route.h revision 475949d8e86bbde5ea3ffa4d95e022ca69233b14
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET  is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the IP router.
7 *
8 * Version:	@(#)route.h	1.0.4	05/27/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Fixes:
13 *		Alan Cox	:	Reformatted. Added ip_rt_local()
14 *		Alan Cox	:	Support for TCP parameters.
15 *		Alexey Kuznetsov:	Major changes for new routing code.
16 *		Mike McLagan    :	Routing by source
17 *		Robert Olsson   :	Added rt_cache statistics
18 *
19 *		This program is free software; you can redistribute it and/or
20 *		modify it under the terms of the GNU General Public License
21 *		as published by the Free Software Foundation; either version
22 *		2 of the License, or (at your option) any later version.
23 */
24#ifndef _ROUTE_H
25#define _ROUTE_H
26
27#include <net/dst.h>
28#include <net/inetpeer.h>
29#include <net/flow.h>
30#include <net/inet_sock.h>
31#include <linux/in_route.h>
32#include <linux/rtnetlink.h>
33#include <linux/route.h>
34#include <linux/ip.h>
35#include <linux/cache.h>
36#include <linux/security.h>
37
38#define RTO_ONLINK	0x01
39
40#define RT_CONN_FLAGS(sk)   (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
41
42struct fib_nh;
43struct inet_peer;
44struct fib_info;
45struct rtable {
46	struct dst_entry	dst;
47
48	/* Lookup key. */
49	__be32			rt_key_dst;
50	__be32			rt_key_src;
51
52	int			rt_genid;
53	unsigned		rt_flags;
54	__u16			rt_type;
55	__u8			rt_key_tos;
56
57	__be32			rt_dst;	/* Path destination	*/
58	__be32			rt_src;	/* Path source		*/
59	int			rt_route_iif;
60	int			rt_iif;
61	int			rt_oif;
62	__u32			rt_mark;
63
64	/* Info on neighbour */
65	__be32			rt_gateway;
66
67	/* Miscellaneous cached information */
68	__be32			rt_spec_dst; /* RFC1122 specific destination */
69	u32			rt_peer_genid;
70	struct inet_peer	*peer; /* long-living peer info */
71	struct fib_info		*fi; /* for client ref to shared metrics */
72};
73
74static inline bool rt_is_input_route(struct rtable *rt)
75{
76	return rt->rt_route_iif != 0;
77}
78
79static inline bool rt_is_output_route(struct rtable *rt)
80{
81	return rt->rt_route_iif == 0;
82}
83
84struct ip_rt_acct {
85	__u32 	o_bytes;
86	__u32 	o_packets;
87	__u32 	i_bytes;
88	__u32 	i_packets;
89};
90
91struct rt_cache_stat {
92        unsigned int in_hit;
93        unsigned int in_slow_tot;
94        unsigned int in_slow_mc;
95        unsigned int in_no_route;
96        unsigned int in_brd;
97        unsigned int in_martian_dst;
98        unsigned int in_martian_src;
99        unsigned int out_hit;
100        unsigned int out_slow_tot;
101        unsigned int out_slow_mc;
102        unsigned int gc_total;
103        unsigned int gc_ignored;
104        unsigned int gc_goal_miss;
105        unsigned int gc_dst_overflow;
106        unsigned int in_hlist_search;
107        unsigned int out_hlist_search;
108};
109
110extern struct ip_rt_acct __percpu *ip_rt_acct;
111
112struct in_device;
113extern int		ip_rt_init(void);
114extern void		ip_rt_redirect(__be32 old_gw, __be32 dst, __be32 new_gw,
115				       __be32 src, struct net_device *dev);
116extern void		rt_cache_flush(struct net *net, int how);
117extern void		rt_cache_flush_batch(struct net *net);
118extern struct rtable *__ip_route_output_key(struct net *, struct flowi4 *flp);
119extern struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
120					   struct sock *sk);
121extern struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig);
122
123static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
124{
125	return ip_route_output_flow(net, flp, NULL);
126}
127
128static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
129					     __be32 saddr, u8 tos, int oif)
130{
131	struct flowi4 fl4 = {
132		.flowi4_oif = oif,
133		.daddr = daddr,
134		.saddr = saddr,
135		.flowi4_tos = tos,
136	};
137	return ip_route_output_key(net, &fl4);
138}
139
140static inline struct rtable *ip_route_output_ports(struct net *net, struct sock *sk,
141						   __be32 daddr, __be32 saddr,
142						   __be16 dport, __be16 sport,
143						   __u8 proto, __u8 tos, int oif)
144{
145	struct flowi4 fl4;
146
147	flowi4_init_output(&fl4, oif, sk ? sk->sk_mark : 0, tos,
148			   RT_SCOPE_UNIVERSE, proto,
149			   sk ? inet_sk_flowi_flags(sk) : 0,
150			   daddr, saddr, dport, sport);
151	if (sk)
152		security_sk_classify_flow(sk, flowi4_to_flowi(&fl4));
153	return ip_route_output_flow(net, &fl4, sk);
154}
155
156static inline struct rtable *ip_route_output_gre(struct net *net,
157						 __be32 daddr, __be32 saddr,
158						 __be32 gre_key, __u8 tos, int oif)
159{
160	struct flowi4 fl4 = {
161		.flowi4_oif = oif,
162		.daddr = daddr,
163		.saddr = saddr,
164		.flowi4_tos = tos,
165		.flowi4_proto = IPPROTO_GRE,
166		.fl4_gre_key = gre_key,
167	};
168	return ip_route_output_key(net, &fl4);
169}
170
171extern int ip_route_input_common(struct sk_buff *skb, __be32 dst, __be32 src,
172				 u8 tos, struct net_device *devin, bool noref);
173
174static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
175				 u8 tos, struct net_device *devin)
176{
177	return ip_route_input_common(skb, dst, src, tos, devin, false);
178}
179
180static inline int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
181				       u8 tos, struct net_device *devin)
182{
183	return ip_route_input_common(skb, dst, src, tos, devin, true);
184}
185
186extern unsigned short	ip_rt_frag_needed(struct net *net, const struct iphdr *iph,
187					  unsigned short new_mtu, struct net_device *dev);
188extern void		ip_rt_send_redirect(struct sk_buff *skb);
189
190extern unsigned		inet_addr_type(struct net *net, __be32 addr);
191extern unsigned		inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr);
192extern void		ip_rt_multicast_event(struct in_device *);
193extern int		ip_rt_ioctl(struct net *, unsigned int cmd, void __user *arg);
194extern void		ip_rt_get_source(u8 *src, struct rtable *rt);
195extern int		ip_rt_dump(struct sk_buff *skb,  struct netlink_callback *cb);
196
197struct in_ifaddr;
198extern void fib_add_ifaddr(struct in_ifaddr *);
199extern void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
200
201static inline void ip_rt_put(struct rtable * rt)
202{
203	if (rt)
204		dst_release(&rt->dst);
205}
206
207#define IPTOS_RT_MASK	(IPTOS_TOS_MASK & ~3)
208
209extern const __u8 ip_tos2prio[16];
210
211static inline char rt_tos2priority(u8 tos)
212{
213	return ip_tos2prio[IPTOS_TOS(tos)>>1];
214}
215
216/* ip_route_connect() and ip_route_newports() work in tandem whilst
217 * binding a socket for a new outgoing connection.
218 *
219 * In order to use IPSEC properly, we must, in the end, have a
220 * route that was looked up using all available keys including source
221 * and destination ports.
222 *
223 * However, if a source port needs to be allocated (the user specified
224 * a wildcard source port) we need to obtain addressing information
225 * in order to perform that allocation.
226 *
227 * So ip_route_connect() looks up a route using wildcarded source and
228 * destination ports in the key, simply so that we can get a pair of
229 * addresses to use for port allocation.
230 *
231 * Later, once the ports are allocated, ip_route_newports() will make
232 * another route lookup if needed to make sure we catch any IPSEC
233 * rules keyed on the port information.
234 *
235 * The callers allocate the flow key on their stack, and must pass in
236 * the same flowi4 object to both the ip_route_connect() and the
237 * ip_route_newports() calls.
238 */
239
240static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
241					 u32 tos, int oif, u8 protocol,
242					 __be16 sport, __be16 dport,
243					 struct sock *sk, bool can_sleep)
244{
245	__u8 flow_flags = 0;
246
247	if (inet_sk(sk)->transparent)
248		flow_flags |= FLOWI_FLAG_ANYSRC;
249	if (protocol == IPPROTO_TCP)
250		flow_flags |= FLOWI_FLAG_PRECOW_METRICS;
251	if (can_sleep)
252		flow_flags |= FLOWI_FLAG_CAN_SLEEP;
253
254	flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
255			   protocol, flow_flags, dst, src, dport, sport);
256}
257
258static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
259					      __be32 dst, __be32 src, u32 tos,
260					      int oif, u8 protocol,
261					      __be16 sport, __be16 dport,
262					      struct sock *sk, bool can_sleep)
263{
264	struct net *net = sock_net(sk);
265	struct rtable *rt;
266
267	ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
268			      sport, dport, sk, can_sleep);
269
270	if (!dst || !src) {
271		rt = __ip_route_output_key(net, fl4);
272		if (IS_ERR(rt))
273			return rt;
274		ip_rt_put(rt);
275	}
276	security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
277	return ip_route_output_flow(net, fl4, sk);
278}
279
280static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
281					       __be16 orig_sport, __be16 orig_dport,
282					       __be16 sport, __be16 dport,
283					       struct sock *sk)
284{
285	if (sport != orig_sport || dport != orig_dport) {
286		fl4->fl4_dport = dport;
287		fl4->fl4_sport = sport;
288		ip_rt_put(rt);
289		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
290		return ip_route_output_flow(sock_net(sk), fl4, sk);
291	}
292	return rt;
293}
294
295extern void rt_bind_peer(struct rtable *rt, int create);
296
297static inline struct inet_peer *rt_get_peer(struct rtable *rt)
298{
299	if (rt->peer)
300		return rt->peer;
301
302	rt_bind_peer(rt, 0);
303	return rt->peer;
304}
305
306static inline int inet_iif(const struct sk_buff *skb)
307{
308	return skb_rtable(skb)->rt_iif;
309}
310
311extern int sysctl_ip_default_ttl;
312
313static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
314{
315	int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
316
317	if (hoplimit == 0)
318		hoplimit = sysctl_ip_default_ttl;
319	return hoplimit;
320}
321
322#endif	/* _ROUTE_H */
323