mac80211.h revision e255d5eb2b478eec1416b46aea03798b64355402
1/*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#ifndef MAC80211_H
14#define MAC80211_H
15
16#include <linux/kernel.h>
17#include <linux/if_ether.h>
18#include <linux/skbuff.h>
19#include <linux/wireless.h>
20#include <linux/device.h>
21#include <linux/ieee80211.h>
22#include <net/cfg80211.h>
23
24/**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33/**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 *	 use the non-IRQ-safe functions!
45 */
46
47/**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54/**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75/**
76 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
77 *
78 * This structure describes most essential parameters needed
79 * to describe 802.11n HT characteristics in a BSS.
80 *
81 * @primary_channel: channel number of primery channel
82 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
83 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
84 */
85struct ieee80211_ht_bss_info {
86	u8 primary_channel;
87	u8 bss_cap;  /* use IEEE80211_HT_IE_CHA_ */
88	u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89};
90
91/**
92 * enum ieee80211_max_queues - maximum number of queues
93 *
94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
95 */
96enum ieee80211_max_queues {
97	IEEE80211_MAX_QUEUES =		4,
98};
99
100/**
101 * struct ieee80211_tx_queue_params - transmit queue configuration
102 *
103 * The information provided in this structure is required for QoS
104 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
105 *
106 * @aifs: arbitration interframe space [0..255]
107 * @cw_min: minimum contention window [a value of the form
108 *	2^n-1 in the range 1..32767]
109 * @cw_max: maximum contention window [like @cw_min]
110 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
111 */
112struct ieee80211_tx_queue_params {
113	u16 txop;
114	u16 cw_min;
115	u16 cw_max;
116	u8 aifs;
117};
118
119/**
120 * struct ieee80211_tx_queue_stats - transmit queue statistics
121 *
122 * @len: number of packets in queue
123 * @limit: queue length limit
124 * @count: number of frames sent
125 */
126struct ieee80211_tx_queue_stats {
127	unsigned int len;
128	unsigned int limit;
129	unsigned int count;
130};
131
132struct ieee80211_low_level_stats {
133	unsigned int dot11ACKFailureCount;
134	unsigned int dot11RTSFailureCount;
135	unsigned int dot11FCSErrorCount;
136	unsigned int dot11RTSSuccessCount;
137};
138
139/**
140 * enum ieee80211_bss_change - BSS change notification flags
141 *
142 * These flags are used with the bss_info_changed() callback
143 * to indicate which BSS parameter changed.
144 *
145 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
146 *	also implies a change in the AID.
147 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
148 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
149 * @BSS_CHANGED_ERP_SLOT: slot timing changed
150 * @BSS_CHANGED_HT: 802.11n parameters changed
151 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
152 */
153enum ieee80211_bss_change {
154	BSS_CHANGED_ASSOC		= 1<<0,
155	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
156	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
157	BSS_CHANGED_ERP_SLOT		= 1<<3,
158	BSS_CHANGED_HT                  = 1<<4,
159	BSS_CHANGED_BASIC_RATES		= 1<<5,
160};
161
162/**
163 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
164 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
165 */
166struct ieee80211_bss_ht_conf {
167	u16 operation_mode;
168};
169
170/**
171 * struct ieee80211_bss_conf - holds the BSS's changing parameters
172 *
173 * This structure keeps information about a BSS (and an association
174 * to that BSS) that can change during the lifetime of the BSS.
175 *
176 * @assoc: association status
177 * @aid: association ID number, valid only when @assoc is true
178 * @use_cts_prot: use CTS protection
179 * @use_short_preamble: use 802.11b short preamble;
180 *	if the hardware cannot handle this it must set the
181 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
182 * @use_short_slot: use short slot time (only relevant for ERP);
183 *	if the hardware cannot handle this it must set the
184 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
185 * @dtim_period: num of beacons before the next DTIM, for PSM
186 * @timestamp: beacon timestamp
187 * @beacon_int: beacon interval
188 * @assoc_capability: capabilities taken from assoc resp
189 * @ht: BSS's HT configuration
190 * @basic_rates: bitmap of basic rates, each bit stands for an
191 *	index into the rate table configured by the driver in
192 *	the current band.
193 */
194struct ieee80211_bss_conf {
195	/* association related data */
196	bool assoc;
197	u16 aid;
198	/* erp related data */
199	bool use_cts_prot;
200	bool use_short_preamble;
201	bool use_short_slot;
202	u8 dtim_period;
203	u16 beacon_int;
204	u16 assoc_capability;
205	u64 timestamp;
206	u32 basic_rates;
207	struct ieee80211_bss_ht_conf ht;
208};
209
210/**
211 * enum mac80211_tx_control_flags - flags to describe transmission information/status
212 *
213 * These flags are used with the @flags member of &ieee80211_tx_info.
214 *
215 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
216 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
217 *	number to this frame, taking care of not overwriting the fragment
218 *	number and increasing the sequence number only when the
219 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
220 *	assign sequence numbers to QoS-data frames but cannot do so correctly
221 *	for non-QoS-data and management frames because beacons need them from
222 *	that counter as well and mac80211 cannot guarantee proper sequencing.
223 *	If this flag is set, the driver should instruct the hardware to
224 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
225 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
226 *	beacons and always be clear for frames without a sequence number field.
227 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
228 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
229 *	station
230 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
231 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
232 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
233 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
234 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
235 *	because the destination STA was in powersave mode.
236 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
237 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
238 * 	is for the whole aggregation.
239 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
240 * 	so consider using block ack request (BAR).
241 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
242 *	set by rate control algorithms to indicate probe rate, will
243 *	be cleared for fragmented frames (except on the last fragment)
244 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
245 *	set this flag in the driver; indicates that the rate control
246 *	algorithm was used and should be notified of TX status
247 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
248 *	used to indicate that a pending frame requires TX processing before
249 *	it can be sent out.
250 */
251enum mac80211_tx_control_flags {
252	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
253	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
254	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
255	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
256	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
257	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
258	IEEE80211_TX_CTL_AMPDU			= BIT(6),
259	IEEE80211_TX_CTL_INJECTED		= BIT(7),
260	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
261	IEEE80211_TX_STAT_ACK			= BIT(9),
262	IEEE80211_TX_STAT_AMPDU			= BIT(10),
263	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
264	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
265	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
266	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
267};
268
269/**
270 * enum mac80211_rate_control_flags - per-rate flags set by the
271 *	Rate Control algorithm.
272 *
273 * These flags are set by the Rate control algorithm for each rate during tx,
274 * in the @flags member of struct ieee80211_tx_rate.
275 *
276 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
277 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
278 *	This is set if the current BSS requires ERP protection.
279 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
280 * @IEEE80211_TX_RC_MCS: HT rate.
281 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
282 *	Greenfield mode.
283 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
284 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
285 *	adjacent 20 MHz channels, if the current channel type is
286 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
287 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
288 */
289enum mac80211_rate_control_flags {
290	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
291	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
292	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
293
294	/* rate index is an MCS rate number instead of an index */
295	IEEE80211_TX_RC_MCS			= BIT(3),
296	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
297	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
298	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
299	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
300};
301
302
303/* there are 40 bytes if you don't need the rateset to be kept */
304#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
305
306/* if you do need the rateset, then you have less space */
307#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
308
309/* maximum number of rate stages */
310#define IEEE80211_TX_MAX_RATES	5
311
312/**
313 * struct ieee80211_tx_rate - rate selection/status
314 *
315 * @idx: rate index to attempt to send with
316 * @flags: rate control flags (&enum mac80211_rate_control_flags)
317 * @count: number of tries in this rate before going to the next rate
318 *
319 * A value of -1 for @idx indicates an invalid rate and, if used
320 * in an array of retry rates, that no more rates should be tried.
321 *
322 * When used for transmit status reporting, the driver should
323 * always report the rate along with the flags it used.
324 */
325struct ieee80211_tx_rate {
326	s8 idx;
327	u8 count;
328	u8 flags;
329} __attribute__((packed));
330
331/**
332 * struct ieee80211_tx_info - skb transmit information
333 *
334 * This structure is placed in skb->cb for three uses:
335 *  (1) mac80211 TX control - mac80211 tells the driver what to do
336 *  (2) driver internal use (if applicable)
337 *  (3) TX status information - driver tells mac80211 what happened
338 *
339 * The TX control's sta pointer is only valid during the ->tx call,
340 * it may be NULL.
341 *
342 * @flags: transmit info flags, defined above
343 * @band: the band to transmit on (use for checking for races)
344 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
345 * @pad: padding, ignore
346 * @control: union for control data
347 * @status: union for status data
348 * @driver_data: array of driver_data pointers
349 * @ampdu_ack_len: number of aggregated frames.
350 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
351 * @ampdu_ack_map: block ack bit map for the aggregation.
352 * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ack_signal: signal strength of the ACK frame
354 */
355struct ieee80211_tx_info {
356	/* common information */
357	u32 flags;
358	u8 band;
359
360	u8 antenna_sel_tx;
361
362	/* 2 byte hole */
363	u8 pad[2];
364
365	union {
366		struct {
367			union {
368				/* rate control */
369				struct {
370					struct ieee80211_tx_rate rates[
371						IEEE80211_TX_MAX_RATES];
372					s8 rts_cts_rate_idx;
373				};
374				/* only needed before rate control */
375				unsigned long jiffies;
376			};
377			/* NB: vif can be NULL for injected frames */
378			struct ieee80211_vif *vif;
379			struct ieee80211_key_conf *hw_key;
380			struct ieee80211_sta *sta;
381		} control;
382		struct {
383			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
384			u8 ampdu_ack_len;
385			u64 ampdu_ack_map;
386			int ack_signal;
387			/* 8 bytes free */
388		} status;
389		struct {
390			struct ieee80211_tx_rate driver_rates[
391				IEEE80211_TX_MAX_RATES];
392			void *rate_driver_data[
393				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
394		};
395		void *driver_data[
396			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
397	};
398};
399
400static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
401{
402	return (struct ieee80211_tx_info *)skb->cb;
403}
404
405/**
406 * ieee80211_tx_info_clear_status - clear TX status
407 *
408 * @info: The &struct ieee80211_tx_info to be cleared.
409 *
410 * When the driver passes an skb back to mac80211, it must report
411 * a number of things in TX status. This function clears everything
412 * in the TX status but the rate control information (it does clear
413 * the count since you need to fill that in anyway).
414 *
415 * NOTE: You can only use this function if you do NOT use
416 *	 info->driver_data! Use info->rate_driver_data
417 *	 instead if you need only the less space that allows.
418 */
419static inline void
420ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
421{
422	int i;
423
424	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
425		     offsetof(struct ieee80211_tx_info, control.rates));
426	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
427		     offsetof(struct ieee80211_tx_info, driver_rates));
428	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
429	/* clear the rate counts */
430	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
431		info->status.rates[i].count = 0;
432
433	BUILD_BUG_ON(
434	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
435	memset(&info->status.ampdu_ack_len, 0,
436	       sizeof(struct ieee80211_tx_info) -
437	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
438}
439
440
441/**
442 * enum mac80211_rx_flags - receive flags
443 *
444 * These flags are used with the @flag member of &struct ieee80211_rx_status.
445 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
446 *	Use together with %RX_FLAG_MMIC_STRIPPED.
447 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
448 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
449 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
450 *	verification has been done by the hardware.
451 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
452 *	If this flag is set, the stack cannot do any replay detection
453 *	hence the driver or hardware will have to do that.
454 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
455 *	the frame.
456 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
457 *	the frame.
458 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
459 *	is valid. This is useful in monitor mode and necessary for beacon frames
460 *	to enable IBSS merging.
461 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
462 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
463 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
464 * @RX_FLAG_SHORT_GI: Short guard interval was used
465 */
466enum mac80211_rx_flags {
467	RX_FLAG_MMIC_ERROR	= 1<<0,
468	RX_FLAG_DECRYPTED	= 1<<1,
469	RX_FLAG_RADIOTAP	= 1<<2,
470	RX_FLAG_MMIC_STRIPPED	= 1<<3,
471	RX_FLAG_IV_STRIPPED	= 1<<4,
472	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
473	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
474	RX_FLAG_TSFT		= 1<<7,
475	RX_FLAG_SHORTPRE	= 1<<8,
476	RX_FLAG_HT		= 1<<9,
477	RX_FLAG_40MHZ		= 1<<10,
478	RX_FLAG_SHORT_GI	= 1<<11,
479};
480
481/**
482 * struct ieee80211_rx_status - receive status
483 *
484 * The low-level driver should provide this information (the subset
485 * supported by hardware) to the 802.11 code with each received
486 * frame.
487 *
488 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
489 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
490 * @band: the active band when this frame was received
491 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
492 * @signal: signal strength when receiving this frame, either in dBm, in dB or
493 *	unspecified depending on the hardware capabilities flags
494 *	@IEEE80211_HW_SIGNAL_*
495 * @noise: noise when receiving this frame, in dBm.
496 * @qual: overall signal quality indication, in percent (0-100).
497 * @antenna: antenna used
498 * @rate_idx: index of data rate into band's supported rates or MCS index if
499 *	HT rates are use (RX_FLAG_HT)
500 * @flag: %RX_FLAG_*
501 */
502struct ieee80211_rx_status {
503	u64 mactime;
504	enum ieee80211_band band;
505	int freq;
506	int signal;
507	int noise;
508	int qual;
509	int antenna;
510	int rate_idx;
511	int flag;
512};
513
514/**
515 * enum ieee80211_conf_flags - configuration flags
516 *
517 * Flags to define PHY configuration options
518 *
519 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
520 * @IEEE80211_CONF_PS: Enable 802.11 power save mode
521 */
522enum ieee80211_conf_flags {
523	IEEE80211_CONF_RADIOTAP		= (1<<0),
524	IEEE80211_CONF_PS		= (1<<1),
525};
526
527
528/**
529 * enum ieee80211_conf_changed - denotes which configuration changed
530 *
531 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
532 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
533 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
534 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
535 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
536 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
537 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
538 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
539 */
540enum ieee80211_conf_changed {
541	IEEE80211_CONF_CHANGE_RADIO_ENABLED	= BIT(0),
542	IEEE80211_CONF_CHANGE_BEACON_INTERVAL	= BIT(1),
543	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
544	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
545	IEEE80211_CONF_CHANGE_PS		= BIT(4),
546	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
547	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
548	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
549};
550
551/**
552 * struct ieee80211_conf - configuration of the device
553 *
554 * This struct indicates how the driver shall configure the hardware.
555 *
556 * @radio_enabled: when zero, driver is required to switch off the radio.
557 * @beacon_int: beacon interval (TODO make interface config)
558 * @listen_interval: listen interval in units of beacon interval
559 * @flags: configuration flags defined above
560 * @power_level: requested transmit power (in dBm)
561 * @dynamic_ps_timeout: dynamic powersave timeout (in ms)
562 * @channel: the channel to tune to
563 * @channel_type: the channel (HT) type
564 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
565 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
566 *    but actually means the number of transmissions not the number of retries
567 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
568 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
569 *    number of transmissions not the number of retries
570 */
571struct ieee80211_conf {
572	int beacon_int;
573	u32 flags;
574	int power_level, dynamic_ps_timeout;
575
576	u16 listen_interval;
577	bool radio_enabled;
578
579	u8 long_frame_max_tx_count, short_frame_max_tx_count;
580
581	struct ieee80211_channel *channel;
582	enum nl80211_channel_type channel_type;
583};
584
585/**
586 * struct ieee80211_vif - per-interface data
587 *
588 * Data in this structure is continually present for driver
589 * use during the life of a virtual interface.
590 *
591 * @type: type of this virtual interface
592 * @bss_conf: BSS configuration for this interface, either our own
593 *	or the BSS we're associated to
594 * @drv_priv: data area for driver use, will always be aligned to
595 *	sizeof(void *).
596 */
597struct ieee80211_vif {
598	enum nl80211_iftype type;
599	struct ieee80211_bss_conf bss_conf;
600	/* must be last */
601	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
602};
603
604static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
605{
606#ifdef CONFIG_MAC80211_MESH
607	return vif->type == NL80211_IFTYPE_MESH_POINT;
608#endif
609	return false;
610}
611
612/**
613 * struct ieee80211_if_init_conf - initial configuration of an interface
614 *
615 * @vif: pointer to a driver-use per-interface structure. The pointer
616 *	itself is also used for various functions including
617 *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
618 * @type: one of &enum nl80211_iftype constants. Determines the type of
619 *	added/removed interface.
620 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
621 *	until the interface is removed (i.e. it cannot be used after
622 *	remove_interface() callback was called for this interface).
623 *
624 * This structure is used in add_interface() and remove_interface()
625 * callbacks of &struct ieee80211_hw.
626 *
627 * When you allow multiple interfaces to be added to your PHY, take care
628 * that the hardware can actually handle multiple MAC addresses. However,
629 * also take care that when there's no interface left with mac_addr != %NULL
630 * you remove the MAC address from the device to avoid acknowledging packets
631 * in pure monitor mode.
632 */
633struct ieee80211_if_init_conf {
634	enum nl80211_iftype type;
635	struct ieee80211_vif *vif;
636	void *mac_addr;
637};
638
639/**
640 * enum ieee80211_if_conf_change - interface config change flags
641 *
642 * @IEEE80211_IFCC_BSSID: The BSSID changed.
643 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
644 *	(currently AP and MESH only), use ieee80211_beacon_get().
645 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
646 */
647enum ieee80211_if_conf_change {
648	IEEE80211_IFCC_BSSID		= BIT(0),
649	IEEE80211_IFCC_BEACON		= BIT(1),
650	IEEE80211_IFCC_BEACON_ENABLED	= BIT(2),
651};
652
653/**
654 * struct ieee80211_if_conf - configuration of an interface
655 *
656 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
657 * @bssid: BSSID of the network we are associated to/creating.
658 * @enable_beacon: Indicates whether beacons can be sent.
659 *	This is valid only for AP/IBSS/MESH modes.
660 *
661 * This structure is passed to the config_interface() callback of
662 * &struct ieee80211_hw.
663 */
664struct ieee80211_if_conf {
665	u32 changed;
666	const u8 *bssid;
667	bool enable_beacon;
668};
669
670/**
671 * enum ieee80211_key_alg - key algorithm
672 * @ALG_WEP: WEP40 or WEP104
673 * @ALG_TKIP: TKIP
674 * @ALG_CCMP: CCMP (AES)
675 * @ALG_AES_CMAC: AES-128-CMAC
676 */
677enum ieee80211_key_alg {
678	ALG_WEP,
679	ALG_TKIP,
680	ALG_CCMP,
681	ALG_AES_CMAC,
682};
683
684/**
685 * enum ieee80211_key_len - key length
686 * @LEN_WEP40: WEP 5-byte long key
687 * @LEN_WEP104: WEP 13-byte long key
688 */
689enum ieee80211_key_len {
690	LEN_WEP40 = 5,
691	LEN_WEP104 = 13,
692};
693
694/**
695 * enum ieee80211_key_flags - key flags
696 *
697 * These flags are used for communication about keys between the driver
698 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
699 *
700 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
701 *	that the STA this key will be used with could be using QoS.
702 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
703 *	driver to indicate that it requires IV generation for this
704 *	particular key.
705 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
706 *	the driver for a TKIP key if it requires Michael MIC
707 *	generation in software.
708 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
709 *	that the key is pairwise rather then a shared key.
710 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
711 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
712 *	be done in software.
713 */
714enum ieee80211_key_flags {
715	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
716	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
717	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
718	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
719	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
720};
721
722/**
723 * struct ieee80211_key_conf - key information
724 *
725 * This key information is given by mac80211 to the driver by
726 * the set_key() callback in &struct ieee80211_ops.
727 *
728 * @hw_key_idx: To be set by the driver, this is the key index the driver
729 *	wants to be given when a frame is transmitted and needs to be
730 *	encrypted in hardware.
731 * @alg: The key algorithm.
732 * @flags: key flags, see &enum ieee80211_key_flags.
733 * @keyidx: the key index (0-3)
734 * @keylen: key material length
735 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
736 * 	data block:
737 * 	- Temporal Encryption Key (128 bits)
738 * 	- Temporal Authenticator Tx MIC Key (64 bits)
739 * 	- Temporal Authenticator Rx MIC Key (64 bits)
740 * @icv_len: The ICV length for this key type
741 * @iv_len: The IV length for this key type
742 */
743struct ieee80211_key_conf {
744	enum ieee80211_key_alg alg;
745	u8 icv_len;
746	u8 iv_len;
747	u8 hw_key_idx;
748	u8 flags;
749	s8 keyidx;
750	u8 keylen;
751	u8 key[0];
752};
753
754/**
755 * enum set_key_cmd - key command
756 *
757 * Used with the set_key() callback in &struct ieee80211_ops, this
758 * indicates whether a key is being removed or added.
759 *
760 * @SET_KEY: a key is set
761 * @DISABLE_KEY: a key must be disabled
762 */
763enum set_key_cmd {
764	SET_KEY, DISABLE_KEY,
765};
766
767/**
768 * struct ieee80211_sta - station table entry
769 *
770 * A station table entry represents a station we are possibly
771 * communicating with. Since stations are RCU-managed in
772 * mac80211, any ieee80211_sta pointer you get access to must
773 * either be protected by rcu_read_lock() explicitly or implicitly,
774 * or you must take good care to not use such a pointer after a
775 * call to your sta_notify callback that removed it.
776 *
777 * @addr: MAC address
778 * @aid: AID we assigned to the station if we're an AP
779 * @supp_rates: Bitmap of supported rates (per band)
780 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
781 * @drv_priv: data area for driver use, will always be aligned to
782 *	sizeof(void *), size is determined in hw information.
783 */
784struct ieee80211_sta {
785	u32 supp_rates[IEEE80211_NUM_BANDS];
786	u8 addr[ETH_ALEN];
787	u16 aid;
788	struct ieee80211_sta_ht_cap ht_cap;
789
790	/* must be last */
791	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
792};
793
794/**
795 * enum sta_notify_cmd - sta notify command
796 *
797 * Used with the sta_notify() callback in &struct ieee80211_ops, this
798 * indicates addition and removal of a station to station table,
799 * or if a associated station made a power state transition.
800 *
801 * @STA_NOTIFY_ADD: a station was added to the station table
802 * @STA_NOTIFY_REMOVE: a station being removed from the station table
803 * @STA_NOTIFY_SLEEP: a station is now sleeping
804 * @STA_NOTIFY_AWAKE: a sleeping station woke up
805 */
806enum sta_notify_cmd {
807	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
808	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
809};
810
811/**
812 * enum ieee80211_tkip_key_type - get tkip key
813 *
814 * Used by drivers which need to get a tkip key for skb. Some drivers need a
815 * phase 1 key, others need a phase 2 key. A single function allows the driver
816 * to get the key, this enum indicates what type of key is required.
817 *
818 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
819 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
820 */
821enum ieee80211_tkip_key_type {
822	IEEE80211_TKIP_P1_KEY,
823	IEEE80211_TKIP_P2_KEY,
824};
825
826/**
827 * enum ieee80211_hw_flags - hardware flags
828 *
829 * These flags are used to indicate hardware capabilities to
830 * the stack. Generally, flags here should have their meaning
831 * done in a way that the simplest hardware doesn't need setting
832 * any particular flags. There are some exceptions to this rule,
833 * however, so you are advised to review these flags carefully.
834 *
835 * @IEEE80211_HW_RX_INCLUDES_FCS:
836 *	Indicates that received frames passed to the stack include
837 *	the FCS at the end.
838 *
839 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
840 *	Some wireless LAN chipsets buffer broadcast/multicast frames
841 *	for power saving stations in the hardware/firmware and others
842 *	rely on the host system for such buffering. This option is used
843 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
844 *	multicast frames when there are power saving stations so that
845 *	the driver can fetch them with ieee80211_get_buffered_bc().
846 *
847 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
848 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
849 *
850 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
851 *	Hardware is not capable of receiving frames with short preamble on
852 *	the 2.4 GHz band.
853 *
854 * @IEEE80211_HW_SIGNAL_UNSPEC:
855 *	Hardware can provide signal values but we don't know its units. We
856 *	expect values between 0 and @max_signal.
857 *	If possible please provide dB or dBm instead.
858 *
859 * @IEEE80211_HW_SIGNAL_DBM:
860 *	Hardware gives signal values in dBm, decibel difference from
861 *	one milliwatt. This is the preferred method since it is standardized
862 *	between different devices. @max_signal does not need to be set.
863 *
864 * @IEEE80211_HW_NOISE_DBM:
865 *	Hardware can provide noise (radio interference) values in units dBm,
866 *      decibel difference from one milliwatt.
867 *
868 * @IEEE80211_HW_SPECTRUM_MGMT:
869 * 	Hardware supports spectrum management defined in 802.11h
870 * 	Measurement, Channel Switch, Quieting, TPC
871 *
872 * @IEEE80211_HW_AMPDU_AGGREGATION:
873 *	Hardware supports 11n A-MPDU aggregation.
874 *
875 * @IEEE80211_HW_SUPPORTS_PS:
876 *	Hardware has power save support (i.e. can go to sleep).
877 *
878 * @IEEE80211_HW_PS_NULLFUNC_STACK:
879 *	Hardware requires nullfunc frame handling in stack, implies
880 *	stack support for dynamic PS.
881 *
882 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
883 *	Hardware has support for dynamic PS.
884 *
885 * @IEEE80211_HW_MFP_CAPABLE:
886 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
887 *
888 * @IEEE80211_HW_BEACON_FILTER:
889 *	Hardware supports dropping of irrelevant beacon frames to
890 *	avoid waking up cpu.
891 */
892enum ieee80211_hw_flags {
893	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
894	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
895	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
896	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
897	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
898	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
899	IEEE80211_HW_NOISE_DBM				= 1<<7,
900	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
901	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
902	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
903	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
904	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
905	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
906	IEEE80211_HW_BEACON_FILTER			= 1<<14,
907};
908
909/**
910 * struct ieee80211_hw - hardware information and state
911 *
912 * This structure contains the configuration and hardware
913 * information for an 802.11 PHY.
914 *
915 * @wiphy: This points to the &struct wiphy allocated for this
916 *	802.11 PHY. You must fill in the @perm_addr and @dev
917 *	members of this structure using SET_IEEE80211_DEV()
918 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
919 *	bands (with channels, bitrates) are registered here.
920 *
921 * @conf: &struct ieee80211_conf, device configuration, don't use.
922 *
923 * @workqueue: single threaded workqueue available for driver use,
924 *	allocated by mac80211 on registration and flushed when an
925 *	interface is removed.
926 *	NOTICE: All work performed on this workqueue must not
927 *	acquire the RTNL lock.
928 *
929 * @priv: pointer to private area that was allocated for driver use
930 *	along with this structure.
931 *
932 * @flags: hardware flags, see &enum ieee80211_hw_flags.
933 *
934 * @extra_tx_headroom: headroom to reserve in each transmit skb
935 *	for use by the driver (e.g. for transmit headers.)
936 *
937 * @channel_change_time: time (in microseconds) it takes to change channels.
938 *
939 * @max_signal: Maximum value for signal (rssi) in RX information, used
940 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
941 *
942 * @max_listen_interval: max listen interval in units of beacon interval
943 *     that HW supports
944 *
945 * @queues: number of available hardware transmit queues for
946 *	data packets. WMM/QoS requires at least four, these
947 *	queues need to have configurable access parameters.
948 *
949 * @rate_control_algorithm: rate control algorithm for this hardware.
950 *	If unset (NULL), the default algorithm will be used. Must be
951 *	set before calling ieee80211_register_hw().
952 *
953 * @vif_data_size: size (in bytes) of the drv_priv data area
954 *	within &struct ieee80211_vif.
955 * @sta_data_size: size (in bytes) of the drv_priv data area
956 *	within &struct ieee80211_sta.
957 *
958 * @max_rates: maximum number of alternate rate retry stages
959 * @max_rate_tries: maximum number of tries for each stage
960 */
961struct ieee80211_hw {
962	struct ieee80211_conf conf;
963	struct wiphy *wiphy;
964	struct workqueue_struct *workqueue;
965	const char *rate_control_algorithm;
966	void *priv;
967	u32 flags;
968	unsigned int extra_tx_headroom;
969	int channel_change_time;
970	int vif_data_size;
971	int sta_data_size;
972	u16 queues;
973	u16 max_listen_interval;
974	s8 max_signal;
975	u8 max_rates;
976	u8 max_rate_tries;
977};
978
979/**
980 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
981 *
982 * @wiphy: the &struct wiphy which we want to query
983 *
984 * mac80211 drivers can use this to get to their respective
985 * &struct ieee80211_hw. Drivers wishing to get to their own private
986 * structure can then access it via hw->priv. Note that mac802111 drivers should
987 * not use wiphy_priv() to try to get their private driver structure as this
988 * is already used internally by mac80211.
989 */
990struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
991
992/**
993 * SET_IEEE80211_DEV - set device for 802.11 hardware
994 *
995 * @hw: the &struct ieee80211_hw to set the device for
996 * @dev: the &struct device of this 802.11 device
997 */
998static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
999{
1000	set_wiphy_dev(hw->wiphy, dev);
1001}
1002
1003/**
1004 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1005 *
1006 * @hw: the &struct ieee80211_hw to set the MAC address for
1007 * @addr: the address to set
1008 */
1009static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1010{
1011	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1012}
1013
1014static inline struct ieee80211_rate *
1015ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1016		      const struct ieee80211_tx_info *c)
1017{
1018	if (WARN_ON(c->control.rates[0].idx < 0))
1019		return NULL;
1020	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1021}
1022
1023static inline struct ieee80211_rate *
1024ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1025			   const struct ieee80211_tx_info *c)
1026{
1027	if (c->control.rts_cts_rate_idx < 0)
1028		return NULL;
1029	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1030}
1031
1032static inline struct ieee80211_rate *
1033ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1034			     const struct ieee80211_tx_info *c, int idx)
1035{
1036	if (c->control.rates[idx + 1].idx < 0)
1037		return NULL;
1038	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1039}
1040
1041/**
1042 * DOC: Hardware crypto acceleration
1043 *
1044 * mac80211 is capable of taking advantage of many hardware
1045 * acceleration designs for encryption and decryption operations.
1046 *
1047 * The set_key() callback in the &struct ieee80211_ops for a given
1048 * device is called to enable hardware acceleration of encryption and
1049 * decryption. The callback takes a @sta parameter that will be NULL
1050 * for default keys or keys used for transmission only, or point to
1051 * the station information for the peer for individual keys.
1052 * Multiple transmission keys with the same key index may be used when
1053 * VLANs are configured for an access point.
1054 *
1055 * When transmitting, the TX control data will use the @hw_key_idx
1056 * selected by the driver by modifying the &struct ieee80211_key_conf
1057 * pointed to by the @key parameter to the set_key() function.
1058 *
1059 * The set_key() call for the %SET_KEY command should return 0 if
1060 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1061 * added; if you return 0 then hw_key_idx must be assigned to the
1062 * hardware key index, you are free to use the full u8 range.
1063 *
1064 * When the cmd is %DISABLE_KEY then it must succeed.
1065 *
1066 * Note that it is permissible to not decrypt a frame even if a key
1067 * for it has been uploaded to hardware, the stack will not make any
1068 * decision based on whether a key has been uploaded or not but rather
1069 * based on the receive flags.
1070 *
1071 * The &struct ieee80211_key_conf structure pointed to by the @key
1072 * parameter is guaranteed to be valid until another call to set_key()
1073 * removes it, but it can only be used as a cookie to differentiate
1074 * keys.
1075 *
1076 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1077 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1078 * handler.
1079 * The update_tkip_key() call updates the driver with the new phase 1 key.
1080 * This happens everytime the iv16 wraps around (every 65536 packets). The
1081 * set_key() call will happen only once for each key (unless the AP did
1082 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1083 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1084 * handler is software decryption with wrap around of iv16.
1085 */
1086
1087/**
1088 * DOC: Powersave support
1089 *
1090 * mac80211 has support for various powersave implementations.
1091 *
1092 * First, it can support hardware that handles all powersaving by
1093 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1094 * hardware flag. In that case, it will be told about the desired
1095 * powersave mode depending on the association status, and the driver
1096 * must take care of sending nullfunc frames when necessary, i.e. when
1097 * entering and leaving powersave mode. The driver is required to look at
1098 * the AID in beacons and signal to the AP that it woke up when it finds
1099 * traffic directed to it. This mode supports dynamic PS by simply
1100 * enabling/disabling PS.
1101 *
1102 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1103 * flag to indicate that it can support dynamic PS mode itself (see below).
1104 *
1105 * Other hardware designs cannot send nullfunc frames by themselves and also
1106 * need software support for parsing the TIM bitmap. This is also supported
1107 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1108 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1109 * required to pass up beacons. The hardware is still required to handle
1110 * waking up for multicast traffic; if it cannot the driver must handle that
1111 * as best as it can, mac80211 is too slow.
1112 *
1113 * Dynamic powersave mode is an extension to normal powersave mode in which
1114 * the hardware stays awake for a user-specified period of time after sending
1115 * a frame so that reply frames need not be buffered and therefore delayed
1116 * to the next wakeup. This can either be supported by hardware, in which case
1117 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1118 * value, or by the stack if all nullfunc handling is in the stack.
1119 */
1120
1121/**
1122 * DOC: Beacon filter support
1123 *
1124 * Some hardware have beacon filter support to reduce host cpu wakeups
1125 * which will reduce system power consumption. It usuallly works so that
1126 * the firmware creates a checksum of the beacon but omits all constantly
1127 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1128 * beacon is forwarded to the host, otherwise it will be just dropped. That
1129 * way the host will only receive beacons where some relevant information
1130 * (for example ERP protection or WMM settings) have changed.
1131 *
1132 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1133 * hardware capability. The driver needs to enable beacon filter support
1134 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1135 * power save is enabled, the stack will not check for beacon loss and the
1136 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1137 *
1138 * The time (or number of beacons missed) until the firmware notifies the
1139 * driver of a beacon loss event (which in turn causes the driver to call
1140 * ieee80211_beacon_loss()) should be configurable and will be controlled
1141 * by mac80211 and the roaming algorithm in the future.
1142 *
1143 * Since there may be constantly changing information elements that nothing
1144 * in the software stack cares about, we will, in the future, have mac80211
1145 * tell the driver which information elements are interesting in the sense
1146 * that we want to see changes in them. This will include
1147 *  - a list of information element IDs
1148 *  - a list of OUIs for the vendor information element
1149 *
1150 * Ideally, the hardware would filter out any beacons without changes in the
1151 * requested elements, but if it cannot support that it may, at the expense
1152 * of some efficiency, filter out only a subset. For example, if the device
1153 * doesn't support checking for OUIs it should pass up all changes in all
1154 * vendor information elements.
1155 *
1156 * Note that change, for the sake of simplification, also includes information
1157 * elements appearing or disappearing from the beacon.
1158 *
1159 * Some hardware supports an "ignore list" instead, just make sure nothing
1160 * that was requested is on the ignore list, and include commonly changing
1161 * information element IDs in the ignore list, for example 11 (BSS load) and
1162 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1163 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1164 * it could also include some currently unused IDs.
1165 *
1166 *
1167 * In addition to these capabilities, hardware should support notifying the
1168 * host of changes in the beacon RSSI. This is relevant to implement roaming
1169 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1170 * the received data packets). This can consist in notifying the host when
1171 * the RSSI changes significantly or when it drops below or rises above
1172 * configurable thresholds. In the future these thresholds will also be
1173 * configured by mac80211 (which gets them from userspace) to implement
1174 * them as the roaming algorithm requires.
1175 *
1176 * If the hardware cannot implement this, the driver should ask it to
1177 * periodically pass beacon frames to the host so that software can do the
1178 * signal strength threshold checking.
1179 */
1180
1181/**
1182 * DOC: Frame filtering
1183 *
1184 * mac80211 requires to see many management frames for proper
1185 * operation, and users may want to see many more frames when
1186 * in monitor mode. However, for best CPU usage and power consumption,
1187 * having as few frames as possible percolate through the stack is
1188 * desirable. Hence, the hardware should filter as much as possible.
1189 *
1190 * To achieve this, mac80211 uses filter flags (see below) to tell
1191 * the driver's configure_filter() function which frames should be
1192 * passed to mac80211 and which should be filtered out.
1193 *
1194 * The configure_filter() callback is invoked with the parameters
1195 * @mc_count and @mc_list for the combined multicast address list
1196 * of all virtual interfaces, @changed_flags telling which flags
1197 * were changed and @total_flags with the new flag states.
1198 *
1199 * If your device has no multicast address filters your driver will
1200 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1201 * parameter to see whether multicast frames should be accepted
1202 * or dropped.
1203 *
1204 * All unsupported flags in @total_flags must be cleared.
1205 * Hardware does not support a flag if it is incapable of _passing_
1206 * the frame to the stack. Otherwise the driver must ignore
1207 * the flag, but not clear it.
1208 * You must _only_ clear the flag (announce no support for the
1209 * flag to mac80211) if you are not able to pass the packet type
1210 * to the stack (so the hardware always filters it).
1211 * So for example, you should clear @FIF_CONTROL, if your hardware
1212 * always filters control frames. If your hardware always passes
1213 * control frames to the kernel and is incapable of filtering them,
1214 * you do _not_ clear the @FIF_CONTROL flag.
1215 * This rule applies to all other FIF flags as well.
1216 */
1217
1218/**
1219 * enum ieee80211_filter_flags - hardware filter flags
1220 *
1221 * These flags determine what the filter in hardware should be
1222 * programmed to let through and what should not be passed to the
1223 * stack. It is always safe to pass more frames than requested,
1224 * but this has negative impact on power consumption.
1225 *
1226 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1227 *	think of the BSS as your network segment and then this corresponds
1228 *	to the regular ethernet device promiscuous mode.
1229 *
1230 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1231 *	by the user or if the hardware is not capable of filtering by
1232 *	multicast address.
1233 *
1234 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1235 *	%RX_FLAG_FAILED_FCS_CRC for them)
1236 *
1237 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1238 *	the %RX_FLAG_FAILED_PLCP_CRC for them
1239 *
1240 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1241 *	to the hardware that it should not filter beacons or probe responses
1242 *	by BSSID. Filtering them can greatly reduce the amount of processing
1243 *	mac80211 needs to do and the amount of CPU wakeups, so you should
1244 *	honour this flag if possible.
1245 *
1246 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1247 *	only those addressed to this station
1248 *
1249 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1250 */
1251enum ieee80211_filter_flags {
1252	FIF_PROMISC_IN_BSS	= 1<<0,
1253	FIF_ALLMULTI		= 1<<1,
1254	FIF_FCSFAIL		= 1<<2,
1255	FIF_PLCPFAIL		= 1<<3,
1256	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1257	FIF_CONTROL		= 1<<5,
1258	FIF_OTHER_BSS		= 1<<6,
1259};
1260
1261/**
1262 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1263 *
1264 * These flags are used with the ampdu_action() callback in
1265 * &struct ieee80211_ops to indicate which action is needed.
1266 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1267 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1268 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1269 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1270 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1271 */
1272enum ieee80211_ampdu_mlme_action {
1273	IEEE80211_AMPDU_RX_START,
1274	IEEE80211_AMPDU_RX_STOP,
1275	IEEE80211_AMPDU_TX_START,
1276	IEEE80211_AMPDU_TX_STOP,
1277	IEEE80211_AMPDU_TX_OPERATIONAL,
1278};
1279
1280/**
1281 * struct ieee80211_ops - callbacks from mac80211 to the driver
1282 *
1283 * This structure contains various callbacks that the driver may
1284 * handle or, in some cases, must handle, for example to configure
1285 * the hardware to a new channel or to transmit a frame.
1286 *
1287 * @tx: Handler that 802.11 module calls for each transmitted frame.
1288 *	skb contains the buffer starting from the IEEE 802.11 header.
1289 *	The low-level driver should send the frame out based on
1290 *	configuration in the TX control data. This handler should,
1291 *	preferably, never fail and stop queues appropriately, more
1292 *	importantly, however, it must never fail for A-MPDU-queues.
1293 *	This function should return NETDEV_TX_OK except in very
1294 *	limited cases.
1295 *	Must be implemented and atomic.
1296 *
1297 * @start: Called before the first netdevice attached to the hardware
1298 *	is enabled. This should turn on the hardware and must turn on
1299 *	frame reception (for possibly enabled monitor interfaces.)
1300 *	Returns negative error codes, these may be seen in userspace,
1301 *	or zero.
1302 *	When the device is started it should not have a MAC address
1303 *	to avoid acknowledging frames before a non-monitor device
1304 *	is added.
1305 *	Must be implemented.
1306 *
1307 * @stop: Called after last netdevice attached to the hardware
1308 *	is disabled. This should turn off the hardware (at least
1309 *	it must turn off frame reception.)
1310 *	May be called right after add_interface if that rejects
1311 *	an interface.
1312 *	Must be implemented.
1313 *
1314 * @add_interface: Called when a netdevice attached to the hardware is
1315 *	enabled. Because it is not called for monitor mode devices, @start
1316 *	and @stop must be implemented.
1317 *	The driver should perform any initialization it needs before
1318 *	the device can be enabled. The initial configuration for the
1319 *	interface is given in the conf parameter.
1320 *	The callback may refuse to add an interface by returning a
1321 *	negative error code (which will be seen in userspace.)
1322 *	Must be implemented.
1323 *
1324 * @remove_interface: Notifies a driver that an interface is going down.
1325 *	The @stop callback is called after this if it is the last interface
1326 *	and no monitor interfaces are present.
1327 *	When all interfaces are removed, the MAC address in the hardware
1328 *	must be cleared so the device no longer acknowledges packets,
1329 *	the mac_addr member of the conf structure is, however, set to the
1330 *	MAC address of the device going away.
1331 *	Hence, this callback must be implemented.
1332 *
1333 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1334 *	function to change hardware configuration, e.g., channel.
1335 *	This function should never fail but returns a negative error code
1336 *	if it does.
1337 *
1338 * @config_interface: Handler for configuration requests related to interfaces
1339 *	(e.g. BSSID changes.)
1340 *	Returns a negative error code which will be seen in userspace.
1341 *
1342 * @bss_info_changed: Handler for configuration requests related to BSS
1343 *	parameters that may vary during BSS's lifespan, and may affect low
1344 *	level driver (e.g. assoc/disassoc status, erp parameters).
1345 *	This function should not be used if no BSS has been set, unless
1346 *	for association indication. The @changed parameter indicates which
1347 *	of the bss parameters has changed when a call is made.
1348 *
1349 * @configure_filter: Configure the device's RX filter.
1350 *	See the section "Frame filtering" for more information.
1351 *	This callback must be implemented and atomic.
1352 *
1353 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1354 * 	must be set or cleared for a given STA. Must be atomic.
1355 *
1356 * @set_key: See the section "Hardware crypto acceleration"
1357 *	This callback can sleep, and is only called between add_interface
1358 *	and remove_interface calls, i.e. while the given virtual interface
1359 *	is enabled.
1360 *	Returns a negative error code if the key can't be added.
1361 *
1362 * @update_tkip_key: See the section "Hardware crypto acceleration"
1363 * 	This callback will be called in the context of Rx. Called for drivers
1364 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1365 *
1366 * @hw_scan: Ask the hardware to service the scan request, no need to start
1367 *	the scan state machine in stack. The scan must honour the channel
1368 *	configuration done by the regulatory agent in the wiphy's
1369 *	registered bands. The hardware (or the driver) needs to make sure
1370 *	that power save is disabled.
1371 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1372 *	entire IEs after the SSID, so that drivers need not look at these
1373 *	at all but just send them after the SSID -- mac80211 includes the
1374 *	(extended) supported rates and HT information (where applicable).
1375 *	When the scan finishes, ieee80211_scan_completed() must be called;
1376 *	note that it also must be called when the scan cannot finish due to
1377 *	any error unless this callback returned a negative error code.
1378 *
1379 * @sw_scan_start: Notifier function that is called just before a software scan
1380 *	is started. Can be NULL, if the driver doesn't need this notification.
1381 *
1382 * @sw_scan_complete: Notifier function that is called just after a software scan
1383 *	finished. Can be NULL, if the driver doesn't need this notification.
1384 *
1385 * @get_stats: Return low-level statistics.
1386 * 	Returns zero if statistics are available.
1387 *
1388 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1389 *	callback should be provided to read the TKIP transmit IVs (both IV32
1390 *	and IV16) for the given key from hardware.
1391 *
1392 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1393 *
1394 * @sta_notify: Notifies low level driver about addition, removal or power
1395 *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1396 *	Must be atomic.
1397 *
1398 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1399 *	bursting) for a hardware TX queue.
1400 *	Returns a negative error code on failure.
1401 *
1402 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1403 *	to get number of currently queued packets (queue length), maximum queue
1404 *	size (limit), and total number of packets sent using each TX queue
1405 *	(count). The 'stats' pointer points to an array that has hw->queues
1406 *	items.
1407 *
1408 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1409 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1410 *	required function.
1411 *
1412 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1413 *      Currently, this is only used for IBSS mode debugging. Is not a
1414 *	required function.
1415 *
1416 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1417 *	with other STAs in the IBSS. This is only used in IBSS mode. This
1418 *	function is optional if the firmware/hardware takes full care of
1419 *	TSF synchronization.
1420 *
1421 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1422 *	This is needed only for IBSS mode and the result of this function is
1423 *	used to determine whether to reply to Probe Requests.
1424 *	Returns non-zero if this device sent the last beacon.
1425 *
1426 * @ampdu_action: Perform a certain A-MPDU action
1427 * 	The RA/TID combination determines the destination and TID we want
1428 * 	the ampdu action to be performed for. The action is defined through
1429 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1430 * 	is the first frame we expect to perform the action on. Notice
1431 * 	that TX/RX_STOP can pass NULL for this parameter.
1432 *	Returns a negative error code on failure.
1433 */
1434struct ieee80211_ops {
1435	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1436	int (*start)(struct ieee80211_hw *hw);
1437	void (*stop)(struct ieee80211_hw *hw);
1438	int (*add_interface)(struct ieee80211_hw *hw,
1439			     struct ieee80211_if_init_conf *conf);
1440	void (*remove_interface)(struct ieee80211_hw *hw,
1441				 struct ieee80211_if_init_conf *conf);
1442	int (*config)(struct ieee80211_hw *hw, u32 changed);
1443	int (*config_interface)(struct ieee80211_hw *hw,
1444				struct ieee80211_vif *vif,
1445				struct ieee80211_if_conf *conf);
1446	void (*bss_info_changed)(struct ieee80211_hw *hw,
1447				 struct ieee80211_vif *vif,
1448				 struct ieee80211_bss_conf *info,
1449				 u32 changed);
1450	void (*configure_filter)(struct ieee80211_hw *hw,
1451				 unsigned int changed_flags,
1452				 unsigned int *total_flags,
1453				 int mc_count, struct dev_addr_list *mc_list);
1454	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1455		       bool set);
1456	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1457		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1458		       struct ieee80211_key_conf *key);
1459	void (*update_tkip_key)(struct ieee80211_hw *hw,
1460			struct ieee80211_key_conf *conf, const u8 *address,
1461			u32 iv32, u16 *phase1key);
1462	int (*hw_scan)(struct ieee80211_hw *hw,
1463		       struct cfg80211_scan_request *req);
1464	void (*sw_scan_start)(struct ieee80211_hw *hw);
1465	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1466	int (*get_stats)(struct ieee80211_hw *hw,
1467			 struct ieee80211_low_level_stats *stats);
1468	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1469			     u32 *iv32, u16 *iv16);
1470	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1471	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1472			enum sta_notify_cmd, struct ieee80211_sta *sta);
1473	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1474		       const struct ieee80211_tx_queue_params *params);
1475	int (*get_tx_stats)(struct ieee80211_hw *hw,
1476			    struct ieee80211_tx_queue_stats *stats);
1477	u64 (*get_tsf)(struct ieee80211_hw *hw);
1478	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1479	void (*reset_tsf)(struct ieee80211_hw *hw);
1480	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1481	int (*ampdu_action)(struct ieee80211_hw *hw,
1482			    enum ieee80211_ampdu_mlme_action action,
1483			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1484};
1485
1486/**
1487 * ieee80211_alloc_hw -  Allocate a new hardware device
1488 *
1489 * This must be called once for each hardware device. The returned pointer
1490 * must be used to refer to this device when calling other functions.
1491 * mac80211 allocates a private data area for the driver pointed to by
1492 * @priv in &struct ieee80211_hw, the size of this area is given as
1493 * @priv_data_len.
1494 *
1495 * @priv_data_len: length of private data
1496 * @ops: callbacks for this device
1497 */
1498struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1499					const struct ieee80211_ops *ops);
1500
1501/**
1502 * ieee80211_register_hw - Register hardware device
1503 *
1504 * You must call this function before any other functions in
1505 * mac80211. Note that before a hardware can be registered, you
1506 * need to fill the contained wiphy's information.
1507 *
1508 * @hw: the device to register as returned by ieee80211_alloc_hw()
1509 */
1510int ieee80211_register_hw(struct ieee80211_hw *hw);
1511
1512#ifdef CONFIG_MAC80211_LEDS
1513extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1514extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1515extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1516extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1517#endif
1518/**
1519 * ieee80211_get_tx_led_name - get name of TX LED
1520 *
1521 * mac80211 creates a transmit LED trigger for each wireless hardware
1522 * that can be used to drive LEDs if your driver registers a LED device.
1523 * This function returns the name (or %NULL if not configured for LEDs)
1524 * of the trigger so you can automatically link the LED device.
1525 *
1526 * @hw: the hardware to get the LED trigger name for
1527 */
1528static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1529{
1530#ifdef CONFIG_MAC80211_LEDS
1531	return __ieee80211_get_tx_led_name(hw);
1532#else
1533	return NULL;
1534#endif
1535}
1536
1537/**
1538 * ieee80211_get_rx_led_name - get name of RX LED
1539 *
1540 * mac80211 creates a receive LED trigger for each wireless hardware
1541 * that can be used to drive LEDs if your driver registers a LED device.
1542 * This function returns the name (or %NULL if not configured for LEDs)
1543 * of the trigger so you can automatically link the LED device.
1544 *
1545 * @hw: the hardware to get the LED trigger name for
1546 */
1547static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1548{
1549#ifdef CONFIG_MAC80211_LEDS
1550	return __ieee80211_get_rx_led_name(hw);
1551#else
1552	return NULL;
1553#endif
1554}
1555
1556/**
1557 * ieee80211_get_assoc_led_name - get name of association LED
1558 *
1559 * mac80211 creates a association LED trigger for each wireless hardware
1560 * that can be used to drive LEDs if your driver registers a LED device.
1561 * This function returns the name (or %NULL if not configured for LEDs)
1562 * of the trigger so you can automatically link the LED device.
1563 *
1564 * @hw: the hardware to get the LED trigger name for
1565 */
1566static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1567{
1568#ifdef CONFIG_MAC80211_LEDS
1569	return __ieee80211_get_assoc_led_name(hw);
1570#else
1571	return NULL;
1572#endif
1573}
1574
1575/**
1576 * ieee80211_get_radio_led_name - get name of radio LED
1577 *
1578 * mac80211 creates a radio change LED trigger for each wireless hardware
1579 * that can be used to drive LEDs if your driver registers a LED device.
1580 * This function returns the name (or %NULL if not configured for LEDs)
1581 * of the trigger so you can automatically link the LED device.
1582 *
1583 * @hw: the hardware to get the LED trigger name for
1584 */
1585static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1586{
1587#ifdef CONFIG_MAC80211_LEDS
1588	return __ieee80211_get_radio_led_name(hw);
1589#else
1590	return NULL;
1591#endif
1592}
1593
1594/**
1595 * ieee80211_unregister_hw - Unregister a hardware device
1596 *
1597 * This function instructs mac80211 to free allocated resources
1598 * and unregister netdevices from the networking subsystem.
1599 *
1600 * @hw: the hardware to unregister
1601 */
1602void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1603
1604/**
1605 * ieee80211_free_hw - free hardware descriptor
1606 *
1607 * This function frees everything that was allocated, including the
1608 * private data for the driver. You must call ieee80211_unregister_hw()
1609 * before calling this function.
1610 *
1611 * @hw: the hardware to free
1612 */
1613void ieee80211_free_hw(struct ieee80211_hw *hw);
1614
1615/**
1616 * ieee80211_restart_hw - restart hardware completely
1617 *
1618 * Call this function when the hardware was restarted for some reason
1619 * (hardware error, ...) and the driver is unable to restore its state
1620 * by itself. mac80211 assumes that at this point the driver/hardware
1621 * is completely uninitialised and stopped, it starts the process by
1622 * calling the ->start() operation. The driver will need to reset all
1623 * internal state that it has prior to calling this function.
1624 *
1625 * @hw: the hardware to restart
1626 */
1627void ieee80211_restart_hw(struct ieee80211_hw *hw);
1628
1629/* trick to avoid symbol clashes with the ieee80211 subsystem */
1630void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1631		    struct ieee80211_rx_status *status);
1632
1633/**
1634 * ieee80211_rx - receive frame
1635 *
1636 * Use this function to hand received frames to mac80211. The receive
1637 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1638 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1639 *
1640 * This function may not be called in IRQ context. Calls to this function
1641 * for a single hardware must be synchronized against each other. Calls
1642 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1643 * single hardware.
1644 *
1645 * @hw: the hardware this frame came in on
1646 * @skb: the buffer to receive, owned by mac80211 after this call
1647 * @status: status of this frame; the status pointer need not be valid
1648 *	after this function returns
1649 */
1650static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1651				struct ieee80211_rx_status *status)
1652{
1653	__ieee80211_rx(hw, skb, status);
1654}
1655
1656/**
1657 * ieee80211_rx_irqsafe - receive frame
1658 *
1659 * Like ieee80211_rx() but can be called in IRQ context
1660 * (internally defers to a tasklet.)
1661 *
1662 * Calls to this function and ieee80211_rx() may not be mixed for a
1663 * single hardware.
1664 *
1665 * @hw: the hardware this frame came in on
1666 * @skb: the buffer to receive, owned by mac80211 after this call
1667 * @status: status of this frame; the status pointer need not be valid
1668 *	after this function returns and is not freed by mac80211,
1669 *	it is recommended that it points to a stack area
1670 */
1671void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1672			  struct sk_buff *skb,
1673			  struct ieee80211_rx_status *status);
1674
1675/**
1676 * ieee80211_tx_status - transmit status callback
1677 *
1678 * Call this function for all transmitted frames after they have been
1679 * transmitted. It is permissible to not call this function for
1680 * multicast frames but this can affect statistics.
1681 *
1682 * This function may not be called in IRQ context. Calls to this function
1683 * for a single hardware must be synchronized against each other. Calls
1684 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1685 * for a single hardware.
1686 *
1687 * @hw: the hardware the frame was transmitted by
1688 * @skb: the frame that was transmitted, owned by mac80211 after this call
1689 */
1690void ieee80211_tx_status(struct ieee80211_hw *hw,
1691			 struct sk_buff *skb);
1692
1693/**
1694 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1695 *
1696 * Like ieee80211_tx_status() but can be called in IRQ context
1697 * (internally defers to a tasklet.)
1698 *
1699 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1700 * single hardware.
1701 *
1702 * @hw: the hardware the frame was transmitted by
1703 * @skb: the frame that was transmitted, owned by mac80211 after this call
1704 */
1705void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1706				 struct sk_buff *skb);
1707
1708/**
1709 * ieee80211_beacon_get - beacon generation function
1710 * @hw: pointer obtained from ieee80211_alloc_hw().
1711 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1712 *
1713 * If the beacon frames are generated by the host system (i.e., not in
1714 * hardware/firmware), the low-level driver uses this function to receive
1715 * the next beacon frame from the 802.11 code. The low-level is responsible
1716 * for calling this function before beacon data is needed (e.g., based on
1717 * hardware interrupt). Returned skb is used only once and low-level driver
1718 * is responsible for freeing it.
1719 */
1720struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1721				     struct ieee80211_vif *vif);
1722
1723/**
1724 * ieee80211_rts_get - RTS frame generation function
1725 * @hw: pointer obtained from ieee80211_alloc_hw().
1726 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1727 * @frame: pointer to the frame that is going to be protected by the RTS.
1728 * @frame_len: the frame length (in octets).
1729 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1730 * @rts: The buffer where to store the RTS frame.
1731 *
1732 * If the RTS frames are generated by the host system (i.e., not in
1733 * hardware/firmware), the low-level driver uses this function to receive
1734 * the next RTS frame from the 802.11 code. The low-level is responsible
1735 * for calling this function before and RTS frame is needed.
1736 */
1737void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1738		       const void *frame, size_t frame_len,
1739		       const struct ieee80211_tx_info *frame_txctl,
1740		       struct ieee80211_rts *rts);
1741
1742/**
1743 * ieee80211_rts_duration - Get the duration field for an RTS frame
1744 * @hw: pointer obtained from ieee80211_alloc_hw().
1745 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1746 * @frame_len: the length of the frame that is going to be protected by the RTS.
1747 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1748 *
1749 * If the RTS is generated in firmware, but the host system must provide
1750 * the duration field, the low-level driver uses this function to receive
1751 * the duration field value in little-endian byteorder.
1752 */
1753__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1754			      struct ieee80211_vif *vif, size_t frame_len,
1755			      const struct ieee80211_tx_info *frame_txctl);
1756
1757/**
1758 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1759 * @hw: pointer obtained from ieee80211_alloc_hw().
1760 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1761 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1762 * @frame_len: the frame length (in octets).
1763 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1764 * @cts: The buffer where to store the CTS-to-self frame.
1765 *
1766 * If the CTS-to-self frames are generated by the host system (i.e., not in
1767 * hardware/firmware), the low-level driver uses this function to receive
1768 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1769 * for calling this function before and CTS-to-self frame is needed.
1770 */
1771void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1772			     struct ieee80211_vif *vif,
1773			     const void *frame, size_t frame_len,
1774			     const struct ieee80211_tx_info *frame_txctl,
1775			     struct ieee80211_cts *cts);
1776
1777/**
1778 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1779 * @hw: pointer obtained from ieee80211_alloc_hw().
1780 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1781 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1782 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1783 *
1784 * If the CTS-to-self is generated in firmware, but the host system must provide
1785 * the duration field, the low-level driver uses this function to receive
1786 * the duration field value in little-endian byteorder.
1787 */
1788__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1789				    struct ieee80211_vif *vif,
1790				    size_t frame_len,
1791				    const struct ieee80211_tx_info *frame_txctl);
1792
1793/**
1794 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1795 * @hw: pointer obtained from ieee80211_alloc_hw().
1796 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1797 * @frame_len: the length of the frame.
1798 * @rate: the rate at which the frame is going to be transmitted.
1799 *
1800 * Calculate the duration field of some generic frame, given its
1801 * length and transmission rate (in 100kbps).
1802 */
1803__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1804					struct ieee80211_vif *vif,
1805					size_t frame_len,
1806					struct ieee80211_rate *rate);
1807
1808/**
1809 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1810 * @hw: pointer as obtained from ieee80211_alloc_hw().
1811 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1812 *
1813 * Function for accessing buffered broadcast and multicast frames. If
1814 * hardware/firmware does not implement buffering of broadcast/multicast
1815 * frames when power saving is used, 802.11 code buffers them in the host
1816 * memory. The low-level driver uses this function to fetch next buffered
1817 * frame. In most cases, this is used when generating beacon frame. This
1818 * function returns a pointer to the next buffered skb or NULL if no more
1819 * buffered frames are available.
1820 *
1821 * Note: buffered frames are returned only after DTIM beacon frame was
1822 * generated with ieee80211_beacon_get() and the low-level driver must thus
1823 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1824 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1825 * does not need to check for DTIM beacons separately and should be able to
1826 * use common code for all beacons.
1827 */
1828struct sk_buff *
1829ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1830
1831/**
1832 * ieee80211_get_hdrlen_from_skb - get header length from data
1833 *
1834 * Given an skb with a raw 802.11 header at the data pointer this function
1835 * returns the 802.11 header length in bytes (not including encryption
1836 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1837 * header the function returns 0.
1838 *
1839 * @skb: the frame
1840 */
1841unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1842
1843/**
1844 * ieee80211_hdrlen - get header length in bytes from frame control
1845 * @fc: frame control field in little-endian format
1846 */
1847unsigned int ieee80211_hdrlen(__le16 fc);
1848
1849/**
1850 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1851 *
1852 * This function computes a TKIP rc4 key for an skb. It computes
1853 * a phase 1 key if needed (iv16 wraps around). This function is to
1854 * be used by drivers which can do HW encryption but need to compute
1855 * to phase 1/2 key in SW.
1856 *
1857 * @keyconf: the parameter passed with the set key
1858 * @skb: the skb for which the key is needed
1859 * @type: TBD
1860 * @key: a buffer to which the key will be written
1861 */
1862void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1863				struct sk_buff *skb,
1864				enum ieee80211_tkip_key_type type, u8 *key);
1865/**
1866 * ieee80211_wake_queue - wake specific queue
1867 * @hw: pointer as obtained from ieee80211_alloc_hw().
1868 * @queue: queue number (counted from zero).
1869 *
1870 * Drivers should use this function instead of netif_wake_queue.
1871 */
1872void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1873
1874/**
1875 * ieee80211_stop_queue - stop specific queue
1876 * @hw: pointer as obtained from ieee80211_alloc_hw().
1877 * @queue: queue number (counted from zero).
1878 *
1879 * Drivers should use this function instead of netif_stop_queue.
1880 */
1881void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1882
1883/**
1884 * ieee80211_queue_stopped - test status of the queue
1885 * @hw: pointer as obtained from ieee80211_alloc_hw().
1886 * @queue: queue number (counted from zero).
1887 *
1888 * Drivers should use this function instead of netif_stop_queue.
1889 */
1890
1891int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1892
1893/**
1894 * ieee80211_stop_queues - stop all queues
1895 * @hw: pointer as obtained from ieee80211_alloc_hw().
1896 *
1897 * Drivers should use this function instead of netif_stop_queue.
1898 */
1899void ieee80211_stop_queues(struct ieee80211_hw *hw);
1900
1901/**
1902 * ieee80211_wake_queues - wake all queues
1903 * @hw: pointer as obtained from ieee80211_alloc_hw().
1904 *
1905 * Drivers should use this function instead of netif_wake_queue.
1906 */
1907void ieee80211_wake_queues(struct ieee80211_hw *hw);
1908
1909/**
1910 * ieee80211_scan_completed - completed hardware scan
1911 *
1912 * When hardware scan offload is used (i.e. the hw_scan() callback is
1913 * assigned) this function needs to be called by the driver to notify
1914 * mac80211 that the scan finished.
1915 *
1916 * @hw: the hardware that finished the scan
1917 * @aborted: set to true if scan was aborted
1918 */
1919void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1920
1921/**
1922 * ieee80211_iterate_active_interfaces - iterate active interfaces
1923 *
1924 * This function iterates over the interfaces associated with a given
1925 * hardware that are currently active and calls the callback for them.
1926 * This function allows the iterator function to sleep, when the iterator
1927 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1928 * be used.
1929 *
1930 * @hw: the hardware struct of which the interfaces should be iterated over
1931 * @iterator: the iterator function to call
1932 * @data: first argument of the iterator function
1933 */
1934void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1935					 void (*iterator)(void *data, u8 *mac,
1936						struct ieee80211_vif *vif),
1937					 void *data);
1938
1939/**
1940 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1941 *
1942 * This function iterates over the interfaces associated with a given
1943 * hardware that are currently active and calls the callback for them.
1944 * This function requires the iterator callback function to be atomic,
1945 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1946 *
1947 * @hw: the hardware struct of which the interfaces should be iterated over
1948 * @iterator: the iterator function to call, cannot sleep
1949 * @data: first argument of the iterator function
1950 */
1951void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1952						void (*iterator)(void *data,
1953						    u8 *mac,
1954						    struct ieee80211_vif *vif),
1955						void *data);
1956
1957/**
1958 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1959 * @hw: pointer as obtained from ieee80211_alloc_hw().
1960 * @ra: receiver address of the BA session recipient
1961 * @tid: the TID to BA on.
1962 *
1963 * Return: success if addBA request was sent, failure otherwise
1964 *
1965 * Although mac80211/low level driver/user space application can estimate
1966 * the need to start aggregation on a certain RA/TID, the session level
1967 * will be managed by the mac80211.
1968 */
1969int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1970
1971/**
1972 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1973 * @hw: pointer as obtained from ieee80211_alloc_hw().
1974 * @ra: receiver address of the BA session recipient.
1975 * @tid: the TID to BA on.
1976 *
1977 * This function must be called by low level driver once it has
1978 * finished with preparations for the BA session.
1979 */
1980void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1981
1982/**
1983 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1984 * @hw: pointer as obtained from ieee80211_alloc_hw().
1985 * @ra: receiver address of the BA session recipient.
1986 * @tid: the TID to BA on.
1987 *
1988 * This function must be called by low level driver once it has
1989 * finished with preparations for the BA session.
1990 * This version of the function is IRQ-safe.
1991 */
1992void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1993				      u16 tid);
1994
1995/**
1996 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1997 * @hw: pointer as obtained from ieee80211_alloc_hw().
1998 * @ra: receiver address of the BA session recipient
1999 * @tid: the TID to stop BA.
2000 * @initiator: if indicates initiator DELBA frame will be sent.
2001 *
2002 * Return: error if no sta with matching da found, success otherwise
2003 *
2004 * Although mac80211/low level driver/user space application can estimate
2005 * the need to stop aggregation on a certain RA/TID, the session level
2006 * will be managed by the mac80211.
2007 */
2008int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2009				 u8 *ra, u16 tid,
2010				 enum ieee80211_back_parties initiator);
2011
2012/**
2013 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2014 * @hw: pointer as obtained from ieee80211_alloc_hw().
2015 * @ra: receiver address of the BA session recipient.
2016 * @tid: the desired TID to BA on.
2017 *
2018 * This function must be called by low level driver once it has
2019 * finished with preparations for the BA session tear down.
2020 */
2021void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2022
2023/**
2024 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2025 * @hw: pointer as obtained from ieee80211_alloc_hw().
2026 * @ra: receiver address of the BA session recipient.
2027 * @tid: the desired TID to BA on.
2028 *
2029 * This function must be called by low level driver once it has
2030 * finished with preparations for the BA session tear down.
2031 * This version of the function is IRQ-safe.
2032 */
2033void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2034				     u16 tid);
2035
2036/**
2037 * ieee80211_find_sta - find a station
2038 *
2039 * @hw: pointer as obtained from ieee80211_alloc_hw()
2040 * @addr: station's address
2041 *
2042 * This function must be called under RCU lock and the
2043 * resulting pointer is only valid under RCU lock as well.
2044 */
2045struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2046					 const u8 *addr);
2047
2048/**
2049 * ieee80211_beacon_loss - inform hardware does not receive beacons
2050 *
2051 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2052 *
2053 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2054 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2055 * hardware is not receiving beacons with this function.
2056 */
2057void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2058
2059/* Rate control API */
2060
2061/**
2062 * enum rate_control_changed - flags to indicate which parameter changed
2063 *
2064 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2065 *	changed, rate control algorithm can update its internal state if needed.
2066 */
2067enum rate_control_changed {
2068	IEEE80211_RC_HT_CHANGED = BIT(0)
2069};
2070
2071/**
2072 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2073 *
2074 * @hw: The hardware the algorithm is invoked for.
2075 * @sband: The band this frame is being transmitted on.
2076 * @bss_conf: the current BSS configuration
2077 * @reported_rate: The rate control algorithm can fill this in to indicate
2078 *	which rate should be reported to userspace as the current rate and
2079 *	used for rate calculations in the mesh network.
2080 * @rts: whether RTS will be used for this frame because it is longer than the
2081 *	RTS threshold
2082 * @short_preamble: whether mac80211 will request short-preamble transmission
2083 *	if the selected rate supports it
2084 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2085 * @skb: the skb that will be transmitted, the control information in it needs
2086 *	to be filled in
2087 */
2088struct ieee80211_tx_rate_control {
2089	struct ieee80211_hw *hw;
2090	struct ieee80211_supported_band *sband;
2091	struct ieee80211_bss_conf *bss_conf;
2092	struct sk_buff *skb;
2093	struct ieee80211_tx_rate reported_rate;
2094	bool rts, short_preamble;
2095	u8 max_rate_idx;
2096};
2097
2098struct rate_control_ops {
2099	struct module *module;
2100	const char *name;
2101	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2102	void (*free)(void *priv);
2103
2104	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2105	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2106			  struct ieee80211_sta *sta, void *priv_sta);
2107	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2108			    struct ieee80211_sta *sta,
2109			    void *priv_sta, u32 changed);
2110	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2111			 void *priv_sta);
2112
2113	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2114			  struct ieee80211_sta *sta, void *priv_sta,
2115			  struct sk_buff *skb);
2116	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2117			 struct ieee80211_tx_rate_control *txrc);
2118
2119	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2120				struct dentry *dir);
2121	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2122};
2123
2124static inline int rate_supported(struct ieee80211_sta *sta,
2125				 enum ieee80211_band band,
2126				 int index)
2127{
2128	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2129}
2130
2131static inline s8
2132rate_lowest_index(struct ieee80211_supported_band *sband,
2133		  struct ieee80211_sta *sta)
2134{
2135	int i;
2136
2137	for (i = 0; i < sband->n_bitrates; i++)
2138		if (rate_supported(sta, sband->band, i))
2139			return i;
2140
2141	/* warn when we cannot find a rate. */
2142	WARN_ON(1);
2143
2144	return 0;
2145}
2146
2147
2148int ieee80211_rate_control_register(struct rate_control_ops *ops);
2149void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2150
2151static inline bool
2152conf_is_ht20(struct ieee80211_conf *conf)
2153{
2154	return conf->channel_type == NL80211_CHAN_HT20;
2155}
2156
2157static inline bool
2158conf_is_ht40_minus(struct ieee80211_conf *conf)
2159{
2160	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2161}
2162
2163static inline bool
2164conf_is_ht40_plus(struct ieee80211_conf *conf)
2165{
2166	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2167}
2168
2169static inline bool
2170conf_is_ht40(struct ieee80211_conf *conf)
2171{
2172	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2173}
2174
2175static inline bool
2176conf_is_ht(struct ieee80211_conf *conf)
2177{
2178	return conf->channel_type != NL80211_CHAN_NO_HT;
2179}
2180
2181#endif /* MAC80211_H */
2182