wimax.h revision c2315b4ea9ac9c3f8caf03c3511d86fabe4a5fcd
1/*
2 * Linux WiMAX
3 * Kernel space API for accessing WiMAX devices
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * The WiMAX stack provides an API for controlling and managing the
25 * system's WiMAX devices. This API affects the control plane; the
26 * data plane is accessed via the network stack (netdev).
27 *
28 * Parts of the WiMAX stack API and notifications are exported to
29 * user space via Generic Netlink. In user space, libwimax (part of
30 * the wimax-tools package) provides a shim layer for accessing those
31 * calls.
32 *
33 * The API is standarized for all WiMAX devices and different drivers
34 * implement the backend support for it. However, device-specific
35 * messaging pipes are provided that can be used to issue commands and
36 * receive notifications in free form.
37 *
38 * Currently the messaging pipes are the only means of control as it
39 * is not known (due to the lack of more devices in the market) what
40 * will be a good abstraction layer. Expect this to change as more
41 * devices show in the market. This API is designed to be growable in
42 * order to address this problem.
43 *
44 * USAGE
45 *
46 * Embed a `struct wimax_dev` at the beginning of the the device's
47 * private structure, initialize and register it. For details, see
48 * `struct wimax_dev`s documentation.
49 *
50 * Once this is done, wimax-tools's libwimaxll can be used to
51 * communicate with the driver from user space. You user space
52 * application does not have to forcibily use libwimaxll and can talk
53 * the generic netlink protocol directly if desired.
54 *
55 * Remember this is a very low level API that will to provide all of
56 * WiMAX features. Other daemons and services running in user space
57 * are the expected clients of it. They offer a higher level API that
58 * applications should use (an example of this is the Intel's WiMAX
59 * Network Service for the i2400m).
60 *
61 * DESIGN
62 *
63 * Although not set on final stone, this very basic interface is
64 * mostly completed. Remember this is meant to grow as new common
65 * operations are decided upon. New operations will be added to the
66 * interface, intent being on keeping backwards compatibility as much
67 * as possible.
68 *
69 * This layer implements a set of calls to control a WiMAX device,
70 * exposing a frontend to the rest of the kernel and user space (via
71 * generic netlink) and a backend implementation in the driver through
72 * function pointers.
73 *
74 * WiMAX devices have a state, and a kernel-only API allows the
75 * drivers to manipulate that state. State transitions are atomic, and
76 * only some of them are allowed (see `enum wimax_st`).
77 *
78 * Most API calls will set the state automatically; in most cases
79 * drivers have to only report state changes due to external
80 * conditions.
81 *
82 * All API operations are 'atomic', serialized thorough a mutex in the
83 * `struct wimax_dev`.
84 *
85 * EXPORTING TO USER SPACE THROUGH GENERIC NETLINK
86 *
87 * The API is exported to user space using generic netlink (other
88 * methods can be added as needed).
89 *
90 * There is a Generic Netlink Family named "WiMAX", where interfaces
91 * supporting the WiMAX interface receive commands and broadcast their
92 * signals over a multicast group named "msg".
93 *
94 * Mapping to the source/destination interface is done by an interface
95 * index attribute.
96 *
97 * For user-to-kernel traffic (commands) we use a function call
98 * marshalling mechanism, where a message X with attributes A, B, C
99 * sent from user space to kernel space means executing the WiMAX API
100 * call wimax_X(A, B, C), sending the results back as a message.
101 *
102 * Kernel-to-user (notifications or signals) communication is sent
103 * over multicast groups. This allows to have multiple applications
104 * monitoring them.
105 *
106 * Each command/signal gets assigned it's own attribute policy. This
107 * way the validator will verify that all the attributes in there are
108 * only the ones that should be for each command/signal. Thing of an
109 * attribute mapping to a type+argumentname for each command/signal.
110 *
111 * If we had a single policy for *all* commands/signals, after running
112 * the validator we'd have to check "does this attribute belong in
113 * here"?  for each one. It can be done manually, but it's just easier
114 * to have the validator do that job with multiple policies. As well,
115 * it makes it easier to later expand each command/signal signature
116 * without affecting others and keeping the namespace more or less
117 * sane. Not that it is too complicated, but it makes it even easier.
118 *
119 * No state information is maintained in the kernel for each user
120 * space connection (the connection is stateless).
121 *
122 * TESTING FOR THE INTERFACE AND VERSIONING
123 *
124 * If network interface X is a WiMAX device, there will be a Generic
125 * Netlink family named "WiMAX X" and the device will present a
126 * "wimax" directory in it's network sysfs directory
127 * (/sys/class/net/DEVICE/wimax) [used by HAL].
128 *
129 * The inexistence of any of these means the device does not support
130 * this WiMAX API.
131 *
132 * By querying the generic netlink controller, versioning information
133 * and the multicast groups available can be found. Applications using
134 * the interface can either rely on that or use the generic netlink
135 * controller to figure out which generic netlink commands/signals are
136 * supported.
137 *
138 * NOTE: this versioning is a last resort to avoid hard
139 *    incompatibilities. It is the intention of the design of this
140 *    stack not to introduce backward incompatible changes.
141 *
142 * The version code has to fit in one byte (restrictions imposed by
143 * generic netlink); we use `version / 10` for the major version and
144 * `version % 10` for the minor. This gives 9 minors for each major
145 * and 25 majors.
146 *
147 * The version change protocol is as follow:
148 *
149 * - Major versions: needs to be increased if an existing message/API
150 *   call is changed or removed. Doesn't need to be changed if a new
151 *   message is added.
152 *
153 * - Minor version: needs to be increased if new messages/API calls are
154 *   being added or some other consideration that doesn't impact the
155 *   user-kernel interface too much (like some kind of bug fix) and
156 *   that is kind of left up in the air to common sense.
157 *
158 * User space code should not try to work if the major version it was
159 * compiled for differs from what the kernel offers. As well, if the
160 * minor version of the kernel interface is lower than the one user
161 * space is expecting (the one it was compiled for), the kernel
162 * might be missing API calls; user space shall be ready to handle
163 * said condition. Use the generic netlink controller operations to
164 * find which ones are supported and which not.
165 *
166 * libwimaxll:wimaxll_open() takes care of checking versions.
167 *
168 * THE OPERATIONS:
169 *
170 * Each operation is defined in its on file (drivers/net/wimax/op-*.c)
171 * for clarity. The parts needed for an operation are:
172 *
173 *  - a function pointer in `struct wimax_dev`: optional, as the
174 *    operation might be implemented by the stack and not by the
175 *    driver.
176 *
177 *    All function pointers are named wimax_dev->op_*(), and drivers
178 *    must implement them except where noted otherwise.
179 *
180 *  - When exported to user space, a `struct nla_policy` to define the
181 *    attributes of the generic netlink command and a `struct genl_ops`
182 *    to define the operation.
183 *
184 * All the declarations for the operation codes (WIMAX_GNL_OP_<NAME>)
185 * and generic netlink attributes (WIMAX_GNL_<NAME>_*) are declared in
186 * include/linux/wimax.h; this file is intended to be cloned by user
187 * space to gain access to those declarations.
188 *
189 * A few caveats to remember:
190 *
191 *  - Need to define attribute numbers starting in 1; otherwise it
192 *    fails.
193 *
194 *  - the `struct genl_family` requires a maximum attribute id; when
195 *    defining the `struct nla_policy` for each message, it has to have
196 *    an array size of WIMAX_GNL_ATTR_MAX+1.
197 *
198 * The op_*() function pointers will not be called if the wimax_dev is
199 * in a state <= %WIMAX_ST_UNINITIALIZED. The exception is:
200 *
201 * - op_reset: can be called at any time after wimax_dev_add() has
202 *   been called.
203 *
204 * THE PIPE INTERFACE:
205 *
206 * This interface is kept intentionally simple. The driver can send
207 * and receive free-form messages to/from user space through a
208 * pipe. See drivers/net/wimax/op-msg.c for details.
209 *
210 * The kernel-to-user messages are sent with
211 * wimax_msg(). user-to-kernel messages are delivered via
212 * wimax_dev->op_msg_from_user().
213 *
214 * RFKILL:
215 *
216 * RFKILL support is built into the wimax_dev layer; the driver just
217 * needs to call wimax_report_rfkill_{hw,sw}() to inform of changes in
218 * the hardware or software RF kill switches. When the stack wants to
219 * turn the radio off, it will call wimax_dev->op_rfkill_sw_toggle(),
220 * which the driver implements.
221 *
222 * User space can set the software RF Kill switch by calling
223 * wimax_rfkill().
224 *
225 * The code for now only supports devices that don't require polling;
226 * If the device needs to be polled, create a self-rearming delayed
227 * work struct for polling or look into adding polled support to the
228 * WiMAX stack.
229 *
230 * When initializing the hardware (_probe), after calling
231 * wimax_dev_add(), query the device for it's RF Kill switches status
232 * and feed it back to the WiMAX stack using
233 * wimax_report_rfkill_{hw,sw}(). If any switch is missing, always
234 * report it as ON.
235 *
236 * NOTE: the wimax stack uses an inverted terminology to that of the
237 * RFKILL subsystem:
238 *
239 *  - ON: radio is ON, RFKILL is DISABLED or OFF.
240 *  - OFF: radio is OFF, RFKILL is ENABLED or ON.
241 *
242 * MISCELLANEOUS OPS:
243 *
244 * wimax_reset() can be used to reset the device to power on state; by
245 * default it issues a warm reset that maintains the same device
246 * node. If that is not possible, it falls back to a cold reset
247 * (device reconnect). The driver implements the backend to this
248 * through wimax_dev->op_reset().
249 */
250
251#ifndef __NET__WIMAX_H__
252#define __NET__WIMAX_H__
253#ifdef __KERNEL__
254
255#include <linux/wimax.h>
256#include <net/genetlink.h>
257#include <linux/netdevice.h>
258
259struct net_device;
260struct genl_info;
261struct wimax_dev;
262
263/**
264 * struct wimax_dev - Generic WiMAX device
265 *
266 * @net_dev: [fill] Pointer to the &struct net_device this WiMAX
267 *     device implements.
268 *
269 * @op_msg_from_user: [fill] Driver-specific operation to
270 *     handle a raw message from user space to the driver. The
271 *     driver can send messages to user space using with
272 *     wimax_msg_to_user().
273 *
274 * @op_rfkill_sw_toggle: [fill] Driver-specific operation to act on
275 *     userspace (or any other agent) requesting the WiMAX device to
276 *     change the RF Kill software switch (WIMAX_RF_ON or
277 *     WIMAX_RF_OFF).
278 *     If such hardware support is not present, it is assumed the
279 *     radio cannot be switched off and it is always on (and the stack
280 *     will error out when trying to switch it off). In such case,
281 *     this function pointer can be left as NULL.
282 *
283 * @op_reset: [fill] Driver specific operation to reset the
284 *     device.
285 *     This operation should always attempt first a warm reset that
286 *     does not disconnect the device from the bus and return 0.
287 *     If that fails, it should resort to some sort of cold or bus
288 *     reset (even if it implies a bus disconnection and device
289 *     dissapearance). In that case, -ENODEV should be returned to
290 *     indicate the device is gone.
291 *     This operation has to be synchronous, and return only when the
292 *     reset is complete. In case of having had to resort to bus/cold
293 *     reset implying a device disconnection, the call is allowed to
294 *     return inmediately.
295 *     NOTE: wimax_dev->mutex is NOT locked when this op is being
296 *     called; however, wimax_dev->mutex_reset IS locked to ensure
297 *     serialization of calls to wimax_reset().
298 *     See wimax_reset()'s documentation.
299 *
300 * @name: [fill] A way to identify this device. We need to register a
301 *     name with many subsystems (rfkill, workqueue creation, etc).
302 *     We can't use the network device name as that
303 *     might change and in some instances we don't know it yet (until
304 *     we don't call register_netdev()). So we generate an unique one
305 *     using the driver name and device bus id, place it here and use
306 *     it across the board. Recommended naming:
307 *     DRIVERNAME-BUSNAME:BUSID (dev->bus->name, dev->bus_id).
308 *
309 * @id_table_node: [private] link to the list of wimax devices kept by
310 *     id-table.c. Protected by it's own spinlock.
311 *
312 * @mutex: [private] Serializes all concurrent access and execution of
313 *     operations.
314 *
315 * @mutex_reset: [private] Serializes reset operations. Needs to be a
316 *     different mutex because as part of the reset operation, the
317 *     driver has to call back into the stack to do things such as
318 *     state change, that require wimax_dev->mutex.
319 *
320 * @state: [private] Current state of the WiMAX device.
321 *
322 * @rfkill: [private] integration into the RF-Kill infrastructure.
323 *
324 * @rf_sw: [private] State of the software radio switch (OFF/ON)
325 *
326 * @rf_hw: [private] State of the hardware radio switch (OFF/ON)
327 *
328 * @debugfs_dentry: [private] Used to hook up a debugfs entry. This
329 *     shows up in the debugfs root as wimax\:DEVICENAME.
330 *
331 * Description:
332 * This structure defines a common interface to access all WiMAX
333 * devices from different vendors and provides a common API as well as
334 * a free-form device-specific messaging channel.
335 *
336 * Usage:
337 *  1. Embed a &struct wimax_dev at *the beginning* the network
338 *     device structure so that netdev_priv() points to it.
339 *
340 *  2. memset() it to zero
341 *
342 *  3. Initialize with wimax_dev_init(). This will leave the WiMAX
343 *     device in the %__WIMAX_ST_NULL state.
344 *
345 *  4. Fill all the fields marked with [fill]; once called
346 *     wimax_dev_add(), those fields CANNOT be modified.
347 *
348 *  5. Call wimax_dev_add() *after* registering the network
349 *     device. This will leave the WiMAX device in the %WIMAX_ST_DOWN
350 *     state.
351 *     Protect the driver's net_device->open() against succeeding if
352 *     the wimax device state is lower than %WIMAX_ST_DOWN.
353 *
354 *  6. Select when the device is going to be turned on/initialized;
355 *     for example, it could be initialized on 'ifconfig up' (when the
356 *     netdev op 'open()' is called on the driver).
357 *
358 * When the device is initialized (at `ifconfig up` time, or right
359 * after calling wimax_dev_add() from _probe(), make sure the
360 * following steps are taken
361 *
362 *  a. Move the device to %WIMAX_ST_UNINITIALIZED. This is needed so
363 *     some API calls that shouldn't work until the device is ready
364 *     can be blocked.
365 *
366 *  b. Initialize the device. Make sure to turn the SW radio switch
367 *     off and move the device to state %WIMAX_ST_RADIO_OFF when
368 *     done. When just initialized, a device should be left in RADIO
369 *     OFF state until user space devices to turn it on.
370 *
371 *  c. Query the device for the state of the hardware rfkill switch
372 *     and call wimax_rfkill_report_hw() and wimax_rfkill_report_sw()
373 *     as needed. See below.
374 *
375 * wimax_dev_rm() undoes before unregistering the network device. Once
376 * wimax_dev_add() is called, the driver can get called on the
377 * wimax_dev->op_* function pointers
378 *
379 * CONCURRENCY:
380 *
381 * The stack provides a mutex for each device that will disallow API
382 * calls happening concurrently; thus, op calls into the driver
383 * through the wimax_dev->op*() function pointers will always be
384 * serialized and *never* concurrent.
385 *
386 * For locking, take wimax_dev->mutex is taken; (most) operations in
387 * the API have to check for wimax_dev_is_ready() to return 0 before
388 * continuing (this is done internally).
389 *
390 * REFERENCE COUNTING:
391 *
392 * The WiMAX device is reference counted by the associated network
393 * device. The only operation that can be used to reference the device
394 * is wimax_dev_get_by_genl_info(), and the reference it acquires has
395 * to be released with dev_put(wimax_dev->net_dev).
396 *
397 * RFKILL:
398 *
399 * At startup, both HW and SW radio switchess are assumed to be off.
400 *
401 * At initialization time [after calling wimax_dev_add()], have the
402 * driver query the device for the status of the software and hardware
403 * RF kill switches and call wimax_report_rfkill_hw() and
404 * wimax_rfkill_report_sw() to indicate their state. If any is
405 * missing, just call it to indicate it is ON (radio always on).
406 *
407 * Whenever the driver detects a change in the state of the RF kill
408 * switches, it should call wimax_report_rfkill_hw() or
409 * wimax_report_rfkill_sw() to report it to the stack.
410 */
411struct wimax_dev {
412	struct net_device *net_dev;
413	struct list_head id_table_node;
414	struct mutex mutex;		/* Protects all members and API calls */
415	struct mutex mutex_reset;
416	enum wimax_st state;
417
418	int (*op_msg_from_user)(struct wimax_dev *wimax_dev,
419				const char *,
420				const void *, size_t,
421				const struct genl_info *info);
422	int (*op_rfkill_sw_toggle)(struct wimax_dev *wimax_dev,
423				   enum wimax_rf_state);
424	int (*op_reset)(struct wimax_dev *wimax_dev);
425
426	struct rfkill *rfkill;
427	struct input_dev *rfkill_input;
428	unsigned rf_hw;
429	unsigned rf_sw;
430	char name[32];
431
432	struct dentry *debugfs_dentry;
433};
434
435
436
437/*
438 * WiMAX stack public API for device drivers
439 * -----------------------------------------
440 *
441 * These functions are not exported to user space.
442 */
443extern void wimax_dev_init(struct wimax_dev *);
444extern int wimax_dev_add(struct wimax_dev *, struct net_device *);
445extern void wimax_dev_rm(struct wimax_dev *);
446
447static inline
448struct wimax_dev *net_dev_to_wimax(struct net_device *net_dev)
449{
450	return netdev_priv(net_dev);
451}
452
453static inline
454struct device *wimax_dev_to_dev(struct wimax_dev *wimax_dev)
455{
456	return wimax_dev->net_dev->dev.parent;
457}
458
459extern void wimax_state_change(struct wimax_dev *, enum wimax_st);
460extern enum wimax_st wimax_state_get(struct wimax_dev *);
461
462/*
463 * Radio Switch state reporting.
464 *
465 * enum wimax_rf_state is declared in linux/wimax.h so the exports
466 * to user space can use it.
467 */
468extern void wimax_report_rfkill_hw(struct wimax_dev *, enum wimax_rf_state);
469extern void wimax_report_rfkill_sw(struct wimax_dev *, enum wimax_rf_state);
470
471
472/*
473 * Free-form messaging to/from user space
474 *
475 * Sending a message:
476 *
477 *   wimax_msg(wimax_dev, pipe_name, buf, buf_size, GFP_KERNEL);
478 *
479 * Broken up:
480 *
481 *   skb = wimax_msg_alloc(wimax_dev, pipe_name, buf_size, GFP_KERNEL);
482 *   ...fill up skb...
483 *   wimax_msg_send(wimax_dev, pipe_name, skb);
484 *
485 * Be sure not to modify skb->data in the middle (ie: don't use
486 * skb_push()/skb_pull()/skb_reserve() on the skb).
487 *
488 * "pipe_name" is any string, than can be interpreted as the name of
489 * the pipe or destinatary; the interpretation of it is driver
490 * specific, so the recipient can multiplex it as wished. It can be
491 * NULL, it won't be used - an example is using a "diagnostics" tag to
492 * send diagnostics information that a device-specific diagnostics
493 * tool would be interested in.
494 */
495extern struct sk_buff *wimax_msg_alloc(struct wimax_dev *, const char *,
496				       const void *, size_t, gfp_t);
497extern int wimax_msg_send(struct wimax_dev *, struct sk_buff *);
498extern int wimax_msg(struct wimax_dev *, const char *,
499		     const void *, size_t, gfp_t);
500
501extern const void *wimax_msg_data_len(struct sk_buff *, size_t *);
502extern const void *wimax_msg_data(struct sk_buff *);
503extern ssize_t wimax_msg_len(struct sk_buff *);
504
505
506/*
507 * WiMAX stack user space API
508 * --------------------------
509 *
510 * This API is what gets exported to user space for general
511 * operations. As well, they can be called from within the kernel,
512 * (with a properly referenced `struct wimax_dev`).
513 *
514 * Properly referenced means: the 'struct net_device' that embeds the
515 * device's control structure and (as such) the 'struct wimax_dev' is
516 * referenced by the caller.
517 */
518extern int wimax_rfkill(struct wimax_dev *, enum wimax_rf_state);
519extern int wimax_reset(struct wimax_dev *);
520
521#else
522/* You might be looking for linux/wimax.h */
523#error This file should not be included from user space.
524#endif /* #ifdef __KERNEL__ */
525#endif /* #ifndef __NET__WIMAX_H__ */
526