mqueue.c revision 765927b2d508712d320c8934db963bbe14c3fcec
1/*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5 *                          Michal Wronski          (michal.wronski@gmail.com)
6 *
7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * 			    Manfred Spraul	    (manfred@colorfullife.com)
10 *
11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/pagemap.h>
19#include <linux/file.h>
20#include <linux/mount.h>
21#include <linux/namei.h>
22#include <linux/sysctl.h>
23#include <linux/poll.h>
24#include <linux/mqueue.h>
25#include <linux/msg.h>
26#include <linux/skbuff.h>
27#include <linux/vmalloc.h>
28#include <linux/netlink.h>
29#include <linux/syscalls.h>
30#include <linux/audit.h>
31#include <linux/signal.h>
32#include <linux/mutex.h>
33#include <linux/nsproxy.h>
34#include <linux/pid.h>
35#include <linux/ipc_namespace.h>
36#include <linux/user_namespace.h>
37#include <linux/slab.h>
38
39#include <net/sock.h>
40#include "util.h"
41
42#define MQUEUE_MAGIC	0x19800202
43#define DIRENT_SIZE	20
44#define FILENT_SIZE	80
45
46#define SEND		0
47#define RECV		1
48
49#define STATE_NONE	0
50#define STATE_PENDING	1
51#define STATE_READY	2
52
53struct posix_msg_tree_node {
54	struct rb_node		rb_node;
55	struct list_head	msg_list;
56	int			priority;
57};
58
59struct ext_wait_queue {		/* queue of sleeping tasks */
60	struct task_struct *task;
61	struct list_head list;
62	struct msg_msg *msg;	/* ptr of loaded message */
63	int state;		/* one of STATE_* values */
64};
65
66struct mqueue_inode_info {
67	spinlock_t lock;
68	struct inode vfs_inode;
69	wait_queue_head_t wait_q;
70
71	struct rb_root msg_tree;
72	struct posix_msg_tree_node *node_cache;
73	struct mq_attr attr;
74
75	struct sigevent notify;
76	struct pid* notify_owner;
77	struct user_namespace *notify_user_ns;
78	struct user_struct *user;	/* user who created, for accounting */
79	struct sock *notify_sock;
80	struct sk_buff *notify_cookie;
81
82	/* for tasks waiting for free space and messages, respectively */
83	struct ext_wait_queue e_wait_q[2];
84
85	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86};
87
88static const struct inode_operations mqueue_dir_inode_operations;
89static const struct file_operations mqueue_file_operations;
90static const struct super_operations mqueue_super_ops;
91static void remove_notification(struct mqueue_inode_info *info);
92
93static struct kmem_cache *mqueue_inode_cachep;
94
95static struct ctl_table_header * mq_sysctl_table;
96
97static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98{
99	return container_of(inode, struct mqueue_inode_info, vfs_inode);
100}
101
102/*
103 * This routine should be called with the mq_lock held.
104 */
105static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106{
107	return get_ipc_ns(inode->i_sb->s_fs_info);
108}
109
110static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111{
112	struct ipc_namespace *ns;
113
114	spin_lock(&mq_lock);
115	ns = __get_ns_from_inode(inode);
116	spin_unlock(&mq_lock);
117	return ns;
118}
119
120/* Auxiliary functions to manipulate messages' list */
121static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122{
123	struct rb_node **p, *parent = NULL;
124	struct posix_msg_tree_node *leaf;
125
126	p = &info->msg_tree.rb_node;
127	while (*p) {
128		parent = *p;
129		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130
131		if (likely(leaf->priority == msg->m_type))
132			goto insert_msg;
133		else if (msg->m_type < leaf->priority)
134			p = &(*p)->rb_left;
135		else
136			p = &(*p)->rb_right;
137	}
138	if (info->node_cache) {
139		leaf = info->node_cache;
140		info->node_cache = NULL;
141	} else {
142		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143		if (!leaf)
144			return -ENOMEM;
145		rb_init_node(&leaf->rb_node);
146		INIT_LIST_HEAD(&leaf->msg_list);
147		info->qsize += sizeof(*leaf);
148	}
149	leaf->priority = msg->m_type;
150	rb_link_node(&leaf->rb_node, parent, p);
151	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152insert_msg:
153	info->attr.mq_curmsgs++;
154	info->qsize += msg->m_ts;
155	list_add_tail(&msg->m_list, &leaf->msg_list);
156	return 0;
157}
158
159static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160{
161	struct rb_node **p, *parent = NULL;
162	struct posix_msg_tree_node *leaf;
163	struct msg_msg *msg;
164
165try_again:
166	p = &info->msg_tree.rb_node;
167	while (*p) {
168		parent = *p;
169		/*
170		 * During insert, low priorities go to the left and high to the
171		 * right.  On receive, we want the highest priorities first, so
172		 * walk all the way to the right.
173		 */
174		p = &(*p)->rb_right;
175	}
176	if (!parent) {
177		if (info->attr.mq_curmsgs) {
178			pr_warn_once("Inconsistency in POSIX message queue, "
179				     "no tree element, but supposedly messages "
180				     "should exist!\n");
181			info->attr.mq_curmsgs = 0;
182		}
183		return NULL;
184	}
185	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186	if (unlikely(list_empty(&leaf->msg_list))) {
187		pr_warn_once("Inconsistency in POSIX message queue, "
188			     "empty leaf node but we haven't implemented "
189			     "lazy leaf delete!\n");
190		rb_erase(&leaf->rb_node, &info->msg_tree);
191		if (info->node_cache) {
192			info->qsize -= sizeof(*leaf);
193			kfree(leaf);
194		} else {
195			info->node_cache = leaf;
196		}
197		goto try_again;
198	} else {
199		msg = list_first_entry(&leaf->msg_list,
200				       struct msg_msg, m_list);
201		list_del(&msg->m_list);
202		if (list_empty(&leaf->msg_list)) {
203			rb_erase(&leaf->rb_node, &info->msg_tree);
204			if (info->node_cache) {
205				info->qsize -= sizeof(*leaf);
206				kfree(leaf);
207			} else {
208				info->node_cache = leaf;
209			}
210		}
211	}
212	info->attr.mq_curmsgs--;
213	info->qsize -= msg->m_ts;
214	return msg;
215}
216
217static struct inode *mqueue_get_inode(struct super_block *sb,
218		struct ipc_namespace *ipc_ns, umode_t mode,
219		struct mq_attr *attr)
220{
221	struct user_struct *u = current_user();
222	struct inode *inode;
223	int ret = -ENOMEM;
224
225	inode = new_inode(sb);
226	if (!inode)
227		goto err;
228
229	inode->i_ino = get_next_ino();
230	inode->i_mode = mode;
231	inode->i_uid = current_fsuid();
232	inode->i_gid = current_fsgid();
233	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
234
235	if (S_ISREG(mode)) {
236		struct mqueue_inode_info *info;
237		unsigned long mq_bytes, mq_treesize;
238
239		inode->i_fop = &mqueue_file_operations;
240		inode->i_size = FILENT_SIZE;
241		/* mqueue specific info */
242		info = MQUEUE_I(inode);
243		spin_lock_init(&info->lock);
244		init_waitqueue_head(&info->wait_q);
245		INIT_LIST_HEAD(&info->e_wait_q[0].list);
246		INIT_LIST_HEAD(&info->e_wait_q[1].list);
247		info->notify_owner = NULL;
248		info->notify_user_ns = NULL;
249		info->qsize = 0;
250		info->user = NULL;	/* set when all is ok */
251		info->msg_tree = RB_ROOT;
252		info->node_cache = NULL;
253		memset(&info->attr, 0, sizeof(info->attr));
254		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
255					   ipc_ns->mq_msg_default);
256		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
257					    ipc_ns->mq_msgsize_default);
258		if (attr) {
259			info->attr.mq_maxmsg = attr->mq_maxmsg;
260			info->attr.mq_msgsize = attr->mq_msgsize;
261		}
262		/*
263		 * We used to allocate a static array of pointers and account
264		 * the size of that array as well as one msg_msg struct per
265		 * possible message into the queue size. That's no longer
266		 * accurate as the queue is now an rbtree and will grow and
267		 * shrink depending on usage patterns.  We can, however, still
268		 * account one msg_msg struct per message, but the nodes are
269		 * allocated depending on priority usage, and most programs
270		 * only use one, or a handful, of priorities.  However, since
271		 * this is pinned memory, we need to assume worst case, so
272		 * that means the min(mq_maxmsg, max_priorities) * struct
273		 * posix_msg_tree_node.
274		 */
275		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
276			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
277			sizeof(struct posix_msg_tree_node);
278
279		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
280					  info->attr.mq_msgsize);
281
282		spin_lock(&mq_lock);
283		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
284		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
285			spin_unlock(&mq_lock);
286			/* mqueue_evict_inode() releases info->messages */
287			ret = -EMFILE;
288			goto out_inode;
289		}
290		u->mq_bytes += mq_bytes;
291		spin_unlock(&mq_lock);
292
293		/* all is ok */
294		info->user = get_uid(u);
295	} else if (S_ISDIR(mode)) {
296		inc_nlink(inode);
297		/* Some things misbehave if size == 0 on a directory */
298		inode->i_size = 2 * DIRENT_SIZE;
299		inode->i_op = &mqueue_dir_inode_operations;
300		inode->i_fop = &simple_dir_operations;
301	}
302
303	return inode;
304out_inode:
305	iput(inode);
306err:
307	return ERR_PTR(ret);
308}
309
310static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
311{
312	struct inode *inode;
313	struct ipc_namespace *ns = data;
314
315	sb->s_blocksize = PAGE_CACHE_SIZE;
316	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
317	sb->s_magic = MQUEUE_MAGIC;
318	sb->s_op = &mqueue_super_ops;
319
320	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
321	if (IS_ERR(inode))
322		return PTR_ERR(inode);
323
324	sb->s_root = d_make_root(inode);
325	if (!sb->s_root)
326		return -ENOMEM;
327	return 0;
328}
329
330static struct dentry *mqueue_mount(struct file_system_type *fs_type,
331			 int flags, const char *dev_name,
332			 void *data)
333{
334	if (!(flags & MS_KERNMOUNT))
335		data = current->nsproxy->ipc_ns;
336	return mount_ns(fs_type, flags, data, mqueue_fill_super);
337}
338
339static void init_once(void *foo)
340{
341	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
342
343	inode_init_once(&p->vfs_inode);
344}
345
346static struct inode *mqueue_alloc_inode(struct super_block *sb)
347{
348	struct mqueue_inode_info *ei;
349
350	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
351	if (!ei)
352		return NULL;
353	return &ei->vfs_inode;
354}
355
356static void mqueue_i_callback(struct rcu_head *head)
357{
358	struct inode *inode = container_of(head, struct inode, i_rcu);
359	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
360}
361
362static void mqueue_destroy_inode(struct inode *inode)
363{
364	call_rcu(&inode->i_rcu, mqueue_i_callback);
365}
366
367static void mqueue_evict_inode(struct inode *inode)
368{
369	struct mqueue_inode_info *info;
370	struct user_struct *user;
371	unsigned long mq_bytes, mq_treesize;
372	struct ipc_namespace *ipc_ns;
373	struct msg_msg *msg;
374
375	clear_inode(inode);
376
377	if (S_ISDIR(inode->i_mode))
378		return;
379
380	ipc_ns = get_ns_from_inode(inode);
381	info = MQUEUE_I(inode);
382	spin_lock(&info->lock);
383	while ((msg = msg_get(info)) != NULL)
384		free_msg(msg);
385	kfree(info->node_cache);
386	spin_unlock(&info->lock);
387
388	/* Total amount of bytes accounted for the mqueue */
389	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
390		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
391		sizeof(struct posix_msg_tree_node);
392
393	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
394				  info->attr.mq_msgsize);
395
396	user = info->user;
397	if (user) {
398		spin_lock(&mq_lock);
399		user->mq_bytes -= mq_bytes;
400		/*
401		 * get_ns_from_inode() ensures that the
402		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
403		 * to which we now hold a reference, or it is NULL.
404		 * We can't put it here under mq_lock, though.
405		 */
406		if (ipc_ns)
407			ipc_ns->mq_queues_count--;
408		spin_unlock(&mq_lock);
409		free_uid(user);
410	}
411	if (ipc_ns)
412		put_ipc_ns(ipc_ns);
413}
414
415static int mqueue_create(struct inode *dir, struct dentry *dentry,
416				umode_t mode, bool excl)
417{
418	struct inode *inode;
419	struct mq_attr *attr = dentry->d_fsdata;
420	int error;
421	struct ipc_namespace *ipc_ns;
422
423	spin_lock(&mq_lock);
424	ipc_ns = __get_ns_from_inode(dir);
425	if (!ipc_ns) {
426		error = -EACCES;
427		goto out_unlock;
428	}
429	if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
430	    (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
431	     !capable(CAP_SYS_RESOURCE))) {
432		error = -ENOSPC;
433		goto out_unlock;
434	}
435	ipc_ns->mq_queues_count++;
436	spin_unlock(&mq_lock);
437
438	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
439	if (IS_ERR(inode)) {
440		error = PTR_ERR(inode);
441		spin_lock(&mq_lock);
442		ipc_ns->mq_queues_count--;
443		goto out_unlock;
444	}
445
446	put_ipc_ns(ipc_ns);
447	dir->i_size += DIRENT_SIZE;
448	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
449
450	d_instantiate(dentry, inode);
451	dget(dentry);
452	return 0;
453out_unlock:
454	spin_unlock(&mq_lock);
455	if (ipc_ns)
456		put_ipc_ns(ipc_ns);
457	return error;
458}
459
460static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
461{
462  	struct inode *inode = dentry->d_inode;
463
464	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
465	dir->i_size -= DIRENT_SIZE;
466  	drop_nlink(inode);
467  	dput(dentry);
468  	return 0;
469}
470
471/*
472*	This is routine for system read from queue file.
473*	To avoid mess with doing here some sort of mq_receive we allow
474*	to read only queue size & notification info (the only values
475*	that are interesting from user point of view and aren't accessible
476*	through std routines)
477*/
478static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
479				size_t count, loff_t *off)
480{
481	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
482	char buffer[FILENT_SIZE];
483	ssize_t ret;
484
485	spin_lock(&info->lock);
486	snprintf(buffer, sizeof(buffer),
487			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
488			info->qsize,
489			info->notify_owner ? info->notify.sigev_notify : 0,
490			(info->notify_owner &&
491			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
492				info->notify.sigev_signo : 0,
493			pid_vnr(info->notify_owner));
494	spin_unlock(&info->lock);
495	buffer[sizeof(buffer)-1] = '\0';
496
497	ret = simple_read_from_buffer(u_data, count, off, buffer,
498				strlen(buffer));
499	if (ret <= 0)
500		return ret;
501
502	filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
503	return ret;
504}
505
506static int mqueue_flush_file(struct file *filp, fl_owner_t id)
507{
508	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
509
510	spin_lock(&info->lock);
511	if (task_tgid(current) == info->notify_owner)
512		remove_notification(info);
513
514	spin_unlock(&info->lock);
515	return 0;
516}
517
518static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
519{
520	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
521	int retval = 0;
522
523	poll_wait(filp, &info->wait_q, poll_tab);
524
525	spin_lock(&info->lock);
526	if (info->attr.mq_curmsgs)
527		retval = POLLIN | POLLRDNORM;
528
529	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
530		retval |= POLLOUT | POLLWRNORM;
531	spin_unlock(&info->lock);
532
533	return retval;
534}
535
536/* Adds current to info->e_wait_q[sr] before element with smaller prio */
537static void wq_add(struct mqueue_inode_info *info, int sr,
538			struct ext_wait_queue *ewp)
539{
540	struct ext_wait_queue *walk;
541
542	ewp->task = current;
543
544	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
545		if (walk->task->static_prio <= current->static_prio) {
546			list_add_tail(&ewp->list, &walk->list);
547			return;
548		}
549	}
550	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
551}
552
553/*
554 * Puts current task to sleep. Caller must hold queue lock. After return
555 * lock isn't held.
556 * sr: SEND or RECV
557 */
558static int wq_sleep(struct mqueue_inode_info *info, int sr,
559		    ktime_t *timeout, struct ext_wait_queue *ewp)
560{
561	int retval;
562	signed long time;
563
564	wq_add(info, sr, ewp);
565
566	for (;;) {
567		set_current_state(TASK_INTERRUPTIBLE);
568
569		spin_unlock(&info->lock);
570		time = schedule_hrtimeout_range_clock(timeout, 0,
571			HRTIMER_MODE_ABS, CLOCK_REALTIME);
572
573		while (ewp->state == STATE_PENDING)
574			cpu_relax();
575
576		if (ewp->state == STATE_READY) {
577			retval = 0;
578			goto out;
579		}
580		spin_lock(&info->lock);
581		if (ewp->state == STATE_READY) {
582			retval = 0;
583			goto out_unlock;
584		}
585		if (signal_pending(current)) {
586			retval = -ERESTARTSYS;
587			break;
588		}
589		if (time == 0) {
590			retval = -ETIMEDOUT;
591			break;
592		}
593	}
594	list_del(&ewp->list);
595out_unlock:
596	spin_unlock(&info->lock);
597out:
598	return retval;
599}
600
601/*
602 * Returns waiting task that should be serviced first or NULL if none exists
603 */
604static struct ext_wait_queue *wq_get_first_waiter(
605		struct mqueue_inode_info *info, int sr)
606{
607	struct list_head *ptr;
608
609	ptr = info->e_wait_q[sr].list.prev;
610	if (ptr == &info->e_wait_q[sr].list)
611		return NULL;
612	return list_entry(ptr, struct ext_wait_queue, list);
613}
614
615
616static inline void set_cookie(struct sk_buff *skb, char code)
617{
618	((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
619}
620
621/*
622 * The next function is only to split too long sys_mq_timedsend
623 */
624static void __do_notify(struct mqueue_inode_info *info)
625{
626	/* notification
627	 * invoked when there is registered process and there isn't process
628	 * waiting synchronously for message AND state of queue changed from
629	 * empty to not empty. Here we are sure that no one is waiting
630	 * synchronously. */
631	if (info->notify_owner &&
632	    info->attr.mq_curmsgs == 1) {
633		struct siginfo sig_i;
634		switch (info->notify.sigev_notify) {
635		case SIGEV_NONE:
636			break;
637		case SIGEV_SIGNAL:
638			/* sends signal */
639
640			sig_i.si_signo = info->notify.sigev_signo;
641			sig_i.si_errno = 0;
642			sig_i.si_code = SI_MESGQ;
643			sig_i.si_value = info->notify.sigev_value;
644			/* map current pid/uid into info->owner's namespaces */
645			rcu_read_lock();
646			sig_i.si_pid = task_tgid_nr_ns(current,
647						ns_of_pid(info->notify_owner));
648			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
649			rcu_read_unlock();
650
651			kill_pid_info(info->notify.sigev_signo,
652				      &sig_i, info->notify_owner);
653			break;
654		case SIGEV_THREAD:
655			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
656			netlink_sendskb(info->notify_sock, info->notify_cookie);
657			break;
658		}
659		/* after notification unregisters process */
660		put_pid(info->notify_owner);
661		put_user_ns(info->notify_user_ns);
662		info->notify_owner = NULL;
663		info->notify_user_ns = NULL;
664	}
665	wake_up(&info->wait_q);
666}
667
668static int prepare_timeout(const struct timespec __user *u_abs_timeout,
669			   ktime_t *expires, struct timespec *ts)
670{
671	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
672		return -EFAULT;
673	if (!timespec_valid(ts))
674		return -EINVAL;
675
676	*expires = timespec_to_ktime(*ts);
677	return 0;
678}
679
680static void remove_notification(struct mqueue_inode_info *info)
681{
682	if (info->notify_owner != NULL &&
683	    info->notify.sigev_notify == SIGEV_THREAD) {
684		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685		netlink_sendskb(info->notify_sock, info->notify_cookie);
686	}
687	put_pid(info->notify_owner);
688	put_user_ns(info->notify_user_ns);
689	info->notify_owner = NULL;
690	info->notify_user_ns = NULL;
691}
692
693static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
694{
695	int mq_treesize;
696	unsigned long total_size;
697
698	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
699		return -EINVAL;
700	if (capable(CAP_SYS_RESOURCE)) {
701		if (attr->mq_maxmsg > HARD_MSGMAX ||
702		    attr->mq_msgsize > HARD_MSGSIZEMAX)
703			return -EINVAL;
704	} else {
705		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
706				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
707			return -EINVAL;
708	}
709	/* check for overflow */
710	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
711		return -EOVERFLOW;
712	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
713		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
714		sizeof(struct posix_msg_tree_node);
715	total_size = attr->mq_maxmsg * attr->mq_msgsize;
716	if (total_size + mq_treesize < total_size)
717		return -EOVERFLOW;
718	return 0;
719}
720
721/*
722 * Invoked when creating a new queue via sys_mq_open
723 */
724static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
725			struct path *path, int oflag, umode_t mode,
726			struct mq_attr *attr)
727{
728	const struct cred *cred = current_cred();
729	struct file *result;
730	int ret;
731
732	if (attr) {
733		ret = mq_attr_ok(ipc_ns, attr);
734		if (ret)
735			return ERR_PTR(ret);
736		/* store for use during create */
737		path->dentry->d_fsdata = attr;
738	} else {
739		struct mq_attr def_attr;
740
741		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
742					 ipc_ns->mq_msg_default);
743		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
744					  ipc_ns->mq_msgsize_default);
745		ret = mq_attr_ok(ipc_ns, &def_attr);
746		if (ret)
747			return ERR_PTR(ret);
748	}
749
750	mode &= ~current_umask();
751	ret = mnt_want_write(path->mnt);
752	if (ret)
753		return ERR_PTR(ret);
754	ret = vfs_create(dir, path->dentry, mode, true);
755	path->dentry->d_fsdata = NULL;
756	if (!ret)
757		result = dentry_open(path, oflag, cred);
758	else
759		result = ERR_PTR(ret);
760	/*
761	 * dentry_open() took a persistent mnt_want_write(),
762	 * so we can now drop this one.
763	 */
764	mnt_drop_write(path->mnt);
765	return result;
766}
767
768/* Opens existing queue */
769static struct file *do_open(struct path *path, int oflag)
770{
771	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
772						  MAY_READ | MAY_WRITE };
773	int acc;
774	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
775		return ERR_PTR(-EINVAL);
776	acc = oflag2acc[oflag & O_ACCMODE];
777	if (inode_permission(path->dentry->d_inode, acc))
778		return ERR_PTR(-EACCES);
779	return dentry_open(path, oflag, current_cred());
780}
781
782SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
783		struct mq_attr __user *, u_attr)
784{
785	struct path path;
786	struct file *filp;
787	char *name;
788	struct mq_attr attr;
789	int fd, error;
790	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
791	struct dentry *root = ipc_ns->mq_mnt->mnt_root;
792
793	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
794		return -EFAULT;
795
796	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
797
798	if (IS_ERR(name = getname(u_name)))
799		return PTR_ERR(name);
800
801	fd = get_unused_fd_flags(O_CLOEXEC);
802	if (fd < 0)
803		goto out_putname;
804
805	error = 0;
806	mutex_lock(&root->d_inode->i_mutex);
807	path.dentry = lookup_one_len(name, root, strlen(name));
808	if (IS_ERR(path.dentry)) {
809		error = PTR_ERR(path.dentry);
810		goto out_putfd;
811	}
812	path.mnt = mntget(ipc_ns->mq_mnt);
813
814	if (oflag & O_CREAT) {
815		if (path.dentry->d_inode) {	/* entry already exists */
816			audit_inode(name, path.dentry);
817			if (oflag & O_EXCL) {
818				error = -EEXIST;
819				goto out;
820			}
821			filp = do_open(&path, oflag);
822		} else {
823			filp = do_create(ipc_ns, root->d_inode,
824						&path, oflag, mode,
825						u_attr ? &attr : NULL);
826		}
827	} else {
828		if (!path.dentry->d_inode) {
829			error = -ENOENT;
830			goto out;
831		}
832		audit_inode(name, path.dentry);
833		filp = do_open(&path, oflag);
834	}
835
836	if (!IS_ERR(filp))
837		fd_install(fd, filp);
838	else
839		error = PTR_ERR(filp);
840out:
841	path_put(&path);
842out_putfd:
843	if (error) {
844		put_unused_fd(fd);
845		fd = error;
846	}
847	mutex_unlock(&root->d_inode->i_mutex);
848out_putname:
849	putname(name);
850	return fd;
851}
852
853SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
854{
855	int err;
856	char *name;
857	struct dentry *dentry;
858	struct inode *inode = NULL;
859	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
860
861	name = getname(u_name);
862	if (IS_ERR(name))
863		return PTR_ERR(name);
864
865	mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
866			I_MUTEX_PARENT);
867	dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
868	if (IS_ERR(dentry)) {
869		err = PTR_ERR(dentry);
870		goto out_unlock;
871	}
872
873	if (!dentry->d_inode) {
874		err = -ENOENT;
875		goto out_err;
876	}
877
878	inode = dentry->d_inode;
879	if (inode)
880		ihold(inode);
881	err = mnt_want_write(ipc_ns->mq_mnt);
882	if (err)
883		goto out_err;
884	err = vfs_unlink(dentry->d_parent->d_inode, dentry);
885	mnt_drop_write(ipc_ns->mq_mnt);
886out_err:
887	dput(dentry);
888
889out_unlock:
890	mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
891	putname(name);
892	if (inode)
893		iput(inode);
894
895	return err;
896}
897
898/* Pipelined send and receive functions.
899 *
900 * If a receiver finds no waiting message, then it registers itself in the
901 * list of waiting receivers. A sender checks that list before adding the new
902 * message into the message array. If there is a waiting receiver, then it
903 * bypasses the message array and directly hands the message over to the
904 * receiver.
905 * The receiver accepts the message and returns without grabbing the queue
906 * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
907 * are necessary. The same algorithm is used for sysv semaphores, see
908 * ipc/sem.c for more details.
909 *
910 * The same algorithm is used for senders.
911 */
912
913/* pipelined_send() - send a message directly to the task waiting in
914 * sys_mq_timedreceive() (without inserting message into a queue).
915 */
916static inline void pipelined_send(struct mqueue_inode_info *info,
917				  struct msg_msg *message,
918				  struct ext_wait_queue *receiver)
919{
920	receiver->msg = message;
921	list_del(&receiver->list);
922	receiver->state = STATE_PENDING;
923	wake_up_process(receiver->task);
924	smp_wmb();
925	receiver->state = STATE_READY;
926}
927
928/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
929 * gets its message and put to the queue (we have one free place for sure). */
930static inline void pipelined_receive(struct mqueue_inode_info *info)
931{
932	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
933
934	if (!sender) {
935		/* for poll */
936		wake_up_interruptible(&info->wait_q);
937		return;
938	}
939	if (msg_insert(sender->msg, info))
940		return;
941	list_del(&sender->list);
942	sender->state = STATE_PENDING;
943	wake_up_process(sender->task);
944	smp_wmb();
945	sender->state = STATE_READY;
946}
947
948SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
949		size_t, msg_len, unsigned int, msg_prio,
950		const struct timespec __user *, u_abs_timeout)
951{
952	struct file *filp;
953	struct inode *inode;
954	struct ext_wait_queue wait;
955	struct ext_wait_queue *receiver;
956	struct msg_msg *msg_ptr;
957	struct mqueue_inode_info *info;
958	ktime_t expires, *timeout = NULL;
959	struct timespec ts;
960	struct posix_msg_tree_node *new_leaf = NULL;
961	int ret = 0;
962
963	if (u_abs_timeout) {
964		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
965		if (res)
966			return res;
967		timeout = &expires;
968	}
969
970	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
971		return -EINVAL;
972
973	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
974
975	filp = fget(mqdes);
976	if (unlikely(!filp)) {
977		ret = -EBADF;
978		goto out;
979	}
980
981	inode = filp->f_path.dentry->d_inode;
982	if (unlikely(filp->f_op != &mqueue_file_operations)) {
983		ret = -EBADF;
984		goto out_fput;
985	}
986	info = MQUEUE_I(inode);
987	audit_inode(NULL, filp->f_path.dentry);
988
989	if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
990		ret = -EBADF;
991		goto out_fput;
992	}
993
994	if (unlikely(msg_len > info->attr.mq_msgsize)) {
995		ret = -EMSGSIZE;
996		goto out_fput;
997	}
998
999	/* First try to allocate memory, before doing anything with
1000	 * existing queues. */
1001	msg_ptr = load_msg(u_msg_ptr, msg_len);
1002	if (IS_ERR(msg_ptr)) {
1003		ret = PTR_ERR(msg_ptr);
1004		goto out_fput;
1005	}
1006	msg_ptr->m_ts = msg_len;
1007	msg_ptr->m_type = msg_prio;
1008
1009	/*
1010	 * msg_insert really wants us to have a valid, spare node struct so
1011	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1012	 * fall back to that if necessary.
1013	 */
1014	if (!info->node_cache)
1015		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1016
1017	spin_lock(&info->lock);
1018
1019	if (!info->node_cache && new_leaf) {
1020		/* Save our speculative allocation into the cache */
1021		rb_init_node(&new_leaf->rb_node);
1022		INIT_LIST_HEAD(&new_leaf->msg_list);
1023		info->node_cache = new_leaf;
1024		info->qsize += sizeof(*new_leaf);
1025		new_leaf = NULL;
1026	} else {
1027		kfree(new_leaf);
1028	}
1029
1030	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1031		if (filp->f_flags & O_NONBLOCK) {
1032			ret = -EAGAIN;
1033		} else {
1034			wait.task = current;
1035			wait.msg = (void *) msg_ptr;
1036			wait.state = STATE_NONE;
1037			ret = wq_sleep(info, SEND, timeout, &wait);
1038			/*
1039			 * wq_sleep must be called with info->lock held, and
1040			 * returns with the lock released
1041			 */
1042			goto out_free;
1043		}
1044	} else {
1045		receiver = wq_get_first_waiter(info, RECV);
1046		if (receiver) {
1047			pipelined_send(info, msg_ptr, receiver);
1048		} else {
1049			/* adds message to the queue */
1050			ret = msg_insert(msg_ptr, info);
1051			if (ret)
1052				goto out_unlock;
1053			__do_notify(info);
1054		}
1055		inode->i_atime = inode->i_mtime = inode->i_ctime =
1056				CURRENT_TIME;
1057	}
1058out_unlock:
1059	spin_unlock(&info->lock);
1060out_free:
1061	if (ret)
1062		free_msg(msg_ptr);
1063out_fput:
1064	fput(filp);
1065out:
1066	return ret;
1067}
1068
1069SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1070		size_t, msg_len, unsigned int __user *, u_msg_prio,
1071		const struct timespec __user *, u_abs_timeout)
1072{
1073	ssize_t ret;
1074	struct msg_msg *msg_ptr;
1075	struct file *filp;
1076	struct inode *inode;
1077	struct mqueue_inode_info *info;
1078	struct ext_wait_queue wait;
1079	ktime_t expires, *timeout = NULL;
1080	struct timespec ts;
1081	struct posix_msg_tree_node *new_leaf = NULL;
1082
1083	if (u_abs_timeout) {
1084		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1085		if (res)
1086			return res;
1087		timeout = &expires;
1088	}
1089
1090	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1091
1092	filp = fget(mqdes);
1093	if (unlikely(!filp)) {
1094		ret = -EBADF;
1095		goto out;
1096	}
1097
1098	inode = filp->f_path.dentry->d_inode;
1099	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1100		ret = -EBADF;
1101		goto out_fput;
1102	}
1103	info = MQUEUE_I(inode);
1104	audit_inode(NULL, filp->f_path.dentry);
1105
1106	if (unlikely(!(filp->f_mode & FMODE_READ))) {
1107		ret = -EBADF;
1108		goto out_fput;
1109	}
1110
1111	/* checks if buffer is big enough */
1112	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1113		ret = -EMSGSIZE;
1114		goto out_fput;
1115	}
1116
1117	/*
1118	 * msg_insert really wants us to have a valid, spare node struct so
1119	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1120	 * fall back to that if necessary.
1121	 */
1122	if (!info->node_cache)
1123		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1124
1125	spin_lock(&info->lock);
1126
1127	if (!info->node_cache && new_leaf) {
1128		/* Save our speculative allocation into the cache */
1129		rb_init_node(&new_leaf->rb_node);
1130		INIT_LIST_HEAD(&new_leaf->msg_list);
1131		info->node_cache = new_leaf;
1132		info->qsize += sizeof(*new_leaf);
1133	} else {
1134		kfree(new_leaf);
1135	}
1136
1137	if (info->attr.mq_curmsgs == 0) {
1138		if (filp->f_flags & O_NONBLOCK) {
1139			spin_unlock(&info->lock);
1140			ret = -EAGAIN;
1141		} else {
1142			wait.task = current;
1143			wait.state = STATE_NONE;
1144			ret = wq_sleep(info, RECV, timeout, &wait);
1145			msg_ptr = wait.msg;
1146		}
1147	} else {
1148		msg_ptr = msg_get(info);
1149
1150		inode->i_atime = inode->i_mtime = inode->i_ctime =
1151				CURRENT_TIME;
1152
1153		/* There is now free space in queue. */
1154		pipelined_receive(info);
1155		spin_unlock(&info->lock);
1156		ret = 0;
1157	}
1158	if (ret == 0) {
1159		ret = msg_ptr->m_ts;
1160
1161		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1162			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1163			ret = -EFAULT;
1164		}
1165		free_msg(msg_ptr);
1166	}
1167out_fput:
1168	fput(filp);
1169out:
1170	return ret;
1171}
1172
1173/*
1174 * Notes: the case when user wants us to deregister (with NULL as pointer)
1175 * and he isn't currently owner of notification, will be silently discarded.
1176 * It isn't explicitly defined in the POSIX.
1177 */
1178SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1179		const struct sigevent __user *, u_notification)
1180{
1181	int ret;
1182	struct file *filp;
1183	struct sock *sock;
1184	struct inode *inode;
1185	struct sigevent notification;
1186	struct mqueue_inode_info *info;
1187	struct sk_buff *nc;
1188
1189	if (u_notification) {
1190		if (copy_from_user(&notification, u_notification,
1191					sizeof(struct sigevent)))
1192			return -EFAULT;
1193	}
1194
1195	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1196
1197	nc = NULL;
1198	sock = NULL;
1199	if (u_notification != NULL) {
1200		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1201			     notification.sigev_notify != SIGEV_SIGNAL &&
1202			     notification.sigev_notify != SIGEV_THREAD))
1203			return -EINVAL;
1204		if (notification.sigev_notify == SIGEV_SIGNAL &&
1205			!valid_signal(notification.sigev_signo)) {
1206			return -EINVAL;
1207		}
1208		if (notification.sigev_notify == SIGEV_THREAD) {
1209			long timeo;
1210
1211			/* create the notify skb */
1212			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1213			if (!nc) {
1214				ret = -ENOMEM;
1215				goto out;
1216			}
1217			if (copy_from_user(nc->data,
1218					notification.sigev_value.sival_ptr,
1219					NOTIFY_COOKIE_LEN)) {
1220				ret = -EFAULT;
1221				goto out;
1222			}
1223
1224			/* TODO: add a header? */
1225			skb_put(nc, NOTIFY_COOKIE_LEN);
1226			/* and attach it to the socket */
1227retry:
1228			filp = fget(notification.sigev_signo);
1229			if (!filp) {
1230				ret = -EBADF;
1231				goto out;
1232			}
1233			sock = netlink_getsockbyfilp(filp);
1234			fput(filp);
1235			if (IS_ERR(sock)) {
1236				ret = PTR_ERR(sock);
1237				sock = NULL;
1238				goto out;
1239			}
1240
1241			timeo = MAX_SCHEDULE_TIMEOUT;
1242			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1243			if (ret == 1)
1244				goto retry;
1245			if (ret) {
1246				sock = NULL;
1247				nc = NULL;
1248				goto out;
1249			}
1250		}
1251	}
1252
1253	filp = fget(mqdes);
1254	if (!filp) {
1255		ret = -EBADF;
1256		goto out;
1257	}
1258
1259	inode = filp->f_path.dentry->d_inode;
1260	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1261		ret = -EBADF;
1262		goto out_fput;
1263	}
1264	info = MQUEUE_I(inode);
1265
1266	ret = 0;
1267	spin_lock(&info->lock);
1268	if (u_notification == NULL) {
1269		if (info->notify_owner == task_tgid(current)) {
1270			remove_notification(info);
1271			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1272		}
1273	} else if (info->notify_owner != NULL) {
1274		ret = -EBUSY;
1275	} else {
1276		switch (notification.sigev_notify) {
1277		case SIGEV_NONE:
1278			info->notify.sigev_notify = SIGEV_NONE;
1279			break;
1280		case SIGEV_THREAD:
1281			info->notify_sock = sock;
1282			info->notify_cookie = nc;
1283			sock = NULL;
1284			nc = NULL;
1285			info->notify.sigev_notify = SIGEV_THREAD;
1286			break;
1287		case SIGEV_SIGNAL:
1288			info->notify.sigev_signo = notification.sigev_signo;
1289			info->notify.sigev_value = notification.sigev_value;
1290			info->notify.sigev_notify = SIGEV_SIGNAL;
1291			break;
1292		}
1293
1294		info->notify_owner = get_pid(task_tgid(current));
1295		info->notify_user_ns = get_user_ns(current_user_ns());
1296		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1297	}
1298	spin_unlock(&info->lock);
1299out_fput:
1300	fput(filp);
1301out:
1302	if (sock) {
1303		netlink_detachskb(sock, nc);
1304	} else if (nc) {
1305		dev_kfree_skb(nc);
1306	}
1307	return ret;
1308}
1309
1310SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1311		const struct mq_attr __user *, u_mqstat,
1312		struct mq_attr __user *, u_omqstat)
1313{
1314	int ret;
1315	struct mq_attr mqstat, omqstat;
1316	struct file *filp;
1317	struct inode *inode;
1318	struct mqueue_inode_info *info;
1319
1320	if (u_mqstat != NULL) {
1321		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1322			return -EFAULT;
1323		if (mqstat.mq_flags & (~O_NONBLOCK))
1324			return -EINVAL;
1325	}
1326
1327	filp = fget(mqdes);
1328	if (!filp) {
1329		ret = -EBADF;
1330		goto out;
1331	}
1332
1333	inode = filp->f_path.dentry->d_inode;
1334	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1335		ret = -EBADF;
1336		goto out_fput;
1337	}
1338	info = MQUEUE_I(inode);
1339
1340	spin_lock(&info->lock);
1341
1342	omqstat = info->attr;
1343	omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
1344	if (u_mqstat) {
1345		audit_mq_getsetattr(mqdes, &mqstat);
1346		spin_lock(&filp->f_lock);
1347		if (mqstat.mq_flags & O_NONBLOCK)
1348			filp->f_flags |= O_NONBLOCK;
1349		else
1350			filp->f_flags &= ~O_NONBLOCK;
1351		spin_unlock(&filp->f_lock);
1352
1353		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1354	}
1355
1356	spin_unlock(&info->lock);
1357
1358	ret = 0;
1359	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1360						sizeof(struct mq_attr)))
1361		ret = -EFAULT;
1362
1363out_fput:
1364	fput(filp);
1365out:
1366	return ret;
1367}
1368
1369static const struct inode_operations mqueue_dir_inode_operations = {
1370	.lookup = simple_lookup,
1371	.create = mqueue_create,
1372	.unlink = mqueue_unlink,
1373};
1374
1375static const struct file_operations mqueue_file_operations = {
1376	.flush = mqueue_flush_file,
1377	.poll = mqueue_poll_file,
1378	.read = mqueue_read_file,
1379	.llseek = default_llseek,
1380};
1381
1382static const struct super_operations mqueue_super_ops = {
1383	.alloc_inode = mqueue_alloc_inode,
1384	.destroy_inode = mqueue_destroy_inode,
1385	.evict_inode = mqueue_evict_inode,
1386	.statfs = simple_statfs,
1387};
1388
1389static struct file_system_type mqueue_fs_type = {
1390	.name = "mqueue",
1391	.mount = mqueue_mount,
1392	.kill_sb = kill_litter_super,
1393};
1394
1395int mq_init_ns(struct ipc_namespace *ns)
1396{
1397	ns->mq_queues_count  = 0;
1398	ns->mq_queues_max    = DFLT_QUEUESMAX;
1399	ns->mq_msg_max       = DFLT_MSGMAX;
1400	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1401	ns->mq_msg_default   = DFLT_MSG;
1402	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1403
1404	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1405	if (IS_ERR(ns->mq_mnt)) {
1406		int err = PTR_ERR(ns->mq_mnt);
1407		ns->mq_mnt = NULL;
1408		return err;
1409	}
1410	return 0;
1411}
1412
1413void mq_clear_sbinfo(struct ipc_namespace *ns)
1414{
1415	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1416}
1417
1418void mq_put_mnt(struct ipc_namespace *ns)
1419{
1420	kern_unmount(ns->mq_mnt);
1421}
1422
1423static int __init init_mqueue_fs(void)
1424{
1425	int error;
1426
1427	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1428				sizeof(struct mqueue_inode_info), 0,
1429				SLAB_HWCACHE_ALIGN, init_once);
1430	if (mqueue_inode_cachep == NULL)
1431		return -ENOMEM;
1432
1433	/* ignore failures - they are not fatal */
1434	mq_sysctl_table = mq_register_sysctl_table();
1435
1436	error = register_filesystem(&mqueue_fs_type);
1437	if (error)
1438		goto out_sysctl;
1439
1440	spin_lock_init(&mq_lock);
1441
1442	error = mq_init_ns(&init_ipc_ns);
1443	if (error)
1444		goto out_filesystem;
1445
1446	return 0;
1447
1448out_filesystem:
1449	unregister_filesystem(&mqueue_fs_type);
1450out_sysctl:
1451	if (mq_sysctl_table)
1452		unregister_sysctl_table(mq_sysctl_table);
1453	kmem_cache_destroy(mqueue_inode_cachep);
1454	return error;
1455}
1456
1457__initcall(init_mqueue_fs);
1458