mqueue.c revision 1638113d9d8b7e04c1eeae9014d43f6381a74040
1/*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5 *                          Michal Wronski          (michal.wronski@gmail.com)
6 *
7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * 			    Manfred Spraul	    (manfred@colorfullife.com)
10 *
11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/pagemap.h>
19#include <linux/file.h>
20#include <linux/mount.h>
21#include <linux/namei.h>
22#include <linux/sysctl.h>
23#include <linux/poll.h>
24#include <linux/mqueue.h>
25#include <linux/msg.h>
26#include <linux/skbuff.h>
27#include <linux/vmalloc.h>
28#include <linux/netlink.h>
29#include <linux/syscalls.h>
30#include <linux/audit.h>
31#include <linux/signal.h>
32#include <linux/mutex.h>
33#include <linux/nsproxy.h>
34#include <linux/pid.h>
35#include <linux/ipc_namespace.h>
36#include <linux/user_namespace.h>
37#include <linux/slab.h>
38
39#include <net/sock.h>
40#include "util.h"
41
42#define MQUEUE_MAGIC	0x19800202
43#define DIRENT_SIZE	20
44#define FILENT_SIZE	80
45
46#define SEND		0
47#define RECV		1
48
49#define STATE_NONE	0
50#define STATE_PENDING	1
51#define STATE_READY	2
52
53struct posix_msg_tree_node {
54	struct rb_node		rb_node;
55	struct list_head	msg_list;
56	int			priority;
57};
58
59struct ext_wait_queue {		/* queue of sleeping tasks */
60	struct task_struct *task;
61	struct list_head list;
62	struct msg_msg *msg;	/* ptr of loaded message */
63	int state;		/* one of STATE_* values */
64};
65
66struct mqueue_inode_info {
67	spinlock_t lock;
68	struct inode vfs_inode;
69	wait_queue_head_t wait_q;
70
71	struct rb_root msg_tree;
72	struct posix_msg_tree_node *node_cache;
73	struct mq_attr attr;
74
75	struct sigevent notify;
76	struct pid* notify_owner;
77	struct user_namespace *notify_user_ns;
78	struct user_struct *user;	/* user who created, for accounting */
79	struct sock *notify_sock;
80	struct sk_buff *notify_cookie;
81
82	/* for tasks waiting for free space and messages, respectively */
83	struct ext_wait_queue e_wait_q[2];
84
85	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86};
87
88static const struct inode_operations mqueue_dir_inode_operations;
89static const struct file_operations mqueue_file_operations;
90static const struct super_operations mqueue_super_ops;
91static void remove_notification(struct mqueue_inode_info *info);
92
93static struct kmem_cache *mqueue_inode_cachep;
94
95static struct ctl_table_header * mq_sysctl_table;
96
97static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98{
99	return container_of(inode, struct mqueue_inode_info, vfs_inode);
100}
101
102/*
103 * This routine should be called with the mq_lock held.
104 */
105static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106{
107	return get_ipc_ns(inode->i_sb->s_fs_info);
108}
109
110static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111{
112	struct ipc_namespace *ns;
113
114	spin_lock(&mq_lock);
115	ns = __get_ns_from_inode(inode);
116	spin_unlock(&mq_lock);
117	return ns;
118}
119
120/* Auxiliary functions to manipulate messages' list */
121static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122{
123	struct rb_node **p, *parent = NULL;
124	struct posix_msg_tree_node *leaf;
125
126	p = &info->msg_tree.rb_node;
127	while (*p) {
128		parent = *p;
129		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130
131		if (likely(leaf->priority == msg->m_type))
132			goto insert_msg;
133		else if (msg->m_type < leaf->priority)
134			p = &(*p)->rb_left;
135		else
136			p = &(*p)->rb_right;
137	}
138	if (info->node_cache) {
139		leaf = info->node_cache;
140		info->node_cache = NULL;
141	} else {
142		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143		if (!leaf)
144			return -ENOMEM;
145		INIT_LIST_HEAD(&leaf->msg_list);
146		info->qsize += sizeof(*leaf);
147	}
148	leaf->priority = msg->m_type;
149	rb_link_node(&leaf->rb_node, parent, p);
150	rb_insert_color(&leaf->rb_node, &info->msg_tree);
151insert_msg:
152	info->attr.mq_curmsgs++;
153	info->qsize += msg->m_ts;
154	list_add_tail(&msg->m_list, &leaf->msg_list);
155	return 0;
156}
157
158static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
159{
160	struct rb_node **p, *parent = NULL;
161	struct posix_msg_tree_node *leaf;
162	struct msg_msg *msg;
163
164try_again:
165	p = &info->msg_tree.rb_node;
166	while (*p) {
167		parent = *p;
168		/*
169		 * During insert, low priorities go to the left and high to the
170		 * right.  On receive, we want the highest priorities first, so
171		 * walk all the way to the right.
172		 */
173		p = &(*p)->rb_right;
174	}
175	if (!parent) {
176		if (info->attr.mq_curmsgs) {
177			pr_warn_once("Inconsistency in POSIX message queue, "
178				     "no tree element, but supposedly messages "
179				     "should exist!\n");
180			info->attr.mq_curmsgs = 0;
181		}
182		return NULL;
183	}
184	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
185	if (unlikely(list_empty(&leaf->msg_list))) {
186		pr_warn_once("Inconsistency in POSIX message queue, "
187			     "empty leaf node but we haven't implemented "
188			     "lazy leaf delete!\n");
189		rb_erase(&leaf->rb_node, &info->msg_tree);
190		if (info->node_cache) {
191			info->qsize -= sizeof(*leaf);
192			kfree(leaf);
193		} else {
194			info->node_cache = leaf;
195		}
196		goto try_again;
197	} else {
198		msg = list_first_entry(&leaf->msg_list,
199				       struct msg_msg, m_list);
200		list_del(&msg->m_list);
201		if (list_empty(&leaf->msg_list)) {
202			rb_erase(&leaf->rb_node, &info->msg_tree);
203			if (info->node_cache) {
204				info->qsize -= sizeof(*leaf);
205				kfree(leaf);
206			} else {
207				info->node_cache = leaf;
208			}
209		}
210	}
211	info->attr.mq_curmsgs--;
212	info->qsize -= msg->m_ts;
213	return msg;
214}
215
216static struct inode *mqueue_get_inode(struct super_block *sb,
217		struct ipc_namespace *ipc_ns, umode_t mode,
218		struct mq_attr *attr)
219{
220	struct user_struct *u = current_user();
221	struct inode *inode;
222	int ret = -ENOMEM;
223
224	inode = new_inode(sb);
225	if (!inode)
226		goto err;
227
228	inode->i_ino = get_next_ino();
229	inode->i_mode = mode;
230	inode->i_uid = current_fsuid();
231	inode->i_gid = current_fsgid();
232	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
233
234	if (S_ISREG(mode)) {
235		struct mqueue_inode_info *info;
236		unsigned long mq_bytes, mq_treesize;
237
238		inode->i_fop = &mqueue_file_operations;
239		inode->i_size = FILENT_SIZE;
240		/* mqueue specific info */
241		info = MQUEUE_I(inode);
242		spin_lock_init(&info->lock);
243		init_waitqueue_head(&info->wait_q);
244		INIT_LIST_HEAD(&info->e_wait_q[0].list);
245		INIT_LIST_HEAD(&info->e_wait_q[1].list);
246		info->notify_owner = NULL;
247		info->notify_user_ns = NULL;
248		info->qsize = 0;
249		info->user = NULL;	/* set when all is ok */
250		info->msg_tree = RB_ROOT;
251		info->node_cache = NULL;
252		memset(&info->attr, 0, sizeof(info->attr));
253		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
254					   ipc_ns->mq_msg_default);
255		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
256					    ipc_ns->mq_msgsize_default);
257		if (attr) {
258			info->attr.mq_maxmsg = attr->mq_maxmsg;
259			info->attr.mq_msgsize = attr->mq_msgsize;
260		}
261		/*
262		 * We used to allocate a static array of pointers and account
263		 * the size of that array as well as one msg_msg struct per
264		 * possible message into the queue size. That's no longer
265		 * accurate as the queue is now an rbtree and will grow and
266		 * shrink depending on usage patterns.  We can, however, still
267		 * account one msg_msg struct per message, but the nodes are
268		 * allocated depending on priority usage, and most programs
269		 * only use one, or a handful, of priorities.  However, since
270		 * this is pinned memory, we need to assume worst case, so
271		 * that means the min(mq_maxmsg, max_priorities) * struct
272		 * posix_msg_tree_node.
273		 */
274		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
275			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
276			sizeof(struct posix_msg_tree_node);
277
278		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
279					  info->attr.mq_msgsize);
280
281		spin_lock(&mq_lock);
282		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
283		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
284			spin_unlock(&mq_lock);
285			/* mqueue_evict_inode() releases info->messages */
286			ret = -EMFILE;
287			goto out_inode;
288		}
289		u->mq_bytes += mq_bytes;
290		spin_unlock(&mq_lock);
291
292		/* all is ok */
293		info->user = get_uid(u);
294	} else if (S_ISDIR(mode)) {
295		inc_nlink(inode);
296		/* Some things misbehave if size == 0 on a directory */
297		inode->i_size = 2 * DIRENT_SIZE;
298		inode->i_op = &mqueue_dir_inode_operations;
299		inode->i_fop = &simple_dir_operations;
300	}
301
302	return inode;
303out_inode:
304	iput(inode);
305err:
306	return ERR_PTR(ret);
307}
308
309static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
310{
311	struct inode *inode;
312	struct ipc_namespace *ns = data;
313
314	sb->s_blocksize = PAGE_CACHE_SIZE;
315	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
316	sb->s_magic = MQUEUE_MAGIC;
317	sb->s_op = &mqueue_super_ops;
318
319	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320	if (IS_ERR(inode))
321		return PTR_ERR(inode);
322
323	sb->s_root = d_make_root(inode);
324	if (!sb->s_root)
325		return -ENOMEM;
326	return 0;
327}
328
329static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330			 int flags, const char *dev_name,
331			 void *data)
332{
333	if (!(flags & MS_KERNMOUNT))
334		data = current->nsproxy->ipc_ns;
335	return mount_ns(fs_type, flags, data, mqueue_fill_super);
336}
337
338static void init_once(void *foo)
339{
340	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
341
342	inode_init_once(&p->vfs_inode);
343}
344
345static struct inode *mqueue_alloc_inode(struct super_block *sb)
346{
347	struct mqueue_inode_info *ei;
348
349	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
350	if (!ei)
351		return NULL;
352	return &ei->vfs_inode;
353}
354
355static void mqueue_i_callback(struct rcu_head *head)
356{
357	struct inode *inode = container_of(head, struct inode, i_rcu);
358	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
359}
360
361static void mqueue_destroy_inode(struct inode *inode)
362{
363	call_rcu(&inode->i_rcu, mqueue_i_callback);
364}
365
366static void mqueue_evict_inode(struct inode *inode)
367{
368	struct mqueue_inode_info *info;
369	struct user_struct *user;
370	unsigned long mq_bytes, mq_treesize;
371	struct ipc_namespace *ipc_ns;
372	struct msg_msg *msg;
373
374	clear_inode(inode);
375
376	if (S_ISDIR(inode->i_mode))
377		return;
378
379	ipc_ns = get_ns_from_inode(inode);
380	info = MQUEUE_I(inode);
381	spin_lock(&info->lock);
382	while ((msg = msg_get(info)) != NULL)
383		free_msg(msg);
384	kfree(info->node_cache);
385	spin_unlock(&info->lock);
386
387	/* Total amount of bytes accounted for the mqueue */
388	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
389		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
390		sizeof(struct posix_msg_tree_node);
391
392	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
393				  info->attr.mq_msgsize);
394
395	user = info->user;
396	if (user) {
397		spin_lock(&mq_lock);
398		user->mq_bytes -= mq_bytes;
399		/*
400		 * get_ns_from_inode() ensures that the
401		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
402		 * to which we now hold a reference, or it is NULL.
403		 * We can't put it here under mq_lock, though.
404		 */
405		if (ipc_ns)
406			ipc_ns->mq_queues_count--;
407		spin_unlock(&mq_lock);
408		free_uid(user);
409	}
410	if (ipc_ns)
411		put_ipc_ns(ipc_ns);
412}
413
414static int mqueue_create(struct inode *dir, struct dentry *dentry,
415				umode_t mode, bool excl)
416{
417	struct inode *inode;
418	struct mq_attr *attr = dentry->d_fsdata;
419	int error;
420	struct ipc_namespace *ipc_ns;
421
422	spin_lock(&mq_lock);
423	ipc_ns = __get_ns_from_inode(dir);
424	if (!ipc_ns) {
425		error = -EACCES;
426		goto out_unlock;
427	}
428	if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
429	    (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
430	     !capable(CAP_SYS_RESOURCE))) {
431		error = -ENOSPC;
432		goto out_unlock;
433	}
434	ipc_ns->mq_queues_count++;
435	spin_unlock(&mq_lock);
436
437	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
438	if (IS_ERR(inode)) {
439		error = PTR_ERR(inode);
440		spin_lock(&mq_lock);
441		ipc_ns->mq_queues_count--;
442		goto out_unlock;
443	}
444
445	put_ipc_ns(ipc_ns);
446	dir->i_size += DIRENT_SIZE;
447	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
448
449	d_instantiate(dentry, inode);
450	dget(dentry);
451	return 0;
452out_unlock:
453	spin_unlock(&mq_lock);
454	if (ipc_ns)
455		put_ipc_ns(ipc_ns);
456	return error;
457}
458
459static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
460{
461  	struct inode *inode = dentry->d_inode;
462
463	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
464	dir->i_size -= DIRENT_SIZE;
465  	drop_nlink(inode);
466  	dput(dentry);
467  	return 0;
468}
469
470/*
471*	This is routine for system read from queue file.
472*	To avoid mess with doing here some sort of mq_receive we allow
473*	to read only queue size & notification info (the only values
474*	that are interesting from user point of view and aren't accessible
475*	through std routines)
476*/
477static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
478				size_t count, loff_t *off)
479{
480	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
481	char buffer[FILENT_SIZE];
482	ssize_t ret;
483
484	spin_lock(&info->lock);
485	snprintf(buffer, sizeof(buffer),
486			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
487			info->qsize,
488			info->notify_owner ? info->notify.sigev_notify : 0,
489			(info->notify_owner &&
490			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
491				info->notify.sigev_signo : 0,
492			pid_vnr(info->notify_owner));
493	spin_unlock(&info->lock);
494	buffer[sizeof(buffer)-1] = '\0';
495
496	ret = simple_read_from_buffer(u_data, count, off, buffer,
497				strlen(buffer));
498	if (ret <= 0)
499		return ret;
500
501	filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
502	return ret;
503}
504
505static int mqueue_flush_file(struct file *filp, fl_owner_t id)
506{
507	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
508
509	spin_lock(&info->lock);
510	if (task_tgid(current) == info->notify_owner)
511		remove_notification(info);
512
513	spin_unlock(&info->lock);
514	return 0;
515}
516
517static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
518{
519	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
520	int retval = 0;
521
522	poll_wait(filp, &info->wait_q, poll_tab);
523
524	spin_lock(&info->lock);
525	if (info->attr.mq_curmsgs)
526		retval = POLLIN | POLLRDNORM;
527
528	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
529		retval |= POLLOUT | POLLWRNORM;
530	spin_unlock(&info->lock);
531
532	return retval;
533}
534
535/* Adds current to info->e_wait_q[sr] before element with smaller prio */
536static void wq_add(struct mqueue_inode_info *info, int sr,
537			struct ext_wait_queue *ewp)
538{
539	struct ext_wait_queue *walk;
540
541	ewp->task = current;
542
543	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
544		if (walk->task->static_prio <= current->static_prio) {
545			list_add_tail(&ewp->list, &walk->list);
546			return;
547		}
548	}
549	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
550}
551
552/*
553 * Puts current task to sleep. Caller must hold queue lock. After return
554 * lock isn't held.
555 * sr: SEND or RECV
556 */
557static int wq_sleep(struct mqueue_inode_info *info, int sr,
558		    ktime_t *timeout, struct ext_wait_queue *ewp)
559{
560	int retval;
561	signed long time;
562
563	wq_add(info, sr, ewp);
564
565	for (;;) {
566		set_current_state(TASK_INTERRUPTIBLE);
567
568		spin_unlock(&info->lock);
569		time = schedule_hrtimeout_range_clock(timeout, 0,
570			HRTIMER_MODE_ABS, CLOCK_REALTIME);
571
572		while (ewp->state == STATE_PENDING)
573			cpu_relax();
574
575		if (ewp->state == STATE_READY) {
576			retval = 0;
577			goto out;
578		}
579		spin_lock(&info->lock);
580		if (ewp->state == STATE_READY) {
581			retval = 0;
582			goto out_unlock;
583		}
584		if (signal_pending(current)) {
585			retval = -ERESTARTSYS;
586			break;
587		}
588		if (time == 0) {
589			retval = -ETIMEDOUT;
590			break;
591		}
592	}
593	list_del(&ewp->list);
594out_unlock:
595	spin_unlock(&info->lock);
596out:
597	return retval;
598}
599
600/*
601 * Returns waiting task that should be serviced first or NULL if none exists
602 */
603static struct ext_wait_queue *wq_get_first_waiter(
604		struct mqueue_inode_info *info, int sr)
605{
606	struct list_head *ptr;
607
608	ptr = info->e_wait_q[sr].list.prev;
609	if (ptr == &info->e_wait_q[sr].list)
610		return NULL;
611	return list_entry(ptr, struct ext_wait_queue, list);
612}
613
614
615static inline void set_cookie(struct sk_buff *skb, char code)
616{
617	((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
618}
619
620/*
621 * The next function is only to split too long sys_mq_timedsend
622 */
623static void __do_notify(struct mqueue_inode_info *info)
624{
625	/* notification
626	 * invoked when there is registered process and there isn't process
627	 * waiting synchronously for message AND state of queue changed from
628	 * empty to not empty. Here we are sure that no one is waiting
629	 * synchronously. */
630	if (info->notify_owner &&
631	    info->attr.mq_curmsgs == 1) {
632		struct siginfo sig_i;
633		switch (info->notify.sigev_notify) {
634		case SIGEV_NONE:
635			break;
636		case SIGEV_SIGNAL:
637			/* sends signal */
638
639			sig_i.si_signo = info->notify.sigev_signo;
640			sig_i.si_errno = 0;
641			sig_i.si_code = SI_MESGQ;
642			sig_i.si_value = info->notify.sigev_value;
643			/* map current pid/uid into info->owner's namespaces */
644			rcu_read_lock();
645			sig_i.si_pid = task_tgid_nr_ns(current,
646						ns_of_pid(info->notify_owner));
647			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
648			rcu_read_unlock();
649
650			kill_pid_info(info->notify.sigev_signo,
651				      &sig_i, info->notify_owner);
652			break;
653		case SIGEV_THREAD:
654			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
655			netlink_sendskb(info->notify_sock, info->notify_cookie);
656			break;
657		}
658		/* after notification unregisters process */
659		put_pid(info->notify_owner);
660		put_user_ns(info->notify_user_ns);
661		info->notify_owner = NULL;
662		info->notify_user_ns = NULL;
663	}
664	wake_up(&info->wait_q);
665}
666
667static int prepare_timeout(const struct timespec __user *u_abs_timeout,
668			   ktime_t *expires, struct timespec *ts)
669{
670	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
671		return -EFAULT;
672	if (!timespec_valid(ts))
673		return -EINVAL;
674
675	*expires = timespec_to_ktime(*ts);
676	return 0;
677}
678
679static void remove_notification(struct mqueue_inode_info *info)
680{
681	if (info->notify_owner != NULL &&
682	    info->notify.sigev_notify == SIGEV_THREAD) {
683		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
684		netlink_sendskb(info->notify_sock, info->notify_cookie);
685	}
686	put_pid(info->notify_owner);
687	put_user_ns(info->notify_user_ns);
688	info->notify_owner = NULL;
689	info->notify_user_ns = NULL;
690}
691
692static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
693{
694	int mq_treesize;
695	unsigned long total_size;
696
697	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
698		return -EINVAL;
699	if (capable(CAP_SYS_RESOURCE)) {
700		if (attr->mq_maxmsg > HARD_MSGMAX ||
701		    attr->mq_msgsize > HARD_MSGSIZEMAX)
702			return -EINVAL;
703	} else {
704		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
705				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
706			return -EINVAL;
707	}
708	/* check for overflow */
709	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
710		return -EOVERFLOW;
711	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
712		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
713		sizeof(struct posix_msg_tree_node);
714	total_size = attr->mq_maxmsg * attr->mq_msgsize;
715	if (total_size + mq_treesize < total_size)
716		return -EOVERFLOW;
717	return 0;
718}
719
720/*
721 * Invoked when creating a new queue via sys_mq_open
722 */
723static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
724			struct path *path, int oflag, umode_t mode,
725			struct mq_attr *attr)
726{
727	const struct cred *cred = current_cred();
728	int ret;
729
730	if (attr) {
731		ret = mq_attr_ok(ipc_ns, attr);
732		if (ret)
733			return ERR_PTR(ret);
734		/* store for use during create */
735		path->dentry->d_fsdata = attr;
736	} else {
737		struct mq_attr def_attr;
738
739		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
740					 ipc_ns->mq_msg_default);
741		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
742					  ipc_ns->mq_msgsize_default);
743		ret = mq_attr_ok(ipc_ns, &def_attr);
744		if (ret)
745			return ERR_PTR(ret);
746	}
747
748	mode &= ~current_umask();
749	ret = vfs_create(dir, path->dentry, mode, true);
750	path->dentry->d_fsdata = NULL;
751	if (ret)
752		return ERR_PTR(ret);
753	return dentry_open(path, oflag, cred);
754}
755
756/* Opens existing queue */
757static struct file *do_open(struct path *path, int oflag)
758{
759	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
760						  MAY_READ | MAY_WRITE };
761	int acc;
762	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
763		return ERR_PTR(-EINVAL);
764	acc = oflag2acc[oflag & O_ACCMODE];
765	if (inode_permission(path->dentry->d_inode, acc))
766		return ERR_PTR(-EACCES);
767	return dentry_open(path, oflag, current_cred());
768}
769
770SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
771		struct mq_attr __user *, u_attr)
772{
773	struct path path;
774	struct file *filp;
775	char *name;
776	struct mq_attr attr;
777	int fd, error;
778	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
779	struct vfsmount *mnt = ipc_ns->mq_mnt;
780	struct dentry *root = mnt->mnt_root;
781	int ro;
782
783	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
784		return -EFAULT;
785
786	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
787
788	if (IS_ERR(name = getname(u_name)))
789		return PTR_ERR(name);
790
791	fd = get_unused_fd_flags(O_CLOEXEC);
792	if (fd < 0)
793		goto out_putname;
794
795	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
796	error = 0;
797	mutex_lock(&root->d_inode->i_mutex);
798	path.dentry = lookup_one_len(name, root, strlen(name));
799	if (IS_ERR(path.dentry)) {
800		error = PTR_ERR(path.dentry);
801		goto out_putfd;
802	}
803	path.mnt = mntget(mnt);
804
805	if (oflag & O_CREAT) {
806		if (path.dentry->d_inode) {	/* entry already exists */
807			audit_inode(name, path.dentry);
808			if (oflag & O_EXCL) {
809				error = -EEXIST;
810				goto out;
811			}
812			filp = do_open(&path, oflag);
813		} else {
814			if (ro) {
815				error = ro;
816				goto out;
817			}
818			filp = do_create(ipc_ns, root->d_inode,
819						&path, oflag, mode,
820						u_attr ? &attr : NULL);
821		}
822	} else {
823		if (!path.dentry->d_inode) {
824			error = -ENOENT;
825			goto out;
826		}
827		audit_inode(name, path.dentry);
828		filp = do_open(&path, oflag);
829	}
830
831	if (!IS_ERR(filp))
832		fd_install(fd, filp);
833	else
834		error = PTR_ERR(filp);
835out:
836	path_put(&path);
837out_putfd:
838	if (error) {
839		put_unused_fd(fd);
840		fd = error;
841	}
842	mutex_unlock(&root->d_inode->i_mutex);
843	mnt_drop_write(mnt);
844out_putname:
845	putname(name);
846	return fd;
847}
848
849SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
850{
851	int err;
852	char *name;
853	struct dentry *dentry;
854	struct inode *inode = NULL;
855	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
856	struct vfsmount *mnt = ipc_ns->mq_mnt;
857
858	name = getname(u_name);
859	if (IS_ERR(name))
860		return PTR_ERR(name);
861
862	err = mnt_want_write(mnt);
863	if (err)
864		goto out_name;
865	mutex_lock_nested(&mnt->mnt_root->d_inode->i_mutex, I_MUTEX_PARENT);
866	dentry = lookup_one_len(name, mnt->mnt_root, strlen(name));
867	if (IS_ERR(dentry)) {
868		err = PTR_ERR(dentry);
869		goto out_unlock;
870	}
871
872	inode = dentry->d_inode;
873	if (!inode) {
874		err = -ENOENT;
875	} else {
876		ihold(inode);
877		err = vfs_unlink(dentry->d_parent->d_inode, dentry);
878	}
879	dput(dentry);
880
881out_unlock:
882	mutex_unlock(&mnt->mnt_root->d_inode->i_mutex);
883	if (inode)
884		iput(inode);
885	mnt_drop_write(mnt);
886out_name:
887	putname(name);
888
889	return err;
890}
891
892/* Pipelined send and receive functions.
893 *
894 * If a receiver finds no waiting message, then it registers itself in the
895 * list of waiting receivers. A sender checks that list before adding the new
896 * message into the message array. If there is a waiting receiver, then it
897 * bypasses the message array and directly hands the message over to the
898 * receiver.
899 * The receiver accepts the message and returns without grabbing the queue
900 * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
901 * are necessary. The same algorithm is used for sysv semaphores, see
902 * ipc/sem.c for more details.
903 *
904 * The same algorithm is used for senders.
905 */
906
907/* pipelined_send() - send a message directly to the task waiting in
908 * sys_mq_timedreceive() (without inserting message into a queue).
909 */
910static inline void pipelined_send(struct mqueue_inode_info *info,
911				  struct msg_msg *message,
912				  struct ext_wait_queue *receiver)
913{
914	receiver->msg = message;
915	list_del(&receiver->list);
916	receiver->state = STATE_PENDING;
917	wake_up_process(receiver->task);
918	smp_wmb();
919	receiver->state = STATE_READY;
920}
921
922/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
923 * gets its message and put to the queue (we have one free place for sure). */
924static inline void pipelined_receive(struct mqueue_inode_info *info)
925{
926	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
927
928	if (!sender) {
929		/* for poll */
930		wake_up_interruptible(&info->wait_q);
931		return;
932	}
933	if (msg_insert(sender->msg, info))
934		return;
935	list_del(&sender->list);
936	sender->state = STATE_PENDING;
937	wake_up_process(sender->task);
938	smp_wmb();
939	sender->state = STATE_READY;
940}
941
942SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
943		size_t, msg_len, unsigned int, msg_prio,
944		const struct timespec __user *, u_abs_timeout)
945{
946	struct fd f;
947	struct inode *inode;
948	struct ext_wait_queue wait;
949	struct ext_wait_queue *receiver;
950	struct msg_msg *msg_ptr;
951	struct mqueue_inode_info *info;
952	ktime_t expires, *timeout = NULL;
953	struct timespec ts;
954	struct posix_msg_tree_node *new_leaf = NULL;
955	int ret = 0;
956
957	if (u_abs_timeout) {
958		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
959		if (res)
960			return res;
961		timeout = &expires;
962	}
963
964	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
965		return -EINVAL;
966
967	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
968
969	f = fdget(mqdes);
970	if (unlikely(!f.file)) {
971		ret = -EBADF;
972		goto out;
973	}
974
975	inode = f.file->f_path.dentry->d_inode;
976	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
977		ret = -EBADF;
978		goto out_fput;
979	}
980	info = MQUEUE_I(inode);
981	audit_inode(NULL, f.file->f_path.dentry);
982
983	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
984		ret = -EBADF;
985		goto out_fput;
986	}
987
988	if (unlikely(msg_len > info->attr.mq_msgsize)) {
989		ret = -EMSGSIZE;
990		goto out_fput;
991	}
992
993	/* First try to allocate memory, before doing anything with
994	 * existing queues. */
995	msg_ptr = load_msg(u_msg_ptr, msg_len);
996	if (IS_ERR(msg_ptr)) {
997		ret = PTR_ERR(msg_ptr);
998		goto out_fput;
999	}
1000	msg_ptr->m_ts = msg_len;
1001	msg_ptr->m_type = msg_prio;
1002
1003	/*
1004	 * msg_insert really wants us to have a valid, spare node struct so
1005	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1006	 * fall back to that if necessary.
1007	 */
1008	if (!info->node_cache)
1009		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1010
1011	spin_lock(&info->lock);
1012
1013	if (!info->node_cache && new_leaf) {
1014		/* Save our speculative allocation into the cache */
1015		INIT_LIST_HEAD(&new_leaf->msg_list);
1016		info->node_cache = new_leaf;
1017		info->qsize += sizeof(*new_leaf);
1018		new_leaf = NULL;
1019	} else {
1020		kfree(new_leaf);
1021	}
1022
1023	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1024		if (f.file->f_flags & O_NONBLOCK) {
1025			ret = -EAGAIN;
1026		} else {
1027			wait.task = current;
1028			wait.msg = (void *) msg_ptr;
1029			wait.state = STATE_NONE;
1030			ret = wq_sleep(info, SEND, timeout, &wait);
1031			/*
1032			 * wq_sleep must be called with info->lock held, and
1033			 * returns with the lock released
1034			 */
1035			goto out_free;
1036		}
1037	} else {
1038		receiver = wq_get_first_waiter(info, RECV);
1039		if (receiver) {
1040			pipelined_send(info, msg_ptr, receiver);
1041		} else {
1042			/* adds message to the queue */
1043			ret = msg_insert(msg_ptr, info);
1044			if (ret)
1045				goto out_unlock;
1046			__do_notify(info);
1047		}
1048		inode->i_atime = inode->i_mtime = inode->i_ctime =
1049				CURRENT_TIME;
1050	}
1051out_unlock:
1052	spin_unlock(&info->lock);
1053out_free:
1054	if (ret)
1055		free_msg(msg_ptr);
1056out_fput:
1057	fdput(f);
1058out:
1059	return ret;
1060}
1061
1062SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1063		size_t, msg_len, unsigned int __user *, u_msg_prio,
1064		const struct timespec __user *, u_abs_timeout)
1065{
1066	ssize_t ret;
1067	struct msg_msg *msg_ptr;
1068	struct fd f;
1069	struct inode *inode;
1070	struct mqueue_inode_info *info;
1071	struct ext_wait_queue wait;
1072	ktime_t expires, *timeout = NULL;
1073	struct timespec ts;
1074	struct posix_msg_tree_node *new_leaf = NULL;
1075
1076	if (u_abs_timeout) {
1077		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1078		if (res)
1079			return res;
1080		timeout = &expires;
1081	}
1082
1083	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1084
1085	f = fdget(mqdes);
1086	if (unlikely(!f.file)) {
1087		ret = -EBADF;
1088		goto out;
1089	}
1090
1091	inode = f.file->f_path.dentry->d_inode;
1092	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1093		ret = -EBADF;
1094		goto out_fput;
1095	}
1096	info = MQUEUE_I(inode);
1097	audit_inode(NULL, f.file->f_path.dentry);
1098
1099	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1100		ret = -EBADF;
1101		goto out_fput;
1102	}
1103
1104	/* checks if buffer is big enough */
1105	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1106		ret = -EMSGSIZE;
1107		goto out_fput;
1108	}
1109
1110	/*
1111	 * msg_insert really wants us to have a valid, spare node struct so
1112	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1113	 * fall back to that if necessary.
1114	 */
1115	if (!info->node_cache)
1116		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1117
1118	spin_lock(&info->lock);
1119
1120	if (!info->node_cache && new_leaf) {
1121		/* Save our speculative allocation into the cache */
1122		INIT_LIST_HEAD(&new_leaf->msg_list);
1123		info->node_cache = new_leaf;
1124		info->qsize += sizeof(*new_leaf);
1125	} else {
1126		kfree(new_leaf);
1127	}
1128
1129	if (info->attr.mq_curmsgs == 0) {
1130		if (f.file->f_flags & O_NONBLOCK) {
1131			spin_unlock(&info->lock);
1132			ret = -EAGAIN;
1133		} else {
1134			wait.task = current;
1135			wait.state = STATE_NONE;
1136			ret = wq_sleep(info, RECV, timeout, &wait);
1137			msg_ptr = wait.msg;
1138		}
1139	} else {
1140		msg_ptr = msg_get(info);
1141
1142		inode->i_atime = inode->i_mtime = inode->i_ctime =
1143				CURRENT_TIME;
1144
1145		/* There is now free space in queue. */
1146		pipelined_receive(info);
1147		spin_unlock(&info->lock);
1148		ret = 0;
1149	}
1150	if (ret == 0) {
1151		ret = msg_ptr->m_ts;
1152
1153		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1154			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1155			ret = -EFAULT;
1156		}
1157		free_msg(msg_ptr);
1158	}
1159out_fput:
1160	fdput(f);
1161out:
1162	return ret;
1163}
1164
1165/*
1166 * Notes: the case when user wants us to deregister (with NULL as pointer)
1167 * and he isn't currently owner of notification, will be silently discarded.
1168 * It isn't explicitly defined in the POSIX.
1169 */
1170SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1171		const struct sigevent __user *, u_notification)
1172{
1173	int ret;
1174	struct fd f;
1175	struct sock *sock;
1176	struct inode *inode;
1177	struct sigevent notification;
1178	struct mqueue_inode_info *info;
1179	struct sk_buff *nc;
1180
1181	if (u_notification) {
1182		if (copy_from_user(&notification, u_notification,
1183					sizeof(struct sigevent)))
1184			return -EFAULT;
1185	}
1186
1187	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1188
1189	nc = NULL;
1190	sock = NULL;
1191	if (u_notification != NULL) {
1192		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1193			     notification.sigev_notify != SIGEV_SIGNAL &&
1194			     notification.sigev_notify != SIGEV_THREAD))
1195			return -EINVAL;
1196		if (notification.sigev_notify == SIGEV_SIGNAL &&
1197			!valid_signal(notification.sigev_signo)) {
1198			return -EINVAL;
1199		}
1200		if (notification.sigev_notify == SIGEV_THREAD) {
1201			long timeo;
1202
1203			/* create the notify skb */
1204			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1205			if (!nc) {
1206				ret = -ENOMEM;
1207				goto out;
1208			}
1209			if (copy_from_user(nc->data,
1210					notification.sigev_value.sival_ptr,
1211					NOTIFY_COOKIE_LEN)) {
1212				ret = -EFAULT;
1213				goto out;
1214			}
1215
1216			/* TODO: add a header? */
1217			skb_put(nc, NOTIFY_COOKIE_LEN);
1218			/* and attach it to the socket */
1219retry:
1220			f = fdget(notification.sigev_signo);
1221			if (!f.file) {
1222				ret = -EBADF;
1223				goto out;
1224			}
1225			sock = netlink_getsockbyfilp(f.file);
1226			fdput(f);
1227			if (IS_ERR(sock)) {
1228				ret = PTR_ERR(sock);
1229				sock = NULL;
1230				goto out;
1231			}
1232
1233			timeo = MAX_SCHEDULE_TIMEOUT;
1234			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1235			if (ret == 1)
1236				goto retry;
1237			if (ret) {
1238				sock = NULL;
1239				nc = NULL;
1240				goto out;
1241			}
1242		}
1243	}
1244
1245	f = fdget(mqdes);
1246	if (!f.file) {
1247		ret = -EBADF;
1248		goto out;
1249	}
1250
1251	inode = f.file->f_path.dentry->d_inode;
1252	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1253		ret = -EBADF;
1254		goto out_fput;
1255	}
1256	info = MQUEUE_I(inode);
1257
1258	ret = 0;
1259	spin_lock(&info->lock);
1260	if (u_notification == NULL) {
1261		if (info->notify_owner == task_tgid(current)) {
1262			remove_notification(info);
1263			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1264		}
1265	} else if (info->notify_owner != NULL) {
1266		ret = -EBUSY;
1267	} else {
1268		switch (notification.sigev_notify) {
1269		case SIGEV_NONE:
1270			info->notify.sigev_notify = SIGEV_NONE;
1271			break;
1272		case SIGEV_THREAD:
1273			info->notify_sock = sock;
1274			info->notify_cookie = nc;
1275			sock = NULL;
1276			nc = NULL;
1277			info->notify.sigev_notify = SIGEV_THREAD;
1278			break;
1279		case SIGEV_SIGNAL:
1280			info->notify.sigev_signo = notification.sigev_signo;
1281			info->notify.sigev_value = notification.sigev_value;
1282			info->notify.sigev_notify = SIGEV_SIGNAL;
1283			break;
1284		}
1285
1286		info->notify_owner = get_pid(task_tgid(current));
1287		info->notify_user_ns = get_user_ns(current_user_ns());
1288		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1289	}
1290	spin_unlock(&info->lock);
1291out_fput:
1292	fdput(f);
1293out:
1294	if (sock) {
1295		netlink_detachskb(sock, nc);
1296	} else if (nc) {
1297		dev_kfree_skb(nc);
1298	}
1299	return ret;
1300}
1301
1302SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1303		const struct mq_attr __user *, u_mqstat,
1304		struct mq_attr __user *, u_omqstat)
1305{
1306	int ret;
1307	struct mq_attr mqstat, omqstat;
1308	struct fd f;
1309	struct inode *inode;
1310	struct mqueue_inode_info *info;
1311
1312	if (u_mqstat != NULL) {
1313		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1314			return -EFAULT;
1315		if (mqstat.mq_flags & (~O_NONBLOCK))
1316			return -EINVAL;
1317	}
1318
1319	f = fdget(mqdes);
1320	if (!f.file) {
1321		ret = -EBADF;
1322		goto out;
1323	}
1324
1325	inode = f.file->f_path.dentry->d_inode;
1326	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1327		ret = -EBADF;
1328		goto out_fput;
1329	}
1330	info = MQUEUE_I(inode);
1331
1332	spin_lock(&info->lock);
1333
1334	omqstat = info->attr;
1335	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1336	if (u_mqstat) {
1337		audit_mq_getsetattr(mqdes, &mqstat);
1338		spin_lock(&f.file->f_lock);
1339		if (mqstat.mq_flags & O_NONBLOCK)
1340			f.file->f_flags |= O_NONBLOCK;
1341		else
1342			f.file->f_flags &= ~O_NONBLOCK;
1343		spin_unlock(&f.file->f_lock);
1344
1345		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1346	}
1347
1348	spin_unlock(&info->lock);
1349
1350	ret = 0;
1351	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1352						sizeof(struct mq_attr)))
1353		ret = -EFAULT;
1354
1355out_fput:
1356	fdput(f);
1357out:
1358	return ret;
1359}
1360
1361static const struct inode_operations mqueue_dir_inode_operations = {
1362	.lookup = simple_lookup,
1363	.create = mqueue_create,
1364	.unlink = mqueue_unlink,
1365};
1366
1367static const struct file_operations mqueue_file_operations = {
1368	.flush = mqueue_flush_file,
1369	.poll = mqueue_poll_file,
1370	.read = mqueue_read_file,
1371	.llseek = default_llseek,
1372};
1373
1374static const struct super_operations mqueue_super_ops = {
1375	.alloc_inode = mqueue_alloc_inode,
1376	.destroy_inode = mqueue_destroy_inode,
1377	.evict_inode = mqueue_evict_inode,
1378	.statfs = simple_statfs,
1379};
1380
1381static struct file_system_type mqueue_fs_type = {
1382	.name = "mqueue",
1383	.mount = mqueue_mount,
1384	.kill_sb = kill_litter_super,
1385};
1386
1387int mq_init_ns(struct ipc_namespace *ns)
1388{
1389	ns->mq_queues_count  = 0;
1390	ns->mq_queues_max    = DFLT_QUEUESMAX;
1391	ns->mq_msg_max       = DFLT_MSGMAX;
1392	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1393	ns->mq_msg_default   = DFLT_MSG;
1394	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1395
1396	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1397	if (IS_ERR(ns->mq_mnt)) {
1398		int err = PTR_ERR(ns->mq_mnt);
1399		ns->mq_mnt = NULL;
1400		return err;
1401	}
1402	return 0;
1403}
1404
1405void mq_clear_sbinfo(struct ipc_namespace *ns)
1406{
1407	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1408}
1409
1410void mq_put_mnt(struct ipc_namespace *ns)
1411{
1412	kern_unmount(ns->mq_mnt);
1413}
1414
1415static int __init init_mqueue_fs(void)
1416{
1417	int error;
1418
1419	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1420				sizeof(struct mqueue_inode_info), 0,
1421				SLAB_HWCACHE_ALIGN, init_once);
1422	if (mqueue_inode_cachep == NULL)
1423		return -ENOMEM;
1424
1425	/* ignore failures - they are not fatal */
1426	mq_sysctl_table = mq_register_sysctl_table();
1427
1428	error = register_filesystem(&mqueue_fs_type);
1429	if (error)
1430		goto out_sysctl;
1431
1432	spin_lock_init(&mq_lock);
1433
1434	error = mq_init_ns(&init_ipc_ns);
1435	if (error)
1436		goto out_filesystem;
1437
1438	return 0;
1439
1440out_filesystem:
1441	unregister_filesystem(&mqueue_fs_type);
1442out_sysctl:
1443	if (mq_sysctl_table)
1444		unregister_sysctl_table(mq_sysctl_table);
1445	kmem_cache_destroy(mqueue_inode_cachep);
1446	return error;
1447}
1448
1449__initcall(init_mqueue_fs);
1450