULL;
1593#endif
1594}
1595
1596/**
1597 * ieee80211_unregister_hw - Unregister a hardware device
1598 *
1599 * This function instructs mac80211 to free allocated resources
1600 * and unregister netdevices from the networking subsystem.
1601 *
1602 * @hw: the hardware to unregister
1603 */
1604void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1605
1606/**
1607 * ieee80211_free_hw - free hardware descriptor
1608 *
1609 * This function frees everything that was allocated, including the
1610 * private data for the driver. You must call ieee80211_unregister_hw()
1611 * before calling this function.
1612 *
1613 * @hw: the hardware to free
1614 */
1615void ieee80211_free_hw(struct ieee80211_hw *hw);
1616
1617/**
1618 * ieee80211_restart_hw - restart hardware completely
1619 *
1620 * Call this function when the hardware was restarted for some reason
1621 * (hardware error, ...) and the driver is unable to restore its state
1622 * by itself. mac80211 assumes that at this point the driver/hardware
1623 * is completely uninitialised and stopped, it starts the process by
1624 * calling the ->start() operation. The driver will need to reset all
1625 * internal state that it has prior to calling this function.
1626 *
1627 * @hw: the hardware to restart
1628 */
1629void ieee80211_restart_hw(struct ieee80211_hw *hw);
1630
1631/* trick to avoid symbol clashes with the ieee80211 subsystem */
1632void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1633		    struct ieee80211_rx_status *status);
1634
1635/**
1636 * ieee80211_rx - receive frame
1637 *
1638 * Use this function to hand received frames to mac80211. The receive
1639 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1640 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1641 *
1642 * This function may not be called in IRQ context. Calls to this function
1643 * for a single hardware must be synchronized against each other. Calls
1644 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1645 * single hardware.
1646 *
1647 * @hw: the hardware this frame came in on
1648 * @skb: the buffer to receive, owned by mac80211 after this call
1649 * @status: status of this frame; the status pointer need not be valid
1650 *	after this function returns
1651 */
1652static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1653				struct ieee80211_rx_status *status)
1654{
1655	__ieee80211_rx(hw, skb, status);
1656}
1657
1658/**
1659 * ieee80211_rx_irqsafe - receive frame
1660 *
1661 * Like ieee80211_rx() but can be called in IRQ context
1662 * (internally defers to a tasklet.)
1663 *
1664 * Calls to this function and ieee80211_rx() may not be mixed for a
1665 * single hardware.
1666 *
1667 * @hw: the hardware this frame came in on
1668 * @skb: the buffer to receive, owned by mac80211 after this call
1669 * @status: status of this frame; the status pointer need not be valid
1670 *	after this function returns and is not freed by mac80211,
1671 *	it is recommended that it points to a stack area
1672 */
1673void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1674			  struct sk_buff *skb,
1675			  struct ieee80211_rx_status *status);
1676
1677/**
1678 * ieee80211_tx_status - transmit status callback
1679 *
1680 * Call this function for all transmitted frames after they have been
1681 * transmitted. It is permissible to not call this function for
1682 * multicast frames but this can affect statistics.
1683 *
1684 * This function may not be called in IRQ context. Calls to this function
1685 * for a single hardware must be synchronized against each other. Calls
1686 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1687 * for a single hardware.
1688 *
1689 * @hw: the hardware the frame was transmitted by
1690 * @skb: the frame that was transmitted, owned by mac80211 after this call
1691 */
1692void ieee80211_tx_status(struct ieee80211_hw *hw,
1693			 struct sk_buff *skb);
1694
1695/**
1696 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1697 *
1698 * Like ieee80211_tx_status() but can be called in IRQ context
1699 * (internally defers to a tasklet.)
1700 *
1701 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1702 * single hardware.
1703 *
1704 * @hw: the hardware the frame was transmitted by
1705 * @skb: the frame that was transmitted, owned by mac80211 after this call
1706 */
1707void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1708				 struct sk_buff *skb);
1709
1710/**
1711 * ieee80211_beacon_get - beacon generation function
1712 * @hw: pointer obtained from ieee80211_alloc_hw().
1713 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1714 *
1715 * If the beacon frames are generated by the host system (i.e., not in
1716 * hardware/firmware), the low-level driver uses this function to receive
1717 * the next beacon frame from the 802.11 code. The low-level is responsible
1718 * for calling this function before beacon data is needed (e.g., based on
1719 * hardware interrupt). Returned skb is used only once and low-level driver
1720 * is responsible for freeing it.
1721 */
1722struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1723				     struct ieee80211_vif *vif);
1724
1725/**
1726 * ieee80211_rts_get - RTS frame generation function
1727 * @hw: pointer obtained from ieee80211_alloc_hw().
1728 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1729 * @frame: pointer to the frame that is going to be protected by the RTS.
1730 * @frame_len: the frame length (in octets).
1731 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1732 * @rts: The buffer where to store the RTS frame.
1733 *
1734 * If the RTS frames are generated by the host system (i.e., not in
1735 * hardware/firmware), the low-level driver uses this function to receive
1736 * the next RTS frame from the 802.11 code. The low-level is responsible
1737 * for calling this function before and RTS frame is needed.
1738 */
1739void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1740		       const void *frame, size_t frame_len,
1741		       const struct ieee80211_tx_info *frame_txctl,
1742		       struct ieee80211_rts *rts);
1743
1744/**
1745 * ieee80211_rts_duration - Get the duration field for an RTS frame
1746 * @hw: pointer obtained from ieee80211_alloc_hw().
1747 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1748 * @frame_len: the length of the frame that is going to be protected by the RTS.
1749 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1750 *
1751 * If the RTS is generated in firmware, but the host system must provide
1752 * the duration field, the low-level driver uses this function to receive
1753 * the duration field value in little-endian byteorder.
1754 */
1755__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1756			      struct ieee80211_vif *vif, size_t frame_len,
1757			      const struct ieee80211_tx_info *frame_txctl);
1758
1759/**
1760 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1761 * @hw: pointer obtained from ieee80211_alloc_hw().
1762 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1763 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1764 * @frame_len: the frame length (in octets).
1765 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1766 * @cts: The buffer where to store the CTS-to-self frame.
1767 *
1768 * If the CTS-to-self frames are generated by the host system (i.e., not in
1769 * hardware/firmware), the low-level driver uses this function to receive
1770 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1771 * for calling this function before and CTS-to-self frame is needed.
1772 */
1773void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1774			     struct ieee80211_vif *vif,
1775			     const void *frame, size_t frame_len,
1776			     const struct ieee80211_tx_info *frame_txctl,
1777			     struct ieee80211_cts *cts);
1778
1779/**
1780 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1781 * @hw: pointer obtained from ieee80211_alloc_hw().
1782 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1783 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1784 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1785 *
1786 * If the CTS-to-self is generated in firmware, but the host system must provide
1787 * the duration field, the low-level driver uses this function to receive
1788 * the duration field value in little-endian byteorder.
1789 */
1790__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1791				    struct ieee80211_vif *vif,
1792				    size_t frame_len,
1793				    const struct ieee80211_tx_info *frame_txctl);
1794
1795/**
1796 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1797 * @hw: pointer obtained from ieee80211_alloc_hw().
1798 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1799 * @frame_len: the length of the frame.
1800 * @rate: the rate at which the frame is going to be transmitted.
1801 *
1802 * Calculate the duration field of some generic frame, given its
1803 * length and transmission rate (in 100kbps).
1804 */
1805__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1806					struct ieee80211_vif *vif,
1807					size_t frame_len,
1808					struct ieee80211_rate *rate);
1809
1810/**
1811 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1812 * @hw: pointer as obtained from ieee80211_alloc_hw().
1813 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1814 *
1815 * Function for accessing buffered broadcast and multicast frames. If
1816 * hardware/firmware does not implement buffering of broadcast/multicast
1817 * frames when power saving is used, 802.11 code buffers them in the host
1818 * memory. The low-level driver uses this function to fetch next buffered
1819 * frame. In most cases, this is used when generating beacon frame. This
1820 * function returns a pointer to the next buffered skb or NULL if no more
1821 * buffered frames are available.
1822 *
1823 * Note: buffered frames are returned only after DTIM beacon frame was
1824 * generated with ieee80211_beacon_get() and the low-level driver must thus
1825 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1826 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1827 * does not need to check for DTIM beacons separately and should be able to
1828 * use common code for all beacons.
1829 */
1830struct sk_buff *
1831ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1832
1833/**
1834 * ieee80211_get_hdrlen_from_skb - get header length from data
1835 *
1836 * Given an skb with a raw 802.11 header at the data pointer this function
1837 * returns the 802.11 header length in bytes (not including encryption
1838 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1839 * header the function returns 0.
1840 *
1841 * @skb: the frame
1842 */
1843unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1844
1845/**
1846 * ieee80211_hdrlen - get header length in bytes from frame control
1847 * @fc: frame control field in little-endian format
1848 */
1849unsigned int ieee80211_hdrlen(__le16 fc);
1850
1851/**
1852 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1853 *
1854 * This function computes a TKIP rc4 key for an skb. It computes
1855 * a phase 1 key if needed (iv16 wraps around). This function is to
1856 * be used by drivers which can do HW encryption but need to compute
1857 * to phase 1/2 key in SW.
1858 *
1859 * @keyconf: the parameter passed with the set key
1860 * @skb: the skb for which the key is needed
1861 * @type: TBD
1862 * @key: a buffer to which the key will be written
1863 */
1864void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1865				struct sk_buff *skb,
1866				enum ieee80211_tkip_key_type type, u8 *key);
1867/**
1868 * ieee80211_wake_queue - wake specific queue
1869 * @hw: pointer as obtained from ieee80211_alloc_hw().
1870 * @queue: queue number (counted from zero).
1871 *
1872 * Drivers should use this function instead of netif_wake_queue.
1873 */
1874void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1875
1876/**
1877 * ieee80211_stop_queue - stop specific queue
1878 * @hw: pointer as obtained from ieee80211_alloc_hw().
1879 * @queue: queue number (counted from zero).
1880 *
1881 * Drivers should use this function instead of netif_stop_queue.
1882 */
1883void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1884
1885/**
1886 * ieee80211_queue_stopped - test status of the queue
1887 * @hw: pointer as obtained from ieee80211_alloc_hw().
1888 * @queue: queue number (counted from zero).
1889 *
1890 * Drivers should use this function instead of netif_stop_queue.
1891 */
1892
1893int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1894
1895/**
1896 * ieee80211_stop_queues - stop all queues
1897 * @hw: pointer as obtained from ieee80211_alloc_hw().
1898 *
1899 * Drivers should use this function instead of netif_stop_queue.
1900 */
1901void ieee80211_stop_queues(struct ieee80211_hw *hw);
1902
1903/**
1904 * ieee80211_wake_queues - wake all queues
1905 * @hw: pointer as obtained from ieee80211_alloc_hw().
1906 *
1907 * Drivers should use this function instead of netif_wake_queue.
1908 */
1909void ieee80211_wake_queues(struct ieee80211_hw *hw);
1910
1911/**
1912 * ieee80211_scan_completed - completed hardware scan
1913 *
1914 * When hardware scan offload is used (i.e. the hw_scan() callback is
1915 * assigned) this function needs to be called by the driver to notify
1916 * mac80211 that the scan finished.
1917 *
1918 * @hw: the hardware that finished the scan
1919 * @aborted: set to true if scan was aborted
1920 */
1921void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1922
1923/**
1924 * ieee80211_iterate_active_interfaces - iterate active interfaces
1925 *
1926 * This function iterates over the interfaces associated with a given
1927 * hardware that are currently active and calls the callback for them.
1928 * This function allows the iterator function to sleep, when the iterator
1929 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1930 * be used.
1931 *
1932 * @hw: the hardware struct of which the interfaces should be iterated over
1933 * @iterator: the iterator function to call
1934 * @data: first argument of the iterator function
1935 */
1936void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1937					 void (*iterator)(void *data, u8 *mac,
1938						struct ieee80211_vif *vif),
1939					 void *data);
1940
1941/**
1942 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1943 *
1944 * This function iterates over the interfaces associated with a given
1945 * hardware that are currently active and calls the callback for them.
1946 * This function requires the iterator callback function to be atomic,
1947 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1948 *
1949 * @hw: the hardware struct of which the interfaces should be iterated over
1950 * @iterator: the iterator function to call, cannot sleep
1951 * @data: first argument of the iterator function
1952 */
1953void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1954						void (*iterator)(void *data,
1955						    u8 *mac,
1956						    struct ieee80211_vif *vif),
1957						void *data);
1958
1959/**
1960 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1961 * @hw: pointer as obtained from ieee80211_alloc_hw().
1962 * @ra: receiver address of the BA session recipient
1963 * @tid: the TID to BA on.
1964 *
1965 * Return: success if addBA request was sent, failure otherwise
1966 *
1967 * Although mac80211/low level driver/user space application can estimate
1968 * the need to start aggregation on a certain RA/TID, the session level
1969 * will be managed by the mac80211.
1970 */
1971int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1972
1973/**
1974 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1975 * @hw: pointer as obtained from ieee80211_alloc_hw().
1976 * @ra: receiver address of the BA session recipient.
1977 * @tid: the TID to BA on.
1978 *
1979 * This function must be called by low level driver once it has
1980 * finished with preparations for the BA session.
1981 */
1982void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1983
1984/**
1985 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1986 * @hw: pointer as obtained from ieee80211_alloc_hw().
1987 * @ra: receiver address of the BA session recipient.
1988 * @tid: the TID to BA on.
1989 *
1990 * This function must be called by low level driver once it has
1991 * finished with preparations for the BA session.
1992 * This version of the function is IRQ-safe.
1993 */
1994void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1995				      u16 tid);
1996
1997/**
1998 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1999 * @hw: pointer as obtained from ieee80211_alloc_hw().
2000 * @ra: receiver address of the BA session recipient
2001 * @tid: the TID to stop BA.
2002 * @initiator: if indicates initiator DELBA frame will be sent.
2003 *
2004 * Return: error if no sta with matching da found, success otherwise
2005 *
2006 * Although mac80211/low level driver/user space application can estimate
2007 * the need to stop aggregation on a certain RA/TID, the session level
2008 * will be managed by the mac80211.
2009 */
2010int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2011				 u8 *ra, u16 tid,
2012				 enum ieee80211_back_parties initiator);
2013
2014/**
2015 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2016 * @hw: pointer as obtained from ieee80211_alloc_hw().
2017 * @ra: receiver address of the BA session recipient.
2018 * @tid: the desired TID to BA on.
2019 *
2020 * This function must be called by low level driver once it has
2021 * finished with preparations for the BA session tear down.
2022 */
2023void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2024
2025/**
2026 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2027 * @hw: pointer as obtained from ieee80211_alloc_hw().
2028 * @ra: receiver address of the BA session recipient.
2029 * @tid: the desired TID to BA on.
2030 *
2031 * This function must be called by low level driver once it has
2032 * finished with preparations for the BA session tear down.
2033 * This version of the function is IRQ-safe.
2034 */
2035void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2036				     u16 tid);
2037
2038/**
2039 * ieee80211_find_sta - find a station
2040 *
2041 * @hw: pointer as obtained from ieee80211_alloc_hw()
2042 * @addr: station's address
2043 *
2044 * This function must be called under RCU lock and the
2045 * resulting pointer is only valid under RCU lock as well.
2046 */
2047struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2048					 const u8 *addr);
2049
2050/**
2051 * ieee80211_beacon_loss - inform hardware does not receive beacons
2052 *
2053 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2054 *
2055 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2056 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2057 * hardware is not receiving beacons with this function.
2058 */
2059void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2060
2061/* Rate control API */
2062
2063/**
2064 * enum rate_control_changed - flags to indicate which parameter changed
2065 *
2066 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2067 *	changed, rate control algorithm can update its internal state if needed.
2068 */
2069enum rate_control_changed {
2070	IEEE80211_RC_HT_CHANGED = BIT(0)
2071};
2072
2073/**
2074 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2075 *
2076 * @hw: The hardware the algorithm is invoked for.
2077 * @sband: The band this frame is being transmitted on.
2078 * @bss_conf: the current BSS configuration
2079 * @reported_rate: The rate control algorithm can fill this in to indicate
2080 *	which rate should be reported to userspace as the current rate and
2081 *	used for rate calculations in the mesh network.
2082 * @rts: whether RTS will be used for this frame because it is longer than the
2083 *	RTS threshold
2084 * @short_preamble: whether mac80211 will request short-preamble transmission
2085 *	if the selected rate supports it
2086 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2087 * @skb: the skb that will be transmitted, the control information in it needs
2088 *	to be filled in
2089 */
2090struct ieee80211_tx_rate_control {
2091	struct ieee80211_hw *hw;
2092	struct ieee80211_supported_band *sband;
2093	struct ieee80211_bss_conf *bss_conf;
2094	struct sk_buff *skb;
2095	struct ieee80211_tx_rate reported_rate;
2096	bool rts, short_preamble;
2097	u8 max_rate_idx;
2098};
2099
2100struct rate_control_ops {
2101	struct module *module;
2102	const char *name;
2103	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2104	void (*free)(void *priv);
2105
2106	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2107	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2108			  struct ieee80211_sta *sta, void *priv_sta);
2109	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2110			    struct ieee80211_sta *sta,
2111			    void *priv_sta, u32 changed);
2112	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2113			 void *priv_sta);
2114
2115	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2116			  struct ieee80211_sta *sta, void *priv_sta,
2117			  struct sk_buff *skb);
2118	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2119			 struct ieee80211_tx_rate_control *txrc);
2120
2121	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2122				struct dentry *dir);
2123	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2124};
2125
2126static inline int rate_supported(struct ieee80211_sta *sta,
2127				 enum ieee80211_band band,
2128				 int index)
2129{
2130	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2131}
2132
2133static inline s8
2134rate_lowest_index(struct ieee80211_supported_band *sband,
2135		  struct ieee80211_sta *sta)
2136{
2137	int i;
2138
2139	for (i = 0; i < sband->n_bitrates; i++)
2140		if (rate_supported(sta, sband->band, i))
2141			return i;
2142
2143	/* warn when we cannot find a rate. */
2144	WARN_ON(1);
2145
2146	return 0;
2147}
2148
2149
2150int ieee80211_rate_control_register(struct rate_control_ops *ops);
2151void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2152
2153static inline bool
2154conf_is_ht20(struct ieee80211_conf *conf)
2155{
2156	return conf->channel_type == NL80211_CHAN_HT20;
2157}
2158
2159static inline bool
2160conf_is_ht40_minus(struct ieee80211_conf *conf)
2161{
2162	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2163}
2164
2165static inline bool
2166conf_is_ht40_plus(struct ieee80211_conf *conf)
2167{
2168	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2169}
2170
2171static inline bool
2172conf_is_ht40(struct ieee80211_conf *conf)
2173{
2174	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2175}
2176
2177static inline bool
2178conf_is_ht(struct ieee80211_conf *conf)
2179{
2180	return conf->channel_type != NL80211_CHAN_NO_HT;
2181}
2182
2183#endif /* MAC80211_H */
2184