1/*
2 * Performance events core code:
3 *
4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/tick.h>
22#include <linux/sysfs.h>
23#include <linux/dcache.h>
24#include <linux/percpu.h>
25#include <linux/ptrace.h>
26#include <linux/reboot.h>
27#include <linux/vmstat.h>
28#include <linux/device.h>
29#include <linux/export.h>
30#include <linux/vmalloc.h>
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/perf_event.h>
38#include <linux/ftrace_event.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/mm_types.h>
41#include <linux/cgroup.h>
42#include <linux/module.h>
43#include <linux/mman.h>
44#include <linux/compat.h>
45
46#include "internal.h"
47
48#include <asm/irq_regs.h>
49
50static struct workqueue_struct *perf_wq;
51
52struct remote_function_call {
53	struct task_struct	*p;
54	int			(*func)(void *info);
55	void			*info;
56	int			ret;
57};
58
59static void remote_function(void *data)
60{
61	struct remote_function_call *tfc = data;
62	struct task_struct *p = tfc->p;
63
64	if (p) {
65		tfc->ret = -EAGAIN;
66		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67			return;
68	}
69
70	tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p:		the task to evaluate
76 * @func:	the function to be called
77 * @info:	the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 *	    -ESRCH  - when the process isn't running
84 *	    -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89	struct remote_function_call data = {
90		.p	= p,
91		.func	= func,
92		.info	= info,
93		.ret	= -ESRCH, /* No such (running) process */
94	};
95
96	if (task_curr(p))
97		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99	return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func:	the function to be called
105 * @info:	the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113	struct remote_function_call data = {
114		.p	= NULL,
115		.func	= func,
116		.info	= info,
117		.ret	= -ENXIO, /* No such CPU */
118	};
119
120	smp_call_function_single(cpu, remote_function, &data, 1);
121
122	return data.ret;
123}
124
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129	return event->owner == EVENT_OWNER_KERNEL;
130}
131
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133		       PERF_FLAG_FD_OUTPUT  |\
134		       PERF_FLAG_PID_CGROUP |\
135		       PERF_FLAG_FD_CLOEXEC)
136
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141	(PERF_SAMPLE_BRANCH_KERNEL |\
142	 PERF_SAMPLE_BRANCH_HV)
143
144enum event_type_t {
145	EVENT_FLEXIBLE = 0x1,
146	EVENT_PINNED = 0x2,
147	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154struct static_key_deferred perf_sched_events __read_mostly;
155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
161static atomic_t nr_freq_events __read_mostly;
162
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
167/*
168 * perf event paranoia level:
169 *  -1 - not paranoid at all
170 *   0 - disallow raw tracepoint access for unpriv
171 *   1 - disallow cpu events for unpriv
172 *   2 - disallow kernel profiling for unpriv
173 */
174int sysctl_perf_event_paranoid __read_mostly = 1;
175
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179/*
180 * max perf event sample rate
181 */
182#define DEFAULT_MAX_SAMPLE_RATE		100000
183#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT	25
185
186int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
190
191static int perf_sample_allowed_ns __read_mostly =
192	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194void update_perf_cpu_limits(void)
195{
196	u64 tmp = perf_sample_period_ns;
197
198	tmp *= sysctl_perf_cpu_time_max_percent;
199	do_div(tmp, 100);
200	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201}
202
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205int perf_proc_update_handler(struct ctl_table *table, int write,
206		void __user *buffer, size_t *lenp,
207		loff_t *ppos)
208{
209	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211	if (ret || !write)
212		return ret;
213
214	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216	update_perf_cpu_limits();
217
218	return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224				void __user *buffer, size_t *lenp,
225				loff_t *ppos)
226{
227	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229	if (ret || !write)
230		return ret;
231
232	update_perf_cpu_limits();
233
234	return 0;
235}
236
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done.  This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
244static DEFINE_PER_CPU(u64, running_sample_length);
245
246static void perf_duration_warn(struct irq_work *w)
247{
248	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249	u64 avg_local_sample_len;
250	u64 local_samples_len;
251
252	local_samples_len = __this_cpu_read(running_sample_length);
253	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255	printk_ratelimited(KERN_WARNING
256			"perf interrupt took too long (%lld > %lld), lowering "
257			"kernel.perf_event_max_sample_rate to %d\n",
258			avg_local_sample_len, allowed_ns >> 1,
259			sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
266	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267	u64 avg_local_sample_len;
268	u64 local_samples_len;
269
270	if (allowed_ns == 0)
271		return;
272
273	/* decay the counter by 1 average sample */
274	local_samples_len = __this_cpu_read(running_sample_length);
275	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276	local_samples_len += sample_len_ns;
277	__this_cpu_write(running_sample_length, local_samples_len);
278
279	/*
280	 * note: this will be biased artifically low until we have
281	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
282	 * from having to maintain a count.
283	 */
284	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286	if (avg_local_sample_len <= allowed_ns)
287		return;
288
289	if (max_samples_per_tick <= 1)
290		return;
291
292	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296	update_perf_cpu_limits();
297
298	if (!irq_work_queue(&perf_duration_work)) {
299		early_printk("perf interrupt took too long (%lld > %lld), lowering "
300			     "kernel.perf_event_max_sample_rate to %d\n",
301			     avg_local_sample_len, allowed_ns >> 1,
302			     sysctl_perf_event_sample_rate);
303	}
304}
305
306static atomic64_t perf_event_id;
307
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309			      enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312			     enum event_type_t event_type,
313			     struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
317
318void __weak perf_event_print_debug(void)	{ }
319
320extern __weak const char *perf_pmu_name(void)
321{
322	return "pmu";
323}
324
325static inline u64 perf_clock(void)
326{
327	return local_clock();
328}
329
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337			  struct perf_event_context *ctx)
338{
339	raw_spin_lock(&cpuctx->ctx.lock);
340	if (ctx)
341		raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345			    struct perf_event_context *ctx)
346{
347	if (ctx)
348		raw_spin_unlock(&ctx->lock);
349	raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
352#ifdef CONFIG_CGROUP_PERF
353
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359	u64				time;
360	u64				timestamp;
361};
362
363struct perf_cgroup {
364	struct cgroup_subsys_state	css;
365	struct perf_cgroup_info	__percpu *info;
366};
367
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
376	return container_of(task_css(task, perf_event_cgrp_id),
377			    struct perf_cgroup, css);
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383	struct perf_event_context *ctx = event->ctx;
384	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386	/* @event doesn't care about cgroup */
387	if (!event->cgrp)
388		return true;
389
390	/* wants specific cgroup scope but @cpuctx isn't associated with any */
391	if (!cpuctx->cgrp)
392		return false;
393
394	/*
395	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
396	 * also enabled for all its descendant cgroups.  If @cpuctx's
397	 * cgroup is a descendant of @event's (the test covers identity
398	 * case), it's a match.
399	 */
400	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401				    event->cgrp->css.cgroup);
402}
403
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
406	css_put(&event->cgrp->css);
407	event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412	return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417	struct perf_cgroup_info *t;
418
419	t = per_cpu_ptr(event->cgrp->info, event->cpu);
420	return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425	struct perf_cgroup_info *info;
426	u64 now;
427
428	now = perf_clock();
429
430	info = this_cpu_ptr(cgrp->info);
431
432	info->time += now - info->timestamp;
433	info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439	if (cgrp_out)
440		__update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
445	struct perf_cgroup *cgrp;
446
447	/*
448	 * ensure we access cgroup data only when needed and
449	 * when we know the cgroup is pinned (css_get)
450	 */
451	if (!is_cgroup_event(event))
452		return;
453
454	cgrp = perf_cgroup_from_task(current);
455	/*
456	 * Do not update time when cgroup is not active
457	 */
458	if (cgrp == event->cgrp)
459		__update_cgrp_time(event->cgrp);
460}
461
462static inline void
463perf_cgroup_set_timestamp(struct task_struct *task,
464			  struct perf_event_context *ctx)
465{
466	struct perf_cgroup *cgrp;
467	struct perf_cgroup_info *info;
468
469	/*
470	 * ctx->lock held by caller
471	 * ensure we do not access cgroup data
472	 * unless we have the cgroup pinned (css_get)
473	 */
474	if (!task || !ctx->nr_cgroups)
475		return;
476
477	cgrp = perf_cgroup_from_task(task);
478	info = this_cpu_ptr(cgrp->info);
479	info->timestamp = ctx->timestamp;
480}
481
482#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493	struct perf_cpu_context *cpuctx;
494	struct pmu *pmu;
495	unsigned long flags;
496
497	/*
498	 * disable interrupts to avoid geting nr_cgroup
499	 * changes via __perf_event_disable(). Also
500	 * avoids preemption.
501	 */
502	local_irq_save(flags);
503
504	/*
505	 * we reschedule only in the presence of cgroup
506	 * constrained events.
507	 */
508	rcu_read_lock();
509
510	list_for_each_entry_rcu(pmu, &pmus, entry) {
511		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512		if (cpuctx->unique_pmu != pmu)
513			continue; /* ensure we process each cpuctx once */
514
515		/*
516		 * perf_cgroup_events says at least one
517		 * context on this CPU has cgroup events.
518		 *
519		 * ctx->nr_cgroups reports the number of cgroup
520		 * events for a context.
521		 */
522		if (cpuctx->ctx.nr_cgroups > 0) {
523			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524			perf_pmu_disable(cpuctx->ctx.pmu);
525
526			if (mode & PERF_CGROUP_SWOUT) {
527				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528				/*
529				 * must not be done before ctxswout due
530				 * to event_filter_match() in event_sched_out()
531				 */
532				cpuctx->cgrp = NULL;
533			}
534
535			if (mode & PERF_CGROUP_SWIN) {
536				WARN_ON_ONCE(cpuctx->cgrp);
537				/*
538				 * set cgrp before ctxsw in to allow
539				 * event_filter_match() to not have to pass
540				 * task around
541				 */
542				cpuctx->cgrp = perf_cgroup_from_task(task);
543				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544			}
545			perf_pmu_enable(cpuctx->ctx.pmu);
546			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547		}
548	}
549
550	rcu_read_unlock();
551
552	local_irq_restore(flags);
553}
554
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556					 struct task_struct *next)
557{
558	struct perf_cgroup *cgrp1;
559	struct perf_cgroup *cgrp2 = NULL;
560
561	/*
562	 * we come here when we know perf_cgroup_events > 0
563	 */
564	cgrp1 = perf_cgroup_from_task(task);
565
566	/*
567	 * next is NULL when called from perf_event_enable_on_exec()
568	 * that will systematically cause a cgroup_switch()
569	 */
570	if (next)
571		cgrp2 = perf_cgroup_from_task(next);
572
573	/*
574	 * only schedule out current cgroup events if we know
575	 * that we are switching to a different cgroup. Otherwise,
576	 * do no touch the cgroup events.
577	 */
578	if (cgrp1 != cgrp2)
579		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580}
581
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583					struct task_struct *task)
584{
585	struct perf_cgroup *cgrp1;
586	struct perf_cgroup *cgrp2 = NULL;
587
588	/*
589	 * we come here when we know perf_cgroup_events > 0
590	 */
591	cgrp1 = perf_cgroup_from_task(task);
592
593	/* prev can never be NULL */
594	cgrp2 = perf_cgroup_from_task(prev);
595
596	/*
597	 * only need to schedule in cgroup events if we are changing
598	 * cgroup during ctxsw. Cgroup events were not scheduled
599	 * out of ctxsw out if that was not the case.
600	 */
601	if (cgrp1 != cgrp2)
602		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606				      struct perf_event_attr *attr,
607				      struct perf_event *group_leader)
608{
609	struct perf_cgroup *cgrp;
610	struct cgroup_subsys_state *css;
611	struct fd f = fdget(fd);
612	int ret = 0;
613
614	if (!f.file)
615		return -EBADF;
616
617	css = css_tryget_online_from_dir(f.file->f_dentry,
618					 &perf_event_cgrp_subsys);
619	if (IS_ERR(css)) {
620		ret = PTR_ERR(css);
621		goto out;
622	}
623
624	cgrp = container_of(css, struct perf_cgroup, css);
625	event->cgrp = cgrp;
626
627	/*
628	 * all events in a group must monitor
629	 * the same cgroup because a task belongs
630	 * to only one perf cgroup at a time
631	 */
632	if (group_leader && group_leader->cgrp != cgrp) {
633		perf_detach_cgroup(event);
634		ret = -EINVAL;
635	}
636out:
637	fdput(f);
638	return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644	struct perf_cgroup_info *t;
645	t = per_cpu_ptr(event->cgrp->info, event->cpu);
646	event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652	/*
653	 * when the current task's perf cgroup does not match
654	 * the event's, we need to remember to call the
655	 * perf_mark_enable() function the first time a task with
656	 * a matching perf cgroup is scheduled in.
657	 */
658	if (is_cgroup_event(event) && !perf_cgroup_match(event))
659		event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664			 struct perf_event_context *ctx)
665{
666	struct perf_event *sub;
667	u64 tstamp = perf_event_time(event);
668
669	if (!event->cgrp_defer_enabled)
670		return;
671
672	event->cgrp_defer_enabled = 0;
673
674	event->tstamp_enabled = tstamp - event->total_time_enabled;
675	list_for_each_entry(sub, &event->sibling_list, group_entry) {
676		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678			sub->cgrp_defer_enabled = 0;
679		}
680	}
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687	return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695	return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700	return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712					 struct task_struct *next)
713{
714}
715
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717					struct task_struct *task)
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722				      struct perf_event_attr *attr,
723				      struct perf_event *group_leader)
724{
725	return -EINVAL;
726}
727
728static inline void
729perf_cgroup_set_timestamp(struct task_struct *task,
730			  struct perf_event_context *ctx)
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746	return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756			 struct perf_event_context *ctx)
757{
758}
759#endif
760
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771	struct perf_cpu_context *cpuctx;
772	enum hrtimer_restart ret = HRTIMER_NORESTART;
773	int rotations = 0;
774
775	WARN_ON(!irqs_disabled());
776
777	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779	rotations = perf_rotate_context(cpuctx);
780
781	/*
782	 * arm timer if needed
783	 */
784	if (rotations) {
785		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786		ret = HRTIMER_RESTART;
787	}
788
789	return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795	struct perf_cpu_context *cpuctx;
796	struct pmu *pmu;
797	unsigned long flags;
798
799	if (WARN_ON(cpu != smp_processor_id()))
800		return;
801
802	local_irq_save(flags);
803
804	rcu_read_lock();
805
806	list_for_each_entry_rcu(pmu, &pmus, entry) {
807		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809		if (pmu->task_ctx_nr == perf_sw_context)
810			continue;
811
812		hrtimer_cancel(&cpuctx->hrtimer);
813	}
814
815	rcu_read_unlock();
816
817	local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822	struct hrtimer *hr = &cpuctx->hrtimer;
823	struct pmu *pmu = cpuctx->ctx.pmu;
824	int timer;
825
826	/* no multiplexing needed for SW PMU */
827	if (pmu->task_ctx_nr == perf_sw_context)
828		return;
829
830	/*
831	 * check default is sane, if not set then force to
832	 * default interval (1/tick)
833	 */
834	timer = pmu->hrtimer_interval_ms;
835	if (timer < 1)
836		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841	hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846	struct hrtimer *hr = &cpuctx->hrtimer;
847	struct pmu *pmu = cpuctx->ctx.pmu;
848
849	/* not for SW PMU */
850	if (pmu->task_ctx_nr == perf_sw_context)
851		return;
852
853	if (hrtimer_active(hr))
854		return;
855
856	if (!hrtimer_callback_running(hr))
857		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858					 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
861void perf_pmu_disable(struct pmu *pmu)
862{
863	int *count = this_cpu_ptr(pmu->pmu_disable_count);
864	if (!(*count)++)
865		pmu->pmu_disable(pmu);
866}
867
868void perf_pmu_enable(struct pmu *pmu)
869{
870	int *count = this_cpu_ptr(pmu->pmu_disable_count);
871	if (!--(*count))
872		pmu->pmu_enable(pmu);
873}
874
875static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877/*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
882static void perf_pmu_rotate_start(struct pmu *pmu)
883{
884	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885	struct list_head *head = this_cpu_ptr(&rotation_list);
886
887	WARN_ON(!irqs_disabled());
888
889	if (list_empty(&cpuctx->rotation_list))
890		list_add(&cpuctx->rotation_list, head);
891}
892
893static void get_ctx(struct perf_event_context *ctx)
894{
895	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896}
897
898static void put_ctx(struct perf_event_context *ctx)
899{
900	if (atomic_dec_and_test(&ctx->refcount)) {
901		if (ctx->parent_ctx)
902			put_ctx(ctx->parent_ctx);
903		if (ctx->task)
904			put_task_struct(ctx->task);
905		kfree_rcu(ctx, rcu_head);
906	}
907}
908
909/*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914static __must_check struct perf_event_context *
915unclone_ctx(struct perf_event_context *ctx)
916{
917	struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919	lockdep_assert_held(&ctx->lock);
920
921	if (parent_ctx)
922		ctx->parent_ctx = NULL;
923	ctx->generation++;
924
925	return parent_ctx;
926}
927
928static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929{
930	/*
931	 * only top level events have the pid namespace they were created in
932	 */
933	if (event->parent)
934		event = event->parent;
935
936	return task_tgid_nr_ns(p, event->ns);
937}
938
939static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940{
941	/*
942	 * only top level events have the pid namespace they were created in
943	 */
944	if (event->parent)
945		event = event->parent;
946
947	return task_pid_nr_ns(p, event->ns);
948}
949
950/*
951 * If we inherit events we want to return the parent event id
952 * to userspace.
953 */
954static u64 primary_event_id(struct perf_event *event)
955{
956	u64 id = event->id;
957
958	if (event->parent)
959		id = event->parent->id;
960
961	return id;
962}
963
964/*
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
969static struct perf_event_context *
970perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971{
972	struct perf_event_context *ctx;
973
974retry:
975	/*
976	 * One of the few rules of preemptible RCU is that one cannot do
977	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978	 * part of the read side critical section was preemptible -- see
979	 * rcu_read_unlock_special().
980	 *
981	 * Since ctx->lock nests under rq->lock we must ensure the entire read
982	 * side critical section is non-preemptible.
983	 */
984	preempt_disable();
985	rcu_read_lock();
986	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987	if (ctx) {
988		/*
989		 * If this context is a clone of another, it might
990		 * get swapped for another underneath us by
991		 * perf_event_task_sched_out, though the
992		 * rcu_read_lock() protects us from any context
993		 * getting freed.  Lock the context and check if it
994		 * got swapped before we could get the lock, and retry
995		 * if so.  If we locked the right context, then it
996		 * can't get swapped on us any more.
997		 */
998		raw_spin_lock_irqsave(&ctx->lock, *flags);
999		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001			rcu_read_unlock();
1002			preempt_enable();
1003			goto retry;
1004		}
1005
1006		if (!atomic_inc_not_zero(&ctx->refcount)) {
1007			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008			ctx = NULL;
1009		}
1010	}
1011	rcu_read_unlock();
1012	preempt_enable();
1013	return ctx;
1014}
1015
1016/*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task.  This also increments its
1019 * reference count so that the context can't get freed.
1020 */
1021static struct perf_event_context *
1022perf_pin_task_context(struct task_struct *task, int ctxn)
1023{
1024	struct perf_event_context *ctx;
1025	unsigned long flags;
1026
1027	ctx = perf_lock_task_context(task, ctxn, &flags);
1028	if (ctx) {
1029		++ctx->pin_count;
1030		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031	}
1032	return ctx;
1033}
1034
1035static void perf_unpin_context(struct perf_event_context *ctx)
1036{
1037	unsigned long flags;
1038
1039	raw_spin_lock_irqsave(&ctx->lock, flags);
1040	--ctx->pin_count;
1041	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042}
1043
1044/*
1045 * Update the record of the current time in a context.
1046 */
1047static void update_context_time(struct perf_event_context *ctx)
1048{
1049	u64 now = perf_clock();
1050
1051	ctx->time += now - ctx->timestamp;
1052	ctx->timestamp = now;
1053}
1054
1055static u64 perf_event_time(struct perf_event *event)
1056{
1057	struct perf_event_context *ctx = event->ctx;
1058
1059	if (is_cgroup_event(event))
1060		return perf_cgroup_event_time(event);
1061
1062	return ctx ? ctx->time : 0;
1063}
1064
1065/*
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1068 */
1069static void update_event_times(struct perf_event *event)
1070{
1071	struct perf_event_context *ctx = event->ctx;
1072	u64 run_end;
1073
1074	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076		return;
1077	/*
1078	 * in cgroup mode, time_enabled represents
1079	 * the time the event was enabled AND active
1080	 * tasks were in the monitored cgroup. This is
1081	 * independent of the activity of the context as
1082	 * there may be a mix of cgroup and non-cgroup events.
1083	 *
1084	 * That is why we treat cgroup events differently
1085	 * here.
1086	 */
1087	if (is_cgroup_event(event))
1088		run_end = perf_cgroup_event_time(event);
1089	else if (ctx->is_active)
1090		run_end = ctx->time;
1091	else
1092		run_end = event->tstamp_stopped;
1093
1094	event->total_time_enabled = run_end - event->tstamp_enabled;
1095
1096	if (event->state == PERF_EVENT_STATE_INACTIVE)
1097		run_end = event->tstamp_stopped;
1098	else
1099		run_end = perf_event_time(event);
1100
1101	event->total_time_running = run_end - event->tstamp_running;
1102
1103}
1104
1105/*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108static void update_group_times(struct perf_event *leader)
1109{
1110	struct perf_event *event;
1111
1112	update_event_times(leader);
1113	list_for_each_entry(event, &leader->sibling_list, group_entry)
1114		update_event_times(event);
1115}
1116
1117static struct list_head *
1118ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119{
1120	if (event->attr.pinned)
1121		return &ctx->pinned_groups;
1122	else
1123		return &ctx->flexible_groups;
1124}
1125
1126/*
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
1130static void
1131list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132{
1133	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134	event->attach_state |= PERF_ATTACH_CONTEXT;
1135
1136	/*
1137	 * If we're a stand alone event or group leader, we go to the context
1138	 * list, group events are kept attached to the group so that
1139	 * perf_group_detach can, at all times, locate all siblings.
1140	 */
1141	if (event->group_leader == event) {
1142		struct list_head *list;
1143
1144		if (is_software_event(event))
1145			event->group_flags |= PERF_GROUP_SOFTWARE;
1146
1147		list = ctx_group_list(event, ctx);
1148		list_add_tail(&event->group_entry, list);
1149	}
1150
1151	if (is_cgroup_event(event))
1152		ctx->nr_cgroups++;
1153
1154	if (has_branch_stack(event))
1155		ctx->nr_branch_stack++;
1156
1157	list_add_rcu(&event->event_entry, &ctx->event_list);
1158	if (!ctx->nr_events)
1159		perf_pmu_rotate_start(ctx->pmu);
1160	ctx->nr_events++;
1161	if (event->attr.inherit_stat)
1162		ctx->nr_stat++;
1163
1164	ctx->generation++;
1165}
1166
1167/*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170static inline void perf_event__state_init(struct perf_event *event)
1171{
1172	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173					      PERF_EVENT_STATE_INACTIVE;
1174}
1175
1176/*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180static void perf_event__read_size(struct perf_event *event)
1181{
1182	int entry = sizeof(u64); /* value */
1183	int size = 0;
1184	int nr = 1;
1185
1186	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187		size += sizeof(u64);
1188
1189	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190		size += sizeof(u64);
1191
1192	if (event->attr.read_format & PERF_FORMAT_ID)
1193		entry += sizeof(u64);
1194
1195	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196		nr += event->group_leader->nr_siblings;
1197		size += sizeof(u64);
1198	}
1199
1200	size += entry * nr;
1201	event->read_size = size;
1202}
1203
1204static void perf_event__header_size(struct perf_event *event)
1205{
1206	struct perf_sample_data *data;
1207	u64 sample_type = event->attr.sample_type;
1208	u16 size = 0;
1209
1210	perf_event__read_size(event);
1211
1212	if (sample_type & PERF_SAMPLE_IP)
1213		size += sizeof(data->ip);
1214
1215	if (sample_type & PERF_SAMPLE_ADDR)
1216		size += sizeof(data->addr);
1217
1218	if (sample_type & PERF_SAMPLE_PERIOD)
1219		size += sizeof(data->period);
1220
1221	if (sample_type & PERF_SAMPLE_WEIGHT)
1222		size += sizeof(data->weight);
1223
1224	if (sample_type & PERF_SAMPLE_READ)
1225		size += event->read_size;
1226
1227	if (sample_type & PERF_SAMPLE_DATA_SRC)
1228		size += sizeof(data->data_src.val);
1229
1230	if (sample_type & PERF_SAMPLE_TRANSACTION)
1231		size += sizeof(data->txn);
1232
1233	event->header_size = size;
1234}
1235
1236static void perf_event__id_header_size(struct perf_event *event)
1237{
1238	struct perf_sample_data *data;
1239	u64 sample_type = event->attr.sample_type;
1240	u16 size = 0;
1241
1242	if (sample_type & PERF_SAMPLE_TID)
1243		size += sizeof(data->tid_entry);
1244
1245	if (sample_type & PERF_SAMPLE_TIME)
1246		size += sizeof(data->time);
1247
1248	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249		size += sizeof(data->id);
1250
1251	if (sample_type & PERF_SAMPLE_ID)
1252		size += sizeof(data->id);
1253
1254	if (sample_type & PERF_SAMPLE_STREAM_ID)
1255		size += sizeof(data->stream_id);
1256
1257	if (sample_type & PERF_SAMPLE_CPU)
1258		size += sizeof(data->cpu_entry);
1259
1260	event->id_header_size = size;
1261}
1262
1263static void perf_group_attach(struct perf_event *event)
1264{
1265	struct perf_event *group_leader = event->group_leader, *pos;
1266
1267	/*
1268	 * We can have double attach due to group movement in perf_event_open.
1269	 */
1270	if (event->attach_state & PERF_ATTACH_GROUP)
1271		return;
1272
1273	event->attach_state |= PERF_ATTACH_GROUP;
1274
1275	if (group_leader == event)
1276		return;
1277
1278	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279			!is_software_event(event))
1280		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281
1282	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283	group_leader->nr_siblings++;
1284
1285	perf_event__header_size(group_leader);
1286
1287	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288		perf_event__header_size(pos);
1289}
1290
1291/*
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1294 */
1295static void
1296list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297{
1298	struct perf_cpu_context *cpuctx;
1299	/*
1300	 * We can have double detach due to exit/hot-unplug + close.
1301	 */
1302	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303		return;
1304
1305	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306
1307	if (is_cgroup_event(event)) {
1308		ctx->nr_cgroups--;
1309		cpuctx = __get_cpu_context(ctx);
1310		/*
1311		 * if there are no more cgroup events
1312		 * then cler cgrp to avoid stale pointer
1313		 * in update_cgrp_time_from_cpuctx()
1314		 */
1315		if (!ctx->nr_cgroups)
1316			cpuctx->cgrp = NULL;
1317	}
1318
1319	if (has_branch_stack(event))
1320		ctx->nr_branch_stack--;
1321
1322	ctx->nr_events--;
1323	if (event->attr.inherit_stat)
1324		ctx->nr_stat--;
1325
1326	list_del_rcu(&event->event_entry);
1327
1328	if (event->group_leader == event)
1329		list_del_init(&event->group_entry);
1330
1331	update_group_times(event);
1332
1333	/*
1334	 * If event was in error state, then keep it
1335	 * that way, otherwise bogus counts will be
1336	 * returned on read(). The only way to get out
1337	 * of error state is by explicit re-enabling
1338	 * of the event
1339	 */
1340	if (event->state > PERF_EVENT_STATE_OFF)
1341		event->state = PERF_EVENT_STATE_OFF;
1342
1343	ctx->generation++;
1344}
1345
1346static void perf_group_detach(struct perf_event *event)
1347{
1348	struct perf_event *sibling, *tmp;
1349	struct list_head *list = NULL;
1350
1351	/*
1352	 * We can have double detach due to exit/hot-unplug + close.
1353	 */
1354	if (!(event->attach_state & PERF_ATTACH_GROUP))
1355		return;
1356
1357	event->attach_state &= ~PERF_ATTACH_GROUP;
1358
1359	/*
1360	 * If this is a sibling, remove it from its group.
1361	 */
1362	if (event->group_leader != event) {
1363		list_del_init(&event->group_entry);
1364		event->group_leader->nr_siblings--;
1365		goto out;
1366	}
1367
1368	if (!list_empty(&event->group_entry))
1369		list = &event->group_entry;
1370
1371	/*
1372	 * If this was a group event with sibling events then
1373	 * upgrade the siblings to singleton events by adding them
1374	 * to whatever list we are on.
1375	 */
1376	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377		if (list)
1378			list_move_tail(&sibling->group_entry, list);
1379		sibling->group_leader = sibling;
1380
1381		/* Inherit group flags from the previous leader */
1382		sibling->group_flags = event->group_flags;
1383	}
1384
1385out:
1386	perf_event__header_size(event->group_leader);
1387
1388	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389		perf_event__header_size(tmp);
1390}
1391
1392/*
1393 * User event without the task.
1394 */
1395static bool is_orphaned_event(struct perf_event *event)
1396{
1397	return event && !is_kernel_event(event) && !event->owner;
1398}
1399
1400/*
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1403 */
1404static bool is_orphaned_child(struct perf_event *event)
1405{
1406	return is_orphaned_event(event->parent);
1407}
1408
1409static void orphans_remove_work(struct work_struct *work);
1410
1411static void schedule_orphans_remove(struct perf_event_context *ctx)
1412{
1413	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414		return;
1415
1416	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417		get_ctx(ctx);
1418		ctx->orphans_remove_sched = true;
1419	}
1420}
1421
1422static int __init perf_workqueue_init(void)
1423{
1424	perf_wq = create_singlethread_workqueue("perf");
1425	WARN(!perf_wq, "failed to create perf workqueue\n");
1426	return perf_wq ? 0 : -1;
1427}
1428
1429core_initcall(perf_workqueue_init);
1430
1431static inline int
1432event_filter_match(struct perf_event *event)
1433{
1434	return (event->cpu == -1 || event->cpu == smp_processor_id())
1435	    && perf_cgroup_match(event);
1436}
1437
1438static void
1439event_sched_out(struct perf_event *event,
1440		  struct perf_cpu_context *cpuctx,
1441		  struct perf_event_context *ctx)
1442{
1443	u64 tstamp = perf_event_time(event);
1444	u64 delta;
1445	/*
1446	 * An event which could not be activated because of
1447	 * filter mismatch still needs to have its timings
1448	 * maintained, otherwise bogus information is return
1449	 * via read() for time_enabled, time_running:
1450	 */
1451	if (event->state == PERF_EVENT_STATE_INACTIVE
1452	    && !event_filter_match(event)) {
1453		delta = tstamp - event->tstamp_stopped;
1454		event->tstamp_running += delta;
1455		event->tstamp_stopped = tstamp;
1456	}
1457
1458	if (event->state != PERF_EVENT_STATE_ACTIVE)
1459		return;
1460
1461	perf_pmu_disable(event->pmu);
1462
1463	event->state = PERF_EVENT_STATE_INACTIVE;
1464	if (event->pending_disable) {
1465		event->pending_disable = 0;
1466		event->state = PERF_EVENT_STATE_OFF;
1467	}
1468	event->tstamp_stopped = tstamp;
1469	event->pmu->del(event, 0);
1470	event->oncpu = -1;
1471
1472	if (!is_software_event(event))
1473		cpuctx->active_oncpu--;
1474	ctx->nr_active--;
1475	if (event->attr.freq && event->attr.sample_freq)
1476		ctx->nr_freq--;
1477	if (event->attr.exclusive || !cpuctx->active_oncpu)
1478		cpuctx->exclusive = 0;
1479
1480	if (is_orphaned_child(event))
1481		schedule_orphans_remove(ctx);
1482
1483	perf_pmu_enable(event->pmu);
1484}
1485
1486static void
1487group_sched_out(struct perf_event *group_event,
1488		struct perf_cpu_context *cpuctx,
1489		struct perf_event_context *ctx)
1490{
1491	struct perf_event *event;
1492	int state = group_event->state;
1493
1494	event_sched_out(group_event, cpuctx, ctx);
1495
1496	/*
1497	 * Schedule out siblings (if any):
1498	 */
1499	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500		event_sched_out(event, cpuctx, ctx);
1501
1502	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503		cpuctx->exclusive = 0;
1504}
1505
1506struct remove_event {
1507	struct perf_event *event;
1508	bool detach_group;
1509};
1510
1511/*
1512 * Cross CPU call to remove a performance event
1513 *
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1516 */
1517static int __perf_remove_from_context(void *info)
1518{
1519	struct remove_event *re = info;
1520	struct perf_event *event = re->event;
1521	struct perf_event_context *ctx = event->ctx;
1522	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523
1524	raw_spin_lock(&ctx->lock);
1525	event_sched_out(event, cpuctx, ctx);
1526	if (re->detach_group)
1527		perf_group_detach(event);
1528	list_del_event(event, ctx);
1529	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530		ctx->is_active = 0;
1531		cpuctx->task_ctx = NULL;
1532	}
1533	raw_spin_unlock(&ctx->lock);
1534
1535	return 0;
1536}
1537
1538
1539/*
1540 * Remove the event from a task's (or a CPU's) list of events.
1541 *
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1544 *
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid.  This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1551 */
1552static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553{
1554	struct perf_event_context *ctx = event->ctx;
1555	struct task_struct *task = ctx->task;
1556	struct remove_event re = {
1557		.event = event,
1558		.detach_group = detach_group,
1559	};
1560
1561	lockdep_assert_held(&ctx->mutex);
1562
1563	if (!task) {
1564		/*
1565		 * Per cpu events are removed via an smp call. The removal can
1566		 * fail if the CPU is currently offline, but in that case we
1567		 * already called __perf_remove_from_context from
1568		 * perf_event_exit_cpu.
1569		 */
1570		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1571		return;
1572	}
1573
1574retry:
1575	if (!task_function_call(task, __perf_remove_from_context, &re))
1576		return;
1577
1578	raw_spin_lock_irq(&ctx->lock);
1579	/*
1580	 * If we failed to find a running task, but find the context active now
1581	 * that we've acquired the ctx->lock, retry.
1582	 */
1583	if (ctx->is_active) {
1584		raw_spin_unlock_irq(&ctx->lock);
1585		/*
1586		 * Reload the task pointer, it might have been changed by
1587		 * a concurrent perf_event_context_sched_out().
1588		 */
1589		task = ctx->task;
1590		goto retry;
1591	}
1592
1593	/*
1594	 * Since the task isn't running, its safe to remove the event, us
1595	 * holding the ctx->lock ensures the task won't get scheduled in.
1596	 */
1597	if (detach_group)
1598		perf_group_detach(event);
1599	list_del_event(event, ctx);
1600	raw_spin_unlock_irq(&ctx->lock);
1601}
1602
1603/*
1604 * Cross CPU call to disable a performance event
1605 */
1606int __perf_event_disable(void *info)
1607{
1608	struct perf_event *event = info;
1609	struct perf_event_context *ctx = event->ctx;
1610	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1611
1612	/*
1613	 * If this is a per-task event, need to check whether this
1614	 * event's task is the current task on this cpu.
1615	 *
1616	 * Can trigger due to concurrent perf_event_context_sched_out()
1617	 * flipping contexts around.
1618	 */
1619	if (ctx->task && cpuctx->task_ctx != ctx)
1620		return -EINVAL;
1621
1622	raw_spin_lock(&ctx->lock);
1623
1624	/*
1625	 * If the event is on, turn it off.
1626	 * If it is in error state, leave it in error state.
1627	 */
1628	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1629		update_context_time(ctx);
1630		update_cgrp_time_from_event(event);
1631		update_group_times(event);
1632		if (event == event->group_leader)
1633			group_sched_out(event, cpuctx, ctx);
1634		else
1635			event_sched_out(event, cpuctx, ctx);
1636		event->state = PERF_EVENT_STATE_OFF;
1637	}
1638
1639	raw_spin_unlock(&ctx->lock);
1640
1641	return 0;
1642}
1643
1644/*
1645 * Disable a event.
1646 *
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid.  This condition is satisifed when called through
1650 * perf_event_for_each_child or perf_event_for_each because they
1651 * hold the top-level event's child_mutex, so any descendant that
1652 * goes to exit will block in sync_child_event.
1653 * When called from perf_pending_event it's OK because event->ctx
1654 * is the current context on this CPU and preemption is disabled,
1655 * hence we can't get into perf_event_task_sched_out for this context.
1656 */
1657void perf_event_disable(struct perf_event *event)
1658{
1659	struct perf_event_context *ctx = event->ctx;
1660	struct task_struct *task = ctx->task;
1661
1662	if (!task) {
1663		/*
1664		 * Disable the event on the cpu that it's on
1665		 */
1666		cpu_function_call(event->cpu, __perf_event_disable, event);
1667		return;
1668	}
1669
1670retry:
1671	if (!task_function_call(task, __perf_event_disable, event))
1672		return;
1673
1674	raw_spin_lock_irq(&ctx->lock);
1675	/*
1676	 * If the event is still active, we need to retry the cross-call.
1677	 */
1678	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1679		raw_spin_unlock_irq(&ctx->lock);
1680		/*
1681		 * Reload the task pointer, it might have been changed by
1682		 * a concurrent perf_event_context_sched_out().
1683		 */
1684		task = ctx->task;
1685		goto retry;
1686	}
1687
1688	/*
1689	 * Since we have the lock this context can't be scheduled
1690	 * in, so we can change the state safely.
1691	 */
1692	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1693		update_group_times(event);
1694		event->state = PERF_EVENT_STATE_OFF;
1695	}
1696	raw_spin_unlock_irq(&ctx->lock);
1697}
1698EXPORT_SYMBOL_GPL(perf_event_disable);
1699
1700static void perf_set_shadow_time(struct perf_event *event,
1701				 struct perf_event_context *ctx,
1702				 u64 tstamp)
1703{
1704	/*
1705	 * use the correct time source for the time snapshot
1706	 *
1707	 * We could get by without this by leveraging the
1708	 * fact that to get to this function, the caller
1709	 * has most likely already called update_context_time()
1710	 * and update_cgrp_time_xx() and thus both timestamp
1711	 * are identical (or very close). Given that tstamp is,
1712	 * already adjusted for cgroup, we could say that:
1713	 *    tstamp - ctx->timestamp
1714	 * is equivalent to
1715	 *    tstamp - cgrp->timestamp.
1716	 *
1717	 * Then, in perf_output_read(), the calculation would
1718	 * work with no changes because:
1719	 * - event is guaranteed scheduled in
1720	 * - no scheduled out in between
1721	 * - thus the timestamp would be the same
1722	 *
1723	 * But this is a bit hairy.
1724	 *
1725	 * So instead, we have an explicit cgroup call to remain
1726	 * within the time time source all along. We believe it
1727	 * is cleaner and simpler to understand.
1728	 */
1729	if (is_cgroup_event(event))
1730		perf_cgroup_set_shadow_time(event, tstamp);
1731	else
1732		event->shadow_ctx_time = tstamp - ctx->timestamp;
1733}
1734
1735#define MAX_INTERRUPTS (~0ULL)
1736
1737static void perf_log_throttle(struct perf_event *event, int enable);
1738
1739static int
1740event_sched_in(struct perf_event *event,
1741		 struct perf_cpu_context *cpuctx,
1742		 struct perf_event_context *ctx)
1743{
1744	u64 tstamp = perf_event_time(event);
1745	int ret = 0;
1746
1747	lockdep_assert_held(&ctx->lock);
1748
1749	if (event->state <= PERF_EVENT_STATE_OFF)
1750		return 0;
1751
1752	event->state = PERF_EVENT_STATE_ACTIVE;
1753	event->oncpu = smp_processor_id();
1754
1755	/*
1756	 * Unthrottle events, since we scheduled we might have missed several
1757	 * ticks already, also for a heavily scheduling task there is little
1758	 * guarantee it'll get a tick in a timely manner.
1759	 */
1760	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1761		perf_log_throttle(event, 1);
1762		event->hw.interrupts = 0;
1763	}
1764
1765	/*
1766	 * The new state must be visible before we turn it on in the hardware:
1767	 */
1768	smp_wmb();
1769
1770	perf_pmu_disable(event->pmu);
1771
1772	if (event->pmu->add(event, PERF_EF_START)) {
1773		event->state = PERF_EVENT_STATE_INACTIVE;
1774		event->oncpu = -1;
1775		ret = -EAGAIN;
1776		goto out;
1777	}
1778
1779	event->tstamp_running += tstamp - event->tstamp_stopped;
1780
1781	perf_set_shadow_time(event, ctx, tstamp);
1782
1783	if (!is_software_event(event))
1784		cpuctx->active_oncpu++;
1785	ctx->nr_active++;
1786	if (event->attr.freq && event->attr.sample_freq)
1787		ctx->nr_freq++;
1788
1789	if (event->attr.exclusive)
1790		cpuctx->exclusive = 1;
1791
1792	if (is_orphaned_child(event))
1793		schedule_orphans_remove(ctx);
1794
1795out:
1796	perf_pmu_enable(event->pmu);
1797
1798	return ret;
1799}
1800
1801static int
1802group_sched_in(struct perf_event *group_event,
1803	       struct perf_cpu_context *cpuctx,
1804	       struct perf_event_context *ctx)
1805{
1806	struct perf_event *event, *partial_group = NULL;
1807	struct pmu *pmu = ctx->pmu;
1808	u64 now = ctx->time;
1809	bool simulate = false;
1810
1811	if (group_event->state == PERF_EVENT_STATE_OFF)
1812		return 0;
1813
1814	pmu->start_txn(pmu);
1815
1816	if (event_sched_in(group_event, cpuctx, ctx)) {
1817		pmu->cancel_txn(pmu);
1818		perf_cpu_hrtimer_restart(cpuctx);
1819		return -EAGAIN;
1820	}
1821
1822	/*
1823	 * Schedule in siblings as one group (if any):
1824	 */
1825	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1826		if (event_sched_in(event, cpuctx, ctx)) {
1827			partial_group = event;
1828			goto group_error;
1829		}
1830	}
1831
1832	if (!pmu->commit_txn(pmu))
1833		return 0;
1834
1835group_error:
1836	/*
1837	 * Groups can be scheduled in as one unit only, so undo any
1838	 * partial group before returning:
1839	 * The events up to the failed event are scheduled out normally,
1840	 * tstamp_stopped will be updated.
1841	 *
1842	 * The failed events and the remaining siblings need to have
1843	 * their timings updated as if they had gone thru event_sched_in()
1844	 * and event_sched_out(). This is required to get consistent timings
1845	 * across the group. This also takes care of the case where the group
1846	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847	 * the time the event was actually stopped, such that time delta
1848	 * calculation in update_event_times() is correct.
1849	 */
1850	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1851		if (event == partial_group)
1852			simulate = true;
1853
1854		if (simulate) {
1855			event->tstamp_running += now - event->tstamp_stopped;
1856			event->tstamp_stopped = now;
1857		} else {
1858			event_sched_out(event, cpuctx, ctx);
1859		}
1860	}
1861	event_sched_out(group_event, cpuctx, ctx);
1862
1863	pmu->cancel_txn(pmu);
1864
1865	perf_cpu_hrtimer_restart(cpuctx);
1866
1867	return -EAGAIN;
1868}
1869
1870/*
1871 * Work out whether we can put this event group on the CPU now.
1872 */
1873static int group_can_go_on(struct perf_event *event,
1874			   struct perf_cpu_context *cpuctx,
1875			   int can_add_hw)
1876{
1877	/*
1878	 * Groups consisting entirely of software events can always go on.
1879	 */
1880	if (event->group_flags & PERF_GROUP_SOFTWARE)
1881		return 1;
1882	/*
1883	 * If an exclusive group is already on, no other hardware
1884	 * events can go on.
1885	 */
1886	if (cpuctx->exclusive)
1887		return 0;
1888	/*
1889	 * If this group is exclusive and there are already
1890	 * events on the CPU, it can't go on.
1891	 */
1892	if (event->attr.exclusive && cpuctx->active_oncpu)
1893		return 0;
1894	/*
1895	 * Otherwise, try to add it if all previous groups were able
1896	 * to go on.
1897	 */
1898	return can_add_hw;
1899}
1900
1901static void add_event_to_ctx(struct perf_event *event,
1902			       struct perf_event_context *ctx)
1903{
1904	u64 tstamp = perf_event_time(event);
1905
1906	list_add_event(event, ctx);
1907	perf_group_attach(event);
1908	event->tstamp_enabled = tstamp;
1909	event->tstamp_running = tstamp;
1910	event->tstamp_stopped = tstamp;
1911}
1912
1913static void task_ctx_sched_out(struct perf_event_context *ctx);
1914static void
1915ctx_sched_in(struct perf_event_context *ctx,
1916	     struct perf_cpu_context *cpuctx,
1917	     enum event_type_t event_type,
1918	     struct task_struct *task);
1919
1920static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1921				struct perf_event_context *ctx,
1922				struct task_struct *task)
1923{
1924	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1925	if (ctx)
1926		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1927	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1928	if (ctx)
1929		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1930}
1931
1932/*
1933 * Cross CPU call to install and enable a performance event
1934 *
1935 * Must be called with ctx->mutex held
1936 */
1937static int  __perf_install_in_context(void *info)
1938{
1939	struct perf_event *event = info;
1940	struct perf_event_context *ctx = event->ctx;
1941	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1942	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1943	struct task_struct *task = current;
1944
1945	perf_ctx_lock(cpuctx, task_ctx);
1946	perf_pmu_disable(cpuctx->ctx.pmu);
1947
1948	/*
1949	 * If there was an active task_ctx schedule it out.
1950	 */
1951	if (task_ctx)
1952		task_ctx_sched_out(task_ctx);
1953
1954	/*
1955	 * If the context we're installing events in is not the
1956	 * active task_ctx, flip them.
1957	 */
1958	if (ctx->task && task_ctx != ctx) {
1959		if (task_ctx)
1960			raw_spin_unlock(&task_ctx->lock);
1961		raw_spin_lock(&ctx->lock);
1962		task_ctx = ctx;
1963	}
1964
1965	if (task_ctx) {
1966		cpuctx->task_ctx = task_ctx;
1967		task = task_ctx->task;
1968	}
1969
1970	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1971
1972	update_context_time(ctx);
1973	/*
1974	 * update cgrp time only if current cgrp
1975	 * matches event->cgrp. Must be done before
1976	 * calling add_event_to_ctx()
1977	 */
1978	update_cgrp_time_from_event(event);
1979
1980	add_event_to_ctx(event, ctx);
1981
1982	/*
1983	 * Schedule everything back in
1984	 */
1985	perf_event_sched_in(cpuctx, task_ctx, task);
1986
1987	perf_pmu_enable(cpuctx->ctx.pmu);
1988	perf_ctx_unlock(cpuctx, task_ctx);
1989
1990	return 0;
1991}
1992
1993/*
1994 * Attach a performance event to a context
1995 *
1996 * First we add the event to the list with the hardware enable bit
1997 * in event->hw_config cleared.
1998 *
1999 * If the event is attached to a task which is on a CPU we use a smp
2000 * call to enable it in the task context. The task might have been
2001 * scheduled away, but we check this in the smp call again.
2002 */
2003static void
2004perf_install_in_context(struct perf_event_context *ctx,
2005			struct perf_event *event,
2006			int cpu)
2007{
2008	struct task_struct *task = ctx->task;
2009
2010	lockdep_assert_held(&ctx->mutex);
2011
2012	event->ctx = ctx;
2013	if (event->cpu != -1)
2014		event->cpu = cpu;
2015
2016	if (!task) {
2017		/*
2018		 * Per cpu events are installed via an smp call and
2019		 * the install is always successful.
2020		 */
2021		cpu_function_call(cpu, __perf_install_in_context, event);
2022		return;
2023	}
2024
2025retry:
2026	if (!task_function_call(task, __perf_install_in_context, event))
2027		return;
2028
2029	raw_spin_lock_irq(&ctx->lock);
2030	/*
2031	 * If we failed to find a running task, but find the context active now
2032	 * that we've acquired the ctx->lock, retry.
2033	 */
2034	if (ctx->is_active) {
2035		raw_spin_unlock_irq(&ctx->lock);
2036		/*
2037		 * Reload the task pointer, it might have been changed by
2038		 * a concurrent perf_event_context_sched_out().
2039		 */
2040		task = ctx->task;
2041		goto retry;
2042	}
2043
2044	/*
2045	 * Since the task isn't running, its safe to add the event, us holding
2046	 * the ctx->lock ensures the task won't get scheduled in.
2047	 */
2048	add_event_to_ctx(event, ctx);
2049	raw_spin_unlock_irq(&ctx->lock);
2050}
2051
2052/*
2053 * Put a event into inactive state and update time fields.
2054 * Enabling the leader of a group effectively enables all
2055 * the group members that aren't explicitly disabled, so we
2056 * have to update their ->tstamp_enabled also.
2057 * Note: this works for group members as well as group leaders
2058 * since the non-leader members' sibling_lists will be empty.
2059 */
2060static void __perf_event_mark_enabled(struct perf_event *event)
2061{
2062	struct perf_event *sub;
2063	u64 tstamp = perf_event_time(event);
2064
2065	event->state = PERF_EVENT_STATE_INACTIVE;
2066	event->tstamp_enabled = tstamp - event->total_time_enabled;
2067	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2068		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2069			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2070	}
2071}
2072
2073/*
2074 * Cross CPU call to enable a performance event
2075 */
2076static int __perf_event_enable(void *info)
2077{
2078	struct perf_event *event = info;
2079	struct perf_event_context *ctx = event->ctx;
2080	struct perf_event *leader = event->group_leader;
2081	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2082	int err;
2083
2084	/*
2085	 * There's a time window between 'ctx->is_active' check
2086	 * in perf_event_enable function and this place having:
2087	 *   - IRQs on
2088	 *   - ctx->lock unlocked
2089	 *
2090	 * where the task could be killed and 'ctx' deactivated
2091	 * by perf_event_exit_task.
2092	 */
2093	if (!ctx->is_active)
2094		return -EINVAL;
2095
2096	raw_spin_lock(&ctx->lock);
2097	update_context_time(ctx);
2098
2099	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100		goto unlock;
2101
2102	/*
2103	 * set current task's cgroup time reference point
2104	 */
2105	perf_cgroup_set_timestamp(current, ctx);
2106
2107	__perf_event_mark_enabled(event);
2108
2109	if (!event_filter_match(event)) {
2110		if (is_cgroup_event(event))
2111			perf_cgroup_defer_enabled(event);
2112		goto unlock;
2113	}
2114
2115	/*
2116	 * If the event is in a group and isn't the group leader,
2117	 * then don't put it on unless the group is on.
2118	 */
2119	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2120		goto unlock;
2121
2122	if (!group_can_go_on(event, cpuctx, 1)) {
2123		err = -EEXIST;
2124	} else {
2125		if (event == leader)
2126			err = group_sched_in(event, cpuctx, ctx);
2127		else
2128			err = event_sched_in(event, cpuctx, ctx);
2129	}
2130
2131	if (err) {
2132		/*
2133		 * If this event can't go on and it's part of a
2134		 * group, then the whole group has to come off.
2135		 */
2136		if (leader != event) {
2137			group_sched_out(leader, cpuctx, ctx);
2138			perf_cpu_hrtimer_restart(cpuctx);
2139		}
2140		if (leader->attr.pinned) {
2141			update_group_times(leader);
2142			leader->state = PERF_EVENT_STATE_ERROR;
2143		}
2144	}
2145
2146unlock:
2147	raw_spin_unlock(&ctx->lock);
2148
2149	return 0;
2150}
2151
2152/*
2153 * Enable a event.
2154 *
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid.  This condition is satisfied when called through
2158 * perf_event_for_each_child or perf_event_for_each as described
2159 * for perf_event_disable.
2160 */
2161void perf_event_enable(struct perf_event *event)
2162{
2163	struct perf_event_context *ctx = event->ctx;
2164	struct task_struct *task = ctx->task;
2165
2166	if (!task) {
2167		/*
2168		 * Enable the event on the cpu that it's on
2169		 */
2170		cpu_function_call(event->cpu, __perf_event_enable, event);
2171		return;
2172	}
2173
2174	raw_spin_lock_irq(&ctx->lock);
2175	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2176		goto out;
2177
2178	/*
2179	 * If the event is in error state, clear that first.
2180	 * That way, if we see the event in error state below, we
2181	 * know that it has gone back into error state, as distinct
2182	 * from the task having been scheduled away before the
2183	 * cross-call arrived.
2184	 */
2185	if (event->state == PERF_EVENT_STATE_ERROR)
2186		event->state = PERF_EVENT_STATE_OFF;
2187
2188retry:
2189	if (!ctx->is_active) {
2190		__perf_event_mark_enabled(event);
2191		goto out;
2192	}
2193
2194	raw_spin_unlock_irq(&ctx->lock);
2195
2196	if (!task_function_call(task, __perf_event_enable, event))
2197		return;
2198
2199	raw_spin_lock_irq(&ctx->lock);
2200
2201	/*
2202	 * If the context is active and the event is still off,
2203	 * we need to retry the cross-call.
2204	 */
2205	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2206		/*
2207		 * task could have been flipped by a concurrent
2208		 * perf_event_context_sched_out()
2209		 */
2210		task = ctx->task;
2211		goto retry;
2212	}
2213
2214out:
2215	raw_spin_unlock_irq(&ctx->lock);
2216}
2217EXPORT_SYMBOL_GPL(perf_event_enable);
2218
2219int perf_event_refresh(struct perf_event *event, int refresh)
2220{
2221	/*
2222	 * not supported on inherited events
2223	 */
2224	if (event->attr.inherit || !is_sampling_event(event))
2225		return -EINVAL;
2226
2227	atomic_add(refresh, &event->event_limit);
2228	perf_event_enable(event);
2229
2230	return 0;
2231}
2232EXPORT_SYMBOL_GPL(perf_event_refresh);
2233
2234static void ctx_sched_out(struct perf_event_context *ctx,
2235			  struct perf_cpu_context *cpuctx,
2236			  enum event_type_t event_type)
2237{
2238	struct perf_event *event;
2239	int is_active = ctx->is_active;
2240
2241	ctx->is_active &= ~event_type;
2242	if (likely(!ctx->nr_events))
2243		return;
2244
2245	update_context_time(ctx);
2246	update_cgrp_time_from_cpuctx(cpuctx);
2247	if (!ctx->nr_active)
2248		return;
2249
2250	perf_pmu_disable(ctx->pmu);
2251	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2252		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2253			group_sched_out(event, cpuctx, ctx);
2254	}
2255
2256	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2257		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2258			group_sched_out(event, cpuctx, ctx);
2259	}
2260	perf_pmu_enable(ctx->pmu);
2261}
2262
2263/*
2264 * Test whether two contexts are equivalent, i.e. whether they have both been
2265 * cloned from the same version of the same context.
2266 *
2267 * Equivalence is measured using a generation number in the context that is
2268 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269 * and list_del_event().
2270 */
2271static int context_equiv(struct perf_event_context *ctx1,
2272			 struct perf_event_context *ctx2)
2273{
2274	lockdep_assert_held(&ctx1->lock);
2275	lockdep_assert_held(&ctx2->lock);
2276
2277	/* Pinning disables the swap optimization */
2278	if (ctx1->pin_count || ctx2->pin_count)
2279		return 0;
2280
2281	/* If ctx1 is the parent of ctx2 */
2282	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2283		return 1;
2284
2285	/* If ctx2 is the parent of ctx1 */
2286	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2287		return 1;
2288
2289	/*
2290	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291	 * hierarchy, see perf_event_init_context().
2292	 */
2293	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2294			ctx1->parent_gen == ctx2->parent_gen)
2295		return 1;
2296
2297	/* Unmatched */
2298	return 0;
2299}
2300
2301static void __perf_event_sync_stat(struct perf_event *event,
2302				     struct perf_event *next_event)
2303{
2304	u64 value;
2305
2306	if (!event->attr.inherit_stat)
2307		return;
2308
2309	/*
2310	 * Update the event value, we cannot use perf_event_read()
2311	 * because we're in the middle of a context switch and have IRQs
2312	 * disabled, which upsets smp_call_function_single(), however
2313	 * we know the event must be on the current CPU, therefore we
2314	 * don't need to use it.
2315	 */
2316	switch (event->state) {
2317	case PERF_EVENT_STATE_ACTIVE:
2318		event->pmu->read(event);
2319		/* fall-through */
2320
2321	case PERF_EVENT_STATE_INACTIVE:
2322		update_event_times(event);
2323		break;
2324
2325	default:
2326		break;
2327	}
2328
2329	/*
2330	 * In order to keep per-task stats reliable we need to flip the event
2331	 * values when we flip the contexts.
2332	 */
2333	value = local64_read(&next_event->count);
2334	value = local64_xchg(&event->count, value);
2335	local64_set(&next_event->count, value);
2336
2337	swap(event->total_time_enabled, next_event->total_time_enabled);
2338	swap(event->total_time_running, next_event->total_time_running);
2339
2340	/*
2341	 * Since we swizzled the values, update the user visible data too.
2342	 */
2343	perf_event_update_userpage(event);
2344	perf_event_update_userpage(next_event);
2345}
2346
2347static void perf_event_sync_stat(struct perf_event_context *ctx,
2348				   struct perf_event_context *next_ctx)
2349{
2350	struct perf_event *event, *next_event;
2351
2352	if (!ctx->nr_stat)
2353		return;
2354
2355	update_context_time(ctx);
2356
2357	event = list_first_entry(&ctx->event_list,
2358				   struct perf_event, event_entry);
2359
2360	next_event = list_first_entry(&next_ctx->event_list,
2361					struct perf_event, event_entry);
2362
2363	while (&event->event_entry != &ctx->event_list &&
2364	       &next_event->event_entry != &next_ctx->event_list) {
2365
2366		__perf_event_sync_stat(event, next_event);
2367
2368		event = list_next_entry(event, event_entry);
2369		next_event = list_next_entry(next_event, event_entry);
2370	}
2371}
2372
2373static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2374					 struct task_struct *next)
2375{
2376	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2377	struct perf_event_context *next_ctx;
2378	struct perf_event_context *parent, *next_parent;
2379	struct perf_cpu_context *cpuctx;
2380	int do_switch = 1;
2381
2382	if (likely(!ctx))
2383		return;
2384
2385	cpuctx = __get_cpu_context(ctx);
2386	if (!cpuctx->task_ctx)
2387		return;
2388
2389	rcu_read_lock();
2390	next_ctx = next->perf_event_ctxp[ctxn];
2391	if (!next_ctx)
2392		goto unlock;
2393
2394	parent = rcu_dereference(ctx->parent_ctx);
2395	next_parent = rcu_dereference(next_ctx->parent_ctx);
2396
2397	/* If neither context have a parent context; they cannot be clones. */
2398	if (!parent && !next_parent)
2399		goto unlock;
2400
2401	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2402		/*
2403		 * Looks like the two contexts are clones, so we might be
2404		 * able to optimize the context switch.  We lock both
2405		 * contexts and check that they are clones under the
2406		 * lock (including re-checking that neither has been
2407		 * uncloned in the meantime).  It doesn't matter which
2408		 * order we take the locks because no other cpu could
2409		 * be trying to lock both of these tasks.
2410		 */
2411		raw_spin_lock(&ctx->lock);
2412		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2413		if (context_equiv(ctx, next_ctx)) {
2414			/*
2415			 * XXX do we need a memory barrier of sorts
2416			 * wrt to rcu_dereference() of perf_event_ctxp
2417			 */
2418			task->perf_event_ctxp[ctxn] = next_ctx;
2419			next->perf_event_ctxp[ctxn] = ctx;
2420			ctx->task = next;
2421			next_ctx->task = task;
2422			do_switch = 0;
2423
2424			perf_event_sync_stat(ctx, next_ctx);
2425		}
2426		raw_spin_unlock(&next_ctx->lock);
2427		raw_spin_unlock(&ctx->lock);
2428	}
2429unlock:
2430	rcu_read_unlock();
2431
2432	if (do_switch) {
2433		raw_spin_lock(&ctx->lock);
2434		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2435		cpuctx->task_ctx = NULL;
2436		raw_spin_unlock(&ctx->lock);
2437	}
2438}
2439
2440#define for_each_task_context_nr(ctxn)					\
2441	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2442
2443/*
2444 * Called from scheduler to remove the events of the current task,
2445 * with interrupts disabled.
2446 *
2447 * We stop each event and update the event value in event->count.
2448 *
2449 * This does not protect us against NMI, but disable()
2450 * sets the disabled bit in the control field of event _before_
2451 * accessing the event control register. If a NMI hits, then it will
2452 * not restart the event.
2453 */
2454void __perf_event_task_sched_out(struct task_struct *task,
2455				 struct task_struct *next)
2456{
2457	int ctxn;
2458
2459	for_each_task_context_nr(ctxn)
2460		perf_event_context_sched_out(task, ctxn, next);
2461
2462	/*
2463	 * if cgroup events exist on this CPU, then we need
2464	 * to check if we have to switch out PMU state.
2465	 * cgroup event are system-wide mode only
2466	 */
2467	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2468		perf_cgroup_sched_out(task, next);
2469}
2470
2471static void task_ctx_sched_out(struct perf_event_context *ctx)
2472{
2473	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474
2475	if (!cpuctx->task_ctx)
2476		return;
2477
2478	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2479		return;
2480
2481	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2482	cpuctx->task_ctx = NULL;
2483}
2484
2485/*
2486 * Called with IRQs disabled
2487 */
2488static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2489			      enum event_type_t event_type)
2490{
2491	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2492}
2493
2494static void
2495ctx_pinned_sched_in(struct perf_event_context *ctx,
2496		    struct perf_cpu_context *cpuctx)
2497{
2498	struct perf_event *event;
2499
2500	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501		if (event->state <= PERF_EVENT_STATE_OFF)
2502			continue;
2503		if (!event_filter_match(event))
2504			continue;
2505
2506		/* may need to reset tstamp_enabled */
2507		if (is_cgroup_event(event))
2508			perf_cgroup_mark_enabled(event, ctx);
2509
2510		if (group_can_go_on(event, cpuctx, 1))
2511			group_sched_in(event, cpuctx, ctx);
2512
2513		/*
2514		 * If this pinned group hasn't been scheduled,
2515		 * put it in error state.
2516		 */
2517		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2518			update_group_times(event);
2519			event->state = PERF_EVENT_STATE_ERROR;
2520		}
2521	}
2522}
2523
2524static void
2525ctx_flexible_sched_in(struct perf_event_context *ctx,
2526		      struct perf_cpu_context *cpuctx)
2527{
2528	struct perf_event *event;
2529	int can_add_hw = 1;
2530
2531	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2532		/* Ignore events in OFF or ERROR state */
2533		if (event->state <= PERF_EVENT_STATE_OFF)
2534			continue;
2535		/*
2536		 * Listen to the 'cpu' scheduling filter constraint
2537		 * of events:
2538		 */
2539		if (!event_filter_match(event))
2540			continue;
2541
2542		/* may need to reset tstamp_enabled */
2543		if (is_cgroup_event(event))
2544			perf_cgroup_mark_enabled(event, ctx);
2545
2546		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2547			if (group_sched_in(event, cpuctx, ctx))
2548				can_add_hw = 0;
2549		}
2550	}
2551}
2552
2553static void
2554ctx_sched_in(struct perf_event_context *ctx,
2555	     struct perf_cpu_context *cpuctx,
2556	     enum event_type_t event_type,
2557	     struct task_struct *task)
2558{
2559	u64 now;
2560	int is_active = ctx->is_active;
2561
2562	ctx->is_active |= event_type;
2563	if (likely(!ctx->nr_events))
2564		return;
2565
2566	now = perf_clock();
2567	ctx->timestamp = now;
2568	perf_cgroup_set_timestamp(task, ctx);
2569	/*
2570	 * First go through the list and put on any pinned groups
2571	 * in order to give them the best chance of going on.
2572	 */
2573	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2574		ctx_pinned_sched_in(ctx, cpuctx);
2575
2576	/* Then walk through the lower prio flexible groups */
2577	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2578		ctx_flexible_sched_in(ctx, cpuctx);
2579}
2580
2581static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2582			     enum event_type_t event_type,
2583			     struct task_struct *task)
2584{
2585	struct perf_event_context *ctx = &cpuctx->ctx;
2586
2587	ctx_sched_in(ctx, cpuctx, event_type, task);
2588}
2589
2590static void perf_event_context_sched_in(struct perf_event_context *ctx,
2591					struct task_struct *task)
2592{
2593	struct perf_cpu_context *cpuctx;
2594
2595	cpuctx = __get_cpu_context(ctx);
2596	if (cpuctx->task_ctx == ctx)
2597		return;
2598
2599	perf_ctx_lock(cpuctx, ctx);
2600	perf_pmu_disable(ctx->pmu);
2601	/*
2602	 * We want to keep the following priority order:
2603	 * cpu pinned (that don't need to move), task pinned,
2604	 * cpu flexible, task flexible.
2605	 */
2606	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2607
2608	if (ctx->nr_events)
2609		cpuctx->task_ctx = ctx;
2610
2611	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2612
2613	perf_pmu_enable(ctx->pmu);
2614	perf_ctx_unlock(cpuctx, ctx);
2615
2616	/*
2617	 * Since these rotations are per-cpu, we need to ensure the
2618	 * cpu-context we got scheduled on is actually rotating.
2619	 */
2620	perf_pmu_rotate_start(ctx->pmu);
2621}
2622
2623/*
2624 * When sampling the branck stack in system-wide, it may be necessary
2625 * to flush the stack on context switch. This happens when the branch
2626 * stack does not tag its entries with the pid of the current task.
2627 * Otherwise it becomes impossible to associate a branch entry with a
2628 * task. This ambiguity is more likely to appear when the branch stack
2629 * supports priv level filtering and the user sets it to monitor only
2630 * at the user level (which could be a useful measurement in system-wide
2631 * mode). In that case, the risk is high of having a branch stack with
2632 * branch from multiple tasks. Flushing may mean dropping the existing
2633 * entries or stashing them somewhere in the PMU specific code layer.
2634 *
2635 * This function provides the context switch callback to the lower code
2636 * layer. It is invoked ONLY when there is at least one system-wide context
2637 * with at least one active event using taken branch sampling.
2638 */
2639static void perf_branch_stack_sched_in(struct task_struct *prev,
2640				       struct task_struct *task)
2641{
2642	struct perf_cpu_context *cpuctx;
2643	struct pmu *pmu;
2644	unsigned long flags;
2645
2646	/* no need to flush branch stack if not changing task */
2647	if (prev == task)
2648		return;
2649
2650	local_irq_save(flags);
2651
2652	rcu_read_lock();
2653
2654	list_for_each_entry_rcu(pmu, &pmus, entry) {
2655		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2656
2657		/*
2658		 * check if the context has at least one
2659		 * event using PERF_SAMPLE_BRANCH_STACK
2660		 */
2661		if (cpuctx->ctx.nr_branch_stack > 0
2662		    && pmu->flush_branch_stack) {
2663
2664			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2665
2666			perf_pmu_disable(pmu);
2667
2668			pmu->flush_branch_stack();
2669
2670			perf_pmu_enable(pmu);
2671
2672			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2673		}
2674	}
2675
2676	rcu_read_unlock();
2677
2678	local_irq_restore(flags);
2679}
2680
2681/*
2682 * Called from scheduler to add the events of the current task
2683 * with interrupts disabled.
2684 *
2685 * We restore the event value and then enable it.
2686 *
2687 * This does not protect us against NMI, but enable()
2688 * sets the enabled bit in the control field of event _before_
2689 * accessing the event control register. If a NMI hits, then it will
2690 * keep the event running.
2691 */
2692void __perf_event_task_sched_in(struct task_struct *prev,
2693				struct task_struct *task)
2694{
2695	struct perf_event_context *ctx;
2696	int ctxn;
2697
2698	for_each_task_context_nr(ctxn) {
2699		ctx = task->perf_event_ctxp[ctxn];
2700		if (likely(!ctx))
2701			continue;
2702
2703		perf_event_context_sched_in(ctx, task);
2704	}
2705	/*
2706	 * if cgroup events exist on this CPU, then we need
2707	 * to check if we have to switch in PMU state.
2708	 * cgroup event are system-wide mode only
2709	 */
2710	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2711		perf_cgroup_sched_in(prev, task);
2712
2713	/* check for system-wide branch_stack events */
2714	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2715		perf_branch_stack_sched_in(prev, task);
2716}
2717
2718static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2719{
2720	u64 frequency = event->attr.sample_freq;
2721	u64 sec = NSEC_PER_SEC;
2722	u64 divisor, dividend;
2723
2724	int count_fls, nsec_fls, frequency_fls, sec_fls;
2725
2726	count_fls = fls64(count);
2727	nsec_fls = fls64(nsec);
2728	frequency_fls = fls64(frequency);
2729	sec_fls = 30;
2730
2731	/*
2732	 * We got @count in @nsec, with a target of sample_freq HZ
2733	 * the target period becomes:
2734	 *
2735	 *             @count * 10^9
2736	 * period = -------------------
2737	 *          @nsec * sample_freq
2738	 *
2739	 */
2740
2741	/*
2742	 * Reduce accuracy by one bit such that @a and @b converge
2743	 * to a similar magnitude.
2744	 */
2745#define REDUCE_FLS(a, b)		\
2746do {					\
2747	if (a##_fls > b##_fls) {	\
2748		a >>= 1;		\
2749		a##_fls--;		\
2750	} else {			\
2751		b >>= 1;		\
2752		b##_fls--;		\
2753	}				\
2754} while (0)
2755
2756	/*
2757	 * Reduce accuracy until either term fits in a u64, then proceed with
2758	 * the other, so that finally we can do a u64/u64 division.
2759	 */
2760	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2761		REDUCE_FLS(nsec, frequency);
2762		REDUCE_FLS(sec, count);
2763	}
2764
2765	if (count_fls + sec_fls > 64) {
2766		divisor = nsec * frequency;
2767
2768		while (count_fls + sec_fls > 64) {
2769			REDUCE_FLS(count, sec);
2770			divisor >>= 1;
2771		}
2772
2773		dividend = count * sec;
2774	} else {
2775		dividend = count * sec;
2776
2777		while (nsec_fls + frequency_fls > 64) {
2778			REDUCE_FLS(nsec, frequency);
2779			dividend >>= 1;
2780		}
2781
2782		divisor = nsec * frequency;
2783	}
2784
2785	if (!divisor)
2786		return dividend;
2787
2788	return div64_u64(dividend, divisor);
2789}
2790
2791static DEFINE_PER_CPU(int, perf_throttled_count);
2792static DEFINE_PER_CPU(u64, perf_throttled_seq);
2793
2794static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2795{
2796	struct hw_perf_event *hwc = &event->hw;
2797	s64 period, sample_period;
2798	s64 delta;
2799
2800	period = perf_calculate_period(event, nsec, count);
2801
2802	delta = (s64)(period - hwc->sample_period);
2803	delta = (delta + 7) / 8; /* low pass filter */
2804
2805	sample_period = hwc->sample_period + delta;
2806
2807	if (!sample_period)
2808		sample_period = 1;
2809
2810	hwc->sample_period = sample_period;
2811
2812	if (local64_read(&hwc->period_left) > 8*sample_period) {
2813		if (disable)
2814			event->pmu->stop(event, PERF_EF_UPDATE);
2815
2816		local64_set(&hwc->period_left, 0);
2817
2818		if (disable)
2819			event->pmu->start(event, PERF_EF_RELOAD);
2820	}
2821}
2822
2823/*
2824 * combine freq adjustment with unthrottling to avoid two passes over the
2825 * events. At the same time, make sure, having freq events does not change
2826 * the rate of unthrottling as that would introduce bias.
2827 */
2828static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2829					   int needs_unthr)
2830{
2831	struct perf_event *event;
2832	struct hw_perf_event *hwc;
2833	u64 now, period = TICK_NSEC;
2834	s64 delta;
2835
2836	/*
2837	 * only need to iterate over all events iff:
2838	 * - context have events in frequency mode (needs freq adjust)
2839	 * - there are events to unthrottle on this cpu
2840	 */
2841	if (!(ctx->nr_freq || needs_unthr))
2842		return;
2843
2844	raw_spin_lock(&ctx->lock);
2845	perf_pmu_disable(ctx->pmu);
2846
2847	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2848		if (event->state != PERF_EVENT_STATE_ACTIVE)
2849			continue;
2850
2851		if (!event_filter_match(event))
2852			continue;
2853
2854		perf_pmu_disable(event->pmu);
2855
2856		hwc = &event->hw;
2857
2858		if (hwc->interrupts == MAX_INTERRUPTS) {
2859			hwc->interrupts = 0;
2860			perf_log_throttle(event, 1);
2861			event->pmu->start(event, 0);
2862		}
2863
2864		if (!event->attr.freq || !event->attr.sample_freq)
2865			goto next;
2866
2867		/*
2868		 * stop the event and update event->count
2869		 */
2870		event->pmu->stop(event, PERF_EF_UPDATE);
2871
2872		now = local64_read(&event->count);
2873		delta = now - hwc->freq_count_stamp;
2874		hwc->freq_count_stamp = now;
2875
2876		/*
2877		 * restart the event
2878		 * reload only if value has changed
2879		 * we have stopped the event so tell that
2880		 * to perf_adjust_period() to avoid stopping it
2881		 * twice.
2882		 */
2883		if (delta > 0)
2884			perf_adjust_period(event, period, delta, false);
2885
2886		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2887	next:
2888		perf_pmu_enable(event->pmu);
2889	}
2890
2891	perf_pmu_enable(ctx->pmu);
2892	raw_spin_unlock(&ctx->lock);
2893}
2894
2895/*
2896 * Round-robin a context's events:
2897 */
2898static void rotate_ctx(struct perf_event_context *ctx)
2899{
2900	/*
2901	 * Rotate the first entry last of non-pinned groups. Rotation might be
2902	 * disabled by the inheritance code.
2903	 */
2904	if (!ctx->rotate_disable)
2905		list_rotate_left(&ctx->flexible_groups);
2906}
2907
2908/*
2909 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910 * because they're strictly cpu affine and rotate_start is called with IRQs
2911 * disabled, while rotate_context is called from IRQ context.
2912 */
2913static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2914{
2915	struct perf_event_context *ctx = NULL;
2916	int rotate = 0, remove = 1;
2917
2918	if (cpuctx->ctx.nr_events) {
2919		remove = 0;
2920		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2921			rotate = 1;
2922	}
2923
2924	ctx = cpuctx->task_ctx;
2925	if (ctx && ctx->nr_events) {
2926		remove = 0;
2927		if (ctx->nr_events != ctx->nr_active)
2928			rotate = 1;
2929	}
2930
2931	if (!rotate)
2932		goto done;
2933
2934	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2935	perf_pmu_disable(cpuctx->ctx.pmu);
2936
2937	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2938	if (ctx)
2939		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2940
2941	rotate_ctx(&cpuctx->ctx);
2942	if (ctx)
2943		rotate_ctx(ctx);
2944
2945	perf_event_sched_in(cpuctx, ctx, current);
2946
2947	perf_pmu_enable(cpuctx->ctx.pmu);
2948	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2949done:
2950	if (remove)
2951		list_del_init(&cpuctx->rotation_list);
2952
2953	return rotate;
2954}
2955
2956#ifdef CONFIG_NO_HZ_FULL
2957bool perf_event_can_stop_tick(void)
2958{
2959	if (atomic_read(&nr_freq_events) ||
2960	    __this_cpu_read(perf_throttled_count))
2961		return false;
2962	else
2963		return true;
2964}
2965#endif
2966
2967void perf_event_task_tick(void)
2968{
2969	struct list_head *head = this_cpu_ptr(&rotation_list);
2970	struct perf_cpu_context *cpuctx, *tmp;
2971	struct perf_event_context *ctx;
2972	int throttled;
2973
2974	WARN_ON(!irqs_disabled());
2975
2976	__this_cpu_inc(perf_throttled_seq);
2977	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2978
2979	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2980		ctx = &cpuctx->ctx;
2981		perf_adjust_freq_unthr_context(ctx, throttled);
2982
2983		ctx = cpuctx->task_ctx;
2984		if (ctx)
2985			perf_adjust_freq_unthr_context(ctx, throttled);
2986	}
2987}
2988
2989static int event_enable_on_exec(struct perf_event *event,
2990				struct perf_event_context *ctx)
2991{
2992	if (!event->attr.enable_on_exec)
2993		return 0;
2994
2995	event->attr.enable_on_exec = 0;
2996	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2997		return 0;
2998
2999	__perf_event_mark_enabled(event);
3000
3001	return 1;
3002}
3003
3004/*
3005 * Enable all of a task's events that have been marked enable-on-exec.
3006 * This expects task == current.
3007 */
3008static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3009{
3010	struct perf_event_context *clone_ctx = NULL;
3011	struct perf_event *event;
3012	unsigned long flags;
3013	int enabled = 0;
3014	int ret;
3015
3016	local_irq_save(flags);
3017	if (!ctx || !ctx->nr_events)
3018		goto out;
3019
3020	/*
3021	 * We must ctxsw out cgroup events to avoid conflict
3022	 * when invoking perf_task_event_sched_in() later on
3023	 * in this function. Otherwise we end up trying to
3024	 * ctxswin cgroup events which are already scheduled
3025	 * in.
3026	 */
3027	perf_cgroup_sched_out(current, NULL);
3028
3029	raw_spin_lock(&ctx->lock);
3030	task_ctx_sched_out(ctx);
3031
3032	list_for_each_entry(event, &ctx->event_list, event_entry) {
3033		ret = event_enable_on_exec(event, ctx);
3034		if (ret)
3035			enabled = 1;
3036	}
3037
3038	/*
3039	 * Unclone this context if we enabled any event.
3040	 */
3041	if (enabled)
3042		clone_ctx = unclone_ctx(ctx);
3043
3044	raw_spin_unlock(&ctx->lock);
3045
3046	/*
3047	 * Also calls ctxswin for cgroup events, if any:
3048	 */
3049	perf_event_context_sched_in(ctx, ctx->task);
3050out:
3051	local_irq_restore(flags);
3052
3053	if (clone_ctx)
3054		put_ctx(clone_ctx);
3055}
3056
3057void perf_event_exec(void)
3058{
3059	struct perf_event_context *ctx;
3060	int ctxn;
3061
3062	rcu_read_lock();
3063	for_each_task_context_nr(ctxn) {
3064		ctx = current->perf_event_ctxp[ctxn];
3065		if (!ctx)
3066			continue;
3067
3068		perf_event_enable_on_exec(ctx);
3069	}
3070	rcu_read_unlock();
3071}
3072
3073/*
3074 * Cross CPU call to read the hardware event
3075 */
3076static void __perf_event_read(void *info)
3077{
3078	struct perf_event *event = info;
3079	struct perf_event_context *ctx = event->ctx;
3080	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3081
3082	/*
3083	 * If this is a task context, we need to check whether it is
3084	 * the current task context of this cpu.  If not it has been
3085	 * scheduled out before the smp call arrived.  In that case
3086	 * event->count would have been updated to a recent sample
3087	 * when the event was scheduled out.
3088	 */
3089	if (ctx->task && cpuctx->task_ctx != ctx)
3090		return;
3091
3092	raw_spin_lock(&ctx->lock);
3093	if (ctx->is_active) {
3094		update_context_time(ctx);
3095		update_cgrp_time_from_event(event);
3096	}
3097	update_event_times(event);
3098	if (event->state == PERF_EVENT_STATE_ACTIVE)
3099		event->pmu->read(event);
3100	raw_spin_unlock(&ctx->lock);
3101}
3102
3103static inline u64 perf_event_count(struct perf_event *event)
3104{
3105	return local64_read(&event->count) + atomic64_read(&event->child_count);
3106}
3107
3108static u64 perf_event_read(struct perf_event *event)
3109{
3110	/*
3111	 * If event is enabled and currently active on a CPU, update the
3112	 * value in the event structure:
3113	 */
3114	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3115		smp_call_function_single(event->oncpu,
3116					 __perf_event_read, event, 1);
3117	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3118		struct perf_event_context *ctx = event->ctx;
3119		unsigned long flags;
3120
3121		raw_spin_lock_irqsave(&ctx->lock, flags);
3122		/*
3123		 * may read while context is not active
3124		 * (e.g., thread is blocked), in that case
3125		 * we cannot update context time
3126		 */
3127		if (ctx->is_active) {
3128			update_context_time(ctx);
3129			update_cgrp_time_from_event(event);
3130		}
3131		update_event_times(event);
3132		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3133	}
3134
3135	return perf_event_count(event);
3136}
3137
3138/*
3139 * Initialize the perf_event context in a task_struct:
3140 */
3141static void __perf_event_init_context(struct perf_event_context *ctx)
3142{
3143	raw_spin_lock_init(&ctx->lock);
3144	mutex_init(&ctx->mutex);
3145	INIT_LIST_HEAD(&ctx->pinned_groups);
3146	INIT_LIST_HEAD(&ctx->flexible_groups);
3147	INIT_LIST_HEAD(&ctx->event_list);
3148	atomic_set(&ctx->refcount, 1);
3149	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3150}
3151
3152static struct perf_event_context *
3153alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3154{
3155	struct perf_event_context *ctx;
3156
3157	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3158	if (!ctx)
3159		return NULL;
3160
3161	__perf_event_init_context(ctx);
3162	if (task) {
3163		ctx->task = task;
3164		get_task_struct(task);
3165	}
3166	ctx->pmu = pmu;
3167
3168	return ctx;
3169}
3170
3171static struct task_struct *
3172find_lively_task_by_vpid(pid_t vpid)
3173{
3174	struct task_struct *task;
3175	int err;
3176
3177	rcu_read_lock();
3178	if (!vpid)
3179		task = current;
3180	else
3181		task = find_task_by_vpid(vpid);
3182	if (task)
3183		get_task_struct(task);
3184	rcu_read_unlock();
3185
3186	if (!task)
3187		return ERR_PTR(-ESRCH);
3188
3189	/* Reuse ptrace permission checks for now. */
3190	err = -EACCES;
3191	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3192		goto errout;
3193
3194	return task;
3195errout:
3196	put_task_struct(task);
3197	return ERR_PTR(err);
3198
3199}
3200
3201/*
3202 * Returns a matching context with refcount and pincount.
3203 */
3204static struct perf_event_context *
3205find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3206{
3207	struct perf_event_context *ctx, *clone_ctx = NULL;
3208	struct perf_cpu_context *cpuctx;
3209	unsigned long flags;
3210	int ctxn, err;
3211
3212	if (!task) {
3213		/* Must be root to operate on a CPU event: */
3214		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3215			return ERR_PTR(-EACCES);
3216
3217		/*
3218		 * We could be clever and allow to attach a event to an
3219		 * offline CPU and activate it when the CPU comes up, but
3220		 * that's for later.
3221		 */
3222		if (!cpu_online(cpu))
3223			return ERR_PTR(-ENODEV);
3224
3225		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3226		ctx = &cpuctx->ctx;
3227		get_ctx(ctx);
3228		++ctx->pin_count;
3229
3230		return ctx;
3231	}
3232
3233	err = -EINVAL;
3234	ctxn = pmu->task_ctx_nr;
3235	if (ctxn < 0)
3236		goto errout;
3237
3238retry:
3239	ctx = perf_lock_task_context(task, ctxn, &flags);
3240	if (ctx) {
3241		clone_ctx = unclone_ctx(ctx);
3242		++ctx->pin_count;
3243		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3244
3245		if (clone_ctx)
3246			put_ctx(clone_ctx);
3247	} else {
3248		ctx = alloc_perf_context(pmu, task);
3249		err = -ENOMEM;
3250		if (!ctx)
3251			goto errout;
3252
3253		err = 0;
3254		mutex_lock(&task->perf_event_mutex);
3255		/*
3256		 * If it has already passed perf_event_exit_task().
3257		 * we must see PF_EXITING, it takes this mutex too.
3258		 */
3259		if (task->flags & PF_EXITING)
3260			err = -ESRCH;
3261		else if (task->perf_event_ctxp[ctxn])
3262			err = -EAGAIN;
3263		else {
3264			get_ctx(ctx);
3265			++ctx->pin_count;
3266			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3267		}
3268		mutex_unlock(&task->perf_event_mutex);
3269
3270		if (unlikely(err)) {
3271			put_ctx(ctx);
3272
3273			if (err == -EAGAIN)
3274				goto retry;
3275			goto errout;
3276		}
3277	}
3278
3279	return ctx;
3280
3281errout:
3282	return ERR_PTR(err);
3283}
3284
3285static void perf_event_free_filter(struct perf_event *event);
3286
3287static void free_event_rcu(struct rcu_head *head)
3288{
3289	struct perf_event *event;
3290
3291	event = container_of(head, struct perf_event, rcu_head);
3292	if (event->ns)
3293		put_pid_ns(event->ns);
3294	perf_event_free_filter(event);
3295	kfree(event);
3296}
3297
3298static void ring_buffer_put(struct ring_buffer *rb);
3299static void ring_buffer_attach(struct perf_event *event,
3300			       struct ring_buffer *rb);
3301
3302static void unaccount_event_cpu(struct perf_event *event, int cpu)
3303{
3304	if (event->parent)
3305		return;
3306
3307	if (has_branch_stack(event)) {
3308		if (!(event->attach_state & PERF_ATTACH_TASK))
3309			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3310	}
3311	if (is_cgroup_event(event))
3312		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3313}
3314
3315static void unaccount_event(struct perf_event *event)
3316{
3317	if (event->parent)
3318		return;
3319
3320	if (event->attach_state & PERF_ATTACH_TASK)
3321		static_key_slow_dec_deferred(&perf_sched_events);
3322	if (event->attr.mmap || event->attr.mmap_data)
3323		atomic_dec(&nr_mmap_events);
3324	if (event->attr.comm)
3325		atomic_dec(&nr_comm_events);
3326	if (event->attr.task)
3327		atomic_dec(&nr_task_events);
3328	if (event->attr.freq)
3329		atomic_dec(&nr_freq_events);
3330	if (is_cgroup_event(event))
3331		static_key_slow_dec_deferred(&perf_sched_events);
3332	if (has_branch_stack(event))
3333		static_key_slow_dec_deferred(&perf_sched_events);
3334
3335	unaccount_event_cpu(event, event->cpu);
3336}
3337
3338static void __free_event(struct perf_event *event)
3339{
3340	if (!event->parent) {
3341		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3342			put_callchain_buffers();
3343	}
3344
3345	if (event->destroy)
3346		event->destroy(event);
3347
3348	if (event->ctx)
3349		put_ctx(event->ctx);
3350
3351	if (event->pmu)
3352		module_put(event->pmu->module);
3353
3354	call_rcu(&event->rcu_head, free_event_rcu);
3355}
3356
3357static void _free_event(struct perf_event *event)
3358{
3359	irq_work_sync(&event->pending);
3360
3361	unaccount_event(event);
3362
3363	if (event->rb) {
3364		/*
3365		 * Can happen when we close an event with re-directed output.
3366		 *
3367		 * Since we have a 0 refcount, perf_mmap_close() will skip
3368		 * over us; possibly making our ring_buffer_put() the last.
3369		 */
3370		mutex_lock(&event->mmap_mutex);
3371		ring_buffer_attach(event, NULL);
3372		mutex_unlock(&event->mmap_mutex);
3373	}
3374
3375	if (is_cgroup_event(event))
3376		perf_detach_cgroup(event);
3377
3378	__free_event(event);
3379}
3380
3381/*
3382 * Used to free events which have a known refcount of 1, such as in error paths
3383 * where the event isn't exposed yet and inherited events.
3384 */
3385static void free_event(struct perf_event *event)
3386{
3387	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3388				"unexpected event refcount: %ld; ptr=%p\n",
3389				atomic_long_read(&event->refcount), event)) {
3390		/* leak to avoid use-after-free */
3391		return;
3392	}
3393
3394	_free_event(event);
3395}
3396
3397/*
3398 * Remove user event from the owner task.
3399 */
3400static void perf_remove_from_owner(struct perf_event *event)
3401{
3402	struct task_struct *owner;
3403
3404	rcu_read_lock();
3405	owner = ACCESS_ONCE(event->owner);
3406	/*
3407	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408	 * !owner it means the list deletion is complete and we can indeed
3409	 * free this event, otherwise we need to serialize on
3410	 * owner->perf_event_mutex.
3411	 */
3412	smp_read_barrier_depends();
3413	if (owner) {
3414		/*
3415		 * Since delayed_put_task_struct() also drops the last
3416		 * task reference we can safely take a new reference
3417		 * while holding the rcu_read_lock().
3418		 */
3419		get_task_struct(owner);
3420	}
3421	rcu_read_unlock();
3422
3423	if (owner) {
3424		mutex_lock(&owner->perf_event_mutex);
3425		/*
3426		 * We have to re-check the event->owner field, if it is cleared
3427		 * we raced with perf_event_exit_task(), acquiring the mutex
3428		 * ensured they're done, and we can proceed with freeing the
3429		 * event.
3430		 */
3431		if (event->owner)
3432			list_del_init(&event->owner_entry);
3433		mutex_unlock(&owner->perf_event_mutex);
3434		put_task_struct(owner);
3435	}
3436}
3437
3438/*
3439 * Called when the last reference to the file is gone.
3440 */
3441static void put_event(struct perf_event *event)
3442{
3443	struct perf_event_context *ctx = event->ctx;
3444
3445	if (!atomic_long_dec_and_test(&event->refcount))
3446		return;
3447
3448	if (!is_kernel_event(event))
3449		perf_remove_from_owner(event);
3450
3451	WARN_ON_ONCE(ctx->parent_ctx);
3452	/*
3453	 * There are two ways this annotation is useful:
3454	 *
3455	 *  1) there is a lock recursion from perf_event_exit_task
3456	 *     see the comment there.
3457	 *
3458	 *  2) there is a lock-inversion with mmap_sem through
3459	 *     perf_event_read_group(), which takes faults while
3460	 *     holding ctx->mutex, however this is called after
3461	 *     the last filedesc died, so there is no possibility
3462	 *     to trigger the AB-BA case.
3463	 */
3464	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3465	perf_remove_from_context(event, true);
3466	mutex_unlock(&ctx->mutex);
3467
3468	_free_event(event);
3469}
3470
3471int perf_event_release_kernel(struct perf_event *event)
3472{
3473	put_event(event);
3474	return 0;
3475}
3476EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3477
3478static int perf_release(struct inode *inode, struct file *file)
3479{
3480	put_event(file->private_data);
3481	return 0;
3482}
3483
3484/*
3485 * Remove all orphanes events from the context.
3486 */
3487static void orphans_remove_work(struct work_struct *work)
3488{
3489	struct perf_event_context *ctx;
3490	struct perf_event *event, *tmp;
3491
3492	ctx = container_of(work, struct perf_event_context,
3493			   orphans_remove.work);
3494
3495	mutex_lock(&ctx->mutex);
3496	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3497		struct perf_event *parent_event = event->parent;
3498
3499		if (!is_orphaned_child(event))
3500			continue;
3501
3502		perf_remove_from_context(event, true);
3503
3504		mutex_lock(&parent_event->child_mutex);
3505		list_del_init(&event->child_list);
3506		mutex_unlock(&parent_event->child_mutex);
3507
3508		free_event(event);
3509		put_event(parent_event);
3510	}
3511
3512	raw_spin_lock_irq(&ctx->lock);
3513	ctx->orphans_remove_sched = false;
3514	raw_spin_unlock_irq(&ctx->lock);
3515	mutex_unlock(&ctx->mutex);
3516
3517	put_ctx(ctx);
3518}
3519
3520u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3521{
3522	struct perf_event *child;
3523	u64 total = 0;
3524
3525	*enabled = 0;
3526	*running = 0;
3527
3528	mutex_lock(&event->child_mutex);
3529	total += perf_event_read(event);
3530	*enabled += event->total_time_enabled +
3531			atomic64_read(&event->child_total_time_enabled);
3532	*running += event->total_time_running +
3533			atomic64_read(&event->child_total_time_running);
3534
3535	list_for_each_entry(child, &event->child_list, child_list) {
3536		total += perf_event_read(child);
3537		*enabled += child->total_time_enabled;
3538		*running += child->total_time_running;
3539	}
3540	mutex_unlock(&event->child_mutex);
3541
3542	return total;
3543}
3544EXPORT_SYMBOL_GPL(perf_event_read_value);
3545
3546static int perf_event_read_group(struct perf_event *event,
3547				   u64 read_format, char __user *buf)
3548{
3549	struct perf_event *leader = event->group_leader, *sub;
3550	int n = 0, size = 0, ret = -EFAULT;
3551	struct perf_event_context *ctx = leader->ctx;
3552	u64 values[5];
3553	u64 count, enabled, running;
3554
3555	mutex_lock(&ctx->mutex);
3556	count = perf_event_read_value(leader, &enabled, &running);
3557
3558	values[n++] = 1 + leader->nr_siblings;
3559	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3560		values[n++] = enabled;
3561	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3562		values[n++] = running;
3563	values[n++] = count;
3564	if (read_format & PERF_FORMAT_ID)
3565		values[n++] = primary_event_id(leader);
3566
3567	size = n * sizeof(u64);
3568
3569	if (copy_to_user(buf, values, size))
3570		goto unlock;
3571
3572	ret = size;
3573
3574	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3575		n = 0;
3576
3577		values[n++] = perf_event_read_value(sub, &enabled, &running);
3578		if (read_format & PERF_FORMAT_ID)
3579			values[n++] = primary_event_id(sub);
3580
3581		size = n * sizeof(u64);
3582
3583		if (copy_to_user(buf + ret, values, size)) {
3584			ret = -EFAULT;
3585			goto unlock;
3586		}
3587
3588		ret += size;
3589	}
3590unlock:
3591	mutex_unlock(&ctx->mutex);
3592
3593	return ret;
3594}
3595
3596static int perf_event_read_one(struct perf_event *event,
3597				 u64 read_format, char __user *buf)
3598{
3599	u64 enabled, running;
3600	u64 values[4];
3601	int n = 0;
3602
3603	values[n++] = perf_event_read_value(event, &enabled, &running);
3604	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3605		values[n++] = enabled;
3606	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607		values[n++] = running;
3608	if (read_format & PERF_FORMAT_ID)
3609		values[n++] = primary_event_id(event);
3610
3611	if (copy_to_user(buf, values, n * sizeof(u64)))
3612		return -EFAULT;
3613
3614	return n * sizeof(u64);
3615}
3616
3617static bool is_event_hup(struct perf_event *event)
3618{
3619	bool no_children;
3620
3621	if (event->state != PERF_EVENT_STATE_EXIT)
3622		return false;
3623
3624	mutex_lock(&event->child_mutex);
3625	no_children = list_empty(&event->child_list);
3626	mutex_unlock(&event->child_mutex);
3627	return no_children;
3628}
3629
3630/*
3631 * Read the performance event - simple non blocking version for now
3632 */
3633static ssize_t
3634perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3635{
3636	u64 read_format = event->attr.read_format;
3637	int ret;
3638
3639	/*
3640	 * Return end-of-file for a read on a event that is in
3641	 * error state (i.e. because it was pinned but it couldn't be
3642	 * scheduled on to the CPU at some point).
3643	 */
3644	if (event->state == PERF_EVENT_STATE_ERROR)
3645		return 0;
3646
3647	if (count < event->read_size)
3648		return -ENOSPC;
3649
3650	WARN_ON_ONCE(event->ctx->parent_ctx);
3651	if (read_format & PERF_FORMAT_GROUP)
3652		ret = perf_event_read_group(event, read_format, buf);
3653	else
3654		ret = perf_event_read_one(event, read_format, buf);
3655
3656	return ret;
3657}
3658
3659static ssize_t
3660perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3661{
3662	struct perf_event *event = file->private_data;
3663
3664	return perf_read_hw(event, buf, count);
3665}
3666
3667static unsigned int perf_poll(struct file *file, poll_table *wait)
3668{
3669	struct perf_event *event = file->private_data;
3670	struct ring_buffer *rb;
3671	unsigned int events = POLLHUP;
3672
3673	poll_wait(file, &event->waitq, wait);
3674
3675	if (is_event_hup(event))
3676		return events;
3677
3678	/*
3679	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3681	 */
3682	mutex_lock(&event->mmap_mutex);
3683	rb = event->rb;
3684	if (rb)
3685		events = atomic_xchg(&rb->poll, 0);
3686	mutex_unlock(&event->mmap_mutex);
3687	return events;
3688}
3689
3690static void perf_event_reset(struct perf_event *event)
3691{
3692	(void)perf_event_read(event);
3693	local64_set(&event->count, 0);
3694	perf_event_update_userpage(event);
3695}
3696
3697/*
3698 * Holding the top-level event's child_mutex means that any
3699 * descendant process that has inherited this event will block
3700 * in sync_child_event if it goes to exit, thus satisfying the
3701 * task existence requirements of perf_event_enable/disable.
3702 */
3703static void perf_event_for_each_child(struct perf_event *event,
3704					void (*func)(struct perf_event *))
3705{
3706	struct perf_event *child;
3707
3708	WARN_ON_ONCE(event->ctx->parent_ctx);
3709	mutex_lock(&event->child_mutex);
3710	func(event);
3711	list_for_each_entry(child, &event->child_list, child_list)
3712		func(child);
3713	mutex_unlock(&event->child_mutex);
3714}
3715
3716static void perf_event_for_each(struct perf_event *event,
3717				  void (*func)(struct perf_event *))
3718{
3719	struct perf_event_context *ctx = event->ctx;
3720	struct perf_event *sibling;
3721
3722	WARN_ON_ONCE(ctx->parent_ctx);
3723	mutex_lock(&ctx->mutex);
3724	event = event->group_leader;
3725
3726	perf_event_for_each_child(event, func);
3727	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3728		perf_event_for_each_child(sibling, func);
3729	mutex_unlock(&ctx->mutex);
3730}
3731
3732static int perf_event_period(struct perf_event *event, u64 __user *arg)
3733{
3734	struct perf_event_context *ctx = event->ctx;
3735	int ret = 0, active;
3736	u64 value;
3737
3738	if (!is_sampling_event(event))
3739		return -EINVAL;
3740
3741	if (copy_from_user(&value, arg, sizeof(value)))
3742		return -EFAULT;
3743
3744	if (!value)
3745		return -EINVAL;
3746
3747	raw_spin_lock_irq(&ctx->lock);
3748	if (event->attr.freq) {
3749		if (value > sysctl_perf_event_sample_rate) {
3750			ret = -EINVAL;
3751			goto unlock;
3752		}
3753
3754		event->attr.sample_freq = value;
3755	} else {
3756		event->attr.sample_period = value;
3757		event->hw.sample_period = value;
3758	}
3759
3760	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3761	if (active) {
3762		perf_pmu_disable(ctx->pmu);
3763		event->pmu->stop(event, PERF_EF_UPDATE);
3764	}
3765
3766	local64_set(&event->hw.period_left, 0);
3767
3768	if (active) {
3769		event->pmu->start(event, PERF_EF_RELOAD);
3770		perf_pmu_enable(ctx->pmu);
3771	}
3772
3773unlock:
3774	raw_spin_unlock_irq(&ctx->lock);
3775
3776	return ret;
3777}
3778
3779static const struct file_operations perf_fops;
3780
3781static inline int perf_fget_light(int fd, struct fd *p)
3782{
3783	struct fd f = fdget(fd);
3784	if (!f.file)
3785		return -EBADF;
3786
3787	if (f.file->f_op != &perf_fops) {
3788		fdput(f);
3789		return -EBADF;
3790	}
3791	*p = f;
3792	return 0;
3793}
3794
3795static int perf_event_set_output(struct perf_event *event,
3796				 struct perf_event *output_event);
3797static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3798
3799static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3800{
3801	struct perf_event *event = file->private_data;
3802	void (*func)(struct perf_event *);
3803	u32 flags = arg;
3804
3805	switch (cmd) {
3806	case PERF_EVENT_IOC_ENABLE:
3807		func = perf_event_enable;
3808		break;
3809	case PERF_EVENT_IOC_DISABLE:
3810		func = perf_event_disable;
3811		break;
3812	case PERF_EVENT_IOC_RESET:
3813		func = perf_event_reset;
3814		break;
3815
3816	case PERF_EVENT_IOC_REFRESH:
3817		return perf_event_refresh(event, arg);
3818
3819	case PERF_EVENT_IOC_PERIOD:
3820		return perf_event_period(event, (u64 __user *)arg);
3821
3822	case PERF_EVENT_IOC_ID:
3823	{
3824		u64 id = primary_event_id(event);
3825
3826		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3827			return -EFAULT;
3828		return 0;
3829	}
3830
3831	case PERF_EVENT_IOC_SET_OUTPUT:
3832	{
3833		int ret;
3834		if (arg != -1) {
3835			struct perf_event *output_event;
3836			struct fd output;
3837			ret = perf_fget_light(arg, &output);
3838			if (ret)
3839				return ret;
3840			output_event = output.file->private_data;
3841			ret = perf_event_set_output(event, output_event);
3842			fdput(output);
3843		} else {
3844			ret = perf_event_set_output(event, NULL);
3845		}
3846		return ret;
3847	}
3848
3849	case PERF_EVENT_IOC_SET_FILTER:
3850		return perf_event_set_filter(event, (void __user *)arg);
3851
3852	default:
3853		return -ENOTTY;
3854	}
3855
3856	if (flags & PERF_IOC_FLAG_GROUP)
3857		perf_event_for_each(event, func);
3858	else
3859		perf_event_for_each_child(event, func);
3860
3861	return 0;
3862}
3863
3864#ifdef CONFIG_COMPAT
3865static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3866				unsigned long arg)
3867{
3868	switch (_IOC_NR(cmd)) {
3869	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3870	case _IOC_NR(PERF_EVENT_IOC_ID):
3871		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3872		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3873			cmd &= ~IOCSIZE_MASK;
3874			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3875		}
3876		break;
3877	}
3878	return perf_ioctl(file, cmd, arg);
3879}
3880#else
3881# define perf_compat_ioctl NULL
3882#endif
3883
3884int perf_event_task_enable(void)
3885{
3886	struct perf_event *event;
3887
3888	mutex_lock(&current->perf_event_mutex);
3889	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3890		perf_event_for_each_child(event, perf_event_enable);
3891	mutex_unlock(&current->perf_event_mutex);
3892
3893	return 0;
3894}
3895
3896int perf_event_task_disable(void)
3897{
3898	struct perf_event *event;
3899
3900	mutex_lock(&current->perf_event_mutex);
3901	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902		perf_event_for_each_child(event, perf_event_disable);
3903	mutex_unlock(&current->perf_event_mutex);
3904
3905	return 0;
3906}
3907
3908static int perf_event_index(struct perf_event *event)
3909{
3910	if (event->hw.state & PERF_HES_STOPPED)
3911		return 0;
3912
3913	if (event->state != PERF_EVENT_STATE_ACTIVE)
3914		return 0;
3915
3916	return event->pmu->event_idx(event);
3917}
3918
3919static void calc_timer_values(struct perf_event *event,
3920				u64 *now,
3921				u64 *enabled,
3922				u64 *running)
3923{
3924	u64 ctx_time;
3925
3926	*now = perf_clock();
3927	ctx_time = event->shadow_ctx_time + *now;
3928	*enabled = ctx_time - event->tstamp_enabled;
3929	*running = ctx_time - event->tstamp_running;
3930}
3931
3932static void perf_event_init_userpage(struct perf_event *event)
3933{
3934	struct perf_event_mmap_page *userpg;
3935	struct ring_buffer *rb;
3936
3937	rcu_read_lock();
3938	rb = rcu_dereference(event->rb);
3939	if (!rb)
3940		goto unlock;
3941
3942	userpg = rb->user_page;
3943
3944	/* Allow new userspace to detect that bit 0 is deprecated */
3945	userpg->cap_bit0_is_deprecated = 1;
3946	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3947
3948unlock:
3949	rcu_read_unlock();
3950}
3951
3952void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3953{
3954}
3955
3956/*
3957 * Callers need to ensure there can be no nesting of this function, otherwise
3958 * the seqlock logic goes bad. We can not serialize this because the arch
3959 * code calls this from NMI context.
3960 */
3961void perf_event_update_userpage(struct perf_event *event)
3962{
3963	struct perf_event_mmap_page *userpg;
3964	struct ring_buffer *rb;
3965	u64 enabled, running, now;
3966
3967	rcu_read_lock();
3968	rb = rcu_dereference(event->rb);
3969	if (!rb)
3970		goto unlock;
3971
3972	/*
3973	 * compute total_time_enabled, total_time_running
3974	 * based on snapshot values taken when the event
3975	 * was last scheduled in.
3976	 *
3977	 * we cannot simply called update_context_time()
3978	 * because of locking issue as we can be called in
3979	 * NMI context
3980	 */
3981	calc_timer_values(event, &now, &enabled, &running);
3982
3983	userpg = rb->user_page;
3984	/*
3985	 * Disable preemption so as to not let the corresponding user-space
3986	 * spin too long if we get preempted.
3987	 */
3988	preempt_disable();
3989	++userpg->lock;
3990	barrier();
3991	userpg->index = perf_event_index(event);
3992	userpg->offset = perf_event_count(event);
3993	if (userpg->index)
3994		userpg->offset -= local64_read(&event->hw.prev_count);
3995
3996	userpg->time_enabled = enabled +
3997			atomic64_read(&event->child_total_time_enabled);
3998
3999	userpg->time_running = running +
4000			atomic64_read(&event->child_total_time_running);
4001
4002	arch_perf_update_userpage(userpg, now);
4003
4004	barrier();
4005	++userpg->lock;
4006	preempt_enable();
4007unlock:
4008	rcu_read_unlock();
4009}
4010
4011static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4012{
4013	struct perf_event *event = vma->vm_file->private_data;
4014	struct ring_buffer *rb;
4015	int ret = VM_FAULT_SIGBUS;
4016
4017	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4018		if (vmf->pgoff == 0)
4019			ret = 0;
4020		return ret;
4021	}
4022
4023	rcu_read_lock();
4024	rb = rcu_dereference(event->rb);
4025	if (!rb)
4026		goto unlock;
4027
4028	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4029		goto unlock;
4030
4031	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4032	if (!vmf->page)
4033		goto unlock;
4034
4035	get_page(vmf->page);
4036	vmf->page->mapping = vma->vm_file->f_mapping;
4037	vmf->page->index   = vmf->pgoff;
4038
4039	ret = 0;
4040unlock:
4041	rcu_read_unlock();
4042
4043	return ret;
4044}
4045
4046static void ring_buffer_attach(struct perf_event *event,
4047			       struct ring_buffer *rb)
4048{
4049	struct ring_buffer *old_rb = NULL;
4050	unsigned long flags;
4051
4052	if (event->rb) {
4053		/*
4054		 * Should be impossible, we set this when removing
4055		 * event->rb_entry and wait/clear when adding event->rb_entry.
4056		 */
4057		WARN_ON_ONCE(event->rcu_pending);
4058
4059		old_rb = event->rb;
4060		event->rcu_batches = get_state_synchronize_rcu();
4061		event->rcu_pending = 1;
4062
4063		spin_lock_irqsave(&old_rb->event_lock, flags);
4064		list_del_rcu(&event->rb_entry);
4065		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4066	}
4067
4068	if (event->rcu_pending && rb) {
4069		cond_synchronize_rcu(event->rcu_batches);
4070		event->rcu_pending = 0;
4071	}
4072
4073	if (rb) {
4074		spin_lock_irqsave(&rb->event_lock, flags);
4075		list_add_rcu(&event->rb_entry, &rb->event_list);
4076		spin_unlock_irqrestore(&rb->event_lock, flags);
4077	}
4078
4079	rcu_assign_pointer(event->rb, rb);
4080
4081	if (old_rb) {
4082		ring_buffer_put(old_rb);
4083		/*
4084		 * Since we detached before setting the new rb, so that we
4085		 * could attach the new rb, we could have missed a wakeup.
4086		 * Provide it now.
4087		 */
4088		wake_up_all(&event->waitq);
4089	}
4090}
4091
4092static void ring_buffer_wakeup(struct perf_event *event)
4093{
4094	struct ring_buffer *rb;
4095
4096	rcu_read_lock();
4097	rb = rcu_dereference(event->rb);
4098	if (rb) {
4099		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4100			wake_up_all(&event->waitq);
4101	}
4102	rcu_read_unlock();
4103}
4104
4105static void rb_free_rcu(struct rcu_head *rcu_head)
4106{
4107	struct ring_buffer *rb;
4108
4109	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4110	rb_free(rb);
4111}
4112
4113static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4114{
4115	struct ring_buffer *rb;
4116
4117	rcu_read_lock();
4118	rb = rcu_dereference(event->rb);
4119	if (rb) {
4120		if (!atomic_inc_not_zero(&rb->refcount))
4121			rb = NULL;
4122	}
4123	rcu_read_unlock();
4124
4125	return rb;
4126}
4127
4128static void ring_buffer_put(struct ring_buffer *rb)
4129{
4130	if (!atomic_dec_and_test(&rb->refcount))
4131		return;
4132
4133	WARN_ON_ONCE(!list_empty(&rb->event_list));
4134
4135	call_rcu(&rb->rcu_head, rb_free_rcu);
4136}
4137
4138static void perf_mmap_open(struct vm_area_struct *vma)
4139{
4140	struct perf_event *event = vma->vm_file->private_data;
4141
4142	atomic_inc(&event->mmap_count);
4143	atomic_inc(&event->rb->mmap_count);
4144}
4145
4146/*
4147 * A buffer can be mmap()ed multiple times; either directly through the same
4148 * event, or through other events by use of perf_event_set_output().
4149 *
4150 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4151 * the buffer here, where we still have a VM context. This means we need
4152 * to detach all events redirecting to us.
4153 */
4154static void perf_mmap_close(struct vm_area_struct *vma)
4155{
4156	struct perf_event *event = vma->vm_file->private_data;
4157
4158	struct ring_buffer *rb = ring_buffer_get(event);
4159	struct user_struct *mmap_user = rb->mmap_user;
4160	int mmap_locked = rb->mmap_locked;
4161	unsigned long size = perf_data_size(rb);
4162
4163	atomic_dec(&rb->mmap_count);
4164
4165	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4166		goto out_put;
4167
4168	ring_buffer_attach(event, NULL);
4169	mutex_unlock(&event->mmap_mutex);
4170
4171	/* If there's still other mmap()s of this buffer, we're done. */
4172	if (atomic_read(&rb->mmap_count))
4173		goto out_put;
4174
4175	/*
4176	 * No other mmap()s, detach from all other events that might redirect
4177	 * into the now unreachable buffer. Somewhat complicated by the
4178	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4179	 */
4180again:
4181	rcu_read_lock();
4182	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4183		if (!atomic_long_inc_not_zero(&event->refcount)) {
4184			/*
4185			 * This event is en-route to free_event() which will
4186			 * detach it and remove it from the list.
4187			 */
4188			continue;
4189		}
4190		rcu_read_unlock();
4191
4192		mutex_lock(&event->mmap_mutex);
4193		/*
4194		 * Check we didn't race with perf_event_set_output() which can
4195		 * swizzle the rb from under us while we were waiting to
4196		 * acquire mmap_mutex.
4197		 *
4198		 * If we find a different rb; ignore this event, a next
4199		 * iteration will no longer find it on the list. We have to
4200		 * still restart the iteration to make sure we're not now
4201		 * iterating the wrong list.
4202		 */
4203		if (event->rb == rb)
4204			ring_buffer_attach(event, NULL);
4205
4206		mutex_unlock(&event->mmap_mutex);
4207		put_event(event);
4208
4209		/*
4210		 * Restart the iteration; either we're on the wrong list or
4211		 * destroyed its integrity by doing a deletion.
4212		 */
4213		goto again;
4214	}
4215	rcu_read_unlock();
4216
4217	/*
4218	 * It could be there's still a few 0-ref events on the list; they'll
4219	 * get cleaned up by free_event() -- they'll also still have their
4220	 * ref on the rb and will free it whenever they are done with it.
4221	 *
4222	 * Aside from that, this buffer is 'fully' detached and unmapped,
4223	 * undo the VM accounting.
4224	 */
4225
4226	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4227	vma->vm_mm->pinned_vm -= mmap_locked;
4228	free_uid(mmap_user);
4229
4230out_put:
4231	ring_buffer_put(rb); /* could be last */
4232}
4233
4234static const struct vm_operations_struct perf_mmap_vmops = {
4235	.open		= perf_mmap_open,
4236	.close		= perf_mmap_close,
4237	.fault		= perf_mmap_fault,
4238	.page_mkwrite	= perf_mmap_fault,
4239};
4240
4241static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4242{
4243	struct perf_event *event = file->private_data;
4244	unsigned long user_locked, user_lock_limit;
4245	struct user_struct *user = current_user();
4246	unsigned long locked, lock_limit;
4247	struct ring_buffer *rb;
4248	unsigned long vma_size;
4249	unsigned long nr_pages;
4250	long user_extra, extra;
4251	int ret = 0, flags = 0;
4252
4253	/*
4254	 * Don't allow mmap() of inherited per-task counters. This would
4255	 * create a performance issue due to all children writing to the
4256	 * same rb.
4257	 */
4258	if (event->cpu == -1 && event->attr.inherit)
4259		return -EINVAL;
4260
4261	if (!(vma->vm_flags & VM_SHARED))
4262		return -EINVAL;
4263
4264	vma_size = vma->vm_end - vma->vm_start;
4265	nr_pages = (vma_size / PAGE_SIZE) - 1;
4266
4267	/*
4268	 * If we have rb pages ensure they're a power-of-two number, so we
4269	 * can do bitmasks instead of modulo.
4270	 */
4271	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4272		return -EINVAL;
4273
4274	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4275		return -EINVAL;
4276
4277	if (vma->vm_pgoff != 0)
4278		return -EINVAL;
4279
4280	WARN_ON_ONCE(event->ctx->parent_ctx);
4281again:
4282	mutex_lock(&event->mmap_mutex);
4283	if (event->rb) {
4284		if (event->rb->nr_pages != nr_pages) {
4285			ret = -EINVAL;
4286			goto unlock;
4287		}
4288
4289		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4290			/*
4291			 * Raced against perf_mmap_close() through
4292			 * perf_event_set_output(). Try again, hope for better
4293			 * luck.
4294			 */
4295			mutex_unlock(&event->mmap_mutex);
4296			goto again;
4297		}
4298
4299		goto unlock;
4300	}
4301
4302	user_extra = nr_pages + 1;
4303	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4304
4305	/*
4306	 * Increase the limit linearly with more CPUs:
4307	 */
4308	user_lock_limit *= num_online_cpus();
4309
4310	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4311
4312	extra = 0;
4313	if (user_locked > user_lock_limit)
4314		extra = user_locked - user_lock_limit;
4315
4316	lock_limit = rlimit(RLIMIT_MEMLOCK);
4317	lock_limit >>= PAGE_SHIFT;
4318	locked = vma->vm_mm->pinned_vm + extra;
4319
4320	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4321		!capable(CAP_IPC_LOCK)) {
4322		ret = -EPERM;
4323		goto unlock;
4324	}
4325
4326	WARN_ON(event->rb);
4327
4328	if (vma->vm_flags & VM_WRITE)
4329		flags |= RING_BUFFER_WRITABLE;
4330
4331	rb = rb_alloc(nr_pages,
4332		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4333		event->cpu, flags);
4334
4335	if (!rb) {
4336		ret = -ENOMEM;
4337		goto unlock;
4338	}
4339
4340	atomic_set(&rb->mmap_count, 1);
4341	rb->mmap_locked = extra;
4342	rb->mmap_user = get_current_user();
4343
4344	atomic_long_add(user_extra, &user->locked_vm);
4345	vma->vm_mm->pinned_vm += extra;
4346
4347	ring_buffer_attach(event, rb);
4348
4349	perf_event_init_userpage(event);
4350	perf_event_update_userpage(event);
4351
4352unlock:
4353	if (!ret)
4354		atomic_inc(&event->mmap_count);
4355	mutex_unlock(&event->mmap_mutex);
4356
4357	/*
4358	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4359	 * vma.
4360	 */
4361	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4362	vma->vm_ops = &perf_mmap_vmops;
4363
4364	return ret;
4365}
4366
4367static int perf_fasync(int fd, struct file *filp, int on)
4368{
4369	struct inode *inode = file_inode(filp);
4370	struct perf_event *event = filp->private_data;
4371	int retval;
4372
4373	mutex_lock(&inode->i_mutex);
4374	retval = fasync_helper(fd, filp, on, &event->fasync);
4375	mutex_unlock(&inode->i_mutex);
4376
4377	if (retval < 0)
4378		return retval;
4379
4380	return 0;
4381}
4382
4383static const struct file_operations perf_fops = {
4384	.llseek			= no_llseek,
4385	.release		= perf_release,
4386	.read			= perf_read,
4387	.poll			= perf_poll,
4388	.unlocked_ioctl		= perf_ioctl,
4389	.compat_ioctl		= perf_compat_ioctl,
4390	.mmap			= perf_mmap,
4391	.fasync			= perf_fasync,
4392};
4393
4394/*
4395 * Perf event wakeup
4396 *
4397 * If there's data, ensure we set the poll() state and publish everything
4398 * to user-space before waking everybody up.
4399 */
4400
4401void perf_event_wakeup(struct perf_event *event)
4402{
4403	ring_buffer_wakeup(event);
4404
4405	if (event->pending_kill) {
4406		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4407		event->pending_kill = 0;
4408	}
4409}
4410
4411static void perf_pending_event(struct irq_work *entry)
4412{
4413	struct perf_event *event = container_of(entry,
4414			struct perf_event, pending);
4415
4416	if (event->pending_disable) {
4417		event->pending_disable = 0;
4418		__perf_event_disable(event);
4419	}
4420
4421	if (event->pending_wakeup) {
4422		event->pending_wakeup = 0;
4423		perf_event_wakeup(event);
4424	}
4425}
4426
4427/*
4428 * We assume there is only KVM supporting the callbacks.
4429 * Later on, we might change it to a list if there is
4430 * another virtualization implementation supporting the callbacks.
4431 */
4432struct perf_guest_info_callbacks *perf_guest_cbs;
4433
4434int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4435{
4436	perf_guest_cbs = cbs;
4437	return 0;
4438}
4439EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4440
4441int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4442{
4443	perf_guest_cbs = NULL;
4444	return 0;
4445}
4446EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4447
4448static void
4449perf_output_sample_regs(struct perf_output_handle *handle,
4450			struct pt_regs *regs, u64 mask)
4451{
4452	int bit;
4453
4454	for_each_set_bit(bit, (const unsigned long *) &mask,
4455			 sizeof(mask) * BITS_PER_BYTE) {
4456		u64 val;
4457
4458		val = perf_reg_value(regs, bit);
4459		perf_output_put(handle, val);
4460	}
4461}
4462
4463static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4464				  struct pt_regs *regs)
4465{
4466	if (!user_mode(regs)) {
4467		if (current->mm)
4468			regs = task_pt_regs(current);
4469		else
4470			regs = NULL;
4471	}
4472
4473	if (regs) {
4474		regs_user->regs = regs;
4475		regs_user->abi  = perf_reg_abi(current);
4476	}
4477}
4478
4479/*
4480 * Get remaining task size from user stack pointer.
4481 *
4482 * It'd be better to take stack vma map and limit this more
4483 * precisly, but there's no way to get it safely under interrupt,
4484 * so using TASK_SIZE as limit.
4485 */
4486static u64 perf_ustack_task_size(struct pt_regs *regs)
4487{
4488	unsigned long addr = perf_user_stack_pointer(regs);
4489
4490	if (!addr || addr >= TASK_SIZE)
4491		return 0;
4492
4493	return TASK_SIZE - addr;
4494}
4495
4496static u16
4497perf_sample_ustack_size(u16 stack_size, u16 header_size,
4498			struct pt_regs *regs)
4499{
4500	u64 task_size;
4501
4502	/* No regs, no stack pointer, no dump. */
4503	if (!regs)
4504		return 0;
4505
4506	/*
4507	 * Check if we fit in with the requested stack size into the:
4508	 * - TASK_SIZE
4509	 *   If we don't, we limit the size to the TASK_SIZE.
4510	 *
4511	 * - remaining sample size
4512	 *   If we don't, we customize the stack size to
4513	 *   fit in to the remaining sample size.
4514	 */
4515
4516	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4517	stack_size = min(stack_size, (u16) task_size);
4518
4519	/* Current header size plus static size and dynamic size. */
4520	header_size += 2 * sizeof(u64);
4521
4522	/* Do we fit in with the current stack dump size? */
4523	if ((u16) (header_size + stack_size) < header_size) {
4524		/*
4525		 * If we overflow the maximum size for the sample,
4526		 * we customize the stack dump size to fit in.
4527		 */
4528		stack_size = USHRT_MAX - header_size - sizeof(u64);
4529		stack_size = round_up(stack_size, sizeof(u64));
4530	}
4531
4532	return stack_size;
4533}
4534
4535static void
4536perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4537			  struct pt_regs *regs)
4538{
4539	/* Case of a kernel thread, nothing to dump */
4540	if (!regs) {
4541		u64 size = 0;
4542		perf_output_put(handle, size);
4543	} else {
4544		unsigned long sp;
4545		unsigned int rem;
4546		u64 dyn_size;
4547
4548		/*
4549		 * We dump:
4550		 * static size
4551		 *   - the size requested by user or the best one we can fit
4552		 *     in to the sample max size
4553		 * data
4554		 *   - user stack dump data
4555		 * dynamic size
4556		 *   - the actual dumped size
4557		 */
4558
4559		/* Static size. */
4560		perf_output_put(handle, dump_size);
4561
4562		/* Data. */
4563		sp = perf_user_stack_pointer(regs);
4564		rem = __output_copy_user(handle, (void *) sp, dump_size);
4565		dyn_size = dump_size - rem;
4566
4567		perf_output_skip(handle, rem);
4568
4569		/* Dynamic size. */
4570		perf_output_put(handle, dyn_size);
4571	}
4572}
4573
4574static void __perf_event_header__init_id(struct perf_event_header *header,
4575					 struct perf_sample_data *data,
4576					 struct perf_event *event)
4577{
4578	u64 sample_type = event->attr.sample_type;
4579
4580	data->type = sample_type;
4581	header->size += event->id_header_size;
4582
4583	if (sample_type & PERF_SAMPLE_TID) {
4584		/* namespace issues */
4585		data->tid_entry.pid = perf_event_pid(event, current);
4586		data->tid_entry.tid = perf_event_tid(event, current);
4587	}
4588
4589	if (sample_type & PERF_SAMPLE_TIME)
4590		data->time = perf_clock();
4591
4592	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4593		data->id = primary_event_id(event);
4594
4595	if (sample_type & PERF_SAMPLE_STREAM_ID)
4596		data->stream_id = event->id;
4597
4598	if (sample_type & PERF_SAMPLE_CPU) {
4599		data->cpu_entry.cpu	 = raw_smp_processor_id();
4600		data->cpu_entry.reserved = 0;
4601	}
4602}
4603
4604void perf_event_header__init_id(struct perf_event_header *header,
4605				struct perf_sample_data *data,
4606				struct perf_event *event)
4607{
4608	if (event->attr.sample_id_all)
4609		__perf_event_header__init_id(header, data, event);
4610}
4611
4612static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4613					   struct perf_sample_data *data)
4614{
4615	u64 sample_type = data->type;
4616
4617	if (sample_type & PERF_SAMPLE_TID)
4618		perf_output_put(handle, data->tid_entry);
4619
4620	if (sample_type & PERF_SAMPLE_TIME)
4621		perf_output_put(handle, data->time);
4622
4623	if (sample_type & PERF_SAMPLE_ID)
4624		perf_output_put(handle, data->id);
4625
4626	if (sample_type & PERF_SAMPLE_STREAM_ID)
4627		perf_output_put(handle, data->stream_id);
4628
4629	if (sample_type & PERF_SAMPLE_CPU)
4630		perf_output_put(handle, data->cpu_entry);
4631
4632	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4633		perf_output_put(handle, data->id);
4634}
4635
4636void perf_event__output_id_sample(struct perf_event *event,
4637				  struct perf_output_handle *handle,
4638				  struct perf_sample_data *sample)
4639{
4640	if (event->attr.sample_id_all)
4641		__perf_event__output_id_sample(handle, sample);
4642}
4643
4644static void perf_output_read_one(struct perf_output_handle *handle,
4645				 struct perf_event *event,
4646				 u64 enabled, u64 running)
4647{
4648	u64 read_format = event->attr.read_format;
4649	u64 values[4];
4650	int n = 0;
4651
4652	values[n++] = perf_event_count(event);
4653	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4654		values[n++] = enabled +
4655			atomic64_read(&event->child_total_time_enabled);
4656	}
4657	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4658		values[n++] = running +
4659			atomic64_read(&event->child_total_time_running);
4660	}
4661	if (read_format & PERF_FORMAT_ID)
4662		values[n++] = primary_event_id(event);
4663
4664	__output_copy(handle, values, n * sizeof(u64));
4665}
4666
4667/*
4668 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4669 */
4670static void perf_output_read_group(struct perf_output_handle *handle,
4671			    struct perf_event *event,
4672			    u64 enabled, u64 running)
4673{
4674	struct perf_event *leader = event->group_leader, *sub;
4675	u64 read_format = event->attr.read_format;
4676	u64 values[5];
4677	int n = 0;
4678
4679	values[n++] = 1 + leader->nr_siblings;
4680
4681	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4682		values[n++] = enabled;
4683
4684	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4685		values[n++] = running;
4686
4687	if (leader != event)
4688		leader->pmu->read(leader);
4689
4690	values[n++] = perf_event_count(leader);
4691	if (read_format & PERF_FORMAT_ID)
4692		values[n++] = primary_event_id(leader);
4693
4694	__output_copy(handle, values, n * sizeof(u64));
4695
4696	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4697		n = 0;
4698
4699		if ((sub != event) &&
4700		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4701			sub->pmu->read(sub);
4702
4703		values[n++] = perf_event_count(sub);
4704		if (read_format & PERF_FORMAT_ID)
4705			values[n++] = primary_event_id(sub);
4706
4707		__output_copy(handle, values, n * sizeof(u64));
4708	}
4709}
4710
4711#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4712				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4713
4714static void perf_output_read(struct perf_output_handle *handle,
4715			     struct perf_event *event)
4716{
4717	u64 enabled = 0, running = 0, now;
4718	u64 read_format = event->attr.read_format;
4719
4720	/*
4721	 * compute total_time_enabled, total_time_running
4722	 * based on snapshot values taken when the event
4723	 * was last scheduled in.
4724	 *
4725	 * we cannot simply called update_context_time()
4726	 * because of locking issue as we are called in
4727	 * NMI context
4728	 */
4729	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4730		calc_timer_values(event, &now, &enabled, &running);
4731
4732	if (event->attr.read_format & PERF_FORMAT_GROUP)
4733		perf_output_read_group(handle, event, enabled, running);
4734	else
4735		perf_output_read_one(handle, event, enabled, running);
4736}
4737
4738void perf_output_sample(struct perf_output_handle *handle,
4739			struct perf_event_header *header,
4740			struct perf_sample_data *data,
4741			struct perf_event *event)
4742{
4743	u64 sample_type = data->type;
4744
4745	perf_output_put(handle, *header);
4746
4747	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4748		perf_output_put(handle, data->id);
4749
4750	if (sample_type & PERF_SAMPLE_IP)
4751		perf_output_put(handle, data->ip);
4752
4753	if (sample_type & PERF_SAMPLE_TID)
4754		perf_output_put(handle, data->tid_entry);
4755
4756	if (sample_type & PERF_SAMPLE_TIME)
4757		perf_output_put(handle, data->time);
4758
4759	if (sample_type & PERF_SAMPLE_ADDR)
4760		perf_output_put(handle, data->addr);
4761
4762	if (sample_type & PERF_SAMPLE_ID)
4763		perf_output_put(handle, data->id);
4764
4765	if (sample_type & PERF_SAMPLE_STREAM_ID)
4766		perf_output_put(handle, data->stream_id);
4767
4768	if (sample_type & PERF_SAMPLE_CPU)
4769		perf_output_put(handle, data->cpu_entry);
4770
4771	if (sample_type & PERF_SAMPLE_PERIOD)
4772		perf_output_put(handle, data->period);
4773
4774	if (sample_type & PERF_SAMPLE_READ)
4775		perf_output_read(handle, event);
4776
4777	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4778		if (data->callchain) {
4779			int size = 1;
4780
4781			if (data->callchain)
4782				size += data->callchain->nr;
4783
4784			size *= sizeof(u64);
4785
4786			__output_copy(handle, data->callchain, size);
4787		} else {
4788			u64 nr = 0;
4789			perf_output_put(handle, nr);
4790		}
4791	}
4792
4793	if (sample_type & PERF_SAMPLE_RAW) {
4794		if (data->raw) {
4795			perf_output_put(handle, data->raw->size);
4796			__output_copy(handle, data->raw->data,
4797					   data->raw->size);
4798		} else {
4799			struct {
4800				u32	size;
4801				u32	data;
4802			} raw = {
4803				.size = sizeof(u32),
4804				.data = 0,
4805			};
4806			perf_output_put(handle, raw);
4807		}
4808	}
4809
4810	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4811		if (data->br_stack) {
4812			size_t size;
4813
4814			size = data->br_stack->nr
4815			     * sizeof(struct perf_branch_entry);
4816
4817			perf_output_put(handle, data->br_stack->nr);
4818			perf_output_copy(handle, data->br_stack->entries, size);
4819		} else {
4820			/*
4821			 * we always store at least the value of nr
4822			 */
4823			u64 nr = 0;
4824			perf_output_put(handle, nr);
4825		}
4826	}
4827
4828	if (sample_type & PERF_SAMPLE_REGS_USER) {
4829		u64 abi = data->regs_user.abi;
4830
4831		/*
4832		 * If there are no regs to dump, notice it through
4833		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4834		 */
4835		perf_output_put(handle, abi);
4836
4837		if (abi) {
4838			u64 mask = event->attr.sample_regs_user;
4839			perf_output_sample_regs(handle,
4840						data->regs_user.regs,
4841						mask);
4842		}
4843	}
4844
4845	if (sample_type & PERF_SAMPLE_STACK_USER) {
4846		perf_output_sample_ustack(handle,
4847					  data->stack_user_size,
4848					  data->regs_user.regs);
4849	}
4850
4851	if (sample_type & PERF_SAMPLE_WEIGHT)
4852		perf_output_put(handle, data->weight);
4853
4854	if (sample_type & PERF_SAMPLE_DATA_SRC)
4855		perf_output_put(handle, data->data_src.val);
4856
4857	if (sample_type & PERF_SAMPLE_TRANSACTION)
4858		perf_output_put(handle, data->txn);
4859
4860	if (!event->attr.watermark) {
4861		int wakeup_events = event->attr.wakeup_events;
4862
4863		if (wakeup_events) {
4864			struct ring_buffer *rb = handle->rb;
4865			int events = local_inc_return(&rb->events);
4866
4867			if (events >= wakeup_events) {
4868				local_sub(wakeup_events, &rb->events);
4869				local_inc(&rb->wakeup);
4870			}
4871		}
4872	}
4873}
4874
4875void perf_prepare_sample(struct perf_event_header *header,
4876			 struct perf_sample_data *data,
4877			 struct perf_event *event,
4878			 struct pt_regs *regs)
4879{
4880	u64 sample_type = event->attr.sample_type;
4881
4882	header->type = PERF_RECORD_SAMPLE;
4883	header->size = sizeof(*header) + event->header_size;
4884
4885	header->misc = 0;
4886	header->misc |= perf_misc_flags(regs);
4887
4888	__perf_event_header__init_id(header, data, event);
4889
4890	if (sample_type & PERF_SAMPLE_IP)
4891		data->ip = perf_instruction_pointer(regs);
4892
4893	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4894		int size = 1;
4895
4896		data->callchain = perf_callchain(event, regs);
4897
4898		if (data->callchain)
4899			size += data->callchain->nr;
4900
4901		header->size += size * sizeof(u64);
4902	}
4903
4904	if (sample_type & PERF_SAMPLE_RAW) {
4905		int size = sizeof(u32);
4906
4907		if (data->raw)
4908			size += data->raw->size;
4909		else
4910			size += sizeof(u32);
4911
4912		WARN_ON_ONCE(size & (sizeof(u64)-1));
4913		header->size += size;
4914	}
4915
4916	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4917		int size = sizeof(u64); /* nr */
4918		if (data->br_stack) {
4919			size += data->br_stack->nr
4920			      * sizeof(struct perf_branch_entry);
4921		}
4922		header->size += size;
4923	}
4924
4925	if (sample_type & PERF_SAMPLE_REGS_USER) {
4926		/* regs dump ABI info */
4927		int size = sizeof(u64);
4928
4929		perf_sample_regs_user(&data->regs_user, regs);
4930
4931		if (data->regs_user.regs) {
4932			u64 mask = event->attr.sample_regs_user;
4933			size += hweight64(mask) * sizeof(u64);
4934		}
4935
4936		header->size += size;
4937	}
4938
4939	if (sample_type & PERF_SAMPLE_STACK_USER) {
4940		/*
4941		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4942		 * processed as the last one or have additional check added
4943		 * in case new sample type is added, because we could eat
4944		 * up the rest of the sample size.
4945		 */
4946		struct perf_regs_user *uregs = &data->regs_user;
4947		u16 stack_size = event->attr.sample_stack_user;
4948		u16 size = sizeof(u64);
4949
4950		if (!uregs->abi)
4951			perf_sample_regs_user(uregs, regs);
4952
4953		stack_size = perf_sample_ustack_size(stack_size, header->size,
4954						     uregs->regs);
4955
4956		/*
4957		 * If there is something to dump, add space for the dump
4958		 * itself and for the field that tells the dynamic size,
4959		 * which is how many have been actually dumped.
4960		 */
4961		if (stack_size)
4962			size += sizeof(u64) + stack_size;
4963
4964		data->stack_user_size = stack_size;
4965		header->size += size;
4966	}
4967}
4968
4969static void perf_event_output(struct perf_event *event,
4970				struct perf_sample_data *data,
4971				struct pt_regs *regs)
4972{
4973	struct perf_output_handle handle;
4974	struct perf_event_header header;
4975
4976	/* protect the callchain buffers */
4977	rcu_read_lock();
4978
4979	perf_prepare_sample(&header, data, event, regs);
4980
4981	if (perf_output_begin(&handle, event, header.size))
4982		goto exit;
4983
4984	perf_output_sample(&handle, &header, data, event);
4985
4986	perf_output_end(&handle);
4987
4988exit:
4989	rcu_read_unlock();
4990}
4991
4992/*
4993 * read event_id
4994 */
4995
4996struct perf_read_event {
4997	struct perf_event_header	header;
4998
4999	u32				pid;
5000	u32				tid;
5001};
5002
5003static void
5004perf_event_read_event(struct perf_event *event,
5005			struct task_struct *task)
5006{
5007	struct perf_output_handle handle;
5008	struct perf_sample_data sample;
5009	struct perf_read_event read_event = {
5010		.header = {
5011			.type = PERF_RECORD_READ,
5012			.misc = 0,
5013			.size = sizeof(read_event) + event->read_size,
5014		},
5015		.pid = perf_event_pid(event, task),
5016		.tid = perf_event_tid(event, task),
5017	};
5018	int ret;
5019
5020	perf_event_header__init_id(&read_event.header, &sample, event);
5021	ret = perf_output_begin(&handle, event, read_event.header.size);
5022	if (ret)
5023		return;
5024
5025	perf_output_put(&handle, read_event);
5026	perf_output_read(&handle, event);
5027	perf_event__output_id_sample(event, &handle, &sample);
5028
5029	perf_output_end(&handle);
5030}
5031
5032typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5033
5034static void
5035perf_event_aux_ctx(struct perf_event_context *ctx,
5036		   perf_event_aux_output_cb output,
5037		   void *data)
5038{
5039	struct perf_event *event;
5040
5041	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5042		if (event->state < PERF_EVENT_STATE_INACTIVE)
5043			continue;
5044		if (!event_filter_match(event))
5045			continue;
5046		output(event, data);
5047	}
5048}
5049
5050static void
5051perf_event_aux(perf_event_aux_output_cb output, void *data,
5052	       struct perf_event_context *task_ctx)
5053{
5054	struct perf_cpu_context *cpuctx;
5055	struct perf_event_context *ctx;
5056	struct pmu *pmu;
5057	int ctxn;
5058
5059	rcu_read_lock();
5060	list_for_each_entry_rcu(pmu, &pmus, entry) {
5061		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5062		if (cpuctx->unique_pmu != pmu)
5063			goto next;
5064		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5065		if (task_ctx)
5066			goto next;
5067		ctxn = pmu->task_ctx_nr;
5068		if (ctxn < 0)
5069			goto next;
5070		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5071		if (ctx)
5072			perf_event_aux_ctx(ctx, output, data);
5073next:
5074		put_cpu_ptr(pmu->pmu_cpu_context);
5075	}
5076
5077	if (task_ctx) {
5078		preempt_disable();
5079		perf_event_aux_ctx(task_ctx, output, data);
5080		preempt_enable();
5081	}
5082	rcu_read_unlock();
5083}
5084
5085/*
5086 * task tracking -- fork/exit
5087 *
5088 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5089 */
5090
5091struct perf_task_event {
5092	struct task_struct		*task;
5093	struct perf_event_context	*task_ctx;
5094
5095	struct {
5096		struct perf_event_header	header;
5097
5098		u32				pid;
5099		u32				ppid;
5100		u32				tid;
5101		u32				ptid;
5102		u64				time;
5103	} event_id;
5104};
5105
5106static int perf_event_task_match(struct perf_event *event)
5107{
5108	return event->attr.comm  || event->attr.mmap ||
5109	       event->attr.mmap2 || event->attr.mmap_data ||
5110	       event->attr.task;
5111}
5112
5113static void perf_event_task_output(struct perf_event *event,
5114				   void *data)
5115{
5116	struct perf_task_event *task_event = data;
5117	struct perf_output_handle handle;
5118	struct perf_sample_data	sample;
5119	struct task_struct *task = task_event->task;
5120	int ret, size = task_event->event_id.header.size;
5121
5122	if (!perf_event_task_match(event))
5123		return;
5124
5125	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5126
5127	ret = perf_output_begin(&handle, event,
5128				task_event->event_id.header.size);
5129	if (ret)
5130		goto out;
5131
5132	task_event->event_id.pid = perf_event_pid(event, task);
5133	task_event->event_id.ppid = perf_event_pid(event, current);
5134
5135	task_event->event_id.tid = perf_event_tid(event, task);
5136	task_event->event_id.ptid = perf_event_tid(event, current);
5137
5138	perf_output_put(&handle, task_event->event_id);
5139
5140	perf_event__output_id_sample(event, &handle, &sample);
5141
5142	perf_output_end(&handle);
5143out:
5144	task_event->event_id.header.size = size;
5145}
5146
5147static void perf_event_task(struct task_struct *task,
5148			      struct perf_event_context *task_ctx,
5149			      int new)
5150{
5151	struct perf_task_event task_event;
5152
5153	if (!atomic_read(&nr_comm_events) &&
5154	    !atomic_read(&nr_mmap_events) &&
5155	    !atomic_read(&nr_task_events))
5156		return;
5157
5158	task_event = (struct perf_task_event){
5159		.task	  = task,
5160		.task_ctx = task_ctx,
5161		.event_id    = {
5162			.header = {
5163				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5164				.misc = 0,
5165				.size = sizeof(task_event.event_id),
5166			},
5167			/* .pid  */
5168			/* .ppid */
5169			/* .tid  */
5170			/* .ptid */
5171			.time = perf_clock(),
5172		},
5173	};
5174
5175	perf_event_aux(perf_event_task_output,
5176		       &task_event,
5177		       task_ctx);
5178}
5179
5180void perf_event_fork(struct task_struct *task)
5181{
5182	perf_event_task(task, NULL, 1);
5183}
5184
5185/*
5186 * comm tracking
5187 */
5188
5189struct perf_comm_event {
5190	struct task_struct	*task;
5191	char			*comm;
5192	int			comm_size;
5193
5194	struct {
5195		struct perf_event_header	header;
5196
5197		u32				pid;
5198		u32				tid;
5199	} event_id;
5200};
5201
5202static int perf_event_comm_match(struct perf_event *event)
5203{
5204	return event->attr.comm;
5205}
5206
5207static void perf_event_comm_output(struct perf_event *event,
5208				   void *data)
5209{
5210	struct perf_comm_event *comm_event = data;
5211	struct perf_output_handle handle;
5212	struct perf_sample_data sample;
5213	int size = comm_event->event_id.header.size;
5214	int ret;
5215
5216	if (!perf_event_comm_match(event))
5217		return;
5218
5219	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5220	ret = perf_output_begin(&handle, event,
5221				comm_event->event_id.header.size);
5222
5223	if (ret)
5224		goto out;
5225
5226	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5227	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5228
5229	perf_output_put(&handle, comm_event->event_id);
5230	__output_copy(&handle, comm_event->comm,
5231				   comm_event->comm_size);
5232
5233	perf_event__output_id_sample(event, &handle, &sample);
5234
5235	perf_output_end(&handle);
5236out:
5237	comm_event->event_id.header.size = size;
5238}
5239
5240static void perf_event_comm_event(struct perf_comm_event *comm_event)
5241{
5242	char comm[TASK_COMM_LEN];
5243	unsigned int size;
5244
5245	memset(comm, 0, sizeof(comm));
5246	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5247	size = ALIGN(strlen(comm)+1, sizeof(u64));
5248
5249	comm_event->comm = comm;
5250	comm_event->comm_size = size;
5251
5252	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5253
5254	perf_event_aux(perf_event_comm_output,
5255		       comm_event,
5256		       NULL);
5257}
5258
5259void perf_event_comm(struct task_struct *task, bool exec)
5260{
5261	struct perf_comm_event comm_event;
5262
5263	if (!atomic_read(&nr_comm_events))
5264		return;
5265
5266	comm_event = (struct perf_comm_event){
5267		.task	= task,
5268		/* .comm      */
5269		/* .comm_size */
5270		.event_id  = {
5271			.header = {
5272				.type = PERF_RECORD_COMM,
5273				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5274				/* .size */
5275			},
5276			/* .pid */
5277			/* .tid */
5278		},
5279	};
5280
5281	perf_event_comm_event(&comm_event);
5282}
5283
5284/*
5285 * mmap tracking
5286 */
5287
5288struct perf_mmap_event {
5289	struct vm_area_struct	*vma;
5290
5291	const char		*file_name;
5292	int			file_size;
5293	int			maj, min;
5294	u64			ino;
5295	u64			ino_generation;
5296	u32			prot, flags;
5297
5298	struct {
5299		struct perf_event_header	header;
5300
5301		u32				pid;
5302		u32				tid;
5303		u64				start;
5304		u64				len;
5305		u64				pgoff;
5306	} event_id;
5307};
5308
5309static int perf_event_mmap_match(struct perf_event *event,
5310				 void *data)
5311{
5312	struct perf_mmap_event *mmap_event = data;
5313	struct vm_area_struct *vma = mmap_event->vma;
5314	int executable = vma->vm_flags & VM_EXEC;
5315
5316	return (!executable && event->attr.mmap_data) ||
5317	       (executable && (event->attr.mmap || event->attr.mmap2));
5318}
5319
5320static void perf_event_mmap_output(struct perf_event *event,
5321				   void *data)
5322{
5323	struct perf_mmap_event *mmap_event = data;
5324	struct perf_output_handle handle;
5325	struct perf_sample_data sample;
5326	int size = mmap_event->event_id.header.size;
5327	int ret;
5328
5329	if (!perf_event_mmap_match(event, data))
5330		return;
5331
5332	if (event->attr.mmap2) {
5333		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5334		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5335		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5336		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5337		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5338		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5339		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5340	}
5341
5342	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5343	ret = perf_output_begin(&handle, event,
5344				mmap_event->event_id.header.size);
5345	if (ret)
5346		goto out;
5347
5348	mmap_event->event_id.pid = perf_event_pid(event, current);
5349	mmap_event->event_id.tid = perf_event_tid(event, current);
5350
5351	perf_output_put(&handle, mmap_event->event_id);
5352
5353	if (event->attr.mmap2) {
5354		perf_output_put(&handle, mmap_event->maj);
5355		perf_output_put(&handle, mmap_event->min);
5356		perf_output_put(&handle, mmap_event->ino);
5357		perf_output_put(&handle, mmap_event->ino_generation);
5358		perf_output_put(&handle, mmap_event->prot);
5359		perf_output_put(&handle, mmap_event->flags);
5360	}
5361
5362	__output_copy(&handle, mmap_event->file_name,
5363				   mmap_event->file_size);
5364
5365	perf_event__output_id_sample(event, &handle, &sample);
5366
5367	perf_output_end(&handle);
5368out:
5369	mmap_event->event_id.header.size = size;
5370}
5371
5372static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5373{
5374	struct vm_area_struct *vma = mmap_event->vma;
5375	struct file *file = vma->vm_file;
5376	int maj = 0, min = 0;
5377	u64 ino = 0, gen = 0;
5378	u32 prot = 0, flags = 0;
5379	unsigned int size;
5380	char tmp[16];
5381	char *buf = NULL;
5382	char *name;
5383
5384	if (file) {
5385		struct inode *inode;
5386		dev_t dev;
5387
5388		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5389		if (!buf) {
5390			name = "//enomem";
5391			goto cpy_name;
5392		}
5393		/*
5394		 * d_path() works from the end of the rb backwards, so we
5395		 * need to add enough zero bytes after the string to handle
5396		 * the 64bit alignment we do later.
5397		 */
5398		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5399		if (IS_ERR(name)) {
5400			name = "//toolong";
5401			goto cpy_name;
5402		}
5403		inode = file_inode(vma->vm_file);
5404		dev = inode->i_sb->s_dev;
5405		ino = inode->i_ino;
5406		gen = inode->i_generation;
5407		maj = MAJOR(dev);
5408		min = MINOR(dev);
5409
5410		if (vma->vm_flags & VM_READ)
5411			prot |= PROT_READ;
5412		if (vma->vm_flags & VM_WRITE)
5413			prot |= PROT_WRITE;
5414		if (vma->vm_flags & VM_EXEC)
5415			prot |= PROT_EXEC;
5416
5417		if (vma->vm_flags & VM_MAYSHARE)
5418			flags = MAP_SHARED;
5419		else
5420			flags = MAP_PRIVATE;
5421
5422		if (vma->vm_flags & VM_DENYWRITE)
5423			flags |= MAP_DENYWRITE;
5424		if (vma->vm_flags & VM_MAYEXEC)
5425			flags |= MAP_EXECUTABLE;
5426		if (vma->vm_flags & VM_LOCKED)
5427			flags |= MAP_LOCKED;
5428		if (vma->vm_flags & VM_HUGETLB)
5429			flags |= MAP_HUGETLB;
5430
5431		goto got_name;
5432	} else {
5433		if (vma->vm_ops && vma->vm_ops->name) {
5434			name = (char *) vma->vm_ops->name(vma);
5435			if (name)
5436				goto cpy_name;
5437		}
5438
5439		name = (char *)arch_vma_name(vma);
5440		if (name)
5441			goto cpy_name;
5442
5443		if (vma->vm_start <= vma->vm_mm->start_brk &&
5444				vma->vm_end >= vma->vm_mm->brk) {
5445			name = "[heap]";
5446			goto cpy_name;
5447		}
5448		if (vma->vm_start <= vma->vm_mm->start_stack &&
5449				vma->vm_end >= vma->vm_mm->start_stack) {
5450			name = "[stack]";
5451			goto cpy_name;
5452		}
5453
5454		name = "//anon";
5455		goto cpy_name;
5456	}
5457
5458cpy_name:
5459	strlcpy(tmp, name, sizeof(tmp));
5460	name = tmp;
5461got_name:
5462	/*
5463	 * Since our buffer works in 8 byte units we need to align our string
5464	 * size to a multiple of 8. However, we must guarantee the tail end is
5465	 * zero'd out to avoid leaking random bits to userspace.
5466	 */
5467	size = strlen(name)+1;
5468	while (!IS_ALIGNED(size, sizeof(u64)))
5469		name[size++] = '\0';
5470
5471	mmap_event->file_name = name;
5472	mmap_event->file_size = size;
5473	mmap_event->maj = maj;
5474	mmap_event->min = min;
5475	mmap_event->ino = ino;
5476	mmap_event->ino_generation = gen;
5477	mmap_event->prot = prot;
5478	mmap_event->flags = flags;
5479
5480	if (!(vma->vm_flags & VM_EXEC))
5481		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5482
5483	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5484
5485	perf_event_aux(perf_event_mmap_output,
5486		       mmap_event,
5487		       NULL);
5488
5489	kfree(buf);
5490}
5491
5492void perf_event_mmap(struct vm_area_struct *vma)
5493{
5494	struct perf_mmap_event mmap_event;
5495
5496	if (!atomic_read(&nr_mmap_events))
5497		return;
5498
5499	mmap_event = (struct perf_mmap_event){
5500		.vma	= vma,
5501		/* .file_name */
5502		/* .file_size */
5503		.event_id  = {
5504			.header = {
5505				.type = PERF_RECORD_MMAP,
5506				.misc = PERF_RECORD_MISC_USER,
5507				/* .size */
5508			},
5509			/* .pid */
5510			/* .tid */
5511			.start  = vma->vm_start,
5512			.len    = vma->vm_end - vma->vm_start,
5513			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5514		},
5515		/* .maj (attr_mmap2 only) */
5516		/* .min (attr_mmap2 only) */
5517		/* .ino (attr_mmap2 only) */
5518		/* .ino_generation (attr_mmap2 only) */
5519		/* .prot (attr_mmap2 only) */
5520		/* .flags (attr_mmap2 only) */
5521	};
5522
5523	perf_event_mmap_event(&mmap_event);
5524}
5525
5526/*
5527 * IRQ throttle logging
5528 */
5529
5530static void perf_log_throttle(struct perf_event *event, int enable)
5531{
5532	struct perf_output_handle handle;
5533	struct perf_sample_data sample;
5534	int ret;
5535
5536	struct {
5537		struct perf_event_header	header;
5538		u64				time;
5539		u64				id;
5540		u64				stream_id;
5541	} throttle_event = {
5542		.header = {
5543			.type = PERF_RECORD_THROTTLE,
5544			.misc = 0,
5545			.size = sizeof(throttle_event),
5546		},
5547		.time		= perf_clock(),
5548		.id		= primary_event_id(event),
5549		.stream_id	= event->id,
5550	};
5551
5552	if (enable)
5553		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5554
5555	perf_event_header__init_id(&throttle_event.header, &sample, event);
5556
5557	ret = perf_output_begin(&handle, event,
5558				throttle_event.header.size);
5559	if (ret)
5560		return;
5561
5562	perf_output_put(&handle, throttle_event);
5563	perf_event__output_id_sample(event, &handle, &sample);
5564	perf_output_end(&handle);
5565}
5566
5567/*
5568 * Generic event overflow handling, sampling.
5569 */
5570
5571static int __perf_event_overflow(struct perf_event *event,
5572				   int throttle, struct perf_sample_data *data,
5573				   struct pt_regs *regs)
5574{
5575	int events = atomic_read(&event->event_limit);
5576	struct hw_perf_event *hwc = &event->hw;
5577	u64 seq;
5578	int ret = 0;
5579
5580	/*
5581	 * Non-sampling counters might still use the PMI to fold short
5582	 * hardware counters, ignore those.
5583	 */
5584	if (unlikely(!is_sampling_event(event)))
5585		return 0;
5586
5587	seq = __this_cpu_read(perf_throttled_seq);
5588	if (seq != hwc->interrupts_seq) {
5589		hwc->interrupts_seq = seq;
5590		hwc->interrupts = 1;
5591	} else {
5592		hwc->interrupts++;
5593		if (unlikely(throttle
5594			     && hwc->interrupts >= max_samples_per_tick)) {
5595			__this_cpu_inc(perf_throttled_count);
5596			hwc->interrupts = MAX_INTERRUPTS;
5597			perf_log_throttle(event, 0);
5598			tick_nohz_full_kick();
5599			ret = 1;
5600		}
5601	}
5602
5603	if (event->attr.freq) {
5604		u64 now = perf_clock();
5605		s64 delta = now - hwc->freq_time_stamp;
5606
5607		hwc->freq_time_stamp = now;
5608
5609		if (delta > 0 && delta < 2*TICK_NSEC)
5610			perf_adjust_period(event, delta, hwc->last_period, true);
5611	}
5612
5613	/*
5614	 * XXX event_limit might not quite work as expected on inherited
5615	 * events
5616	 */
5617
5618	event->pending_kill = POLL_IN;
5619	if (events && atomic_dec_and_test(&event->event_limit)) {
5620		ret = 1;
5621		event->pending_kill = POLL_HUP;
5622		event->pending_disable = 1;
5623		irq_work_queue(&event->pending);
5624	}
5625
5626	if (event->overflow_handler)
5627		event->overflow_handler(event, data, regs);
5628	else
5629		perf_event_output(event, data, regs);
5630
5631	if (event->fasync && event->pending_kill) {
5632		event->pending_wakeup = 1;
5633		irq_work_queue(&event->pending);
5634	}
5635
5636	return ret;
5637}
5638
5639int perf_event_overflow(struct perf_event *event,
5640			  struct perf_sample_data *data,
5641			  struct pt_regs *regs)
5642{
5643	return __perf_event_overflow(event, 1, data, regs);
5644}
5645
5646/*
5647 * Generic software event infrastructure
5648 */
5649
5650struct swevent_htable {
5651	struct swevent_hlist		*swevent_hlist;
5652	struct mutex			hlist_mutex;
5653	int				hlist_refcount;
5654
5655	/* Recursion avoidance in each contexts */
5656	int				recursion[PERF_NR_CONTEXTS];
5657
5658	/* Keeps track of cpu being initialized/exited */
5659	bool				online;
5660};
5661
5662static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5663
5664/*
5665 * We directly increment event->count and keep a second value in
5666 * event->hw.period_left to count intervals. This period event
5667 * is kept in the range [-sample_period, 0] so that we can use the
5668 * sign as trigger.
5669 */
5670
5671u64 perf_swevent_set_period(struct perf_event *event)
5672{
5673	struct hw_perf_event *hwc = &event->hw;
5674	u64 period = hwc->last_period;
5675	u64 nr, offset;
5676	s64 old, val;
5677
5678	hwc->last_period = hwc->sample_period;
5679
5680again:
5681	old = val = local64_read(&hwc->period_left);
5682	if (val < 0)
5683		return 0;
5684
5685	nr = div64_u64(period + val, period);
5686	offset = nr * period;
5687	val -= offset;
5688	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5689		goto again;
5690
5691	return nr;
5692}
5693
5694static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5695				    struct perf_sample_data *data,
5696				    struct pt_regs *regs)
5697{
5698	struct hw_perf_event *hwc = &event->hw;
5699	int throttle = 0;
5700
5701	if (!overflow)
5702		overflow = perf_swevent_set_period(event);
5703
5704	if (hwc->interrupts == MAX_INTERRUPTS)
5705		return;
5706
5707	for (; overflow; overflow--) {
5708		if (__perf_event_overflow(event, throttle,
5709					    data, regs)) {
5710			/*
5711			 * We inhibit the overflow from happening when
5712			 * hwc->interrupts == MAX_INTERRUPTS.
5713			 */
5714			break;
5715		}
5716		throttle = 1;
5717	}
5718}
5719
5720static void perf_swevent_event(struct perf_event *event, u64 nr,
5721			       struct perf_sample_data *data,
5722			       struct pt_regs *regs)
5723{
5724	struct hw_perf_event *hwc = &event->hw;
5725
5726	local64_add(nr, &event->count);
5727
5728	if (!regs)
5729		return;
5730
5731	if (!is_sampling_event(event))
5732		return;
5733
5734	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5735		data->period = nr;
5736		return perf_swevent_overflow(event, 1, data, regs);
5737	} else
5738		data->period = event->hw.last_period;
5739
5740	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5741		return perf_swevent_overflow(event, 1, data, regs);
5742
5743	if (local64_add_negative(nr, &hwc->period_left))
5744		return;
5745
5746	perf_swevent_overflow(event, 0, data, regs);
5747}
5748
5749static int perf_exclude_event(struct perf_event *event,
5750			      struct pt_regs *regs)
5751{
5752	if (event->hw.state & PERF_HES_STOPPED)
5753		return 1;
5754
5755	if (regs) {
5756		if (event->attr.exclude_user && user_mode(regs))
5757			return 1;
5758
5759		if (event->attr.exclude_kernel && !user_mode(regs))
5760			return 1;
5761	}
5762
5763	return 0;
5764}
5765
5766static int perf_swevent_match(struct perf_event *event,
5767				enum perf_type_id type,
5768				u32 event_id,
5769				struct perf_sample_data *data,
5770				struct pt_regs *regs)
5771{
5772	if (event->attr.type != type)
5773		return 0;
5774
5775	if (event->attr.config != event_id)
5776		return 0;
5777
5778	if (perf_exclude_event(event, regs))
5779		return 0;
5780
5781	return 1;
5782}
5783
5784static inline u64 swevent_hash(u64 type, u32 event_id)
5785{
5786	u64 val = event_id | (type << 32);
5787
5788	return hash_64(val, SWEVENT_HLIST_BITS);
5789}
5790
5791static inline struct hlist_head *
5792__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5793{
5794	u64 hash = swevent_hash(type, event_id);
5795
5796	return &hlist->heads[hash];
5797}
5798
5799/* For the read side: events when they trigger */
5800static inline struct hlist_head *
5801find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5802{
5803	struct swevent_hlist *hlist;
5804
5805	hlist = rcu_dereference(swhash->swevent_hlist);
5806	if (!hlist)
5807		return NULL;
5808
5809	return __find_swevent_head(hlist, type, event_id);
5810}
5811
5812/* For the event head insertion and removal in the hlist */
5813static inline struct hlist_head *
5814find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5815{
5816	struct swevent_hlist *hlist;
5817	u32 event_id = event->attr.config;
5818	u64 type = event->attr.type;
5819
5820	/*
5821	 * Event scheduling is always serialized against hlist allocation
5822	 * and release. Which makes the protected version suitable here.
5823	 * The context lock guarantees that.
5824	 */
5825	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5826					  lockdep_is_held(&event->ctx->lock));
5827	if (!hlist)
5828		return NULL;
5829
5830	return __find_swevent_head(hlist, type, event_id);
5831}
5832
5833static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5834				    u64 nr,
5835				    struct perf_sample_data *data,
5836				    struct pt_regs *regs)
5837{
5838	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5839	struct perf_event *event;
5840	struct hlist_head *head;
5841
5842	rcu_read_lock();
5843	head = find_swevent_head_rcu(swhash, type, event_id);
5844	if (!head)
5845		goto end;
5846
5847	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5848		if (perf_swevent_match(event, type, event_id, data, regs))
5849			perf_swevent_event(event, nr, data, regs);
5850	}
5851end:
5852	rcu_read_unlock();
5853}
5854
5855int perf_swevent_get_recursion_context(void)
5856{
5857	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5858
5859	return get_recursion_context(swhash->recursion);
5860}
5861EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5862
5863inline void perf_swevent_put_recursion_context(int rctx)
5864{
5865	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5866
5867	put_recursion_context(swhash->recursion, rctx);
5868}
5869
5870void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5871{
5872	struct perf_sample_data data;
5873	int rctx;
5874
5875	preempt_disable_notrace();
5876	rctx = perf_swevent_get_recursion_context();
5877	if (rctx < 0)
5878		return;
5879
5880	perf_sample_data_init(&data, addr, 0);
5881
5882	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5883
5884	perf_swevent_put_recursion_context(rctx);
5885	preempt_enable_notrace();
5886}
5887
5888static void perf_swevent_read(struct perf_event *event)
5889{
5890}
5891
5892static int perf_swevent_add(struct perf_event *event, int flags)
5893{
5894	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5895	struct hw_perf_event *hwc = &event->hw;
5896	struct hlist_head *head;
5897
5898	if (is_sampling_event(event)) {
5899		hwc->last_period = hwc->sample_period;
5900		perf_swevent_set_period(event);
5901	}
5902
5903	hwc->state = !(flags & PERF_EF_START);
5904
5905	head = find_swevent_head(swhash, event);
5906	if (!head) {
5907		/*
5908		 * We can race with cpu hotplug code. Do not
5909		 * WARN if the cpu just got unplugged.
5910		 */
5911		WARN_ON_ONCE(swhash->online);
5912		return -EINVAL;
5913	}
5914
5915	hlist_add_head_rcu(&event->hlist_entry, head);
5916
5917	return 0;
5918}
5919
5920static void perf_swevent_del(struct perf_event *event, int flags)
5921{
5922	hlist_del_rcu(&event->hlist_entry);
5923}
5924
5925static void perf_swevent_start(struct perf_event *event, int flags)
5926{
5927	event->hw.state = 0;
5928}
5929
5930static void perf_swevent_stop(struct perf_event *event, int flags)
5931{
5932	event->hw.state = PERF_HES_STOPPED;
5933}
5934
5935/* Deref the hlist from the update side */
5936static inline struct swevent_hlist *
5937swevent_hlist_deref(struct swevent_htable *swhash)
5938{
5939	return rcu_dereference_protected(swhash->swevent_hlist,
5940					 lockdep_is_held(&swhash->hlist_mutex));
5941}
5942
5943static void swevent_hlist_release(struct swevent_htable *swhash)
5944{
5945	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5946
5947	if (!hlist)
5948		return;
5949
5950	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5951	kfree_rcu(hlist, rcu_head);
5952}
5953
5954static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5955{
5956	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5957
5958	mutex_lock(&swhash->hlist_mutex);
5959
5960	if (!--swhash->hlist_refcount)
5961		swevent_hlist_release(swhash);
5962
5963	mutex_unlock(&swhash->hlist_mutex);
5964}
5965
5966static void swevent_hlist_put(struct perf_event *event)
5967{
5968	int cpu;
5969
5970	for_each_possible_cpu(cpu)
5971		swevent_hlist_put_cpu(event, cpu);
5972}
5973
5974static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5975{
5976	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5977	int err = 0;
5978
5979	mutex_lock(&swhash->hlist_mutex);
5980
5981	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5982		struct swevent_hlist *hlist;
5983
5984		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5985		if (!hlist) {
5986			err = -ENOMEM;
5987			goto exit;
5988		}
5989		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5990	}
5991	swhash->hlist_refcount++;
5992exit:
5993	mutex_unlock(&swhash->hlist_mutex);
5994
5995	return err;
5996}
5997
5998static int swevent_hlist_get(struct perf_event *event)
5999{
6000	int err;
6001	int cpu, failed_cpu;
6002
6003	get_online_cpus();
6004	for_each_possible_cpu(cpu) {
6005		err = swevent_hlist_get_cpu(event, cpu);
6006		if (err) {
6007			failed_cpu = cpu;
6008			goto fail;
6009		}
6010	}
6011	put_online_cpus();
6012
6013	return 0;
6014fail:
6015	for_each_possible_cpu(cpu) {
6016		if (cpu == failed_cpu)
6017			break;
6018		swevent_hlist_put_cpu(event, cpu);
6019	}
6020
6021	put_online_cpus();
6022	return err;
6023}
6024
6025struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6026
6027static void sw_perf_event_destroy(struct perf_event *event)
6028{
6029	u64 event_id = event->attr.config;
6030
6031	WARN_ON(event->parent);
6032
6033	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6034	swevent_hlist_put(event);
6035}
6036
6037static int perf_swevent_init(struct perf_event *event)
6038{
6039	u64 event_id = event->attr.config;
6040
6041	if (event->attr.type != PERF_TYPE_SOFTWARE)
6042		return -ENOENT;
6043
6044	/*
6045	 * no branch sampling for software events
6046	 */
6047	if (has_branch_stack(event))
6048		return -EOPNOTSUPP;
6049
6050	switch (event_id) {
6051	case PERF_COUNT_SW_CPU_CLOCK:
6052	case PERF_COUNT_SW_TASK_CLOCK:
6053		return -ENOENT;
6054
6055	default:
6056		break;
6057	}
6058
6059	if (event_id >= PERF_COUNT_SW_MAX)
6060		return -ENOENT;
6061
6062	if (!event->parent) {
6063		int err;
6064
6065		err = swevent_hlist_get(event);
6066		if (err)
6067			return err;
6068
6069		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6070		event->destroy = sw_perf_event_destroy;
6071	}
6072
6073	return 0;
6074}
6075
6076static struct pmu perf_swevent = {
6077	.task_ctx_nr	= perf_sw_context,
6078
6079	.event_init	= perf_swevent_init,
6080	.add		= perf_swevent_add,
6081	.del		= perf_swevent_del,
6082	.start		= perf_swevent_start,
6083	.stop		= perf_swevent_stop,
6084	.read		= perf_swevent_read,
6085};
6086
6087#ifdef CONFIG_EVENT_TRACING
6088
6089static int perf_tp_filter_match(struct perf_event *event,
6090				struct perf_sample_data *data)
6091{
6092	void *record = data->raw->data;
6093
6094	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6095		return 1;
6096	return 0;
6097}
6098
6099static int perf_tp_event_match(struct perf_event *event,
6100				struct perf_sample_data *data,
6101				struct pt_regs *regs)
6102{
6103	if (event->hw.state & PERF_HES_STOPPED)
6104		return 0;
6105	/*
6106	 * All tracepoints are from kernel-space.
6107	 */
6108	if (event->attr.exclude_kernel)
6109		return 0;
6110
6111	if (!perf_tp_filter_match(event, data))
6112		return 0;
6113
6114	return 1;
6115}
6116
6117void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6118		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6119		   struct task_struct *task)
6120{
6121	struct perf_sample_data data;
6122	struct perf_event *event;
6123
6124	struct perf_raw_record raw = {
6125		.size = entry_size,
6126		.data = record,
6127	};
6128
6129	perf_sample_data_init(&data, addr, 0);
6130	data.raw = &raw;
6131
6132	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6133		if (perf_tp_event_match(event, &data, regs))
6134			perf_swevent_event(event, count, &data, regs);
6135	}
6136
6137	/*
6138	 * If we got specified a target task, also iterate its context and
6139	 * deliver this event there too.
6140	 */
6141	if (task && task != current) {
6142		struct perf_event_context *ctx;
6143		struct trace_entry *entry = record;
6144
6145		rcu_read_lock();
6146		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6147		if (!ctx)
6148			goto unlock;
6149
6150		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6151			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6152				continue;
6153			if (event->attr.config != entry->type)
6154				continue;
6155			if (perf_tp_event_match(event, &data, regs))
6156				perf_swevent_event(event, count, &data, regs);
6157		}
6158unlock:
6159		rcu_read_unlock();
6160	}
6161
6162	perf_swevent_put_recursion_context(rctx);
6163}
6164EXPORT_SYMBOL_GPL(perf_tp_event);
6165
6166static void tp_perf_event_destroy(struct perf_event *event)
6167{
6168	perf_trace_destroy(event);
6169}
6170
6171static int perf_tp_event_init(struct perf_event *event)
6172{
6173	int err;
6174
6175	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6176		return -ENOENT;
6177
6178	/*
6179	 * no branch sampling for tracepoint events
6180	 */
6181	if (has_branch_stack(event))
6182		return -EOPNOTSUPP;
6183
6184	err = perf_trace_init(event);
6185	if (err)
6186		return err;
6187
6188	event->destroy = tp_perf_event_destroy;
6189
6190	return 0;
6191}
6192
6193static struct pmu perf_tracepoint = {
6194	.task_ctx_nr	= perf_sw_context,
6195
6196	.event_init	= perf_tp_event_init,
6197	.add		= perf_trace_add,
6198	.del		= perf_trace_del,
6199	.start		= perf_swevent_start,
6200	.stop		= perf_swevent_stop,
6201	.read		= perf_swevent_read,
6202};
6203
6204static inline void perf_tp_register(void)
6205{
6206	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6207}
6208
6209static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6210{
6211	char *filter_str;
6212	int ret;
6213
6214	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6215		return -EINVAL;
6216
6217	filter_str = strndup_user(arg, PAGE_SIZE);
6218	if (IS_ERR(filter_str))
6219		return PTR_ERR(filter_str);
6220
6221	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6222
6223	kfree(filter_str);
6224	return ret;
6225}
6226
6227static void perf_event_free_filter(struct perf_event *event)
6228{
6229	ftrace_profile_free_filter(event);
6230}
6231
6232#else
6233
6234static inline void perf_tp_register(void)
6235{
6236}
6237
6238static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6239{
6240	return -ENOENT;
6241}
6242
6243static void perf_event_free_filter(struct perf_event *event)
6244{
6245}
6246
6247#endif /* CONFIG_EVENT_TRACING */
6248
6249#ifdef CONFIG_HAVE_HW_BREAKPOINT
6250void perf_bp_event(struct perf_event *bp, void *data)
6251{
6252	struct perf_sample_data sample;
6253	struct pt_regs *regs = data;
6254
6255	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6256
6257	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6258		perf_swevent_event(bp, 1, &sample, regs);
6259}
6260#endif
6261
6262/*
6263 * hrtimer based swevent callback
6264 */
6265
6266static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6267{
6268	enum hrtimer_restart ret = HRTIMER_RESTART;
6269	struct perf_sample_data data;
6270	struct pt_regs *regs;
6271	struct perf_event *event;
6272	u64 period;
6273
6274	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6275
6276	if (event->state != PERF_EVENT_STATE_ACTIVE)
6277		return HRTIMER_NORESTART;
6278
6279	event->pmu->read(event);
6280
6281	perf_sample_data_init(&data, 0, event->hw.last_period);
6282	regs = get_irq_regs();
6283
6284	if (regs && !perf_exclude_event(event, regs)) {
6285		if (!(event->attr.exclude_idle && is_idle_task(current)))
6286			if (__perf_event_overflow(event, 1, &data, regs))
6287				ret = HRTIMER_NORESTART;
6288	}
6289
6290	period = max_t(u64, 10000, event->hw.sample_period);
6291	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6292
6293	return ret;
6294}
6295
6296static void perf_swevent_start_hrtimer(struct perf_event *event)
6297{
6298	struct hw_perf_event *hwc = &event->hw;
6299	s64 period;
6300
6301	if (!is_sampling_event(event))
6302		return;
6303
6304	period = local64_read(&hwc->period_left);
6305	if (period) {
6306		if (period < 0)
6307			period = 10000;
6308
6309		local64_set(&hwc->period_left, 0);
6310	} else {
6311		period = max_t(u64, 10000, hwc->sample_period);
6312	}
6313	__hrtimer_start_range_ns(&hwc->hrtimer,
6314				ns_to_ktime(period), 0,
6315				HRTIMER_MODE_REL_PINNED, 0);
6316}
6317
6318static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6319{
6320	struct hw_perf_event *hwc = &event->hw;
6321
6322	if (is_sampling_event(event)) {
6323		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6324		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6325
6326		hrtimer_cancel(&hwc->hrtimer);
6327	}
6328}
6329
6330static void perf_swevent_init_hrtimer(struct perf_event *event)
6331{
6332	struct hw_perf_event *hwc = &event->hw;
6333
6334	if (!is_sampling_event(event))
6335		return;
6336
6337	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6338	hwc->hrtimer.function = perf_swevent_hrtimer;
6339
6340	/*
6341	 * Since hrtimers have a fixed rate, we can do a static freq->period
6342	 * mapping and avoid the whole period adjust feedback stuff.
6343	 */
6344	if (event->attr.freq) {
6345		long freq = event->attr.sample_freq;
6346
6347		event->attr.sample_period = NSEC_PER_SEC / freq;
6348		hwc->sample_period = event->attr.sample_period;
6349		local64_set(&hwc->period_left, hwc->sample_period);
6350		hwc->last_period = hwc->sample_period;
6351		event->attr.freq = 0;
6352	}
6353}
6354
6355/*
6356 * Software event: cpu wall time clock
6357 */
6358
6359static void cpu_clock_event_update(struct perf_event *event)
6360{
6361	s64 prev;
6362	u64 now;
6363
6364	now = local_clock();
6365	prev = local64_xchg(&event->hw.prev_count, now);
6366	local64_add(now - prev, &event->count);
6367}
6368
6369static void cpu_clock_event_start(struct perf_event *event, int flags)
6370{
6371	local64_set(&event->hw.prev_count, local_clock());
6372	perf_swevent_start_hrtimer(event);
6373}
6374
6375static void cpu_clock_event_stop(struct perf_event *event, int flags)
6376{
6377	perf_swevent_cancel_hrtimer(event);
6378	cpu_clock_event_update(event);
6379}
6380
6381static int cpu_clock_event_add(struct perf_event *event, int flags)
6382{
6383	if (flags & PERF_EF_START)
6384		cpu_clock_event_start(event, flags);
6385
6386	return 0;
6387}
6388
6389static void cpu_clock_event_del(struct perf_event *event, int flags)
6390{
6391	cpu_clock_event_stop(event, flags);
6392}
6393
6394static void cpu_clock_event_read(struct perf_event *event)
6395{
6396	cpu_clock_event_update(event);
6397}
6398
6399static int cpu_clock_event_init(struct perf_event *event)
6400{
6401	if (event->attr.type != PERF_TYPE_SOFTWARE)
6402		return -ENOENT;
6403
6404	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6405		return -ENOENT;
6406
6407	/*
6408	 * no branch sampling for software events
6409	 */
6410	if (has_branch_stack(event))
6411		return -EOPNOTSUPP;
6412
6413	perf_swevent_init_hrtimer(event);
6414
6415	return 0;
6416}
6417
6418static struct pmu perf_cpu_clock = {
6419	.task_ctx_nr	= perf_sw_context,
6420
6421	.event_init	= cpu_clock_event_init,
6422	.add		= cpu_clock_event_add,
6423	.del		= cpu_clock_event_del,
6424	.start		= cpu_clock_event_start,
6425	.stop		= cpu_clock_event_stop,
6426	.read		= cpu_clock_event_read,
6427};
6428
6429/*
6430 * Software event: task time clock
6431 */
6432
6433static void task_clock_event_update(struct perf_event *event, u64 now)
6434{
6435	u64 prev;
6436	s64 delta;
6437
6438	prev = local64_xchg(&event->hw.prev_count, now);
6439	delta = now - prev;
6440	local64_add(delta, &event->count);
6441}
6442
6443static void task_clock_event_start(struct perf_event *event, int flags)
6444{
6445	local64_set(&event->hw.prev_count, event->ctx->time);
6446	perf_swevent_start_hrtimer(event);
6447}
6448
6449static void task_clock_event_stop(struct perf_event *event, int flags)
6450{
6451	perf_swevent_cancel_hrtimer(event);
6452	task_clock_event_update(event, event->ctx->time);
6453}
6454
6455static int task_clock_event_add(struct perf_event *event, int flags)
6456{
6457	if (flags & PERF_EF_START)
6458		task_clock_event_start(event, flags);
6459
6460	return 0;
6461}
6462
6463static void task_clock_event_del(struct perf_event *event, int flags)
6464{
6465	task_clock_event_stop(event, PERF_EF_UPDATE);
6466}
6467
6468static void task_clock_event_read(struct perf_event *event)
6469{
6470	u64 now = perf_clock();
6471	u64 delta = now - event->ctx->timestamp;
6472	u64 time = event->ctx->time + delta;
6473
6474	task_clock_event_update(event, time);
6475}
6476
6477static int task_clock_event_init(struct perf_event *event)
6478{
6479	if (event->attr.type != PERF_TYPE_SOFTWARE)
6480		return -ENOENT;
6481
6482	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6483		return -ENOENT;
6484
6485	/*
6486	 * no branch sampling for software events
6487	 */
6488	if (has_branch_stack(event))
6489		return -EOPNOTSUPP;
6490
6491	perf_swevent_init_hrtimer(event);
6492
6493	return 0;
6494}
6495
6496static struct pmu perf_task_clock = {
6497	.task_ctx_nr	= perf_sw_context,
6498
6499	.event_init	= task_clock_event_init,
6500	.add		= task_clock_event_add,
6501	.del		= task_clock_event_del,
6502	.start		= task_clock_event_start,
6503	.stop		= task_clock_event_stop,
6504	.read		= task_clock_event_read,
6505};
6506
6507static void perf_pmu_nop_void(struct pmu *pmu)
6508{
6509}
6510
6511static int perf_pmu_nop_int(struct pmu *pmu)
6512{
6513	return 0;
6514}
6515
6516static void perf_pmu_start_txn(struct pmu *pmu)
6517{
6518	perf_pmu_disable(pmu);
6519}
6520
6521static int perf_pmu_commit_txn(struct pmu *pmu)
6522{
6523	perf_pmu_enable(pmu);
6524	return 0;
6525}
6526
6527static void perf_pmu_cancel_txn(struct pmu *pmu)
6528{
6529	perf_pmu_enable(pmu);
6530}
6531
6532static int perf_event_idx_default(struct perf_event *event)
6533{
6534	return 0;
6535}
6536
6537/*
6538 * Ensures all contexts with the same task_ctx_nr have the same
6539 * pmu_cpu_context too.
6540 */
6541static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6542{
6543	struct pmu *pmu;
6544
6545	if (ctxn < 0)
6546		return NULL;
6547
6548	list_for_each_entry(pmu, &pmus, entry) {
6549		if (pmu->task_ctx_nr == ctxn)
6550			return pmu->pmu_cpu_context;
6551	}
6552
6553	return NULL;
6554}
6555
6556static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6557{
6558	int cpu;
6559
6560	for_each_possible_cpu(cpu) {
6561		struct perf_cpu_context *cpuctx;
6562
6563		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6564
6565		if (cpuctx->unique_pmu == old_pmu)
6566			cpuctx->unique_pmu = pmu;
6567	}
6568}
6569
6570static void free_pmu_context(struct pmu *pmu)
6571{
6572	struct pmu *i;
6573
6574	mutex_lock(&pmus_lock);
6575	/*
6576	 * Like a real lame refcount.
6577	 */
6578	list_for_each_entry(i, &pmus, entry) {
6579		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6580			update_pmu_context(i, pmu);
6581			goto out;
6582		}
6583	}
6584
6585	free_percpu(pmu->pmu_cpu_context);
6586out:
6587	mutex_unlock(&pmus_lock);
6588}
6589static struct idr pmu_idr;
6590
6591static ssize_t
6592type_show(struct device *dev, struct device_attribute *attr, char *page)
6593{
6594	struct pmu *pmu = dev_get_drvdata(dev);
6595
6596	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6597}
6598static DEVICE_ATTR_RO(type);
6599
6600static ssize_t
6601perf_event_mux_interval_ms_show(struct device *dev,
6602				struct device_attribute *attr,
6603				char *page)
6604{
6605	struct pmu *pmu = dev_get_drvdata(dev);
6606
6607	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6608}
6609
6610static ssize_t
6611perf_event_mux_interval_ms_store(struct device *dev,
6612				 struct device_attribute *attr,
6613				 const char *buf, size_t count)
6614{
6615	struct pmu *pmu = dev_get_drvdata(dev);
6616	int timer, cpu, ret;
6617
6618	ret = kstrtoint(buf, 0, &timer);
6619	if (ret)
6620		return ret;
6621
6622	if (timer < 1)
6623		return -EINVAL;
6624
6625	/* same value, noting to do */
6626	if (timer == pmu->hrtimer_interval_ms)
6627		return count;
6628
6629	pmu->hrtimer_interval_ms = timer;
6630
6631	/* update all cpuctx for this PMU */
6632	for_each_possible_cpu(cpu) {
6633		struct perf_cpu_context *cpuctx;
6634		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6635		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6636
6637		if (hrtimer_active(&cpuctx->hrtimer))
6638			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6639	}
6640
6641	return count;
6642}
6643static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6644
6645static struct attribute *pmu_dev_attrs[] = {
6646	&dev_attr_type.attr,
6647	&dev_attr_perf_event_mux_interval_ms.attr,
6648	NULL,
6649};
6650ATTRIBUTE_GROUPS(pmu_dev);
6651
6652static int pmu_bus_running;
6653static struct bus_type pmu_bus = {
6654	.name		= "event_source",
6655	.dev_groups	= pmu_dev_groups,
6656};
6657
6658static void pmu_dev_release(struct device *dev)
6659{
6660	kfree(dev);
6661}
6662
6663static int pmu_dev_alloc(struct pmu *pmu)
6664{
6665	int ret = -ENOMEM;
6666
6667	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6668	if (!pmu->dev)
6669		goto out;
6670
6671	pmu->dev->groups = pmu->attr_groups;
6672	device_initialize(pmu->dev);
6673	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6674	if (ret)
6675		goto free_dev;
6676
6677	dev_set_drvdata(pmu->dev, pmu);
6678	pmu->dev->bus = &pmu_bus;
6679	pmu->dev->release = pmu_dev_release;
6680	ret = device_add(pmu->dev);
6681	if (ret)
6682		goto free_dev;
6683
6684out:
6685	return ret;
6686
6687free_dev:
6688	put_device(pmu->dev);
6689	goto out;
6690}
6691
6692static struct lock_class_key cpuctx_mutex;
6693static struct lock_class_key cpuctx_lock;
6694
6695int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6696{
6697	int cpu, ret;
6698
6699	mutex_lock(&pmus_lock);
6700	ret = -ENOMEM;
6701	pmu->pmu_disable_count = alloc_percpu(int);
6702	if (!pmu->pmu_disable_count)
6703		goto unlock;
6704
6705	pmu->type = -1;
6706	if (!name)
6707		goto skip_type;
6708	pmu->name = name;
6709
6710	if (type < 0) {
6711		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6712		if (type < 0) {
6713			ret = type;
6714			goto free_pdc;
6715		}
6716	}
6717	pmu->type = type;
6718
6719	if (pmu_bus_running) {
6720		ret = pmu_dev_alloc(pmu);
6721		if (ret)
6722			goto free_idr;
6723	}
6724
6725skip_type:
6726	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6727	if (pmu->pmu_cpu_context)
6728		goto got_cpu_context;
6729
6730	ret = -ENOMEM;
6731	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6732	if (!pmu->pmu_cpu_context)
6733		goto free_dev;
6734
6735	for_each_possible_cpu(cpu) {
6736		struct perf_cpu_context *cpuctx;
6737
6738		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6739		__perf_event_init_context(&cpuctx->ctx);
6740		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6741		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6742		cpuctx->ctx.type = cpu_context;
6743		cpuctx->ctx.pmu = pmu;
6744
6745		__perf_cpu_hrtimer_init(cpuctx, cpu);
6746
6747		INIT_LIST_HEAD(&cpuctx->rotation_list);
6748		cpuctx->unique_pmu = pmu;
6749	}
6750
6751got_cpu_context:
6752	if (!pmu->start_txn) {
6753		if (pmu->pmu_enable) {
6754			/*
6755			 * If we have pmu_enable/pmu_disable calls, install
6756			 * transaction stubs that use that to try and batch
6757			 * hardware accesses.
6758			 */
6759			pmu->start_txn  = perf_pmu_start_txn;
6760			pmu->commit_txn = perf_pmu_commit_txn;
6761			pmu->cancel_txn = perf_pmu_cancel_txn;
6762		} else {
6763			pmu->start_txn  = perf_pmu_nop_void;
6764			pmu->commit_txn = perf_pmu_nop_int;
6765			pmu->cancel_txn = perf_pmu_nop_void;
6766		}
6767	}
6768
6769	if (!pmu->pmu_enable) {
6770		pmu->pmu_enable  = perf_pmu_nop_void;
6771		pmu->pmu_disable = perf_pmu_nop_void;
6772	}
6773
6774	if (!pmu->event_idx)
6775		pmu->event_idx = perf_event_idx_default;
6776
6777	list_add_rcu(&pmu->entry, &pmus);
6778	ret = 0;
6779unlock:
6780	mutex_unlock(&pmus_lock);
6781
6782	return ret;
6783
6784free_dev:
6785	device_del(pmu->dev);
6786	put_device(pmu->dev);
6787
6788free_idr:
6789	if (pmu->type >= PERF_TYPE_MAX)
6790		idr_remove(&pmu_idr, pmu->type);
6791
6792free_pdc:
6793	free_percpu(pmu->pmu_disable_count);
6794	goto unlock;
6795}
6796EXPORT_SYMBOL_GPL(perf_pmu_register);
6797
6798void perf_pmu_unregister(struct pmu *pmu)
6799{
6800	mutex_lock(&pmus_lock);
6801	list_del_rcu(&pmu->entry);
6802	mutex_unlock(&pmus_lock);
6803
6804	/*
6805	 * We dereference the pmu list under both SRCU and regular RCU, so
6806	 * synchronize against both of those.
6807	 */
6808	synchronize_srcu(&pmus_srcu);
6809	synchronize_rcu();
6810
6811	free_percpu(pmu->pmu_disable_count);
6812	if (pmu->type >= PERF_TYPE_MAX)
6813		idr_remove(&pmu_idr, pmu->type);
6814	device_del(pmu->dev);
6815	put_device(pmu->dev);
6816	free_pmu_context(pmu);
6817}
6818EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6819
6820struct pmu *perf_init_event(struct perf_event *event)
6821{
6822	struct pmu *pmu = NULL;
6823	int idx;
6824	int ret;
6825
6826	idx = srcu_read_lock(&pmus_srcu);
6827
6828	rcu_read_lock();
6829	pmu = idr_find(&pmu_idr, event->attr.type);
6830	rcu_read_unlock();
6831	if (pmu) {
6832		if (!try_module_get(pmu->module)) {
6833			pmu = ERR_PTR(-ENODEV);
6834			goto unlock;
6835		}
6836		event->pmu = pmu;
6837		ret = pmu->event_init(event);
6838		if (ret)
6839			pmu = ERR_PTR(ret);
6840		goto unlock;
6841	}
6842
6843	list_for_each_entry_rcu(pmu, &pmus, entry) {
6844		if (!try_module_get(pmu->module)) {
6845			pmu = ERR_PTR(-ENODEV);
6846			goto unlock;
6847		}
6848		event->pmu = pmu;
6849		ret = pmu->event_init(event);
6850		if (!ret)
6851			goto unlock;
6852
6853		if (ret != -ENOENT) {
6854			pmu = ERR_PTR(ret);
6855			goto unlock;
6856		}
6857	}
6858	pmu = ERR_PTR(-ENOENT);
6859unlock:
6860	srcu_read_unlock(&pmus_srcu, idx);
6861
6862	return pmu;
6863}
6864
6865static void account_event_cpu(struct perf_event *event, int cpu)
6866{
6867	if (event->parent)
6868		return;
6869
6870	if (has_branch_stack(event)) {
6871		if (!(event->attach_state & PERF_ATTACH_TASK))
6872			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6873	}
6874	if (is_cgroup_event(event))
6875		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6876}
6877
6878static void account_event(struct perf_event *event)
6879{
6880	if (event->parent)
6881		return;
6882
6883	if (event->attach_state & PERF_ATTACH_TASK)
6884		static_key_slow_inc(&perf_sched_events.key);
6885	if (event->attr.mmap || event->attr.mmap_data)
6886		atomic_inc(&nr_mmap_events);
6887	if (event->attr.comm)
6888		atomic_inc(&nr_comm_events);
6889	if (event->attr.task)
6890		atomic_inc(&nr_task_events);
6891	if (event->attr.freq) {
6892		if (atomic_inc_return(&nr_freq_events) == 1)
6893			tick_nohz_full_kick_all();
6894	}
6895	if (has_branch_stack(event))
6896		static_key_slow_inc(&perf_sched_events.key);
6897	if (is_cgroup_event(event))
6898		static_key_slow_inc(&perf_sched_events.key);
6899
6900	account_event_cpu(event, event->cpu);
6901}
6902
6903/*
6904 * Allocate and initialize a event structure
6905 */
6906static struct perf_event *
6907perf_event_alloc(struct perf_event_attr *attr, int cpu,
6908		 struct task_struct *task,
6909		 struct perf_event *group_leader,
6910		 struct perf_event *parent_event,
6911		 perf_overflow_handler_t overflow_handler,
6912		 void *context)
6913{
6914	struct pmu *pmu;
6915	struct perf_event *event;
6916	struct hw_perf_event *hwc;
6917	long err = -EINVAL;
6918
6919	if ((unsigned)cpu >= nr_cpu_ids) {
6920		if (!task || cpu != -1)
6921			return ERR_PTR(-EINVAL);
6922	}
6923
6924	event = kzalloc(sizeof(*event), GFP_KERNEL);
6925	if (!event)
6926		return ERR_PTR(-ENOMEM);
6927
6928	/*
6929	 * Single events are their own group leaders, with an
6930	 * empty sibling list:
6931	 */
6932	if (!group_leader)
6933		group_leader = event;
6934
6935	mutex_init(&event->child_mutex);
6936	INIT_LIST_HEAD(&event->child_list);
6937
6938	INIT_LIST_HEAD(&event->group_entry);
6939	INIT_LIST_HEAD(&event->event_entry);
6940	INIT_LIST_HEAD(&event->sibling_list);
6941	INIT_LIST_HEAD(&event->rb_entry);
6942	INIT_LIST_HEAD(&event->active_entry);
6943	INIT_HLIST_NODE(&event->hlist_entry);
6944
6945
6946	init_waitqueue_head(&event->waitq);
6947	init_irq_work(&event->pending, perf_pending_event);
6948
6949	mutex_init(&event->mmap_mutex);
6950
6951	atomic_long_set(&event->refcount, 1);
6952	event->cpu		= cpu;
6953	event->attr		= *attr;
6954	event->group_leader	= group_leader;
6955	event->pmu		= NULL;
6956	event->oncpu		= -1;
6957
6958	event->parent		= parent_event;
6959
6960	event->ns		= get_pid_ns(task_active_pid_ns(current));
6961	event->id		= atomic64_inc_return(&perf_event_id);
6962
6963	event->state		= PERF_EVENT_STATE_INACTIVE;
6964
6965	if (task) {
6966		event->attach_state = PERF_ATTACH_TASK;
6967
6968		if (attr->type == PERF_TYPE_TRACEPOINT)
6969			event->hw.tp_target = task;
6970#ifdef CONFIG_HAVE_HW_BREAKPOINT
6971		/*
6972		 * hw_breakpoint is a bit difficult here..
6973		 */
6974		else if (attr->type == PERF_TYPE_BREAKPOINT)
6975			event->hw.bp_target = task;
6976#endif
6977	}
6978
6979	if (!overflow_handler && parent_event) {
6980		overflow_handler = parent_event->overflow_handler;
6981		context = parent_event->overflow_handler_context;
6982	}
6983
6984	event->overflow_handler	= overflow_handler;
6985	event->overflow_handler_context = context;
6986
6987	perf_event__state_init(event);
6988
6989	pmu = NULL;
6990
6991	hwc = &event->hw;
6992	hwc->sample_period = attr->sample_period;
6993	if (attr->freq && attr->sample_freq)
6994		hwc->sample_period = 1;
6995	hwc->last_period = hwc->sample_period;
6996
6997	local64_set(&hwc->period_left, hwc->sample_period);
6998
6999	/*
7000	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7001	 */
7002	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7003		goto err_ns;
7004
7005	pmu = perf_init_event(event);
7006	if (!pmu)
7007		goto err_ns;
7008	else if (IS_ERR(pmu)) {
7009		err = PTR_ERR(pmu);
7010		goto err_ns;
7011	}
7012
7013	if (!event->parent) {
7014		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7015			err = get_callchain_buffers();
7016			if (err)
7017				goto err_pmu;
7018		}
7019	}
7020
7021	return event;
7022
7023err_pmu:
7024	if (event->destroy)
7025		event->destroy(event);
7026	module_put(pmu->module);
7027err_ns:
7028	if (event->ns)
7029		put_pid_ns(event->ns);
7030	kfree(event);
7031
7032	return ERR_PTR(err);
7033}
7034
7035static int perf_copy_attr(struct perf_event_attr __user *uattr,
7036			  struct perf_event_attr *attr)
7037{
7038	u32 size;
7039	int ret;
7040
7041	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7042		return -EFAULT;
7043
7044	/*
7045	 * zero the full structure, so that a short copy will be nice.
7046	 */
7047	memset(attr, 0, sizeof(*attr));
7048
7049	ret = get_user(size, &uattr->size);
7050	if (ret)
7051		return ret;
7052
7053	if (size > PAGE_SIZE)	/* silly large */
7054		goto err_size;
7055
7056	if (!size)		/* abi compat */
7057		size = PERF_ATTR_SIZE_VER0;
7058
7059	if (size < PERF_ATTR_SIZE_VER0)
7060		goto err_size;
7061
7062	/*
7063	 * If we're handed a bigger struct than we know of,
7064	 * ensure all the unknown bits are 0 - i.e. new
7065	 * user-space does not rely on any kernel feature
7066	 * extensions we dont know about yet.
7067	 */
7068	if (size > sizeof(*attr)) {
7069		unsigned char __user *addr;
7070		unsigned char __user *end;
7071		unsigned char val;
7072
7073		addr = (void __user *)uattr + sizeof(*attr);
7074		end  = (void __user *)uattr + size;
7075
7076		for (; addr < end; addr++) {
7077			ret = get_user(val, addr);
7078			if (ret)
7079				return ret;
7080			if (val)
7081				goto err_size;
7082		}
7083		size = sizeof(*attr);
7084	}
7085
7086	ret = copy_from_user(attr, uattr, size);
7087	if (ret)
7088		return -EFAULT;
7089
7090	if (attr->__reserved_1)
7091		return -EINVAL;
7092
7093	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7094		return -EINVAL;
7095
7096	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7097		return -EINVAL;
7098
7099	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7100		u64 mask = attr->branch_sample_type;
7101
7102		/* only using defined bits */
7103		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7104			return -EINVAL;
7105
7106		/* at least one branch bit must be set */
7107		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7108			return -EINVAL;
7109
7110		/* propagate priv level, when not set for branch */
7111		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7112
7113			/* exclude_kernel checked on syscall entry */
7114			if (!attr->exclude_kernel)
7115				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7116
7117			if (!attr->exclude_user)
7118				mask |= PERF_SAMPLE_BRANCH_USER;
7119
7120			if (!attr->exclude_hv)
7121				mask |= PERF_SAMPLE_BRANCH_HV;
7122			/*
7123			 * adjust user setting (for HW filter setup)
7124			 */
7125			attr->branch_sample_type = mask;
7126		}
7127		/* privileged levels capture (kernel, hv): check permissions */
7128		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7129		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7130			return -EACCES;
7131	}
7132
7133	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7134		ret = perf_reg_validate(attr->sample_regs_user);
7135		if (ret)
7136			return ret;
7137	}
7138
7139	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7140		if (!arch_perf_have_user_stack_dump())
7141			return -ENOSYS;
7142
7143		/*
7144		 * We have __u32 type for the size, but so far
7145		 * we can only use __u16 as maximum due to the
7146		 * __u16 sample size limit.
7147		 */
7148		if (attr->sample_stack_user >= USHRT_MAX)
7149			ret = -EINVAL;
7150		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7151			ret = -EINVAL;
7152	}
7153
7154out:
7155	return ret;
7156
7157err_size:
7158	put_user(sizeof(*attr), &uattr->size);
7159	ret = -E2BIG;
7160	goto out;
7161}
7162
7163static int
7164perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7165{
7166	struct ring_buffer *rb = NULL;
7167	int ret = -EINVAL;
7168
7169	if (!output_event)
7170		goto set;
7171
7172	/* don't allow circular references */
7173	if (event == output_event)
7174		goto out;
7175
7176	/*
7177	 * Don't allow cross-cpu buffers
7178	 */
7179	if (output_event->cpu != event->cpu)
7180		goto out;
7181
7182	/*
7183	 * If its not a per-cpu rb, it must be the same task.
7184	 */
7185	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7186		goto out;
7187
7188set:
7189	mutex_lock(&event->mmap_mutex);
7190	/* Can't redirect output if we've got an active mmap() */
7191	if (atomic_read(&event->mmap_count))
7192		goto unlock;
7193
7194	if (output_event) {
7195		/* get the rb we want to redirect to */
7196		rb = ring_buffer_get(output_event);
7197		if (!rb)
7198			goto unlock;
7199	}
7200
7201	ring_buffer_attach(event, rb);
7202
7203	ret = 0;
7204unlock:
7205	mutex_unlock(&event->mmap_mutex);
7206
7207out:
7208	return ret;
7209}
7210
7211/**
7212 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7213 *
7214 * @attr_uptr:	event_id type attributes for monitoring/sampling
7215 * @pid:		target pid
7216 * @cpu:		target cpu
7217 * @group_fd:		group leader event fd
7218 */
7219SYSCALL_DEFINE5(perf_event_open,
7220		struct perf_event_attr __user *, attr_uptr,
7221		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7222{
7223	struct perf_event *group_leader = NULL, *output_event = NULL;
7224	struct perf_event *event, *sibling;
7225	struct perf_event_attr attr;
7226	struct perf_event_context *ctx;
7227	struct file *event_file = NULL;
7228	struct fd group = {NULL, 0};
7229	struct task_struct *task = NULL;
7230	struct pmu *pmu;
7231	int event_fd;
7232	int move_group = 0;
7233	int err;
7234	int f_flags = O_RDWR;
7235
7236	/* for future expandability... */
7237	if (flags & ~PERF_FLAG_ALL)
7238		return -EINVAL;
7239
7240	err = perf_copy_attr(attr_uptr, &attr);
7241	if (err)
7242		return err;
7243
7244	if (!attr.exclude_kernel) {
7245		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7246			return -EACCES;
7247	}
7248
7249	if (attr.freq) {
7250		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7251			return -EINVAL;
7252	} else {
7253		if (attr.sample_period & (1ULL << 63))
7254			return -EINVAL;
7255	}
7256
7257	/*
7258	 * In cgroup mode, the pid argument is used to pass the fd
7259	 * opened to the cgroup directory in cgroupfs. The cpu argument
7260	 * designates the cpu on which to monitor threads from that
7261	 * cgroup.
7262	 */
7263	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7264		return -EINVAL;
7265
7266	if (flags & PERF_FLAG_FD_CLOEXEC)
7267		f_flags |= O_CLOEXEC;
7268
7269	event_fd = get_unused_fd_flags(f_flags);
7270	if (event_fd < 0)
7271		return event_fd;
7272
7273	if (group_fd != -1) {
7274		err = perf_fget_light(group_fd, &group);
7275		if (err)
7276			goto err_fd;
7277		group_leader = group.file->private_data;
7278		if (flags & PERF_FLAG_FD_OUTPUT)
7279			output_event = group_leader;
7280		if (flags & PERF_FLAG_FD_NO_GROUP)
7281			group_leader = NULL;
7282	}
7283
7284	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7285		task = find_lively_task_by_vpid(pid);
7286		if (IS_ERR(task)) {
7287			err = PTR_ERR(task);
7288			goto err_group_fd;
7289		}
7290	}
7291
7292	if (task && group_leader &&
7293	    group_leader->attr.inherit != attr.inherit) {
7294		err = -EINVAL;
7295		goto err_task;
7296	}
7297
7298	get_online_cpus();
7299
7300	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7301				 NULL, NULL);
7302	if (IS_ERR(event)) {
7303		err = PTR_ERR(event);
7304		goto err_cpus;
7305	}
7306
7307	if (flags & PERF_FLAG_PID_CGROUP) {
7308		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7309		if (err) {
7310			__free_event(event);
7311			goto err_cpus;
7312		}
7313	}
7314
7315	if (is_sampling_event(event)) {
7316		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7317			err = -ENOTSUPP;
7318			goto err_alloc;
7319		}
7320	}
7321
7322	account_event(event);
7323
7324	/*
7325	 * Special case software events and allow them to be part of
7326	 * any hardware group.
7327	 */
7328	pmu = event->pmu;
7329
7330	if (group_leader &&
7331	    (is_software_event(event) != is_software_event(group_leader))) {
7332		if (is_software_event(event)) {
7333			/*
7334			 * If event and group_leader are not both a software
7335			 * event, and event is, then group leader is not.
7336			 *
7337			 * Allow the addition of software events to !software
7338			 * groups, this is safe because software events never
7339			 * fail to schedule.
7340			 */
7341			pmu = group_leader->pmu;
7342		} else if (is_software_event(group_leader) &&
7343			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7344			/*
7345			 * In case the group is a pure software group, and we
7346			 * try to add a hardware event, move the whole group to
7347			 * the hardware context.
7348			 */
7349			move_group = 1;
7350		}
7351	}
7352
7353	/*
7354	 * Get the target context (task or percpu):
7355	 */
7356	ctx = find_get_context(pmu, task, event->cpu);
7357	if (IS_ERR(ctx)) {
7358		err = PTR_ERR(ctx);
7359		goto err_alloc;
7360	}
7361
7362	if (task) {
7363		put_task_struct(task);
7364		task = NULL;
7365	}
7366
7367	/*
7368	 * Look up the group leader (we will attach this event to it):
7369	 */
7370	if (group_leader) {
7371		err = -EINVAL;
7372
7373		/*
7374		 * Do not allow a recursive hierarchy (this new sibling
7375		 * becoming part of another group-sibling):
7376		 */
7377		if (group_leader->group_leader != group_leader)
7378			goto err_context;
7379		/*
7380		 * Do not allow to attach to a group in a different
7381		 * task or CPU context:
7382		 */
7383		if (move_group) {
7384			if (group_leader->ctx->type != ctx->type)
7385				goto err_context;
7386		} else {
7387			if (group_leader->ctx != ctx)
7388				goto err_context;
7389		}
7390
7391		/*
7392		 * Only a group leader can be exclusive or pinned
7393		 */
7394		if (attr.exclusive || attr.pinned)
7395			goto err_context;
7396	}
7397
7398	if (output_event) {
7399		err = perf_event_set_output(event, output_event);
7400		if (err)
7401			goto err_context;
7402	}
7403
7404	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7405					f_flags);
7406	if (IS_ERR(event_file)) {
7407		err = PTR_ERR(event_file);
7408		goto err_context;
7409	}
7410
7411	if (move_group) {
7412		struct perf_event_context *gctx = group_leader->ctx;
7413
7414		mutex_lock(&gctx->mutex);
7415		perf_remove_from_context(group_leader, false);
7416
7417		/*
7418		 * Removing from the context ends up with disabled
7419		 * event. What we want here is event in the initial
7420		 * startup state, ready to be add into new context.
7421		 */
7422		perf_event__state_init(group_leader);
7423		list_for_each_entry(sibling, &group_leader->sibling_list,
7424				    group_entry) {
7425			perf_remove_from_context(sibling, false);
7426			perf_event__state_init(sibling);
7427			put_ctx(gctx);
7428		}
7429		mutex_unlock(&gctx->mutex);
7430		put_ctx(gctx);
7431	}
7432
7433	WARN_ON_ONCE(ctx->parent_ctx);
7434	mutex_lock(&ctx->mutex);
7435
7436	if (move_group) {
7437		synchronize_rcu();
7438		perf_install_in_context(ctx, group_leader, event->cpu);
7439		get_ctx(ctx);
7440		list_for_each_entry(sibling, &group_leader->sibling_list,
7441				    group_entry) {
7442			perf_install_in_context(ctx, sibling, event->cpu);
7443			get_ctx(ctx);
7444		}
7445	}
7446
7447	perf_install_in_context(ctx, event, event->cpu);
7448	perf_unpin_context(ctx);
7449	mutex_unlock(&ctx->mutex);
7450
7451	put_online_cpus();
7452
7453	event->owner = current;
7454
7455	mutex_lock(&current->perf_event_mutex);
7456	list_add_tail(&event->owner_entry, &current->perf_event_list);
7457	mutex_unlock(&current->perf_event_mutex);
7458
7459	/*
7460	 * Precalculate sample_data sizes
7461	 */
7462	perf_event__header_size(event);
7463	perf_event__id_header_size(event);
7464
7465	/*
7466	 * Drop the reference on the group_event after placing the
7467	 * new event on the sibling_list. This ensures destruction
7468	 * of the group leader will find the pointer to itself in
7469	 * perf_group_detach().
7470	 */
7471	fdput(group);
7472	fd_install(event_fd, event_file);
7473	return event_fd;
7474
7475err_context:
7476	perf_unpin_context(ctx);
7477	put_ctx(ctx);
7478err_alloc:
7479	free_event(event);
7480err_cpus:
7481	put_online_cpus();
7482err_task:
7483	if (task)
7484		put_task_struct(task);
7485err_group_fd:
7486	fdput(group);
7487err_fd:
7488	put_unused_fd(event_fd);
7489	return err;
7490}
7491
7492/**
7493 * perf_event_create_kernel_counter
7494 *
7495 * @attr: attributes of the counter to create
7496 * @cpu: cpu in which the counter is bound
7497 * @task: task to profile (NULL for percpu)
7498 */
7499struct perf_event *
7500perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7501				 struct task_struct *task,
7502				 perf_overflow_handler_t overflow_handler,
7503				 void *context)
7504{
7505	struct perf_event_context *ctx;
7506	struct perf_event *event;
7507	int err;
7508
7509	/*
7510	 * Get the target context (task or percpu):
7511	 */
7512
7513	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7514				 overflow_handler, context);
7515	if (IS_ERR(event)) {
7516		err = PTR_ERR(event);
7517		goto err;
7518	}
7519
7520	/* Mark owner so we could distinguish it from user events. */
7521	event->owner = EVENT_OWNER_KERNEL;
7522
7523	account_event(event);
7524
7525	ctx = find_get_context(event->pmu, task, cpu);
7526	if (IS_ERR(ctx)) {
7527		err = PTR_ERR(ctx);
7528		goto err_free;
7529	}
7530
7531	WARN_ON_ONCE(ctx->parent_ctx);
7532	mutex_lock(&ctx->mutex);
7533	perf_install_in_context(ctx, event, cpu);
7534	perf_unpin_context(ctx);
7535	mutex_unlock(&ctx->mutex);
7536
7537	return event;
7538
7539err_free:
7540	free_event(event);
7541err:
7542	return ERR_PTR(err);
7543}
7544EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7545
7546void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7547{
7548	struct perf_event_context *src_ctx;
7549	struct perf_event_context *dst_ctx;
7550	struct perf_event *event, *tmp;
7551	LIST_HEAD(events);
7552
7553	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7554	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7555
7556	mutex_lock(&src_ctx->mutex);
7557	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7558				 event_entry) {
7559		perf_remove_from_context(event, false);
7560		unaccount_event_cpu(event, src_cpu);
7561		put_ctx(src_ctx);
7562		list_add(&event->migrate_entry, &events);
7563	}
7564	mutex_unlock(&src_ctx->mutex);
7565
7566	synchronize_rcu();
7567
7568	mutex_lock(&dst_ctx->mutex);
7569	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7570		list_del(&event->migrate_entry);
7571		if (event->state >= PERF_EVENT_STATE_OFF)
7572			event->state = PERF_EVENT_STATE_INACTIVE;
7573		account_event_cpu(event, dst_cpu);
7574		perf_install_in_context(dst_ctx, event, dst_cpu);
7575		get_ctx(dst_ctx);
7576	}
7577	mutex_unlock(&dst_ctx->mutex);
7578}
7579EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7580
7581static void sync_child_event(struct perf_event *child_event,
7582			       struct task_struct *child)
7583{
7584	struct perf_event *parent_event = child_event->parent;
7585	u64 child_val;
7586
7587	if (child_event->attr.inherit_stat)
7588		perf_event_read_event(child_event, child);
7589
7590	child_val = perf_event_count(child_event);
7591
7592	/*
7593	 * Add back the child's count to the parent's count:
7594	 */
7595	atomic64_add(child_val, &parent_event->child_count);
7596	atomic64_add(child_event->total_time_enabled,
7597		     &parent_event->child_total_time_enabled);
7598	atomic64_add(child_event->total_time_running,
7599		     &parent_event->child_total_time_running);
7600
7601	/*
7602	 * Remove this event from the parent's list
7603	 */
7604	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7605	mutex_lock(&parent_event->child_mutex);
7606	list_del_init(&child_event->child_list);
7607	mutex_unlock(&parent_event->child_mutex);
7608
7609	/*
7610	 * Make sure user/parent get notified, that we just
7611	 * lost one event.
7612	 */
7613	perf_event_wakeup(parent_event);
7614
7615	/*
7616	 * Release the parent event, if this was the last
7617	 * reference to it.
7618	 */
7619	put_event(parent_event);
7620}
7621
7622static void
7623__perf_event_exit_task(struct perf_event *child_event,
7624			 struct perf_event_context *child_ctx,
7625			 struct task_struct *child)
7626{
7627	/*
7628	 * Do not destroy the 'original' grouping; because of the context
7629	 * switch optimization the original events could've ended up in a
7630	 * random child task.
7631	 *
7632	 * If we were to destroy the original group, all group related
7633	 * operations would cease to function properly after this random
7634	 * child dies.
7635	 *
7636	 * Do destroy all inherited groups, we don't care about those
7637	 * and being thorough is better.
7638	 */
7639	perf_remove_from_context(child_event, !!child_event->parent);
7640
7641	/*
7642	 * It can happen that the parent exits first, and has events
7643	 * that are still around due to the child reference. These
7644	 * events need to be zapped.
7645	 */
7646	if (child_event->parent) {
7647		sync_child_event(child_event, child);
7648		free_event(child_event);
7649	} else {
7650		child_event->state = PERF_EVENT_STATE_EXIT;
7651		perf_event_wakeup(child_event);
7652	}
7653}
7654
7655static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7656{
7657	struct perf_event *child_event, *next;
7658	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7659	unsigned long flags;
7660
7661	if (likely(!child->perf_event_ctxp[ctxn])) {
7662		perf_event_task(child, NULL, 0);
7663		return;
7664	}
7665
7666	local_irq_save(flags);
7667	/*
7668	 * We can't reschedule here because interrupts are disabled,
7669	 * and either child is current or it is a task that can't be
7670	 * scheduled, so we are now safe from rescheduling changing
7671	 * our context.
7672	 */
7673	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7674
7675	/*
7676	 * Take the context lock here so that if find_get_context is
7677	 * reading child->perf_event_ctxp, we wait until it has
7678	 * incremented the context's refcount before we do put_ctx below.
7679	 */
7680	raw_spin_lock(&child_ctx->lock);
7681	task_ctx_sched_out(child_ctx);
7682	child->perf_event_ctxp[ctxn] = NULL;
7683
7684	/*
7685	 * If this context is a clone; unclone it so it can't get
7686	 * swapped to another process while we're removing all
7687	 * the events from it.
7688	 */
7689	clone_ctx = unclone_ctx(child_ctx);
7690	update_context_time(child_ctx);
7691	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7692
7693	if (clone_ctx)
7694		put_ctx(clone_ctx);
7695
7696	/*
7697	 * Report the task dead after unscheduling the events so that we
7698	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7699	 * get a few PERF_RECORD_READ events.
7700	 */
7701	perf_event_task(child, child_ctx, 0);
7702
7703	/*
7704	 * We can recurse on the same lock type through:
7705	 *
7706	 *   __perf_event_exit_task()
7707	 *     sync_child_event()
7708	 *       put_event()
7709	 *         mutex_lock(&ctx->mutex)
7710	 *
7711	 * But since its the parent context it won't be the same instance.
7712	 */
7713	mutex_lock(&child_ctx->mutex);
7714
7715	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7716		__perf_event_exit_task(child_event, child_ctx, child);
7717
7718	mutex_unlock(&child_ctx->mutex);
7719
7720	put_ctx(child_ctx);
7721}
7722
7723/*
7724 * When a child task exits, feed back event values to parent events.
7725 */
7726void perf_event_exit_task(struct task_struct *child)
7727{
7728	struct perf_event *event, *tmp;
7729	int ctxn;
7730
7731	mutex_lock(&child->perf_event_mutex);
7732	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7733				 owner_entry) {
7734		list_del_init(&event->owner_entry);
7735
7736		/*
7737		 * Ensure the list deletion is visible before we clear
7738		 * the owner, closes a race against perf_release() where
7739		 * we need to serialize on the owner->perf_event_mutex.
7740		 */
7741		smp_wmb();
7742		event->owner = NULL;
7743	}
7744	mutex_unlock(&child->perf_event_mutex);
7745
7746	for_each_task_context_nr(ctxn)
7747		perf_event_exit_task_context(child, ctxn);
7748}
7749
7750static void perf_free_event(struct perf_event *event,
7751			    struct perf_event_context *ctx)
7752{
7753	struct perf_event *parent = event->parent;
7754
7755	if (WARN_ON_ONCE(!parent))
7756		return;
7757
7758	mutex_lock(&parent->child_mutex);
7759	list_del_init(&event->child_list);
7760	mutex_unlock(&parent->child_mutex);
7761
7762	put_event(parent);
7763
7764	perf_group_detach(event);
7765	list_del_event(event, ctx);
7766	free_event(event);
7767}
7768
7769/*
7770 * free an unexposed, unused context as created by inheritance by
7771 * perf_event_init_task below, used by fork() in case of fail.
7772 */
7773void perf_event_free_task(struct task_struct *task)
7774{
7775	struct perf_event_context *ctx;
7776	struct perf_event *event, *tmp;
7777	int ctxn;
7778
7779	for_each_task_context_nr(ctxn) {
7780		ctx = task->perf_event_ctxp[ctxn];
7781		if (!ctx)
7782			continue;
7783
7784		mutex_lock(&ctx->mutex);
7785again:
7786		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7787				group_entry)
7788			perf_free_event(event, ctx);
7789
7790		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7791				group_entry)
7792			perf_free_event(event, ctx);
7793
7794		if (!list_empty(&ctx->pinned_groups) ||
7795				!list_empty(&ctx->flexible_groups))
7796			goto again;
7797
7798		mutex_unlock(&ctx->mutex);
7799
7800		put_ctx(ctx);
7801	}
7802}
7803
7804void perf_event_delayed_put(struct task_struct *task)
7805{
7806	int ctxn;
7807
7808	for_each_task_context_nr(ctxn)
7809		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7810}
7811
7812/*
7813 * inherit a event from parent task to child task:
7814 */
7815static struct perf_event *
7816inherit_event(struct perf_event *parent_event,
7817	      struct task_struct *parent,
7818	      struct perf_event_context *parent_ctx,
7819	      struct task_struct *child,
7820	      struct perf_event *group_leader,
7821	      struct perf_event_context *child_ctx)
7822{
7823	enum perf_event_active_state parent_state = parent_event->state;
7824	struct perf_event *child_event;
7825	unsigned long flags;
7826
7827	/*
7828	 * Instead of creating recursive hierarchies of events,
7829	 * we link inherited events back to the original parent,
7830	 * which has a filp for sure, which we use as the reference
7831	 * count:
7832	 */
7833	if (parent_event->parent)
7834		parent_event = parent_event->parent;
7835
7836	child_event = perf_event_alloc(&parent_event->attr,
7837					   parent_event->cpu,
7838					   child,
7839					   group_leader, parent_event,
7840				           NULL, NULL);
7841	if (IS_ERR(child_event))
7842		return child_event;
7843
7844	if (is_orphaned_event(parent_event) ||
7845	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7846		free_event(child_event);
7847		return NULL;
7848	}
7849
7850	get_ctx(child_ctx);
7851
7852	/*
7853	 * Make the child state follow the state of the parent event,
7854	 * not its attr.disabled bit.  We hold the parent's mutex,
7855	 * so we won't race with perf_event_{en, dis}able_family.
7856	 */
7857	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7858		child_event->state = PERF_EVENT_STATE_INACTIVE;
7859	else
7860		child_event->state = PERF_EVENT_STATE_OFF;
7861
7862	if (parent_event->attr.freq) {
7863		u64 sample_period = parent_event->hw.sample_period;
7864		struct hw_perf_event *hwc = &child_event->hw;
7865
7866		hwc->sample_period = sample_period;
7867		hwc->last_period   = sample_period;
7868
7869		local64_set(&hwc->period_left, sample_period);
7870	}
7871
7872	child_event->ctx = child_ctx;
7873	child_event->overflow_handler = parent_event->overflow_handler;
7874	child_event->overflow_handler_context
7875		= parent_event->overflow_handler_context;
7876
7877	/*
7878	 * Precalculate sample_data sizes
7879	 */
7880	perf_event__header_size(child_event);
7881	perf_event__id_header_size(child_event);
7882
7883	/*
7884	 * Link it up in the child's context:
7885	 */
7886	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7887	add_event_to_ctx(child_event, child_ctx);
7888	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7889
7890	/*
7891	 * Link this into the parent event's child list
7892	 */
7893	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7894	mutex_lock(&parent_event->child_mutex);
7895	list_add_tail(&child_event->child_list, &parent_event->child_list);
7896	mutex_unlock(&parent_event->child_mutex);
7897
7898	return child_event;
7899}
7900
7901static int inherit_group(struct perf_event *parent_event,
7902	      struct task_struct *parent,
7903	      struct perf_event_context *parent_ctx,
7904	      struct task_struct *child,
7905	      struct perf_event_context *child_ctx)
7906{
7907	struct perf_event *leader;
7908	struct perf_event *sub;
7909	struct perf_event *child_ctr;
7910
7911	leader = inherit_event(parent_event, parent, parent_ctx,
7912				 child, NULL, child_ctx);
7913	if (IS_ERR(leader))
7914		return PTR_ERR(leader);
7915	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7916		child_ctr = inherit_event(sub, parent, parent_ctx,
7917					    child, leader, child_ctx);
7918		if (IS_ERR(child_ctr))
7919			return PTR_ERR(child_ctr);
7920	}
7921	return 0;
7922}
7923
7924static int
7925inherit_task_group(struct perf_event *event, struct task_struct *parent,
7926		   struct perf_event_context *parent_ctx,
7927		   struct task_struct *child, int ctxn,
7928		   int *inherited_all)
7929{
7930	int ret;
7931	struct perf_event_context *child_ctx;
7932
7933	if (!event->attr.inherit) {
7934		*inherited_all = 0;
7935		return 0;
7936	}
7937
7938	child_ctx = child->perf_event_ctxp[ctxn];
7939	if (!child_ctx) {
7940		/*
7941		 * This is executed from the parent task context, so
7942		 * inherit events that have been marked for cloning.
7943		 * First allocate and initialize a context for the
7944		 * child.
7945		 */
7946
7947		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7948		if (!child_ctx)
7949			return -ENOMEM;
7950
7951		child->perf_event_ctxp[ctxn] = child_ctx;
7952	}
7953
7954	ret = inherit_group(event, parent, parent_ctx,
7955			    child, child_ctx);
7956
7957	if (ret)
7958		*inherited_all = 0;
7959
7960	return ret;
7961}
7962
7963/*
7964 * Initialize the perf_event context in task_struct
7965 */
7966static int perf_event_init_context(struct task_struct *child, int ctxn)
7967{
7968	struct perf_event_context *child_ctx, *parent_ctx;
7969	struct perf_event_context *cloned_ctx;
7970	struct perf_event *event;
7971	struct task_struct *parent = current;
7972	int inherited_all = 1;
7973	unsigned long flags;
7974	int ret = 0;
7975
7976	if (likely(!parent->perf_event_ctxp[ctxn]))
7977		return 0;
7978
7979	/*
7980	 * If the parent's context is a clone, pin it so it won't get
7981	 * swapped under us.
7982	 */
7983	parent_ctx = perf_pin_task_context(parent, ctxn);
7984	if (!parent_ctx)
7985		return 0;
7986
7987	/*
7988	 * No need to check if parent_ctx != NULL here; since we saw
7989	 * it non-NULL earlier, the only reason for it to become NULL
7990	 * is if we exit, and since we're currently in the middle of
7991	 * a fork we can't be exiting at the same time.
7992	 */
7993
7994	/*
7995	 * Lock the parent list. No need to lock the child - not PID
7996	 * hashed yet and not running, so nobody can access it.
7997	 */
7998	mutex_lock(&parent_ctx->mutex);
7999
8000	/*
8001	 * We dont have to disable NMIs - we are only looking at
8002	 * the list, not manipulating it:
8003	 */
8004	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8005		ret = inherit_task_group(event, parent, parent_ctx,
8006					 child, ctxn, &inherited_all);
8007		if (ret)
8008			break;
8009	}
8010
8011	/*
8012	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8013	 * to allocations, but we need to prevent rotation because
8014	 * rotate_ctx() will change the list from interrupt context.
8015	 */
8016	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8017	parent_ctx->rotate_disable = 1;
8018	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8019
8020	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8021		ret = inherit_task_group(event, parent, parent_ctx,
8022					 child, ctxn, &inherited_all);
8023		if (ret)
8024			break;
8025	}
8026
8027	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8028	parent_ctx->rotate_disable = 0;
8029
8030	child_ctx = child->perf_event_ctxp[ctxn];
8031
8032	if (child_ctx && inherited_all) {
8033		/*
8034		 * Mark the child context as a clone of the parent
8035		 * context, or of whatever the parent is a clone of.
8036		 *
8037		 * Note that if the parent is a clone, the holding of
8038		 * parent_ctx->lock avoids it from being uncloned.
8039		 */
8040		cloned_ctx = parent_ctx->parent_ctx;
8041		if (cloned_ctx) {
8042			child_ctx->parent_ctx = cloned_ctx;
8043			child_ctx->parent_gen = parent_ctx->parent_gen;
8044		} else {
8045			child_ctx->parent_ctx = parent_ctx;
8046			child_ctx->parent_gen = parent_ctx->generation;
8047		}
8048		get_ctx(child_ctx->parent_ctx);
8049	}
8050
8051	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8052	mutex_unlock(&parent_ctx->mutex);
8053
8054	perf_unpin_context(parent_ctx);
8055	put_ctx(parent_ctx);
8056
8057	return ret;
8058}
8059
8060/*
8061 * Initialize the perf_event context in task_struct
8062 */
8063int perf_event_init_task(struct task_struct *child)
8064{
8065	int ctxn, ret;
8066
8067	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8068	mutex_init(&child->perf_event_mutex);
8069	INIT_LIST_HEAD(&child->perf_event_list);
8070
8071	for_each_task_context_nr(ctxn) {
8072		ret = perf_event_init_context(child, ctxn);
8073		if (ret) {
8074			perf_event_free_task(child);
8075			return ret;
8076		}
8077	}
8078
8079	return 0;
8080}
8081
8082static void __init perf_event_init_all_cpus(void)
8083{
8084	struct swevent_htable *swhash;
8085	int cpu;
8086
8087	for_each_possible_cpu(cpu) {
8088		swhash = &per_cpu(swevent_htable, cpu);
8089		mutex_init(&swhash->hlist_mutex);
8090		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8091	}
8092}
8093
8094static void perf_event_init_cpu(int cpu)
8095{
8096	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8097
8098	mutex_lock(&swhash->hlist_mutex);
8099	swhash->online = true;
8100	if (swhash->hlist_refcount > 0) {
8101		struct swevent_hlist *hlist;
8102
8103		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8104		WARN_ON(!hlist);
8105		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8106	}
8107	mutex_unlock(&swhash->hlist_mutex);
8108}
8109
8110#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8111static void perf_pmu_rotate_stop(struct pmu *pmu)
8112{
8113	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8114
8115	WARN_ON(!irqs_disabled());
8116
8117	list_del_init(&cpuctx->rotation_list);
8118}
8119
8120static void __perf_event_exit_context(void *__info)
8121{
8122	struct remove_event re = { .detach_group = true };
8123	struct perf_event_context *ctx = __info;
8124
8125	perf_pmu_rotate_stop(ctx->pmu);
8126
8127	rcu_read_lock();
8128	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8129		__perf_remove_from_context(&re);
8130	rcu_read_unlock();
8131}
8132
8133static void perf_event_exit_cpu_context(int cpu)
8134{
8135	struct perf_event_context *ctx;
8136	struct pmu *pmu;
8137	int idx;
8138
8139	idx = srcu_read_lock(&pmus_srcu);
8140	list_for_each_entry_rcu(pmu, &pmus, entry) {
8141		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8142
8143		mutex_lock(&ctx->mutex);
8144		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8145		mutex_unlock(&ctx->mutex);
8146	}
8147	srcu_read_unlock(&pmus_srcu, idx);
8148}
8149
8150static void perf_event_exit_cpu(int cpu)
8151{
8152	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8153
8154	perf_event_exit_cpu_context(cpu);
8155
8156	mutex_lock(&swhash->hlist_mutex);
8157	swhash->online = false;
8158	swevent_hlist_release(swhash);
8159	mutex_unlock(&swhash->hlist_mutex);
8160}
8161#else
8162static inline void perf_event_exit_cpu(int cpu) { }
8163#endif
8164
8165static int
8166perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8167{
8168	int cpu;
8169
8170	for_each_online_cpu(cpu)
8171		perf_event_exit_cpu(cpu);
8172
8173	return NOTIFY_OK;
8174}
8175
8176/*
8177 * Run the perf reboot notifier at the very last possible moment so that
8178 * the generic watchdog code runs as long as possible.
8179 */
8180static struct notifier_block perf_reboot_notifier = {
8181	.notifier_call = perf_reboot,
8182	.priority = INT_MIN,
8183};
8184
8185static int
8186perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8187{
8188	unsigned int cpu = (long)hcpu;
8189
8190	switch (action & ~CPU_TASKS_FROZEN) {
8191
8192	case CPU_UP_PREPARE:
8193	case CPU_DOWN_FAILED:
8194		perf_event_init_cpu(cpu);
8195		break;
8196
8197	case CPU_UP_CANCELED:
8198	case CPU_DOWN_PREPARE:
8199		perf_event_exit_cpu(cpu);
8200		break;
8201	default:
8202		break;
8203	}
8204
8205	return NOTIFY_OK;
8206}
8207
8208void __init perf_event_init(void)
8209{
8210	int ret;
8211
8212	idr_init(&pmu_idr);
8213
8214	perf_event_init_all_cpus();
8215	init_srcu_struct(&pmus_srcu);
8216	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8217	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8218	perf_pmu_register(&perf_task_clock, NULL, -1);
8219	perf_tp_register();
8220	perf_cpu_notifier(perf_cpu_notify);
8221	register_reboot_notifier(&perf_reboot_notifier);
8222
8223	ret = init_hw_breakpoint();
8224	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8225
8226	/* do not patch jump label more than once per second */
8227	jump_label_rate_limit(&perf_sched_events, HZ);
8228
8229	/*
8230	 * Build time assertion that we keep the data_head at the intended
8231	 * location.  IOW, validation we got the __reserved[] size right.
8232	 */
8233	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8234		     != 1024);
8235}
8236
8237static int __init perf_event_sysfs_init(void)
8238{
8239	struct pmu *pmu;
8240	int ret;
8241
8242	mutex_lock(&pmus_lock);
8243
8244	ret = bus_register(&pmu_bus);
8245	if (ret)
8246		goto unlock;
8247
8248	list_for_each_entry(pmu, &pmus, entry) {
8249		if (!pmu->name || pmu->type < 0)
8250			continue;
8251
8252		ret = pmu_dev_alloc(pmu);
8253		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8254	}
8255	pmu_bus_running = 1;
8256	ret = 0;
8257
8258unlock:
8259	mutex_unlock(&pmus_lock);
8260
8261	return ret;
8262}
8263device_initcall(perf_event_sysfs_init);
8264
8265#ifdef CONFIG_CGROUP_PERF
8266static struct cgroup_subsys_state *
8267perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8268{
8269	struct perf_cgroup *jc;
8270
8271	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8272	if (!jc)
8273		return ERR_PTR(-ENOMEM);
8274
8275	jc->info = alloc_percpu(struct perf_cgroup_info);
8276	if (!jc->info) {
8277		kfree(jc);
8278		return ERR_PTR(-ENOMEM);
8279	}
8280
8281	return &jc->css;
8282}
8283
8284static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8285{
8286	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8287
8288	free_percpu(jc->info);
8289	kfree(jc);
8290}
8291
8292static int __perf_cgroup_move(void *info)
8293{
8294	struct task_struct *task = info;
8295	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8296	return 0;
8297}
8298
8299static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8300			       struct cgroup_taskset *tset)
8301{
8302	struct task_struct *task;
8303
8304	cgroup_taskset_for_each(task, tset)
8305		task_function_call(task, __perf_cgroup_move, task);
8306}
8307
8308static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8309			     struct cgroup_subsys_state *old_css,
8310			     struct task_struct *task)
8311{
8312	/*
8313	 * cgroup_exit() is called in the copy_process() failure path.
8314	 * Ignore this case since the task hasn't ran yet, this avoids
8315	 * trying to poke a half freed task state from generic code.
8316	 */
8317	if (!(task->flags & PF_EXITING))
8318		return;
8319
8320	task_function_call(task, __perf_cgroup_move, task);
8321}
8322
8323struct cgroup_subsys perf_event_cgrp_subsys = {
8324	.css_alloc	= perf_cgroup_css_alloc,
8325	.css_free	= perf_cgroup_css_free,
8326	.exit		= perf_cgroup_exit,
8327	.attach		= perf_cgroup_attach,
8328};
8329#endif /* CONFIG_CGROUP_PERF */
8330