kprobes.c revision 25764288d8dc4792f0f487baf043ccfee5d8c2ba
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct hlist_node *node;
338	struct kprobe *p;
339
340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341	hlist_for_each_entry_rcu(p, node, head, hlist) {
342		if (p->addr == addr)
343			return p;
344	}
345
346	return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354	return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361	       list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383	struct kprobe *kp;
384
385	list_for_each_entry_rcu(kp, &p->list, list) {
386		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387			set_kprobe_instance(kp);
388			kp->pre_handler(kp, regs);
389		}
390		reset_kprobe_instance();
391	}
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397	struct optimized_kprobe *op;
398
399	op = container_of(p, struct optimized_kprobe, kp);
400	arch_remove_optimized_kprobe(op);
401	arch_remove_kprobe(p);
402	kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408	struct optimized_kprobe *op;
409
410	if (kprobe_aggrprobe(p)) {
411		op = container_of(p, struct optimized_kprobe, kp);
412		return arch_prepared_optinsn(&op->optinsn);
413	}
414
415	return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421	struct optimized_kprobe *op;
422
423	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424	if (!kprobe_aggrprobe(p))
425		return kprobe_disabled(p);
426
427	op = container_of(p, struct optimized_kprobe, kp);
428
429	return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435	struct optimized_kprobe *op;
436
437	if (kprobe_aggrprobe(p)) {
438		op = container_of(p, struct optimized_kprobe, kp);
439		if (!list_empty(&op->list))
440			return 1;
441	}
442	return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451	int i;
452	struct kprobe *p = NULL;
453	struct optimized_kprobe *op;
454
455	/* Don't check i == 0, since that is a breakpoint case. */
456	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457		p = get_kprobe((void *)(addr - i));
458
459	if (p && kprobe_optready(p)) {
460		op = container_of(p, struct optimized_kprobe, kp);
461		if (arch_within_optimized_kprobe(op, addr))
462			return p;
463	}
464
465	return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483	/* Optimization never be done when disarmed */
484	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485	    list_empty(&optimizing_list))
486		return;
487
488	/*
489	 * The optimization/unoptimization refers online_cpus via
490	 * stop_machine() and cpu-hotplug modifies online_cpus.
491	 * And same time, text_mutex will be held in cpu-hotplug and here.
492	 * This combination can cause a deadlock (cpu-hotplug try to lock
493	 * text_mutex but stop_machine can not be done because online_cpus
494	 * has been changed)
495	 * To avoid this deadlock, we need to call get_online_cpus()
496	 * for preventing cpu-hotplug outside of text_mutex locking.
497	 */
498	get_online_cpus();
499	mutex_lock(&text_mutex);
500	arch_optimize_kprobes(&optimizing_list);
501	mutex_unlock(&text_mutex);
502	put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511	struct optimized_kprobe *op, *tmp;
512
513	/* Unoptimization must be done anytime */
514	if (list_empty(&unoptimizing_list))
515		return;
516
517	/* Ditto to do_optimize_kprobes */
518	get_online_cpus();
519	mutex_lock(&text_mutex);
520	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521	/* Loop free_list for disarming */
522	list_for_each_entry_safe(op, tmp, free_list, list) {
523		/* Disarm probes if marked disabled */
524		if (kprobe_disabled(&op->kp))
525			arch_disarm_kprobe(&op->kp);
526		if (kprobe_unused(&op->kp)) {
527			/*
528			 * Remove unused probes from hash list. After waiting
529			 * for synchronization, these probes are reclaimed.
530			 * (reclaiming is done by do_free_cleaned_kprobes.)
531			 */
532			hlist_del_rcu(&op->kp.hlist);
533		} else
534			list_del_init(&op->list);
535	}
536	mutex_unlock(&text_mutex);
537	put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543	struct optimized_kprobe *op, *tmp;
544
545	list_for_each_entry_safe(op, tmp, free_list, list) {
546		BUG_ON(!kprobe_unused(&op->kp));
547		list_del_init(&op->list);
548		free_aggr_kprobe(&op->kp);
549	}
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555	if (!delayed_work_pending(&optimizing_work))
556		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562	LIST_HEAD(free_list);
563
564	mutex_lock(&kprobe_mutex);
565	/* Lock modules while optimizing kprobes */
566	mutex_lock(&module_mutex);
567
568	/*
569	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570	 * kprobes before waiting for quiesence period.
571	 */
572	do_unoptimize_kprobes(&free_list);
573
574	/*
575	 * Step 2: Wait for quiesence period to ensure all running interrupts
576	 * are done. Because optprobe may modify multiple instructions
577	 * there is a chance that Nth instruction is interrupted. In that
578	 * case, running interrupt can return to 2nd-Nth byte of jump
579	 * instruction. This wait is for avoiding it.
580	 */
581	synchronize_sched();
582
583	/* Step 3: Optimize kprobes after quiesence period */
584	do_optimize_kprobes();
585
586	/* Step 4: Free cleaned kprobes after quiesence period */
587	do_free_cleaned_kprobes(&free_list);
588
589	mutex_unlock(&module_mutex);
590	mutex_unlock(&kprobe_mutex);
591
592	/* Step 5: Kick optimizer again if needed */
593	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594		kick_kprobe_optimizer();
595	else
596		/* Wake up all waiters */
597		complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603	if (delayed_work_pending(&optimizing_work))
604		wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610	struct optimized_kprobe *op;
611
612	/* Check if the kprobe is disabled or not ready for optimization. */
613	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614	    (kprobe_disabled(p) || kprobes_all_disarmed))
615		return;
616
617	/* Both of break_handler and post_handler are not supported. */
618	if (p->break_handler || p->post_handler)
619		return;
620
621	op = container_of(p, struct optimized_kprobe, kp);
622
623	/* Check there is no other kprobes at the optimized instructions */
624	if (arch_check_optimized_kprobe(op) < 0)
625		return;
626
627	/* Check if it is already optimized. */
628	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629		return;
630	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632	if (!list_empty(&op->list))
633		/* This is under unoptimizing. Just dequeue the probe */
634		list_del_init(&op->list);
635	else {
636		list_add(&op->list, &optimizing_list);
637		kick_kprobe_optimizer();
638	}
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644	get_online_cpus();
645	arch_unoptimize_kprobe(op);
646	put_online_cpus();
647	if (kprobe_disabled(&op->kp))
648		arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654	struct optimized_kprobe *op;
655
656	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657		return; /* This is not an optprobe nor optimized */
658
659	op = container_of(p, struct optimized_kprobe, kp);
660	if (!kprobe_optimized(p)) {
661		/* Unoptimized or unoptimizing case */
662		if (force && !list_empty(&op->list)) {
663			/*
664			 * Only if this is unoptimizing kprobe and forced,
665			 * forcibly unoptimize it. (No need to unoptimize
666			 * unoptimized kprobe again :)
667			 */
668			list_del_init(&op->list);
669			force_unoptimize_kprobe(op);
670		}
671		return;
672	}
673
674	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675	if (!list_empty(&op->list)) {
676		/* Dequeue from the optimization queue */
677		list_del_init(&op->list);
678		return;
679	}
680	/* Optimized kprobe case */
681	if (force)
682		/* Forcibly update the code: this is a special case */
683		force_unoptimize_kprobe(op);
684	else {
685		list_add(&op->list, &unoptimizing_list);
686		kick_kprobe_optimizer();
687	}
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693	struct optimized_kprobe *op;
694
695	BUG_ON(!kprobe_unused(ap));
696	/*
697	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698	 * there is still a relative jump) and disabled.
699	 */
700	op = container_of(ap, struct optimized_kprobe, kp);
701	if (unlikely(list_empty(&op->list)))
702		printk(KERN_WARNING "Warning: found a stray unused "
703			"aggrprobe@%p\n", ap->addr);
704	/* Enable the probe again */
705	ap->flags &= ~KPROBE_FLAG_DISABLED;
706	/* Optimize it again (remove from op->list) */
707	BUG_ON(!kprobe_optready(ap));
708	optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714	struct optimized_kprobe *op;
715
716	op = container_of(p, struct optimized_kprobe, kp);
717	if (!list_empty(&op->list))
718		/* Dequeue from the (un)optimization queue */
719		list_del_init(&op->list);
720
721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722	/* Don't touch the code, because it is already freed. */
723	arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729	struct optimized_kprobe *op;
730
731	op = container_of(p, struct optimized_kprobe, kp);
732	arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738	struct optimized_kprobe *op;
739
740	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741	if (!op)
742		return NULL;
743
744	INIT_LIST_HEAD(&op->list);
745	op->kp.addr = p->addr;
746	arch_prepare_optimized_kprobe(op);
747
748	return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759	struct kprobe *ap;
760	struct optimized_kprobe *op;
761
762	/* For preparing optimization, jump_label_text_reserved() is called */
763	jump_label_lock();
764	mutex_lock(&text_mutex);
765
766	ap = alloc_aggr_kprobe(p);
767	if (!ap)
768		goto out;
769
770	op = container_of(ap, struct optimized_kprobe, kp);
771	if (!arch_prepared_optinsn(&op->optinsn)) {
772		/* If failed to setup optimizing, fallback to kprobe */
773		arch_remove_optimized_kprobe(op);
774		kfree(op);
775		goto out;
776	}
777
778	init_aggr_kprobe(ap, p);
779	optimize_kprobe(ap);	/* This just kicks optimizer thread */
780
781out:
782	mutex_unlock(&text_mutex);
783	jump_label_unlock();
784}
785
786#ifdef CONFIG_SYSCTL
787/* This should be called with kprobe_mutex locked */
788static void __kprobes optimize_all_kprobes(void)
789{
790	struct hlist_head *head;
791	struct hlist_node *node;
792	struct kprobe *p;
793	unsigned int i;
794
795	/* If optimization is already allowed, just return */
796	if (kprobes_allow_optimization)
797		return;
798
799	kprobes_allow_optimization = true;
800	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
801		head = &kprobe_table[i];
802		hlist_for_each_entry_rcu(p, node, head, hlist)
803			if (!kprobe_disabled(p))
804				optimize_kprobe(p);
805	}
806	printk(KERN_INFO "Kprobes globally optimized\n");
807}
808
809/* This should be called with kprobe_mutex locked */
810static void __kprobes unoptimize_all_kprobes(void)
811{
812	struct hlist_head *head;
813	struct hlist_node *node;
814	struct kprobe *p;
815	unsigned int i;
816
817	/* If optimization is already prohibited, just return */
818	if (!kprobes_allow_optimization)
819		return;
820
821	kprobes_allow_optimization = false;
822	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
823		head = &kprobe_table[i];
824		hlist_for_each_entry_rcu(p, node, head, hlist) {
825			if (!kprobe_disabled(p))
826				unoptimize_kprobe(p, false);
827		}
828	}
829	/* Wait for unoptimizing completion */
830	wait_for_kprobe_optimizer();
831	printk(KERN_INFO "Kprobes globally unoptimized\n");
832}
833
834int sysctl_kprobes_optimization;
835int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
836				      void __user *buffer, size_t *length,
837				      loff_t *ppos)
838{
839	int ret;
840
841	mutex_lock(&kprobe_mutex);
842	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
843	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
844
845	if (sysctl_kprobes_optimization)
846		optimize_all_kprobes();
847	else
848		unoptimize_all_kprobes();
849	mutex_unlock(&kprobe_mutex);
850
851	return ret;
852}
853#endif /* CONFIG_SYSCTL */
854
855/* Put a breakpoint for a probe. Must be called with text_mutex locked */
856static void __kprobes __arm_kprobe(struct kprobe *p)
857{
858	struct kprobe *_p;
859
860	/* Check collision with other optimized kprobes */
861	_p = get_optimized_kprobe((unsigned long)p->addr);
862	if (unlikely(_p))
863		/* Fallback to unoptimized kprobe */
864		unoptimize_kprobe(_p, true);
865
866	arch_arm_kprobe(p);
867	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
868}
869
870/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
871static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
872{
873	struct kprobe *_p;
874
875	unoptimize_kprobe(p, false);	/* Try to unoptimize */
876
877	if (!kprobe_queued(p)) {
878		arch_disarm_kprobe(p);
879		/* If another kprobe was blocked, optimize it. */
880		_p = get_optimized_kprobe((unsigned long)p->addr);
881		if (unlikely(_p) && reopt)
882			optimize_kprobe(_p);
883	}
884	/* TODO: reoptimize others after unoptimized this probe */
885}
886
887#else /* !CONFIG_OPTPROBES */
888
889#define optimize_kprobe(p)			do {} while (0)
890#define unoptimize_kprobe(p, f)			do {} while (0)
891#define kill_optimized_kprobe(p)		do {} while (0)
892#define prepare_optimized_kprobe(p)		do {} while (0)
893#define try_to_optimize_kprobe(p)		do {} while (0)
894#define __arm_kprobe(p)				arch_arm_kprobe(p)
895#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
896#define kprobe_disarmed(p)			kprobe_disabled(p)
897#define wait_for_kprobe_optimizer()		do {} while (0)
898
899/* There should be no unused kprobes can be reused without optimization */
900static void reuse_unused_kprobe(struct kprobe *ap)
901{
902	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
903	BUG_ON(kprobe_unused(ap));
904}
905
906static __kprobes void free_aggr_kprobe(struct kprobe *p)
907{
908	arch_remove_kprobe(p);
909	kfree(p);
910}
911
912static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
913{
914	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
915}
916#endif /* CONFIG_OPTPROBES */
917
918/* Arm a kprobe with text_mutex */
919static void __kprobes arm_kprobe(struct kprobe *kp)
920{
921	/*
922	 * Here, since __arm_kprobe() doesn't use stop_machine(),
923	 * this doesn't cause deadlock on text_mutex. So, we don't
924	 * need get_online_cpus().
925	 */
926	mutex_lock(&text_mutex);
927	__arm_kprobe(kp);
928	mutex_unlock(&text_mutex);
929}
930
931/* Disarm a kprobe with text_mutex */
932static void __kprobes disarm_kprobe(struct kprobe *kp)
933{
934	/* Ditto */
935	mutex_lock(&text_mutex);
936	__disarm_kprobe(kp, true);
937	mutex_unlock(&text_mutex);
938}
939
940/*
941 * Aggregate handlers for multiple kprobes support - these handlers
942 * take care of invoking the individual kprobe handlers on p->list
943 */
944static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
945{
946	struct kprobe *kp;
947
948	list_for_each_entry_rcu(kp, &p->list, list) {
949		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
950			set_kprobe_instance(kp);
951			if (kp->pre_handler(kp, regs))
952				return 1;
953		}
954		reset_kprobe_instance();
955	}
956	return 0;
957}
958
959static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
960					unsigned long flags)
961{
962	struct kprobe *kp;
963
964	list_for_each_entry_rcu(kp, &p->list, list) {
965		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
966			set_kprobe_instance(kp);
967			kp->post_handler(kp, regs, flags);
968			reset_kprobe_instance();
969		}
970	}
971}
972
973static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
974					int trapnr)
975{
976	struct kprobe *cur = __this_cpu_read(kprobe_instance);
977
978	/*
979	 * if we faulted "during" the execution of a user specified
980	 * probe handler, invoke just that probe's fault handler
981	 */
982	if (cur && cur->fault_handler) {
983		if (cur->fault_handler(cur, regs, trapnr))
984			return 1;
985	}
986	return 0;
987}
988
989static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
990{
991	struct kprobe *cur = __this_cpu_read(kprobe_instance);
992	int ret = 0;
993
994	if (cur && cur->break_handler) {
995		if (cur->break_handler(cur, regs))
996			ret = 1;
997	}
998	reset_kprobe_instance();
999	return ret;
1000}
1001
1002/* Walks the list and increments nmissed count for multiprobe case */
1003void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1004{
1005	struct kprobe *kp;
1006	if (!kprobe_aggrprobe(p)) {
1007		p->nmissed++;
1008	} else {
1009		list_for_each_entry_rcu(kp, &p->list, list)
1010			kp->nmissed++;
1011	}
1012	return;
1013}
1014
1015void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1016				struct hlist_head *head)
1017{
1018	struct kretprobe *rp = ri->rp;
1019
1020	/* remove rp inst off the rprobe_inst_table */
1021	hlist_del(&ri->hlist);
1022	INIT_HLIST_NODE(&ri->hlist);
1023	if (likely(rp)) {
1024		raw_spin_lock(&rp->lock);
1025		hlist_add_head(&ri->hlist, &rp->free_instances);
1026		raw_spin_unlock(&rp->lock);
1027	} else
1028		/* Unregistering */
1029		hlist_add_head(&ri->hlist, head);
1030}
1031
1032void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1033			 struct hlist_head **head, unsigned long *flags)
1034__acquires(hlist_lock)
1035{
1036	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1037	raw_spinlock_t *hlist_lock;
1038
1039	*head = &kretprobe_inst_table[hash];
1040	hlist_lock = kretprobe_table_lock_ptr(hash);
1041	raw_spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044static void __kprobes kretprobe_table_lock(unsigned long hash,
1045	unsigned long *flags)
1046__acquires(hlist_lock)
1047{
1048	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1049	raw_spin_lock_irqsave(hlist_lock, *flags);
1050}
1051
1052void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1053	unsigned long *flags)
1054__releases(hlist_lock)
1055{
1056	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1057	raw_spinlock_t *hlist_lock;
1058
1059	hlist_lock = kretprobe_table_lock_ptr(hash);
1060	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063static void __kprobes kretprobe_table_unlock(unsigned long hash,
1064       unsigned long *flags)
1065__releases(hlist_lock)
1066{
1067	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1068	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1069}
1070
1071/*
1072 * This function is called from finish_task_switch when task tk becomes dead,
1073 * so that we can recycle any function-return probe instances associated
1074 * with this task. These left over instances represent probed functions
1075 * that have been called but will never return.
1076 */
1077void __kprobes kprobe_flush_task(struct task_struct *tk)
1078{
1079	struct kretprobe_instance *ri;
1080	struct hlist_head *head, empty_rp;
1081	struct hlist_node *node, *tmp;
1082	unsigned long hash, flags = 0;
1083
1084	if (unlikely(!kprobes_initialized))
1085		/* Early boot.  kretprobe_table_locks not yet initialized. */
1086		return;
1087
1088	INIT_HLIST_HEAD(&empty_rp);
1089	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1090	head = &kretprobe_inst_table[hash];
1091	kretprobe_table_lock(hash, &flags);
1092	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1093		if (ri->task == tk)
1094			recycle_rp_inst(ri, &empty_rp);
1095	}
1096	kretprobe_table_unlock(hash, &flags);
1097	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1098		hlist_del(&ri->hlist);
1099		kfree(ri);
1100	}
1101}
1102
1103static inline void free_rp_inst(struct kretprobe *rp)
1104{
1105	struct kretprobe_instance *ri;
1106	struct hlist_node *pos, *next;
1107
1108	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1109		hlist_del(&ri->hlist);
1110		kfree(ri);
1111	}
1112}
1113
1114static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1115{
1116	unsigned long flags, hash;
1117	struct kretprobe_instance *ri;
1118	struct hlist_node *pos, *next;
1119	struct hlist_head *head;
1120
1121	/* No race here */
1122	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1123		kretprobe_table_lock(hash, &flags);
1124		head = &kretprobe_inst_table[hash];
1125		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1126			if (ri->rp == rp)
1127				ri->rp = NULL;
1128		}
1129		kretprobe_table_unlock(hash, &flags);
1130	}
1131	free_rp_inst(rp);
1132}
1133
1134/*
1135* Add the new probe to ap->list. Fail if this is the
1136* second jprobe at the address - two jprobes can't coexist
1137*/
1138static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1139{
1140	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1141
1142	if (p->break_handler || p->post_handler)
1143		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1144
1145	if (p->break_handler) {
1146		if (ap->break_handler)
1147			return -EEXIST;
1148		list_add_tail_rcu(&p->list, &ap->list);
1149		ap->break_handler = aggr_break_handler;
1150	} else
1151		list_add_rcu(&p->list, &ap->list);
1152	if (p->post_handler && !ap->post_handler)
1153		ap->post_handler = aggr_post_handler;
1154
1155	return 0;
1156}
1157
1158/*
1159 * Fill in the required fields of the "manager kprobe". Replace the
1160 * earlier kprobe in the hlist with the manager kprobe
1161 */
1162static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1163{
1164	/* Copy p's insn slot to ap */
1165	copy_kprobe(p, ap);
1166	flush_insn_slot(ap);
1167	ap->addr = p->addr;
1168	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1169	ap->pre_handler = aggr_pre_handler;
1170	ap->fault_handler = aggr_fault_handler;
1171	/* We don't care the kprobe which has gone. */
1172	if (p->post_handler && !kprobe_gone(p))
1173		ap->post_handler = aggr_post_handler;
1174	if (p->break_handler && !kprobe_gone(p))
1175		ap->break_handler = aggr_break_handler;
1176
1177	INIT_LIST_HEAD(&ap->list);
1178	INIT_HLIST_NODE(&ap->hlist);
1179
1180	list_add_rcu(&p->list, &ap->list);
1181	hlist_replace_rcu(&p->hlist, &ap->hlist);
1182}
1183
1184/*
1185 * This is the second or subsequent kprobe at the address - handle
1186 * the intricacies
1187 */
1188static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1189					  struct kprobe *p)
1190{
1191	int ret = 0;
1192	struct kprobe *ap = orig_p;
1193
1194	/* For preparing optimization, jump_label_text_reserved() is called */
1195	jump_label_lock();
1196	/*
1197	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1198	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1199	 */
1200	get_online_cpus();
1201	mutex_lock(&text_mutex);
1202
1203	if (!kprobe_aggrprobe(orig_p)) {
1204		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1205		ap = alloc_aggr_kprobe(orig_p);
1206		if (!ap) {
1207			ret = -ENOMEM;
1208			goto out;
1209		}
1210		init_aggr_kprobe(ap, orig_p);
1211	} else if (kprobe_unused(ap))
1212		/* This probe is going to die. Rescue it */
1213		reuse_unused_kprobe(ap);
1214
1215	if (kprobe_gone(ap)) {
1216		/*
1217		 * Attempting to insert new probe at the same location that
1218		 * had a probe in the module vaddr area which already
1219		 * freed. So, the instruction slot has already been
1220		 * released. We need a new slot for the new probe.
1221		 */
1222		ret = arch_prepare_kprobe(ap);
1223		if (ret)
1224			/*
1225			 * Even if fail to allocate new slot, don't need to
1226			 * free aggr_probe. It will be used next time, or
1227			 * freed by unregister_kprobe.
1228			 */
1229			goto out;
1230
1231		/* Prepare optimized instructions if possible. */
1232		prepare_optimized_kprobe(ap);
1233
1234		/*
1235		 * Clear gone flag to prevent allocating new slot again, and
1236		 * set disabled flag because it is not armed yet.
1237		 */
1238		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1239			    | KPROBE_FLAG_DISABLED;
1240	}
1241
1242	/* Copy ap's insn slot to p */
1243	copy_kprobe(ap, p);
1244	ret = add_new_kprobe(ap, p);
1245
1246out:
1247	mutex_unlock(&text_mutex);
1248	put_online_cpus();
1249	jump_label_unlock();
1250
1251	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1252		ap->flags &= ~KPROBE_FLAG_DISABLED;
1253		if (!kprobes_all_disarmed)
1254			/* Arm the breakpoint again. */
1255			arm_kprobe(ap);
1256	}
1257	return ret;
1258}
1259
1260static int __kprobes in_kprobes_functions(unsigned long addr)
1261{
1262	struct kprobe_blackpoint *kb;
1263
1264	if (addr >= (unsigned long)__kprobes_text_start &&
1265	    addr < (unsigned long)__kprobes_text_end)
1266		return -EINVAL;
1267	/*
1268	 * If there exists a kprobe_blacklist, verify and
1269	 * fail any probe registration in the prohibited area
1270	 */
1271	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1272		if (kb->start_addr) {
1273			if (addr >= kb->start_addr &&
1274			    addr < (kb->start_addr + kb->range))
1275				return -EINVAL;
1276		}
1277	}
1278	return 0;
1279}
1280
1281/*
1282 * If we have a symbol_name argument, look it up and add the offset field
1283 * to it. This way, we can specify a relative address to a symbol.
1284 * This returns encoded errors if it fails to look up symbol or invalid
1285 * combination of parameters.
1286 */
1287static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1288{
1289	kprobe_opcode_t *addr = p->addr;
1290
1291	if ((p->symbol_name && p->addr) ||
1292	    (!p->symbol_name && !p->addr))
1293		goto invalid;
1294
1295	if (p->symbol_name) {
1296		kprobe_lookup_name(p->symbol_name, addr);
1297		if (!addr)
1298			return ERR_PTR(-ENOENT);
1299	}
1300
1301	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1302	if (addr)
1303		return addr;
1304
1305invalid:
1306	return ERR_PTR(-EINVAL);
1307}
1308
1309/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1310static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1311{
1312	struct kprobe *ap, *list_p;
1313
1314	ap = get_kprobe(p->addr);
1315	if (unlikely(!ap))
1316		return NULL;
1317
1318	if (p != ap) {
1319		list_for_each_entry_rcu(list_p, &ap->list, list)
1320			if (list_p == p)
1321			/* kprobe p is a valid probe */
1322				goto valid;
1323		return NULL;
1324	}
1325valid:
1326	return ap;
1327}
1328
1329/* Return error if the kprobe is being re-registered */
1330static inline int check_kprobe_rereg(struct kprobe *p)
1331{
1332	int ret = 0;
1333
1334	mutex_lock(&kprobe_mutex);
1335	if (__get_valid_kprobe(p))
1336		ret = -EINVAL;
1337	mutex_unlock(&kprobe_mutex);
1338
1339	return ret;
1340}
1341
1342static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1343					       struct module **probed_mod)
1344{
1345	int ret = 0;
1346
1347	jump_label_lock();
1348	preempt_disable();
1349
1350	/* Ensure it is not in reserved area nor out of text */
1351	if (!kernel_text_address((unsigned long) p->addr) ||
1352	    in_kprobes_functions((unsigned long) p->addr) ||
1353	    ftrace_text_reserved(p->addr, p->addr) ||
1354	    jump_label_text_reserved(p->addr, p->addr)) {
1355		ret = -EINVAL;
1356		goto out;
1357	}
1358
1359	/* Check if are we probing a module */
1360	*probed_mod = __module_text_address((unsigned long) p->addr);
1361	if (*probed_mod) {
1362		/*
1363		 * We must hold a refcount of the probed module while updating
1364		 * its code to prohibit unexpected unloading.
1365		 */
1366		if (unlikely(!try_module_get(*probed_mod))) {
1367			ret = -ENOENT;
1368			goto out;
1369		}
1370
1371		/*
1372		 * If the module freed .init.text, we couldn't insert
1373		 * kprobes in there.
1374		 */
1375		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1376		    (*probed_mod)->state != MODULE_STATE_COMING) {
1377			module_put(*probed_mod);
1378			*probed_mod = NULL;
1379			ret = -ENOENT;
1380		}
1381	}
1382out:
1383	preempt_enable();
1384	jump_label_unlock();
1385
1386	return ret;
1387}
1388
1389int __kprobes register_kprobe(struct kprobe *p)
1390{
1391	int ret;
1392	struct kprobe *old_p;
1393	struct module *probed_mod;
1394	kprobe_opcode_t *addr;
1395
1396	/* Adjust probe address from symbol */
1397	addr = kprobe_addr(p);
1398	if (IS_ERR(addr))
1399		return PTR_ERR(addr);
1400	p->addr = addr;
1401
1402	ret = check_kprobe_rereg(p);
1403	if (ret)
1404		return ret;
1405
1406	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1407	p->flags &= KPROBE_FLAG_DISABLED;
1408	p->nmissed = 0;
1409	INIT_LIST_HEAD(&p->list);
1410
1411	ret = check_kprobe_address_safe(p, &probed_mod);
1412	if (ret)
1413		return ret;
1414
1415	mutex_lock(&kprobe_mutex);
1416
1417	old_p = get_kprobe(p->addr);
1418	if (old_p) {
1419		/* Since this may unoptimize old_p, locking text_mutex. */
1420		ret = register_aggr_kprobe(old_p, p);
1421		goto out;
1422	}
1423
1424	mutex_lock(&text_mutex);	/* Avoiding text modification */
1425	ret = arch_prepare_kprobe(p);
1426	mutex_unlock(&text_mutex);
1427	if (ret)
1428		goto out;
1429
1430	INIT_HLIST_NODE(&p->hlist);
1431	hlist_add_head_rcu(&p->hlist,
1432		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1433
1434	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1435		arm_kprobe(p);
1436
1437	/* Try to optimize kprobe */
1438	try_to_optimize_kprobe(p);
1439
1440out:
1441	mutex_unlock(&kprobe_mutex);
1442
1443	if (probed_mod)
1444		module_put(probed_mod);
1445
1446	return ret;
1447}
1448EXPORT_SYMBOL_GPL(register_kprobe);
1449
1450/* Check if all probes on the aggrprobe are disabled */
1451static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1452{
1453	struct kprobe *kp;
1454
1455	list_for_each_entry_rcu(kp, &ap->list, list)
1456		if (!kprobe_disabled(kp))
1457			/*
1458			 * There is an active probe on the list.
1459			 * We can't disable this ap.
1460			 */
1461			return 0;
1462
1463	return 1;
1464}
1465
1466/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1467static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1468{
1469	struct kprobe *orig_p;
1470
1471	/* Get an original kprobe for return */
1472	orig_p = __get_valid_kprobe(p);
1473	if (unlikely(orig_p == NULL))
1474		return NULL;
1475
1476	if (!kprobe_disabled(p)) {
1477		/* Disable probe if it is a child probe */
1478		if (p != orig_p)
1479			p->flags |= KPROBE_FLAG_DISABLED;
1480
1481		/* Try to disarm and disable this/parent probe */
1482		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1483			disarm_kprobe(orig_p);
1484			orig_p->flags |= KPROBE_FLAG_DISABLED;
1485		}
1486	}
1487
1488	return orig_p;
1489}
1490
1491/*
1492 * Unregister a kprobe without a scheduler synchronization.
1493 */
1494static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1495{
1496	struct kprobe *ap, *list_p;
1497
1498	/* Disable kprobe. This will disarm it if needed. */
1499	ap = __disable_kprobe(p);
1500	if (ap == NULL)
1501		return -EINVAL;
1502
1503	if (ap == p)
1504		/*
1505		 * This probe is an independent(and non-optimized) kprobe
1506		 * (not an aggrprobe). Remove from the hash list.
1507		 */
1508		goto disarmed;
1509
1510	/* Following process expects this probe is an aggrprobe */
1511	WARN_ON(!kprobe_aggrprobe(ap));
1512
1513	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1514		/*
1515		 * !disarmed could be happen if the probe is under delayed
1516		 * unoptimizing.
1517		 */
1518		goto disarmed;
1519	else {
1520		/* If disabling probe has special handlers, update aggrprobe */
1521		if (p->break_handler && !kprobe_gone(p))
1522			ap->break_handler = NULL;
1523		if (p->post_handler && !kprobe_gone(p)) {
1524			list_for_each_entry_rcu(list_p, &ap->list, list) {
1525				if ((list_p != p) && (list_p->post_handler))
1526					goto noclean;
1527			}
1528			ap->post_handler = NULL;
1529		}
1530noclean:
1531		/*
1532		 * Remove from the aggrprobe: this path will do nothing in
1533		 * __unregister_kprobe_bottom().
1534		 */
1535		list_del_rcu(&p->list);
1536		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1537			/*
1538			 * Try to optimize this probe again, because post
1539			 * handler may have been changed.
1540			 */
1541			optimize_kprobe(ap);
1542	}
1543	return 0;
1544
1545disarmed:
1546	BUG_ON(!kprobe_disarmed(ap));
1547	hlist_del_rcu(&ap->hlist);
1548	return 0;
1549}
1550
1551static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1552{
1553	struct kprobe *ap;
1554
1555	if (list_empty(&p->list))
1556		/* This is an independent kprobe */
1557		arch_remove_kprobe(p);
1558	else if (list_is_singular(&p->list)) {
1559		/* This is the last child of an aggrprobe */
1560		ap = list_entry(p->list.next, struct kprobe, list);
1561		list_del(&p->list);
1562		free_aggr_kprobe(ap);
1563	}
1564	/* Otherwise, do nothing. */
1565}
1566
1567int __kprobes register_kprobes(struct kprobe **kps, int num)
1568{
1569	int i, ret = 0;
1570
1571	if (num <= 0)
1572		return -EINVAL;
1573	for (i = 0; i < num; i++) {
1574		ret = register_kprobe(kps[i]);
1575		if (ret < 0) {
1576			if (i > 0)
1577				unregister_kprobes(kps, i);
1578			break;
1579		}
1580	}
1581	return ret;
1582}
1583EXPORT_SYMBOL_GPL(register_kprobes);
1584
1585void __kprobes unregister_kprobe(struct kprobe *p)
1586{
1587	unregister_kprobes(&p, 1);
1588}
1589EXPORT_SYMBOL_GPL(unregister_kprobe);
1590
1591void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1592{
1593	int i;
1594
1595	if (num <= 0)
1596		return;
1597	mutex_lock(&kprobe_mutex);
1598	for (i = 0; i < num; i++)
1599		if (__unregister_kprobe_top(kps[i]) < 0)
1600			kps[i]->addr = NULL;
1601	mutex_unlock(&kprobe_mutex);
1602
1603	synchronize_sched();
1604	for (i = 0; i < num; i++)
1605		if (kps[i]->addr)
1606			__unregister_kprobe_bottom(kps[i]);
1607}
1608EXPORT_SYMBOL_GPL(unregister_kprobes);
1609
1610static struct notifier_block kprobe_exceptions_nb = {
1611	.notifier_call = kprobe_exceptions_notify,
1612	.priority = 0x7fffffff /* we need to be notified first */
1613};
1614
1615unsigned long __weak arch_deref_entry_point(void *entry)
1616{
1617	return (unsigned long)entry;
1618}
1619
1620int __kprobes register_jprobes(struct jprobe **jps, int num)
1621{
1622	struct jprobe *jp;
1623	int ret = 0, i;
1624
1625	if (num <= 0)
1626		return -EINVAL;
1627	for (i = 0; i < num; i++) {
1628		unsigned long addr, offset;
1629		jp = jps[i];
1630		addr = arch_deref_entry_point(jp->entry);
1631
1632		/* Verify probepoint is a function entry point */
1633		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1634		    offset == 0) {
1635			jp->kp.pre_handler = setjmp_pre_handler;
1636			jp->kp.break_handler = longjmp_break_handler;
1637			ret = register_kprobe(&jp->kp);
1638		} else
1639			ret = -EINVAL;
1640
1641		if (ret < 0) {
1642			if (i > 0)
1643				unregister_jprobes(jps, i);
1644			break;
1645		}
1646	}
1647	return ret;
1648}
1649EXPORT_SYMBOL_GPL(register_jprobes);
1650
1651int __kprobes register_jprobe(struct jprobe *jp)
1652{
1653	return register_jprobes(&jp, 1);
1654}
1655EXPORT_SYMBOL_GPL(register_jprobe);
1656
1657void __kprobes unregister_jprobe(struct jprobe *jp)
1658{
1659	unregister_jprobes(&jp, 1);
1660}
1661EXPORT_SYMBOL_GPL(unregister_jprobe);
1662
1663void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1664{
1665	int i;
1666
1667	if (num <= 0)
1668		return;
1669	mutex_lock(&kprobe_mutex);
1670	for (i = 0; i < num; i++)
1671		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1672			jps[i]->kp.addr = NULL;
1673	mutex_unlock(&kprobe_mutex);
1674
1675	synchronize_sched();
1676	for (i = 0; i < num; i++) {
1677		if (jps[i]->kp.addr)
1678			__unregister_kprobe_bottom(&jps[i]->kp);
1679	}
1680}
1681EXPORT_SYMBOL_GPL(unregister_jprobes);
1682
1683#ifdef CONFIG_KRETPROBES
1684/*
1685 * This kprobe pre_handler is registered with every kretprobe. When probe
1686 * hits it will set up the return probe.
1687 */
1688static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1689					   struct pt_regs *regs)
1690{
1691	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1692	unsigned long hash, flags = 0;
1693	struct kretprobe_instance *ri;
1694
1695	/*TODO: consider to only swap the RA after the last pre_handler fired */
1696	hash = hash_ptr(current, KPROBE_HASH_BITS);
1697	raw_spin_lock_irqsave(&rp->lock, flags);
1698	if (!hlist_empty(&rp->free_instances)) {
1699		ri = hlist_entry(rp->free_instances.first,
1700				struct kretprobe_instance, hlist);
1701		hlist_del(&ri->hlist);
1702		raw_spin_unlock_irqrestore(&rp->lock, flags);
1703
1704		ri->rp = rp;
1705		ri->task = current;
1706
1707		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1708			raw_spin_lock_irqsave(&rp->lock, flags);
1709			hlist_add_head(&ri->hlist, &rp->free_instances);
1710			raw_spin_unlock_irqrestore(&rp->lock, flags);
1711			return 0;
1712		}
1713
1714		arch_prepare_kretprobe(ri, regs);
1715
1716		/* XXX(hch): why is there no hlist_move_head? */
1717		INIT_HLIST_NODE(&ri->hlist);
1718		kretprobe_table_lock(hash, &flags);
1719		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1720		kretprobe_table_unlock(hash, &flags);
1721	} else {
1722		rp->nmissed++;
1723		raw_spin_unlock_irqrestore(&rp->lock, flags);
1724	}
1725	return 0;
1726}
1727
1728int __kprobes register_kretprobe(struct kretprobe *rp)
1729{
1730	int ret = 0;
1731	struct kretprobe_instance *inst;
1732	int i;
1733	void *addr;
1734
1735	if (kretprobe_blacklist_size) {
1736		addr = kprobe_addr(&rp->kp);
1737		if (IS_ERR(addr))
1738			return PTR_ERR(addr);
1739
1740		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1741			if (kretprobe_blacklist[i].addr == addr)
1742				return -EINVAL;
1743		}
1744	}
1745
1746	rp->kp.pre_handler = pre_handler_kretprobe;
1747	rp->kp.post_handler = NULL;
1748	rp->kp.fault_handler = NULL;
1749	rp->kp.break_handler = NULL;
1750
1751	/* Pre-allocate memory for max kretprobe instances */
1752	if (rp->maxactive <= 0) {
1753#ifdef CONFIG_PREEMPT
1754		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1755#else
1756		rp->maxactive = num_possible_cpus();
1757#endif
1758	}
1759	raw_spin_lock_init(&rp->lock);
1760	INIT_HLIST_HEAD(&rp->free_instances);
1761	for (i = 0; i < rp->maxactive; i++) {
1762		inst = kmalloc(sizeof(struct kretprobe_instance) +
1763			       rp->data_size, GFP_KERNEL);
1764		if (inst == NULL) {
1765			free_rp_inst(rp);
1766			return -ENOMEM;
1767		}
1768		INIT_HLIST_NODE(&inst->hlist);
1769		hlist_add_head(&inst->hlist, &rp->free_instances);
1770	}
1771
1772	rp->nmissed = 0;
1773	/* Establish function entry probe point */
1774	ret = register_kprobe(&rp->kp);
1775	if (ret != 0)
1776		free_rp_inst(rp);
1777	return ret;
1778}
1779EXPORT_SYMBOL_GPL(register_kretprobe);
1780
1781int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1782{
1783	int ret = 0, i;
1784
1785	if (num <= 0)
1786		return -EINVAL;
1787	for (i = 0; i < num; i++) {
1788		ret = register_kretprobe(rps[i]);
1789		if (ret < 0) {
1790			if (i > 0)
1791				unregister_kretprobes(rps, i);
1792			break;
1793		}
1794	}
1795	return ret;
1796}
1797EXPORT_SYMBOL_GPL(register_kretprobes);
1798
1799void __kprobes unregister_kretprobe(struct kretprobe *rp)
1800{
1801	unregister_kretprobes(&rp, 1);
1802}
1803EXPORT_SYMBOL_GPL(unregister_kretprobe);
1804
1805void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1806{
1807	int i;
1808
1809	if (num <= 0)
1810		return;
1811	mutex_lock(&kprobe_mutex);
1812	for (i = 0; i < num; i++)
1813		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1814			rps[i]->kp.addr = NULL;
1815	mutex_unlock(&kprobe_mutex);
1816
1817	synchronize_sched();
1818	for (i = 0; i < num; i++) {
1819		if (rps[i]->kp.addr) {
1820			__unregister_kprobe_bottom(&rps[i]->kp);
1821			cleanup_rp_inst(rps[i]);
1822		}
1823	}
1824}
1825EXPORT_SYMBOL_GPL(unregister_kretprobes);
1826
1827#else /* CONFIG_KRETPROBES */
1828int __kprobes register_kretprobe(struct kretprobe *rp)
1829{
1830	return -ENOSYS;
1831}
1832EXPORT_SYMBOL_GPL(register_kretprobe);
1833
1834int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1835{
1836	return -ENOSYS;
1837}
1838EXPORT_SYMBOL_GPL(register_kretprobes);
1839
1840void __kprobes unregister_kretprobe(struct kretprobe *rp)
1841{
1842}
1843EXPORT_SYMBOL_GPL(unregister_kretprobe);
1844
1845void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1846{
1847}
1848EXPORT_SYMBOL_GPL(unregister_kretprobes);
1849
1850static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1851					   struct pt_regs *regs)
1852{
1853	return 0;
1854}
1855
1856#endif /* CONFIG_KRETPROBES */
1857
1858/* Set the kprobe gone and remove its instruction buffer. */
1859static void __kprobes kill_kprobe(struct kprobe *p)
1860{
1861	struct kprobe *kp;
1862
1863	p->flags |= KPROBE_FLAG_GONE;
1864	if (kprobe_aggrprobe(p)) {
1865		/*
1866		 * If this is an aggr_kprobe, we have to list all the
1867		 * chained probes and mark them GONE.
1868		 */
1869		list_for_each_entry_rcu(kp, &p->list, list)
1870			kp->flags |= KPROBE_FLAG_GONE;
1871		p->post_handler = NULL;
1872		p->break_handler = NULL;
1873		kill_optimized_kprobe(p);
1874	}
1875	/*
1876	 * Here, we can remove insn_slot safely, because no thread calls
1877	 * the original probed function (which will be freed soon) any more.
1878	 */
1879	arch_remove_kprobe(p);
1880}
1881
1882/* Disable one kprobe */
1883int __kprobes disable_kprobe(struct kprobe *kp)
1884{
1885	int ret = 0;
1886
1887	mutex_lock(&kprobe_mutex);
1888
1889	/* Disable this kprobe */
1890	if (__disable_kprobe(kp) == NULL)
1891		ret = -EINVAL;
1892
1893	mutex_unlock(&kprobe_mutex);
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(disable_kprobe);
1897
1898/* Enable one kprobe */
1899int __kprobes enable_kprobe(struct kprobe *kp)
1900{
1901	int ret = 0;
1902	struct kprobe *p;
1903
1904	mutex_lock(&kprobe_mutex);
1905
1906	/* Check whether specified probe is valid. */
1907	p = __get_valid_kprobe(kp);
1908	if (unlikely(p == NULL)) {
1909		ret = -EINVAL;
1910		goto out;
1911	}
1912
1913	if (kprobe_gone(kp)) {
1914		/* This kprobe has gone, we couldn't enable it. */
1915		ret = -EINVAL;
1916		goto out;
1917	}
1918
1919	if (p != kp)
1920		kp->flags &= ~KPROBE_FLAG_DISABLED;
1921
1922	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1923		p->flags &= ~KPROBE_FLAG_DISABLED;
1924		arm_kprobe(p);
1925	}
1926out:
1927	mutex_unlock(&kprobe_mutex);
1928	return ret;
1929}
1930EXPORT_SYMBOL_GPL(enable_kprobe);
1931
1932void __kprobes dump_kprobe(struct kprobe *kp)
1933{
1934	printk(KERN_WARNING "Dumping kprobe:\n");
1935	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1936	       kp->symbol_name, kp->addr, kp->offset);
1937}
1938
1939/* Module notifier call back, checking kprobes on the module */
1940static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1941					     unsigned long val, void *data)
1942{
1943	struct module *mod = data;
1944	struct hlist_head *head;
1945	struct hlist_node *node;
1946	struct kprobe *p;
1947	unsigned int i;
1948	int checkcore = (val == MODULE_STATE_GOING);
1949
1950	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1951		return NOTIFY_DONE;
1952
1953	/*
1954	 * When MODULE_STATE_GOING was notified, both of module .text and
1955	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1956	 * notified, only .init.text section would be freed. We need to
1957	 * disable kprobes which have been inserted in the sections.
1958	 */
1959	mutex_lock(&kprobe_mutex);
1960	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1961		head = &kprobe_table[i];
1962		hlist_for_each_entry_rcu(p, node, head, hlist)
1963			if (within_module_init((unsigned long)p->addr, mod) ||
1964			    (checkcore &&
1965			     within_module_core((unsigned long)p->addr, mod))) {
1966				/*
1967				 * The vaddr this probe is installed will soon
1968				 * be vfreed buy not synced to disk. Hence,
1969				 * disarming the breakpoint isn't needed.
1970				 */
1971				kill_kprobe(p);
1972			}
1973	}
1974	mutex_unlock(&kprobe_mutex);
1975	return NOTIFY_DONE;
1976}
1977
1978static struct notifier_block kprobe_module_nb = {
1979	.notifier_call = kprobes_module_callback,
1980	.priority = 0
1981};
1982
1983static int __init init_kprobes(void)
1984{
1985	int i, err = 0;
1986	unsigned long offset = 0, size = 0;
1987	char *modname, namebuf[128];
1988	const char *symbol_name;
1989	void *addr;
1990	struct kprobe_blackpoint *kb;
1991
1992	/* FIXME allocate the probe table, currently defined statically */
1993	/* initialize all list heads */
1994	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1995		INIT_HLIST_HEAD(&kprobe_table[i]);
1996		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1997		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
1998	}
1999
2000	/*
2001	 * Lookup and populate the kprobe_blacklist.
2002	 *
2003	 * Unlike the kretprobe blacklist, we'll need to determine
2004	 * the range of addresses that belong to the said functions,
2005	 * since a kprobe need not necessarily be at the beginning
2006	 * of a function.
2007	 */
2008	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2009		kprobe_lookup_name(kb->name, addr);
2010		if (!addr)
2011			continue;
2012
2013		kb->start_addr = (unsigned long)addr;
2014		symbol_name = kallsyms_lookup(kb->start_addr,
2015				&size, &offset, &modname, namebuf);
2016		if (!symbol_name)
2017			kb->range = 0;
2018		else
2019			kb->range = size;
2020	}
2021
2022	if (kretprobe_blacklist_size) {
2023		/* lookup the function address from its name */
2024		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2025			kprobe_lookup_name(kretprobe_blacklist[i].name,
2026					   kretprobe_blacklist[i].addr);
2027			if (!kretprobe_blacklist[i].addr)
2028				printk("kretprobe: lookup failed: %s\n",
2029				       kretprobe_blacklist[i].name);
2030		}
2031	}
2032
2033#if defined(CONFIG_OPTPROBES)
2034#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2035	/* Init kprobe_optinsn_slots */
2036	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2037#endif
2038	/* By default, kprobes can be optimized */
2039	kprobes_allow_optimization = true;
2040#endif
2041
2042	/* By default, kprobes are armed */
2043	kprobes_all_disarmed = false;
2044
2045	err = arch_init_kprobes();
2046	if (!err)
2047		err = register_die_notifier(&kprobe_exceptions_nb);
2048	if (!err)
2049		err = register_module_notifier(&kprobe_module_nb);
2050
2051	kprobes_initialized = (err == 0);
2052
2053	if (!err)
2054		init_test_probes();
2055	return err;
2056}
2057
2058#ifdef CONFIG_DEBUG_FS
2059static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2060		const char *sym, int offset, char *modname, struct kprobe *pp)
2061{
2062	char *kprobe_type;
2063
2064	if (p->pre_handler == pre_handler_kretprobe)
2065		kprobe_type = "r";
2066	else if (p->pre_handler == setjmp_pre_handler)
2067		kprobe_type = "j";
2068	else
2069		kprobe_type = "k";
2070
2071	if (sym)
2072		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2073			p->addr, kprobe_type, sym, offset,
2074			(modname ? modname : " "));
2075	else
2076		seq_printf(pi, "%p  %s  %p ",
2077			p->addr, kprobe_type, p->addr);
2078
2079	if (!pp)
2080		pp = p;
2081	seq_printf(pi, "%s%s%s\n",
2082		(kprobe_gone(p) ? "[GONE]" : ""),
2083		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2084		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2085}
2086
2087static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2088{
2089	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2090}
2091
2092static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2093{
2094	(*pos)++;
2095	if (*pos >= KPROBE_TABLE_SIZE)
2096		return NULL;
2097	return pos;
2098}
2099
2100static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2101{
2102	/* Nothing to do */
2103}
2104
2105static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2106{
2107	struct hlist_head *head;
2108	struct hlist_node *node;
2109	struct kprobe *p, *kp;
2110	const char *sym = NULL;
2111	unsigned int i = *(loff_t *) v;
2112	unsigned long offset = 0;
2113	char *modname, namebuf[128];
2114
2115	head = &kprobe_table[i];
2116	preempt_disable();
2117	hlist_for_each_entry_rcu(p, node, head, hlist) {
2118		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2119					&offset, &modname, namebuf);
2120		if (kprobe_aggrprobe(p)) {
2121			list_for_each_entry_rcu(kp, &p->list, list)
2122				report_probe(pi, kp, sym, offset, modname, p);
2123		} else
2124			report_probe(pi, p, sym, offset, modname, NULL);
2125	}
2126	preempt_enable();
2127	return 0;
2128}
2129
2130static const struct seq_operations kprobes_seq_ops = {
2131	.start = kprobe_seq_start,
2132	.next  = kprobe_seq_next,
2133	.stop  = kprobe_seq_stop,
2134	.show  = show_kprobe_addr
2135};
2136
2137static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2138{
2139	return seq_open(filp, &kprobes_seq_ops);
2140}
2141
2142static const struct file_operations debugfs_kprobes_operations = {
2143	.open           = kprobes_open,
2144	.read           = seq_read,
2145	.llseek         = seq_lseek,
2146	.release        = seq_release,
2147};
2148
2149static void __kprobes arm_all_kprobes(void)
2150{
2151	struct hlist_head *head;
2152	struct hlist_node *node;
2153	struct kprobe *p;
2154	unsigned int i;
2155
2156	mutex_lock(&kprobe_mutex);
2157
2158	/* If kprobes are armed, just return */
2159	if (!kprobes_all_disarmed)
2160		goto already_enabled;
2161
2162	/* Arming kprobes doesn't optimize kprobe itself */
2163	mutex_lock(&text_mutex);
2164	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2165		head = &kprobe_table[i];
2166		hlist_for_each_entry_rcu(p, node, head, hlist)
2167			if (!kprobe_disabled(p))
2168				__arm_kprobe(p);
2169	}
2170	mutex_unlock(&text_mutex);
2171
2172	kprobes_all_disarmed = false;
2173	printk(KERN_INFO "Kprobes globally enabled\n");
2174
2175already_enabled:
2176	mutex_unlock(&kprobe_mutex);
2177	return;
2178}
2179
2180static void __kprobes disarm_all_kprobes(void)
2181{
2182	struct hlist_head *head;
2183	struct hlist_node *node;
2184	struct kprobe *p;
2185	unsigned int i;
2186
2187	mutex_lock(&kprobe_mutex);
2188
2189	/* If kprobes are already disarmed, just return */
2190	if (kprobes_all_disarmed) {
2191		mutex_unlock(&kprobe_mutex);
2192		return;
2193	}
2194
2195	kprobes_all_disarmed = true;
2196	printk(KERN_INFO "Kprobes globally disabled\n");
2197
2198	mutex_lock(&text_mutex);
2199	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2200		head = &kprobe_table[i];
2201		hlist_for_each_entry_rcu(p, node, head, hlist) {
2202			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2203				__disarm_kprobe(p, false);
2204		}
2205	}
2206	mutex_unlock(&text_mutex);
2207	mutex_unlock(&kprobe_mutex);
2208
2209	/* Wait for disarming all kprobes by optimizer */
2210	wait_for_kprobe_optimizer();
2211}
2212
2213/*
2214 * XXX: The debugfs bool file interface doesn't allow for callbacks
2215 * when the bool state is switched. We can reuse that facility when
2216 * available
2217 */
2218static ssize_t read_enabled_file_bool(struct file *file,
2219	       char __user *user_buf, size_t count, loff_t *ppos)
2220{
2221	char buf[3];
2222
2223	if (!kprobes_all_disarmed)
2224		buf[0] = '1';
2225	else
2226		buf[0] = '0';
2227	buf[1] = '\n';
2228	buf[2] = 0x00;
2229	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2230}
2231
2232static ssize_t write_enabled_file_bool(struct file *file,
2233	       const char __user *user_buf, size_t count, loff_t *ppos)
2234{
2235	char buf[32];
2236	size_t buf_size;
2237
2238	buf_size = min(count, (sizeof(buf)-1));
2239	if (copy_from_user(buf, user_buf, buf_size))
2240		return -EFAULT;
2241
2242	switch (buf[0]) {
2243	case 'y':
2244	case 'Y':
2245	case '1':
2246		arm_all_kprobes();
2247		break;
2248	case 'n':
2249	case 'N':
2250	case '0':
2251		disarm_all_kprobes();
2252		break;
2253	}
2254
2255	return count;
2256}
2257
2258static const struct file_operations fops_kp = {
2259	.read =         read_enabled_file_bool,
2260	.write =        write_enabled_file_bool,
2261	.llseek =	default_llseek,
2262};
2263
2264static int __kprobes debugfs_kprobe_init(void)
2265{
2266	struct dentry *dir, *file;
2267	unsigned int value = 1;
2268
2269	dir = debugfs_create_dir("kprobes", NULL);
2270	if (!dir)
2271		return -ENOMEM;
2272
2273	file = debugfs_create_file("list", 0444, dir, NULL,
2274				&debugfs_kprobes_operations);
2275	if (!file) {
2276		debugfs_remove(dir);
2277		return -ENOMEM;
2278	}
2279
2280	file = debugfs_create_file("enabled", 0600, dir,
2281					&value, &fops_kp);
2282	if (!file) {
2283		debugfs_remove(dir);
2284		return -ENOMEM;
2285	}
2286
2287	return 0;
2288}
2289
2290late_initcall(debugfs_kprobe_init);
2291#endif /* CONFIG_DEBUG_FS */
2292
2293module_init(init_kprobes);
2294
2295/* defined in arch/.../kernel/kprobes.c */
2296EXPORT_SYMBOL_GPL(jprobe_return);
2297