kprobes.c revision 17f41571bb2c4a398785452ac2718a6c5d77180e
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct kprobe *p;
338
339	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340	hlist_for_each_entry_rcu(p, head, hlist) {
341		if (p->addr == addr)
342			return p;
343	}
344
345	return NULL;
346}
347
348static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349
350/* Return true if the kprobe is an aggregator */
351static inline int kprobe_aggrprobe(struct kprobe *p)
352{
353	return p->pre_handler == aggr_pre_handler;
354}
355
356/* Return true(!0) if the kprobe is unused */
357static inline int kprobe_unused(struct kprobe *p)
358{
359	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
360	       list_empty(&p->list);
361}
362
363/*
364 * Keep all fields in the kprobe consistent
365 */
366static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
367{
368	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
369	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
370}
371
372#ifdef CONFIG_OPTPROBES
373/* NOTE: change this value only with kprobe_mutex held */
374static bool kprobes_allow_optimization;
375
376/*
377 * Call all pre_handler on the list, but ignores its return value.
378 * This must be called from arch-dep optimized caller.
379 */
380void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
381{
382	struct kprobe *kp;
383
384	list_for_each_entry_rcu(kp, &p->list, list) {
385		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
386			set_kprobe_instance(kp);
387			kp->pre_handler(kp, regs);
388		}
389		reset_kprobe_instance();
390	}
391}
392
393/* Free optimized instructions and optimized_kprobe */
394static __kprobes void free_aggr_kprobe(struct kprobe *p)
395{
396	struct optimized_kprobe *op;
397
398	op = container_of(p, struct optimized_kprobe, kp);
399	arch_remove_optimized_kprobe(op);
400	arch_remove_kprobe(p);
401	kfree(op);
402}
403
404/* Return true(!0) if the kprobe is ready for optimization. */
405static inline int kprobe_optready(struct kprobe *p)
406{
407	struct optimized_kprobe *op;
408
409	if (kprobe_aggrprobe(p)) {
410		op = container_of(p, struct optimized_kprobe, kp);
411		return arch_prepared_optinsn(&op->optinsn);
412	}
413
414	return 0;
415}
416
417/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
418static inline int kprobe_disarmed(struct kprobe *p)
419{
420	struct optimized_kprobe *op;
421
422	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
423	if (!kprobe_aggrprobe(p))
424		return kprobe_disabled(p);
425
426	op = container_of(p, struct optimized_kprobe, kp);
427
428	return kprobe_disabled(p) && list_empty(&op->list);
429}
430
431/* Return true(!0) if the probe is queued on (un)optimizing lists */
432static int __kprobes kprobe_queued(struct kprobe *p)
433{
434	struct optimized_kprobe *op;
435
436	if (kprobe_aggrprobe(p)) {
437		op = container_of(p, struct optimized_kprobe, kp);
438		if (!list_empty(&op->list))
439			return 1;
440	}
441	return 0;
442}
443
444/*
445 * Return an optimized kprobe whose optimizing code replaces
446 * instructions including addr (exclude breakpoint).
447 */
448static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
449{
450	int i;
451	struct kprobe *p = NULL;
452	struct optimized_kprobe *op;
453
454	/* Don't check i == 0, since that is a breakpoint case. */
455	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
456		p = get_kprobe((void *)(addr - i));
457
458	if (p && kprobe_optready(p)) {
459		op = container_of(p, struct optimized_kprobe, kp);
460		if (arch_within_optimized_kprobe(op, addr))
461			return p;
462	}
463
464	return NULL;
465}
466
467/* Optimization staging list, protected by kprobe_mutex */
468static LIST_HEAD(optimizing_list);
469static LIST_HEAD(unoptimizing_list);
470static LIST_HEAD(freeing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474#define OPTIMIZE_DELAY 5
475
476/*
477 * Optimize (replace a breakpoint with a jump) kprobes listed on
478 * optimizing_list.
479 */
480static __kprobes void do_optimize_kprobes(void)
481{
482	/* Optimization never be done when disarmed */
483	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
484	    list_empty(&optimizing_list))
485		return;
486
487	/*
488	 * The optimization/unoptimization refers online_cpus via
489	 * stop_machine() and cpu-hotplug modifies online_cpus.
490	 * And same time, text_mutex will be held in cpu-hotplug and here.
491	 * This combination can cause a deadlock (cpu-hotplug try to lock
492	 * text_mutex but stop_machine can not be done because online_cpus
493	 * has been changed)
494	 * To avoid this deadlock, we need to call get_online_cpus()
495	 * for preventing cpu-hotplug outside of text_mutex locking.
496	 */
497	get_online_cpus();
498	mutex_lock(&text_mutex);
499	arch_optimize_kprobes(&optimizing_list);
500	mutex_unlock(&text_mutex);
501	put_online_cpus();
502}
503
504/*
505 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
506 * if need) kprobes listed on unoptimizing_list.
507 */
508static __kprobes void do_unoptimize_kprobes(void)
509{
510	struct optimized_kprobe *op, *tmp;
511
512	/* Unoptimization must be done anytime */
513	if (list_empty(&unoptimizing_list))
514		return;
515
516	/* Ditto to do_optimize_kprobes */
517	get_online_cpus();
518	mutex_lock(&text_mutex);
519	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
520	/* Loop free_list for disarming */
521	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
522		/* Disarm probes if marked disabled */
523		if (kprobe_disabled(&op->kp))
524			arch_disarm_kprobe(&op->kp);
525		if (kprobe_unused(&op->kp)) {
526			/*
527			 * Remove unused probes from hash list. After waiting
528			 * for synchronization, these probes are reclaimed.
529			 * (reclaiming is done by do_free_cleaned_kprobes.)
530			 */
531			hlist_del_rcu(&op->kp.hlist);
532		} else
533			list_del_init(&op->list);
534	}
535	mutex_unlock(&text_mutex);
536	put_online_cpus();
537}
538
539/* Reclaim all kprobes on the free_list */
540static __kprobes void do_free_cleaned_kprobes(void)
541{
542	struct optimized_kprobe *op, *tmp;
543
544	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545		BUG_ON(!kprobe_unused(&op->kp));
546		list_del_init(&op->list);
547		free_aggr_kprobe(&op->kp);
548	}
549}
550
551/* Start optimizer after OPTIMIZE_DELAY passed */
552static __kprobes void kick_kprobe_optimizer(void)
553{
554	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555}
556
557/* Kprobe jump optimizer */
558static __kprobes void kprobe_optimizer(struct work_struct *work)
559{
560	mutex_lock(&kprobe_mutex);
561	/* Lock modules while optimizing kprobes */
562	mutex_lock(&module_mutex);
563
564	/*
565	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566	 * kprobes before waiting for quiesence period.
567	 */
568	do_unoptimize_kprobes();
569
570	/*
571	 * Step 2: Wait for quiesence period to ensure all running interrupts
572	 * are done. Because optprobe may modify multiple instructions
573	 * there is a chance that Nth instruction is interrupted. In that
574	 * case, running interrupt can return to 2nd-Nth byte of jump
575	 * instruction. This wait is for avoiding it.
576	 */
577	synchronize_sched();
578
579	/* Step 3: Optimize kprobes after quiesence period */
580	do_optimize_kprobes();
581
582	/* Step 4: Free cleaned kprobes after quiesence period */
583	do_free_cleaned_kprobes();
584
585	mutex_unlock(&module_mutex);
586	mutex_unlock(&kprobe_mutex);
587
588	/* Step 5: Kick optimizer again if needed */
589	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
590		kick_kprobe_optimizer();
591}
592
593/* Wait for completing optimization and unoptimization */
594static __kprobes void wait_for_kprobe_optimizer(void)
595{
596	mutex_lock(&kprobe_mutex);
597
598	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
599		mutex_unlock(&kprobe_mutex);
600
601		/* this will also make optimizing_work execute immmediately */
602		flush_delayed_work(&optimizing_work);
603		/* @optimizing_work might not have been queued yet, relax */
604		cpu_relax();
605
606		mutex_lock(&kprobe_mutex);
607	}
608
609	mutex_unlock(&kprobe_mutex);
610}
611
612/* Optimize kprobe if p is ready to be optimized */
613static __kprobes void optimize_kprobe(struct kprobe *p)
614{
615	struct optimized_kprobe *op;
616
617	/* Check if the kprobe is disabled or not ready for optimization. */
618	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
619	    (kprobe_disabled(p) || kprobes_all_disarmed))
620		return;
621
622	/* Both of break_handler and post_handler are not supported. */
623	if (p->break_handler || p->post_handler)
624		return;
625
626	op = container_of(p, struct optimized_kprobe, kp);
627
628	/* Check there is no other kprobes at the optimized instructions */
629	if (arch_check_optimized_kprobe(op) < 0)
630		return;
631
632	/* Check if it is already optimized. */
633	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
634		return;
635	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
636
637	if (!list_empty(&op->list))
638		/* This is under unoptimizing. Just dequeue the probe */
639		list_del_init(&op->list);
640	else {
641		list_add(&op->list, &optimizing_list);
642		kick_kprobe_optimizer();
643	}
644}
645
646/* Short cut to direct unoptimizing */
647static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
648{
649	get_online_cpus();
650	arch_unoptimize_kprobe(op);
651	put_online_cpus();
652	if (kprobe_disabled(&op->kp))
653		arch_disarm_kprobe(&op->kp);
654}
655
656/* Unoptimize a kprobe if p is optimized */
657static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
658{
659	struct optimized_kprobe *op;
660
661	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662		return; /* This is not an optprobe nor optimized */
663
664	op = container_of(p, struct optimized_kprobe, kp);
665	if (!kprobe_optimized(p)) {
666		/* Unoptimized or unoptimizing case */
667		if (force && !list_empty(&op->list)) {
668			/*
669			 * Only if this is unoptimizing kprobe and forced,
670			 * forcibly unoptimize it. (No need to unoptimize
671			 * unoptimized kprobe again :)
672			 */
673			list_del_init(&op->list);
674			force_unoptimize_kprobe(op);
675		}
676		return;
677	}
678
679	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680	if (!list_empty(&op->list)) {
681		/* Dequeue from the optimization queue */
682		list_del_init(&op->list);
683		return;
684	}
685	/* Optimized kprobe case */
686	if (force)
687		/* Forcibly update the code: this is a special case */
688		force_unoptimize_kprobe(op);
689	else {
690		list_add(&op->list, &unoptimizing_list);
691		kick_kprobe_optimizer();
692	}
693}
694
695/* Cancel unoptimizing for reusing */
696static void reuse_unused_kprobe(struct kprobe *ap)
697{
698	struct optimized_kprobe *op;
699
700	BUG_ON(!kprobe_unused(ap));
701	/*
702	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
703	 * there is still a relative jump) and disabled.
704	 */
705	op = container_of(ap, struct optimized_kprobe, kp);
706	if (unlikely(list_empty(&op->list)))
707		printk(KERN_WARNING "Warning: found a stray unused "
708			"aggrprobe@%p\n", ap->addr);
709	/* Enable the probe again */
710	ap->flags &= ~KPROBE_FLAG_DISABLED;
711	/* Optimize it again (remove from op->list) */
712	BUG_ON(!kprobe_optready(ap));
713	optimize_kprobe(ap);
714}
715
716/* Remove optimized instructions */
717static void __kprobes kill_optimized_kprobe(struct kprobe *p)
718{
719	struct optimized_kprobe *op;
720
721	op = container_of(p, struct optimized_kprobe, kp);
722	if (!list_empty(&op->list))
723		/* Dequeue from the (un)optimization queue */
724		list_del_init(&op->list);
725	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727	if (kprobe_unused(p)) {
728		/* Enqueue if it is unused */
729		list_add(&op->list, &freeing_list);
730		/*
731		 * Remove unused probes from the hash list. After waiting
732		 * for synchronization, this probe is reclaimed.
733		 * (reclaiming is done by do_free_cleaned_kprobes().)
734		 */
735		hlist_del_rcu(&op->kp.hlist);
736	}
737
738	/* Don't touch the code, because it is already freed. */
739	arch_remove_optimized_kprobe(op);
740}
741
742/* Try to prepare optimized instructions */
743static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
744{
745	struct optimized_kprobe *op;
746
747	op = container_of(p, struct optimized_kprobe, kp);
748	arch_prepare_optimized_kprobe(op);
749}
750
751/* Allocate new optimized_kprobe and try to prepare optimized instructions */
752static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
753{
754	struct optimized_kprobe *op;
755
756	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
757	if (!op)
758		return NULL;
759
760	INIT_LIST_HEAD(&op->list);
761	op->kp.addr = p->addr;
762	arch_prepare_optimized_kprobe(op);
763
764	return &op->kp;
765}
766
767static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
768
769/*
770 * Prepare an optimized_kprobe and optimize it
771 * NOTE: p must be a normal registered kprobe
772 */
773static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
774{
775	struct kprobe *ap;
776	struct optimized_kprobe *op;
777
778	/* Impossible to optimize ftrace-based kprobe */
779	if (kprobe_ftrace(p))
780		return;
781
782	/* For preparing optimization, jump_label_text_reserved() is called */
783	jump_label_lock();
784	mutex_lock(&text_mutex);
785
786	ap = alloc_aggr_kprobe(p);
787	if (!ap)
788		goto out;
789
790	op = container_of(ap, struct optimized_kprobe, kp);
791	if (!arch_prepared_optinsn(&op->optinsn)) {
792		/* If failed to setup optimizing, fallback to kprobe */
793		arch_remove_optimized_kprobe(op);
794		kfree(op);
795		goto out;
796	}
797
798	init_aggr_kprobe(ap, p);
799	optimize_kprobe(ap);	/* This just kicks optimizer thread */
800
801out:
802	mutex_unlock(&text_mutex);
803	jump_label_unlock();
804}
805
806#ifdef CONFIG_SYSCTL
807static void __kprobes optimize_all_kprobes(void)
808{
809	struct hlist_head *head;
810	struct kprobe *p;
811	unsigned int i;
812
813	mutex_lock(&kprobe_mutex);
814	/* If optimization is already allowed, just return */
815	if (kprobes_allow_optimization)
816		goto out;
817
818	kprobes_allow_optimization = true;
819	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
820		head = &kprobe_table[i];
821		hlist_for_each_entry_rcu(p, head, hlist)
822			if (!kprobe_disabled(p))
823				optimize_kprobe(p);
824	}
825	printk(KERN_INFO "Kprobes globally optimized\n");
826out:
827	mutex_unlock(&kprobe_mutex);
828}
829
830static void __kprobes unoptimize_all_kprobes(void)
831{
832	struct hlist_head *head;
833	struct kprobe *p;
834	unsigned int i;
835
836	mutex_lock(&kprobe_mutex);
837	/* If optimization is already prohibited, just return */
838	if (!kprobes_allow_optimization) {
839		mutex_unlock(&kprobe_mutex);
840		return;
841	}
842
843	kprobes_allow_optimization = false;
844	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845		head = &kprobe_table[i];
846		hlist_for_each_entry_rcu(p, head, hlist) {
847			if (!kprobe_disabled(p))
848				unoptimize_kprobe(p, false);
849		}
850	}
851	mutex_unlock(&kprobe_mutex);
852
853	/* Wait for unoptimizing completion */
854	wait_for_kprobe_optimizer();
855	printk(KERN_INFO "Kprobes globally unoptimized\n");
856}
857
858static DEFINE_MUTEX(kprobe_sysctl_mutex);
859int sysctl_kprobes_optimization;
860int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
861				      void __user *buffer, size_t *length,
862				      loff_t *ppos)
863{
864	int ret;
865
866	mutex_lock(&kprobe_sysctl_mutex);
867	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
868	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
869
870	if (sysctl_kprobes_optimization)
871		optimize_all_kprobes();
872	else
873		unoptimize_all_kprobes();
874	mutex_unlock(&kprobe_sysctl_mutex);
875
876	return ret;
877}
878#endif /* CONFIG_SYSCTL */
879
880/* Put a breakpoint for a probe. Must be called with text_mutex locked */
881static void __kprobes __arm_kprobe(struct kprobe *p)
882{
883	struct kprobe *_p;
884
885	/* Check collision with other optimized kprobes */
886	_p = get_optimized_kprobe((unsigned long)p->addr);
887	if (unlikely(_p))
888		/* Fallback to unoptimized kprobe */
889		unoptimize_kprobe(_p, true);
890
891	arch_arm_kprobe(p);
892	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
893}
894
895/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
896static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
897{
898	struct kprobe *_p;
899
900	unoptimize_kprobe(p, false);	/* Try to unoptimize */
901
902	if (!kprobe_queued(p)) {
903		arch_disarm_kprobe(p);
904		/* If another kprobe was blocked, optimize it. */
905		_p = get_optimized_kprobe((unsigned long)p->addr);
906		if (unlikely(_p) && reopt)
907			optimize_kprobe(_p);
908	}
909	/* TODO: reoptimize others after unoptimized this probe */
910}
911
912#else /* !CONFIG_OPTPROBES */
913
914#define optimize_kprobe(p)			do {} while (0)
915#define unoptimize_kprobe(p, f)			do {} while (0)
916#define kill_optimized_kprobe(p)		do {} while (0)
917#define prepare_optimized_kprobe(p)		do {} while (0)
918#define try_to_optimize_kprobe(p)		do {} while (0)
919#define __arm_kprobe(p)				arch_arm_kprobe(p)
920#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
921#define kprobe_disarmed(p)			kprobe_disabled(p)
922#define wait_for_kprobe_optimizer()		do {} while (0)
923
924/* There should be no unused kprobes can be reused without optimization */
925static void reuse_unused_kprobe(struct kprobe *ap)
926{
927	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
928	BUG_ON(kprobe_unused(ap));
929}
930
931static __kprobes void free_aggr_kprobe(struct kprobe *p)
932{
933	arch_remove_kprobe(p);
934	kfree(p);
935}
936
937static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
938{
939	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
940}
941#endif /* CONFIG_OPTPROBES */
942
943#ifdef CONFIG_KPROBES_ON_FTRACE
944static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
945	.func = kprobe_ftrace_handler,
946	.flags = FTRACE_OPS_FL_SAVE_REGS,
947};
948static int kprobe_ftrace_enabled;
949
950/* Must ensure p->addr is really on ftrace */
951static int __kprobes prepare_kprobe(struct kprobe *p)
952{
953	if (!kprobe_ftrace(p))
954		return arch_prepare_kprobe(p);
955
956	return arch_prepare_kprobe_ftrace(p);
957}
958
959/* Caller must lock kprobe_mutex */
960static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
961{
962	int ret;
963
964	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
965				   (unsigned long)p->addr, 0, 0);
966	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
967	kprobe_ftrace_enabled++;
968	if (kprobe_ftrace_enabled == 1) {
969		ret = register_ftrace_function(&kprobe_ftrace_ops);
970		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
971	}
972}
973
974/* Caller must lock kprobe_mutex */
975static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
976{
977	int ret;
978
979	kprobe_ftrace_enabled--;
980	if (kprobe_ftrace_enabled == 0) {
981		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
982		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983	}
984	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
985			   (unsigned long)p->addr, 1, 0);
986	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
987}
988#else	/* !CONFIG_KPROBES_ON_FTRACE */
989#define prepare_kprobe(p)	arch_prepare_kprobe(p)
990#define arm_kprobe_ftrace(p)	do {} while (0)
991#define disarm_kprobe_ftrace(p)	do {} while (0)
992#endif
993
994/* Arm a kprobe with text_mutex */
995static void __kprobes arm_kprobe(struct kprobe *kp)
996{
997	if (unlikely(kprobe_ftrace(kp))) {
998		arm_kprobe_ftrace(kp);
999		return;
1000	}
1001	/*
1002	 * Here, since __arm_kprobe() doesn't use stop_machine(),
1003	 * this doesn't cause deadlock on text_mutex. So, we don't
1004	 * need get_online_cpus().
1005	 */
1006	mutex_lock(&text_mutex);
1007	__arm_kprobe(kp);
1008	mutex_unlock(&text_mutex);
1009}
1010
1011/* Disarm a kprobe with text_mutex */
1012static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1013{
1014	if (unlikely(kprobe_ftrace(kp))) {
1015		disarm_kprobe_ftrace(kp);
1016		return;
1017	}
1018	/* Ditto */
1019	mutex_lock(&text_mutex);
1020	__disarm_kprobe(kp, reopt);
1021	mutex_unlock(&text_mutex);
1022}
1023
1024/*
1025 * Aggregate handlers for multiple kprobes support - these handlers
1026 * take care of invoking the individual kprobe handlers on p->list
1027 */
1028static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1029{
1030	struct kprobe *kp;
1031
1032	list_for_each_entry_rcu(kp, &p->list, list) {
1033		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1034			set_kprobe_instance(kp);
1035			if (kp->pre_handler(kp, regs))
1036				return 1;
1037		}
1038		reset_kprobe_instance();
1039	}
1040	return 0;
1041}
1042
1043static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1044					unsigned long flags)
1045{
1046	struct kprobe *kp;
1047
1048	list_for_each_entry_rcu(kp, &p->list, list) {
1049		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1050			set_kprobe_instance(kp);
1051			kp->post_handler(kp, regs, flags);
1052			reset_kprobe_instance();
1053		}
1054	}
1055}
1056
1057static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1058					int trapnr)
1059{
1060	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1061
1062	/*
1063	 * if we faulted "during" the execution of a user specified
1064	 * probe handler, invoke just that probe's fault handler
1065	 */
1066	if (cur && cur->fault_handler) {
1067		if (cur->fault_handler(cur, regs, trapnr))
1068			return 1;
1069	}
1070	return 0;
1071}
1072
1073static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1074{
1075	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1076	int ret = 0;
1077
1078	if (cur && cur->break_handler) {
1079		if (cur->break_handler(cur, regs))
1080			ret = 1;
1081	}
1082	reset_kprobe_instance();
1083	return ret;
1084}
1085
1086/* Walks the list and increments nmissed count for multiprobe case */
1087void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1088{
1089	struct kprobe *kp;
1090	if (!kprobe_aggrprobe(p)) {
1091		p->nmissed++;
1092	} else {
1093		list_for_each_entry_rcu(kp, &p->list, list)
1094			kp->nmissed++;
1095	}
1096	return;
1097}
1098
1099void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1100				struct hlist_head *head)
1101{
1102	struct kretprobe *rp = ri->rp;
1103
1104	/* remove rp inst off the rprobe_inst_table */
1105	hlist_del(&ri->hlist);
1106	INIT_HLIST_NODE(&ri->hlist);
1107	if (likely(rp)) {
1108		raw_spin_lock(&rp->lock);
1109		hlist_add_head(&ri->hlist, &rp->free_instances);
1110		raw_spin_unlock(&rp->lock);
1111	} else
1112		/* Unregistering */
1113		hlist_add_head(&ri->hlist, head);
1114}
1115
1116void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1117			 struct hlist_head **head, unsigned long *flags)
1118__acquires(hlist_lock)
1119{
1120	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121	raw_spinlock_t *hlist_lock;
1122
1123	*head = &kretprobe_inst_table[hash];
1124	hlist_lock = kretprobe_table_lock_ptr(hash);
1125	raw_spin_lock_irqsave(hlist_lock, *flags);
1126}
1127
1128static void __kprobes kretprobe_table_lock(unsigned long hash,
1129	unsigned long *flags)
1130__acquires(hlist_lock)
1131{
1132	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133	raw_spin_lock_irqsave(hlist_lock, *flags);
1134}
1135
1136void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1137	unsigned long *flags)
1138__releases(hlist_lock)
1139{
1140	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1141	raw_spinlock_t *hlist_lock;
1142
1143	hlist_lock = kretprobe_table_lock_ptr(hash);
1144	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1145}
1146
1147static void __kprobes kretprobe_table_unlock(unsigned long hash,
1148       unsigned long *flags)
1149__releases(hlist_lock)
1150{
1151	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1153}
1154
1155/*
1156 * This function is called from finish_task_switch when task tk becomes dead,
1157 * so that we can recycle any function-return probe instances associated
1158 * with this task. These left over instances represent probed functions
1159 * that have been called but will never return.
1160 */
1161void __kprobes kprobe_flush_task(struct task_struct *tk)
1162{
1163	struct kretprobe_instance *ri;
1164	struct hlist_head *head, empty_rp;
1165	struct hlist_node *tmp;
1166	unsigned long hash, flags = 0;
1167
1168	if (unlikely(!kprobes_initialized))
1169		/* Early boot.  kretprobe_table_locks not yet initialized. */
1170		return;
1171
1172	INIT_HLIST_HEAD(&empty_rp);
1173	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1174	head = &kretprobe_inst_table[hash];
1175	kretprobe_table_lock(hash, &flags);
1176	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1177		if (ri->task == tk)
1178			recycle_rp_inst(ri, &empty_rp);
1179	}
1180	kretprobe_table_unlock(hash, &flags);
1181	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1182		hlist_del(&ri->hlist);
1183		kfree(ri);
1184	}
1185}
1186
1187static inline void free_rp_inst(struct kretprobe *rp)
1188{
1189	struct kretprobe_instance *ri;
1190	struct hlist_node *next;
1191
1192	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1193		hlist_del(&ri->hlist);
1194		kfree(ri);
1195	}
1196}
1197
1198static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1199{
1200	unsigned long flags, hash;
1201	struct kretprobe_instance *ri;
1202	struct hlist_node *next;
1203	struct hlist_head *head;
1204
1205	/* No race here */
1206	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1207		kretprobe_table_lock(hash, &flags);
1208		head = &kretprobe_inst_table[hash];
1209		hlist_for_each_entry_safe(ri, next, head, hlist) {
1210			if (ri->rp == rp)
1211				ri->rp = NULL;
1212		}
1213		kretprobe_table_unlock(hash, &flags);
1214	}
1215	free_rp_inst(rp);
1216}
1217
1218/*
1219* Add the new probe to ap->list. Fail if this is the
1220* second jprobe at the address - two jprobes can't coexist
1221*/
1222static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1223{
1224	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1225
1226	if (p->break_handler || p->post_handler)
1227		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1228
1229	if (p->break_handler) {
1230		if (ap->break_handler)
1231			return -EEXIST;
1232		list_add_tail_rcu(&p->list, &ap->list);
1233		ap->break_handler = aggr_break_handler;
1234	} else
1235		list_add_rcu(&p->list, &ap->list);
1236	if (p->post_handler && !ap->post_handler)
1237		ap->post_handler = aggr_post_handler;
1238
1239	return 0;
1240}
1241
1242/*
1243 * Fill in the required fields of the "manager kprobe". Replace the
1244 * earlier kprobe in the hlist with the manager kprobe
1245 */
1246static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1247{
1248	/* Copy p's insn slot to ap */
1249	copy_kprobe(p, ap);
1250	flush_insn_slot(ap);
1251	ap->addr = p->addr;
1252	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1253	ap->pre_handler = aggr_pre_handler;
1254	ap->fault_handler = aggr_fault_handler;
1255	/* We don't care the kprobe which has gone. */
1256	if (p->post_handler && !kprobe_gone(p))
1257		ap->post_handler = aggr_post_handler;
1258	if (p->break_handler && !kprobe_gone(p))
1259		ap->break_handler = aggr_break_handler;
1260
1261	INIT_LIST_HEAD(&ap->list);
1262	INIT_HLIST_NODE(&ap->hlist);
1263
1264	list_add_rcu(&p->list, &ap->list);
1265	hlist_replace_rcu(&p->hlist, &ap->hlist);
1266}
1267
1268/*
1269 * This is the second or subsequent kprobe at the address - handle
1270 * the intricacies
1271 */
1272static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1273					  struct kprobe *p)
1274{
1275	int ret = 0;
1276	struct kprobe *ap = orig_p;
1277
1278	/* For preparing optimization, jump_label_text_reserved() is called */
1279	jump_label_lock();
1280	/*
1281	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1282	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1283	 */
1284	get_online_cpus();
1285	mutex_lock(&text_mutex);
1286
1287	if (!kprobe_aggrprobe(orig_p)) {
1288		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1289		ap = alloc_aggr_kprobe(orig_p);
1290		if (!ap) {
1291			ret = -ENOMEM;
1292			goto out;
1293		}
1294		init_aggr_kprobe(ap, orig_p);
1295	} else if (kprobe_unused(ap))
1296		/* This probe is going to die. Rescue it */
1297		reuse_unused_kprobe(ap);
1298
1299	if (kprobe_gone(ap)) {
1300		/*
1301		 * Attempting to insert new probe at the same location that
1302		 * had a probe in the module vaddr area which already
1303		 * freed. So, the instruction slot has already been
1304		 * released. We need a new slot for the new probe.
1305		 */
1306		ret = arch_prepare_kprobe(ap);
1307		if (ret)
1308			/*
1309			 * Even if fail to allocate new slot, don't need to
1310			 * free aggr_probe. It will be used next time, or
1311			 * freed by unregister_kprobe.
1312			 */
1313			goto out;
1314
1315		/* Prepare optimized instructions if possible. */
1316		prepare_optimized_kprobe(ap);
1317
1318		/*
1319		 * Clear gone flag to prevent allocating new slot again, and
1320		 * set disabled flag because it is not armed yet.
1321		 */
1322		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1323			    | KPROBE_FLAG_DISABLED;
1324	}
1325
1326	/* Copy ap's insn slot to p */
1327	copy_kprobe(ap, p);
1328	ret = add_new_kprobe(ap, p);
1329
1330out:
1331	mutex_unlock(&text_mutex);
1332	put_online_cpus();
1333	jump_label_unlock();
1334
1335	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1336		ap->flags &= ~KPROBE_FLAG_DISABLED;
1337		if (!kprobes_all_disarmed)
1338			/* Arm the breakpoint again. */
1339			arm_kprobe(ap);
1340	}
1341	return ret;
1342}
1343
1344static int __kprobes in_kprobes_functions(unsigned long addr)
1345{
1346	struct kprobe_blackpoint *kb;
1347
1348	if (addr >= (unsigned long)__kprobes_text_start &&
1349	    addr < (unsigned long)__kprobes_text_end)
1350		return -EINVAL;
1351	/*
1352	 * If there exists a kprobe_blacklist, verify and
1353	 * fail any probe registration in the prohibited area
1354	 */
1355	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1356		if (kb->start_addr) {
1357			if (addr >= kb->start_addr &&
1358			    addr < (kb->start_addr + kb->range))
1359				return -EINVAL;
1360		}
1361	}
1362	return 0;
1363}
1364
1365/*
1366 * If we have a symbol_name argument, look it up and add the offset field
1367 * to it. This way, we can specify a relative address to a symbol.
1368 * This returns encoded errors if it fails to look up symbol or invalid
1369 * combination of parameters.
1370 */
1371static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1372{
1373	kprobe_opcode_t *addr = p->addr;
1374
1375	if ((p->symbol_name && p->addr) ||
1376	    (!p->symbol_name && !p->addr))
1377		goto invalid;
1378
1379	if (p->symbol_name) {
1380		kprobe_lookup_name(p->symbol_name, addr);
1381		if (!addr)
1382			return ERR_PTR(-ENOENT);
1383	}
1384
1385	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1386	if (addr)
1387		return addr;
1388
1389invalid:
1390	return ERR_PTR(-EINVAL);
1391}
1392
1393/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1394static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1395{
1396	struct kprobe *ap, *list_p;
1397
1398	ap = get_kprobe(p->addr);
1399	if (unlikely(!ap))
1400		return NULL;
1401
1402	if (p != ap) {
1403		list_for_each_entry_rcu(list_p, &ap->list, list)
1404			if (list_p == p)
1405			/* kprobe p is a valid probe */
1406				goto valid;
1407		return NULL;
1408	}
1409valid:
1410	return ap;
1411}
1412
1413/* Return error if the kprobe is being re-registered */
1414static inline int check_kprobe_rereg(struct kprobe *p)
1415{
1416	int ret = 0;
1417
1418	mutex_lock(&kprobe_mutex);
1419	if (__get_valid_kprobe(p))
1420		ret = -EINVAL;
1421	mutex_unlock(&kprobe_mutex);
1422
1423	return ret;
1424}
1425
1426static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1427					       struct module **probed_mod)
1428{
1429	int ret = 0;
1430	unsigned long ftrace_addr;
1431
1432	/*
1433	 * If the address is located on a ftrace nop, set the
1434	 * breakpoint to the following instruction.
1435	 */
1436	ftrace_addr = ftrace_location((unsigned long)p->addr);
1437	if (ftrace_addr) {
1438#ifdef CONFIG_KPROBES_ON_FTRACE
1439		/* Given address is not on the instruction boundary */
1440		if ((unsigned long)p->addr != ftrace_addr)
1441			return -EILSEQ;
1442		p->flags |= KPROBE_FLAG_FTRACE;
1443#else	/* !CONFIG_KPROBES_ON_FTRACE */
1444		return -EINVAL;
1445#endif
1446	}
1447
1448	jump_label_lock();
1449	preempt_disable();
1450
1451	/* Ensure it is not in reserved area nor out of text */
1452	if (!kernel_text_address((unsigned long) p->addr) ||
1453	    in_kprobes_functions((unsigned long) p->addr) ||
1454	    jump_label_text_reserved(p->addr, p->addr)) {
1455		ret = -EINVAL;
1456		goto out;
1457	}
1458
1459	/* Check if are we probing a module */
1460	*probed_mod = __module_text_address((unsigned long) p->addr);
1461	if (*probed_mod) {
1462		/*
1463		 * We must hold a refcount of the probed module while updating
1464		 * its code to prohibit unexpected unloading.
1465		 */
1466		if (unlikely(!try_module_get(*probed_mod))) {
1467			ret = -ENOENT;
1468			goto out;
1469		}
1470
1471		/*
1472		 * If the module freed .init.text, we couldn't insert
1473		 * kprobes in there.
1474		 */
1475		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1476		    (*probed_mod)->state != MODULE_STATE_COMING) {
1477			module_put(*probed_mod);
1478			*probed_mod = NULL;
1479			ret = -ENOENT;
1480		}
1481	}
1482out:
1483	preempt_enable();
1484	jump_label_unlock();
1485
1486	return ret;
1487}
1488
1489int __kprobes register_kprobe(struct kprobe *p)
1490{
1491	int ret;
1492	struct kprobe *old_p;
1493	struct module *probed_mod;
1494	kprobe_opcode_t *addr;
1495
1496	/* Adjust probe address from symbol */
1497	addr = kprobe_addr(p);
1498	if (IS_ERR(addr))
1499		return PTR_ERR(addr);
1500	p->addr = addr;
1501
1502	ret = check_kprobe_rereg(p);
1503	if (ret)
1504		return ret;
1505
1506	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1507	p->flags &= KPROBE_FLAG_DISABLED;
1508	p->nmissed = 0;
1509	INIT_LIST_HEAD(&p->list);
1510
1511	ret = check_kprobe_address_safe(p, &probed_mod);
1512	if (ret)
1513		return ret;
1514
1515	mutex_lock(&kprobe_mutex);
1516
1517	old_p = get_kprobe(p->addr);
1518	if (old_p) {
1519		/* Since this may unoptimize old_p, locking text_mutex. */
1520		ret = register_aggr_kprobe(old_p, p);
1521		goto out;
1522	}
1523
1524	mutex_lock(&text_mutex);	/* Avoiding text modification */
1525	ret = prepare_kprobe(p);
1526	mutex_unlock(&text_mutex);
1527	if (ret)
1528		goto out;
1529
1530	INIT_HLIST_NODE(&p->hlist);
1531	hlist_add_head_rcu(&p->hlist,
1532		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1533
1534	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1535		arm_kprobe(p);
1536
1537	/* Try to optimize kprobe */
1538	try_to_optimize_kprobe(p);
1539
1540out:
1541	mutex_unlock(&kprobe_mutex);
1542
1543	if (probed_mod)
1544		module_put(probed_mod);
1545
1546	return ret;
1547}
1548EXPORT_SYMBOL_GPL(register_kprobe);
1549
1550/* Check if all probes on the aggrprobe are disabled */
1551static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1552{
1553	struct kprobe *kp;
1554
1555	list_for_each_entry_rcu(kp, &ap->list, list)
1556		if (!kprobe_disabled(kp))
1557			/*
1558			 * There is an active probe on the list.
1559			 * We can't disable this ap.
1560			 */
1561			return 0;
1562
1563	return 1;
1564}
1565
1566/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1567static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1568{
1569	struct kprobe *orig_p;
1570
1571	/* Get an original kprobe for return */
1572	orig_p = __get_valid_kprobe(p);
1573	if (unlikely(orig_p == NULL))
1574		return NULL;
1575
1576	if (!kprobe_disabled(p)) {
1577		/* Disable probe if it is a child probe */
1578		if (p != orig_p)
1579			p->flags |= KPROBE_FLAG_DISABLED;
1580
1581		/* Try to disarm and disable this/parent probe */
1582		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1583			disarm_kprobe(orig_p, true);
1584			orig_p->flags |= KPROBE_FLAG_DISABLED;
1585		}
1586	}
1587
1588	return orig_p;
1589}
1590
1591/*
1592 * Unregister a kprobe without a scheduler synchronization.
1593 */
1594static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1595{
1596	struct kprobe *ap, *list_p;
1597
1598	/* Disable kprobe. This will disarm it if needed. */
1599	ap = __disable_kprobe(p);
1600	if (ap == NULL)
1601		return -EINVAL;
1602
1603	if (ap == p)
1604		/*
1605		 * This probe is an independent(and non-optimized) kprobe
1606		 * (not an aggrprobe). Remove from the hash list.
1607		 */
1608		goto disarmed;
1609
1610	/* Following process expects this probe is an aggrprobe */
1611	WARN_ON(!kprobe_aggrprobe(ap));
1612
1613	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1614		/*
1615		 * !disarmed could be happen if the probe is under delayed
1616		 * unoptimizing.
1617		 */
1618		goto disarmed;
1619	else {
1620		/* If disabling probe has special handlers, update aggrprobe */
1621		if (p->break_handler && !kprobe_gone(p))
1622			ap->break_handler = NULL;
1623		if (p->post_handler && !kprobe_gone(p)) {
1624			list_for_each_entry_rcu(list_p, &ap->list, list) {
1625				if ((list_p != p) && (list_p->post_handler))
1626					goto noclean;
1627			}
1628			ap->post_handler = NULL;
1629		}
1630noclean:
1631		/*
1632		 * Remove from the aggrprobe: this path will do nothing in
1633		 * __unregister_kprobe_bottom().
1634		 */
1635		list_del_rcu(&p->list);
1636		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1637			/*
1638			 * Try to optimize this probe again, because post
1639			 * handler may have been changed.
1640			 */
1641			optimize_kprobe(ap);
1642	}
1643	return 0;
1644
1645disarmed:
1646	BUG_ON(!kprobe_disarmed(ap));
1647	hlist_del_rcu(&ap->hlist);
1648	return 0;
1649}
1650
1651static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1652{
1653	struct kprobe *ap;
1654
1655	if (list_empty(&p->list))
1656		/* This is an independent kprobe */
1657		arch_remove_kprobe(p);
1658	else if (list_is_singular(&p->list)) {
1659		/* This is the last child of an aggrprobe */
1660		ap = list_entry(p->list.next, struct kprobe, list);
1661		list_del(&p->list);
1662		free_aggr_kprobe(ap);
1663	}
1664	/* Otherwise, do nothing. */
1665}
1666
1667int __kprobes register_kprobes(struct kprobe **kps, int num)
1668{
1669	int i, ret = 0;
1670
1671	if (num <= 0)
1672		return -EINVAL;
1673	for (i = 0; i < num; i++) {
1674		ret = register_kprobe(kps[i]);
1675		if (ret < 0) {
1676			if (i > 0)
1677				unregister_kprobes(kps, i);
1678			break;
1679		}
1680	}
1681	return ret;
1682}
1683EXPORT_SYMBOL_GPL(register_kprobes);
1684
1685void __kprobes unregister_kprobe(struct kprobe *p)
1686{
1687	unregister_kprobes(&p, 1);
1688}
1689EXPORT_SYMBOL_GPL(unregister_kprobe);
1690
1691void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1692{
1693	int i;
1694
1695	if (num <= 0)
1696		return;
1697	mutex_lock(&kprobe_mutex);
1698	for (i = 0; i < num; i++)
1699		if (__unregister_kprobe_top(kps[i]) < 0)
1700			kps[i]->addr = NULL;
1701	mutex_unlock(&kprobe_mutex);
1702
1703	synchronize_sched();
1704	for (i = 0; i < num; i++)
1705		if (kps[i]->addr)
1706			__unregister_kprobe_bottom(kps[i]);
1707}
1708EXPORT_SYMBOL_GPL(unregister_kprobes);
1709
1710static struct notifier_block kprobe_exceptions_nb = {
1711	.notifier_call = kprobe_exceptions_notify,
1712	.priority = 0x7fffffff /* we need to be notified first */
1713};
1714
1715unsigned long __weak arch_deref_entry_point(void *entry)
1716{
1717	return (unsigned long)entry;
1718}
1719
1720int __kprobes register_jprobes(struct jprobe **jps, int num)
1721{
1722	struct jprobe *jp;
1723	int ret = 0, i;
1724
1725	if (num <= 0)
1726		return -EINVAL;
1727	for (i = 0; i < num; i++) {
1728		unsigned long addr, offset;
1729		jp = jps[i];
1730		addr = arch_deref_entry_point(jp->entry);
1731
1732		/* Verify probepoint is a function entry point */
1733		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1734		    offset == 0) {
1735			jp->kp.pre_handler = setjmp_pre_handler;
1736			jp->kp.break_handler = longjmp_break_handler;
1737			ret = register_kprobe(&jp->kp);
1738		} else
1739			ret = -EINVAL;
1740
1741		if (ret < 0) {
1742			if (i > 0)
1743				unregister_jprobes(jps, i);
1744			break;
1745		}
1746	}
1747	return ret;
1748}
1749EXPORT_SYMBOL_GPL(register_jprobes);
1750
1751int __kprobes register_jprobe(struct jprobe *jp)
1752{
1753	return register_jprobes(&jp, 1);
1754}
1755EXPORT_SYMBOL_GPL(register_jprobe);
1756
1757void __kprobes unregister_jprobe(struct jprobe *jp)
1758{
1759	unregister_jprobes(&jp, 1);
1760}
1761EXPORT_SYMBOL_GPL(unregister_jprobe);
1762
1763void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1764{
1765	int i;
1766
1767	if (num <= 0)
1768		return;
1769	mutex_lock(&kprobe_mutex);
1770	for (i = 0; i < num; i++)
1771		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1772			jps[i]->kp.addr = NULL;
1773	mutex_unlock(&kprobe_mutex);
1774
1775	synchronize_sched();
1776	for (i = 0; i < num; i++) {
1777		if (jps[i]->kp.addr)
1778			__unregister_kprobe_bottom(&jps[i]->kp);
1779	}
1780}
1781EXPORT_SYMBOL_GPL(unregister_jprobes);
1782
1783#ifdef CONFIG_KRETPROBES
1784/*
1785 * This kprobe pre_handler is registered with every kretprobe. When probe
1786 * hits it will set up the return probe.
1787 */
1788static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1789					   struct pt_regs *regs)
1790{
1791	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1792	unsigned long hash, flags = 0;
1793	struct kretprobe_instance *ri;
1794
1795	/*TODO: consider to only swap the RA after the last pre_handler fired */
1796	hash = hash_ptr(current, KPROBE_HASH_BITS);
1797	raw_spin_lock_irqsave(&rp->lock, flags);
1798	if (!hlist_empty(&rp->free_instances)) {
1799		ri = hlist_entry(rp->free_instances.first,
1800				struct kretprobe_instance, hlist);
1801		hlist_del(&ri->hlist);
1802		raw_spin_unlock_irqrestore(&rp->lock, flags);
1803
1804		ri->rp = rp;
1805		ri->task = current;
1806
1807		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1808			raw_spin_lock_irqsave(&rp->lock, flags);
1809			hlist_add_head(&ri->hlist, &rp->free_instances);
1810			raw_spin_unlock_irqrestore(&rp->lock, flags);
1811			return 0;
1812		}
1813
1814		arch_prepare_kretprobe(ri, regs);
1815
1816		/* XXX(hch): why is there no hlist_move_head? */
1817		INIT_HLIST_NODE(&ri->hlist);
1818		kretprobe_table_lock(hash, &flags);
1819		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1820		kretprobe_table_unlock(hash, &flags);
1821	} else {
1822		rp->nmissed++;
1823		raw_spin_unlock_irqrestore(&rp->lock, flags);
1824	}
1825	return 0;
1826}
1827
1828int __kprobes register_kretprobe(struct kretprobe *rp)
1829{
1830	int ret = 0;
1831	struct kretprobe_instance *inst;
1832	int i;
1833	void *addr;
1834
1835	if (kretprobe_blacklist_size) {
1836		addr = kprobe_addr(&rp->kp);
1837		if (IS_ERR(addr))
1838			return PTR_ERR(addr);
1839
1840		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1841			if (kretprobe_blacklist[i].addr == addr)
1842				return -EINVAL;
1843		}
1844	}
1845
1846	rp->kp.pre_handler = pre_handler_kretprobe;
1847	rp->kp.post_handler = NULL;
1848	rp->kp.fault_handler = NULL;
1849	rp->kp.break_handler = NULL;
1850
1851	/* Pre-allocate memory for max kretprobe instances */
1852	if (rp->maxactive <= 0) {
1853#ifdef CONFIG_PREEMPT
1854		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1855#else
1856		rp->maxactive = num_possible_cpus();
1857#endif
1858	}
1859	raw_spin_lock_init(&rp->lock);
1860	INIT_HLIST_HEAD(&rp->free_instances);
1861	for (i = 0; i < rp->maxactive; i++) {
1862		inst = kmalloc(sizeof(struct kretprobe_instance) +
1863			       rp->data_size, GFP_KERNEL);
1864		if (inst == NULL) {
1865			free_rp_inst(rp);
1866			return -ENOMEM;
1867		}
1868		INIT_HLIST_NODE(&inst->hlist);
1869		hlist_add_head(&inst->hlist, &rp->free_instances);
1870	}
1871
1872	rp->nmissed = 0;
1873	/* Establish function entry probe point */
1874	ret = register_kprobe(&rp->kp);
1875	if (ret != 0)
1876		free_rp_inst(rp);
1877	return ret;
1878}
1879EXPORT_SYMBOL_GPL(register_kretprobe);
1880
1881int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1882{
1883	int ret = 0, i;
1884
1885	if (num <= 0)
1886		return -EINVAL;
1887	for (i = 0; i < num; i++) {
1888		ret = register_kretprobe(rps[i]);
1889		if (ret < 0) {
1890			if (i > 0)
1891				unregister_kretprobes(rps, i);
1892			break;
1893		}
1894	}
1895	return ret;
1896}
1897EXPORT_SYMBOL_GPL(register_kretprobes);
1898
1899void __kprobes unregister_kretprobe(struct kretprobe *rp)
1900{
1901	unregister_kretprobes(&rp, 1);
1902}
1903EXPORT_SYMBOL_GPL(unregister_kretprobe);
1904
1905void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1906{
1907	int i;
1908
1909	if (num <= 0)
1910		return;
1911	mutex_lock(&kprobe_mutex);
1912	for (i = 0; i < num; i++)
1913		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1914			rps[i]->kp.addr = NULL;
1915	mutex_unlock(&kprobe_mutex);
1916
1917	synchronize_sched();
1918	for (i = 0; i < num; i++) {
1919		if (rps[i]->kp.addr) {
1920			__unregister_kprobe_bottom(&rps[i]->kp);
1921			cleanup_rp_inst(rps[i]);
1922		}
1923	}
1924}
1925EXPORT_SYMBOL_GPL(unregister_kretprobes);
1926
1927#else /* CONFIG_KRETPROBES */
1928int __kprobes register_kretprobe(struct kretprobe *rp)
1929{
1930	return -ENOSYS;
1931}
1932EXPORT_SYMBOL_GPL(register_kretprobe);
1933
1934int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1935{
1936	return -ENOSYS;
1937}
1938EXPORT_SYMBOL_GPL(register_kretprobes);
1939
1940void __kprobes unregister_kretprobe(struct kretprobe *rp)
1941{
1942}
1943EXPORT_SYMBOL_GPL(unregister_kretprobe);
1944
1945void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1946{
1947}
1948EXPORT_SYMBOL_GPL(unregister_kretprobes);
1949
1950static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1951					   struct pt_regs *regs)
1952{
1953	return 0;
1954}
1955
1956#endif /* CONFIG_KRETPROBES */
1957
1958/* Set the kprobe gone and remove its instruction buffer. */
1959static void __kprobes kill_kprobe(struct kprobe *p)
1960{
1961	struct kprobe *kp;
1962
1963	p->flags |= KPROBE_FLAG_GONE;
1964	if (kprobe_aggrprobe(p)) {
1965		/*
1966		 * If this is an aggr_kprobe, we have to list all the
1967		 * chained probes and mark them GONE.
1968		 */
1969		list_for_each_entry_rcu(kp, &p->list, list)
1970			kp->flags |= KPROBE_FLAG_GONE;
1971		p->post_handler = NULL;
1972		p->break_handler = NULL;
1973		kill_optimized_kprobe(p);
1974	}
1975	/*
1976	 * Here, we can remove insn_slot safely, because no thread calls
1977	 * the original probed function (which will be freed soon) any more.
1978	 */
1979	arch_remove_kprobe(p);
1980}
1981
1982/* Disable one kprobe */
1983int __kprobes disable_kprobe(struct kprobe *kp)
1984{
1985	int ret = 0;
1986
1987	mutex_lock(&kprobe_mutex);
1988
1989	/* Disable this kprobe */
1990	if (__disable_kprobe(kp) == NULL)
1991		ret = -EINVAL;
1992
1993	mutex_unlock(&kprobe_mutex);
1994	return ret;
1995}
1996EXPORT_SYMBOL_GPL(disable_kprobe);
1997
1998/* Enable one kprobe */
1999int __kprobes enable_kprobe(struct kprobe *kp)
2000{
2001	int ret = 0;
2002	struct kprobe *p;
2003
2004	mutex_lock(&kprobe_mutex);
2005
2006	/* Check whether specified probe is valid. */
2007	p = __get_valid_kprobe(kp);
2008	if (unlikely(p == NULL)) {
2009		ret = -EINVAL;
2010		goto out;
2011	}
2012
2013	if (kprobe_gone(kp)) {
2014		/* This kprobe has gone, we couldn't enable it. */
2015		ret = -EINVAL;
2016		goto out;
2017	}
2018
2019	if (p != kp)
2020		kp->flags &= ~KPROBE_FLAG_DISABLED;
2021
2022	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2023		p->flags &= ~KPROBE_FLAG_DISABLED;
2024		arm_kprobe(p);
2025	}
2026out:
2027	mutex_unlock(&kprobe_mutex);
2028	return ret;
2029}
2030EXPORT_SYMBOL_GPL(enable_kprobe);
2031
2032void __kprobes dump_kprobe(struct kprobe *kp)
2033{
2034	printk(KERN_WARNING "Dumping kprobe:\n");
2035	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2036	       kp->symbol_name, kp->addr, kp->offset);
2037}
2038
2039/* Module notifier call back, checking kprobes on the module */
2040static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2041					     unsigned long val, void *data)
2042{
2043	struct module *mod = data;
2044	struct hlist_head *head;
2045	struct kprobe *p;
2046	unsigned int i;
2047	int checkcore = (val == MODULE_STATE_GOING);
2048
2049	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2050		return NOTIFY_DONE;
2051
2052	/*
2053	 * When MODULE_STATE_GOING was notified, both of module .text and
2054	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2055	 * notified, only .init.text section would be freed. We need to
2056	 * disable kprobes which have been inserted in the sections.
2057	 */
2058	mutex_lock(&kprobe_mutex);
2059	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2060		head = &kprobe_table[i];
2061		hlist_for_each_entry_rcu(p, head, hlist)
2062			if (within_module_init((unsigned long)p->addr, mod) ||
2063			    (checkcore &&
2064			     within_module_core((unsigned long)p->addr, mod))) {
2065				/*
2066				 * The vaddr this probe is installed will soon
2067				 * be vfreed buy not synced to disk. Hence,
2068				 * disarming the breakpoint isn't needed.
2069				 */
2070				kill_kprobe(p);
2071			}
2072	}
2073	mutex_unlock(&kprobe_mutex);
2074	return NOTIFY_DONE;
2075}
2076
2077static struct notifier_block kprobe_module_nb = {
2078	.notifier_call = kprobes_module_callback,
2079	.priority = 0
2080};
2081
2082static int __init init_kprobes(void)
2083{
2084	int i, err = 0;
2085	unsigned long offset = 0, size = 0;
2086	char *modname, namebuf[128];
2087	const char *symbol_name;
2088	void *addr;
2089	struct kprobe_blackpoint *kb;
2090
2091	/* FIXME allocate the probe table, currently defined statically */
2092	/* initialize all list heads */
2093	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2094		INIT_HLIST_HEAD(&kprobe_table[i]);
2095		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2096		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2097	}
2098
2099	/*
2100	 * Lookup and populate the kprobe_blacklist.
2101	 *
2102	 * Unlike the kretprobe blacklist, we'll need to determine
2103	 * the range of addresses that belong to the said functions,
2104	 * since a kprobe need not necessarily be at the beginning
2105	 * of a function.
2106	 */
2107	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2108		kprobe_lookup_name(kb->name, addr);
2109		if (!addr)
2110			continue;
2111
2112		kb->start_addr = (unsigned long)addr;
2113		symbol_name = kallsyms_lookup(kb->start_addr,
2114				&size, &offset, &modname, namebuf);
2115		if (!symbol_name)
2116			kb->range = 0;
2117		else
2118			kb->range = size;
2119	}
2120
2121	if (kretprobe_blacklist_size) {
2122		/* lookup the function address from its name */
2123		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2124			kprobe_lookup_name(kretprobe_blacklist[i].name,
2125					   kretprobe_blacklist[i].addr);
2126			if (!kretprobe_blacklist[i].addr)
2127				printk("kretprobe: lookup failed: %s\n",
2128				       kretprobe_blacklist[i].name);
2129		}
2130	}
2131
2132#if defined(CONFIG_OPTPROBES)
2133#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2134	/* Init kprobe_optinsn_slots */
2135	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2136#endif
2137	/* By default, kprobes can be optimized */
2138	kprobes_allow_optimization = true;
2139#endif
2140
2141	/* By default, kprobes are armed */
2142	kprobes_all_disarmed = false;
2143
2144	err = arch_init_kprobes();
2145	if (!err)
2146		err = register_die_notifier(&kprobe_exceptions_nb);
2147	if (!err)
2148		err = register_module_notifier(&kprobe_module_nb);
2149
2150	kprobes_initialized = (err == 0);
2151
2152	if (!err)
2153		init_test_probes();
2154	return err;
2155}
2156
2157#ifdef CONFIG_DEBUG_FS
2158static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2159		const char *sym, int offset, char *modname, struct kprobe *pp)
2160{
2161	char *kprobe_type;
2162
2163	if (p->pre_handler == pre_handler_kretprobe)
2164		kprobe_type = "r";
2165	else if (p->pre_handler == setjmp_pre_handler)
2166		kprobe_type = "j";
2167	else
2168		kprobe_type = "k";
2169
2170	if (sym)
2171		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2172			p->addr, kprobe_type, sym, offset,
2173			(modname ? modname : " "));
2174	else
2175		seq_printf(pi, "%p  %s  %p ",
2176			p->addr, kprobe_type, p->addr);
2177
2178	if (!pp)
2179		pp = p;
2180	seq_printf(pi, "%s%s%s%s\n",
2181		(kprobe_gone(p) ? "[GONE]" : ""),
2182		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2183		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2184		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2185}
2186
2187static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2188{
2189	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2190}
2191
2192static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2193{
2194	(*pos)++;
2195	if (*pos >= KPROBE_TABLE_SIZE)
2196		return NULL;
2197	return pos;
2198}
2199
2200static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2201{
2202	/* Nothing to do */
2203}
2204
2205static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2206{
2207	struct hlist_head *head;
2208	struct kprobe *p, *kp;
2209	const char *sym = NULL;
2210	unsigned int i = *(loff_t *) v;
2211	unsigned long offset = 0;
2212	char *modname, namebuf[128];
2213
2214	head = &kprobe_table[i];
2215	preempt_disable();
2216	hlist_for_each_entry_rcu(p, head, hlist) {
2217		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2218					&offset, &modname, namebuf);
2219		if (kprobe_aggrprobe(p)) {
2220			list_for_each_entry_rcu(kp, &p->list, list)
2221				report_probe(pi, kp, sym, offset, modname, p);
2222		} else
2223			report_probe(pi, p, sym, offset, modname, NULL);
2224	}
2225	preempt_enable();
2226	return 0;
2227}
2228
2229static const struct seq_operations kprobes_seq_ops = {
2230	.start = kprobe_seq_start,
2231	.next  = kprobe_seq_next,
2232	.stop  = kprobe_seq_stop,
2233	.show  = show_kprobe_addr
2234};
2235
2236static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2237{
2238	return seq_open(filp, &kprobes_seq_ops);
2239}
2240
2241static const struct file_operations debugfs_kprobes_operations = {
2242	.open           = kprobes_open,
2243	.read           = seq_read,
2244	.llseek         = seq_lseek,
2245	.release        = seq_release,
2246};
2247
2248static void __kprobes arm_all_kprobes(void)
2249{
2250	struct hlist_head *head;
2251	struct kprobe *p;
2252	unsigned int i;
2253
2254	mutex_lock(&kprobe_mutex);
2255
2256	/* If kprobes are armed, just return */
2257	if (!kprobes_all_disarmed)
2258		goto already_enabled;
2259
2260	/* Arming kprobes doesn't optimize kprobe itself */
2261	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2262		head = &kprobe_table[i];
2263		hlist_for_each_entry_rcu(p, head, hlist)
2264			if (!kprobe_disabled(p))
2265				arm_kprobe(p);
2266	}
2267
2268	kprobes_all_disarmed = false;
2269	printk(KERN_INFO "Kprobes globally enabled\n");
2270
2271already_enabled:
2272	mutex_unlock(&kprobe_mutex);
2273	return;
2274}
2275
2276static void __kprobes disarm_all_kprobes(void)
2277{
2278	struct hlist_head *head;
2279	struct kprobe *p;
2280	unsigned int i;
2281
2282	mutex_lock(&kprobe_mutex);
2283
2284	/* If kprobes are already disarmed, just return */
2285	if (kprobes_all_disarmed) {
2286		mutex_unlock(&kprobe_mutex);
2287		return;
2288	}
2289
2290	kprobes_all_disarmed = true;
2291	printk(KERN_INFO "Kprobes globally disabled\n");
2292
2293	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2294		head = &kprobe_table[i];
2295		hlist_for_each_entry_rcu(p, head, hlist) {
2296			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2297				disarm_kprobe(p, false);
2298		}
2299	}
2300	mutex_unlock(&kprobe_mutex);
2301
2302	/* Wait for disarming all kprobes by optimizer */
2303	wait_for_kprobe_optimizer();
2304}
2305
2306/*
2307 * XXX: The debugfs bool file interface doesn't allow for callbacks
2308 * when the bool state is switched. We can reuse that facility when
2309 * available
2310 */
2311static ssize_t read_enabled_file_bool(struct file *file,
2312	       char __user *user_buf, size_t count, loff_t *ppos)
2313{
2314	char buf[3];
2315
2316	if (!kprobes_all_disarmed)
2317		buf[0] = '1';
2318	else
2319		buf[0] = '0';
2320	buf[1] = '\n';
2321	buf[2] = 0x00;
2322	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2323}
2324
2325static ssize_t write_enabled_file_bool(struct file *file,
2326	       const char __user *user_buf, size_t count, loff_t *ppos)
2327{
2328	char buf[32];
2329	size_t buf_size;
2330
2331	buf_size = min(count, (sizeof(buf)-1));
2332	if (copy_from_user(buf, user_buf, buf_size))
2333		return -EFAULT;
2334
2335	buf[buf_size] = '\0';
2336	switch (buf[0]) {
2337	case 'y':
2338	case 'Y':
2339	case '1':
2340		arm_all_kprobes();
2341		break;
2342	case 'n':
2343	case 'N':
2344	case '0':
2345		disarm_all_kprobes();
2346		break;
2347	default:
2348		return -EINVAL;
2349	}
2350
2351	return count;
2352}
2353
2354static const struct file_operations fops_kp = {
2355	.read =         read_enabled_file_bool,
2356	.write =        write_enabled_file_bool,
2357	.llseek =	default_llseek,
2358};
2359
2360static int __kprobes debugfs_kprobe_init(void)
2361{
2362	struct dentry *dir, *file;
2363	unsigned int value = 1;
2364
2365	dir = debugfs_create_dir("kprobes", NULL);
2366	if (!dir)
2367		return -ENOMEM;
2368
2369	file = debugfs_create_file("list", 0444, dir, NULL,
2370				&debugfs_kprobes_operations);
2371	if (!file) {
2372		debugfs_remove(dir);
2373		return -ENOMEM;
2374	}
2375
2376	file = debugfs_create_file("enabled", 0600, dir,
2377					&value, &fops_kp);
2378	if (!file) {
2379		debugfs_remove(dir);
2380		return -ENOMEM;
2381	}
2382
2383	return 0;
2384}
2385
2386late_initcall(debugfs_kprobe_init);
2387#endif /* CONFIG_DEBUG_FS */
2388
2389module_init(init_kprobes);
2390
2391/* defined in arch/.../kernel/kprobes.c */
2392EXPORT_SYMBOL_GPL(jprobe_return);
2393