kprobes.c revision 4460fdad85becd569f11501ad5b91814814335ff
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/kdebug.h>
46#include <linux/memory.h>
47
48#include <asm-generic/sections.h>
49#include <asm/cacheflush.h>
50#include <asm/errno.h>
51#include <asm/uaccess.h>
52
53#define KPROBE_HASH_BITS 6
54#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57/*
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
60 */
61#ifndef kprobe_lookup_name
62#define kprobe_lookup_name(name, addr) \
63	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64#endif
65
66static int kprobes_initialized;
67static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70/* NOTE: change this value only with kprobe_mutex held */
71static bool kprobe_enabled;
72
73static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75static struct {
76	spinlock_t lock ____cacheline_aligned_in_smp;
77} kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80{
81	return &(kretprobe_table_locks[hash].lock);
82}
83
84/*
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
88 *
89 * For such cases, we now have a blacklist
90 */
91static struct kprobe_blackpoint kprobe_blacklist[] = {
92	{"preempt_schedule",},
93	{NULL}    /* Terminator */
94};
95
96#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
97/*
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
102 */
103#define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104
105struct kprobe_insn_page {
106	struct hlist_node hlist;
107	kprobe_opcode_t *insns;		/* Page of instruction slots */
108	char slot_used[INSNS_PER_PAGE];
109	int nused;
110	int ngarbage;
111};
112
113enum kprobe_slot_state {
114	SLOT_CLEAN = 0,
115	SLOT_DIRTY = 1,
116	SLOT_USED = 2,
117};
118
119static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
120static struct hlist_head kprobe_insn_pages;
121static int kprobe_garbage_slots;
122static int collect_garbage_slots(void);
123
124static int __kprobes check_safety(void)
125{
126	int ret = 0;
127#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128	ret = freeze_processes();
129	if (ret == 0) {
130		struct task_struct *p, *q;
131		do_each_thread(p, q) {
132			if (p != current && p->state == TASK_RUNNING &&
133			    p->pid != 0) {
134				printk("Check failed: %s is running\n",p->comm);
135				ret = -1;
136				goto loop_end;
137			}
138		} while_each_thread(p, q);
139	}
140loop_end:
141	thaw_processes();
142#else
143	synchronize_sched();
144#endif
145	return ret;
146}
147
148/**
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
151 */
152static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153{
154	struct kprobe_insn_page *kip;
155	struct hlist_node *pos;
156
157 retry:
158	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159		if (kip->nused < INSNS_PER_PAGE) {
160			int i;
161			for (i = 0; i < INSNS_PER_PAGE; i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * MAX_INSN_SIZE);
166				}
167			}
168			/* Surprise!  No unused slots.  Fix kip->nused. */
169			kip->nused = INSNS_PER_PAGE;
170		}
171	}
172
173	/* If there are any garbage slots, collect it and try again. */
174	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175		goto retry;
176	}
177	/* All out of space.  Need to allocate a new page. Use slot 0. */
178	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179	if (!kip)
180		return NULL;
181
182	/*
183	 * Use module_alloc so this page is within +/- 2GB of where the
184	 * kernel image and loaded module images reside. This is required
185	 * so x86_64 can correctly handle the %rip-relative fixups.
186	 */
187	kip->insns = module_alloc(PAGE_SIZE);
188	if (!kip->insns) {
189		kfree(kip);
190		return NULL;
191	}
192	INIT_HLIST_NODE(&kip->hlist);
193	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	return kip->insns;
199}
200
201kprobe_opcode_t __kprobes *get_insn_slot(void)
202{
203	kprobe_opcode_t *ret;
204	mutex_lock(&kprobe_insn_mutex);
205	ret = __get_insn_slot();
206	mutex_unlock(&kprobe_insn_mutex);
207	return ret;
208}
209
210/* Return 1 if all garbages are collected, otherwise 0. */
211static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212{
213	kip->slot_used[idx] = SLOT_CLEAN;
214	kip->nused--;
215	if (kip->nused == 0) {
216		/*
217		 * Page is no longer in use.  Free it unless
218		 * it's the last one.  We keep the last one
219		 * so as not to have to set it up again the
220		 * next time somebody inserts a probe.
221		 */
222		hlist_del(&kip->hlist);
223		if (hlist_empty(&kprobe_insn_pages)) {
224			INIT_HLIST_NODE(&kip->hlist);
225			hlist_add_head(&kip->hlist,
226				       &kprobe_insn_pages);
227		} else {
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(void)
237{
238	struct kprobe_insn_page *kip;
239	struct hlist_node *pos, *next;
240	int safety;
241
242	/* Ensure no-one is preepmted on the garbages */
243	mutex_unlock(&kprobe_insn_mutex);
244	safety = check_safety();
245	mutex_lock(&kprobe_insn_mutex);
246	if (safety != 0)
247		return -EAGAIN;
248
249	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250		int i;
251		if (kip->ngarbage == 0)
252			continue;
253		kip->ngarbage = 0;	/* we will collect all garbages */
254		for (i = 0; i < INSNS_PER_PAGE; i++) {
255			if (kip->slot_used[i] == SLOT_DIRTY &&
256			    collect_one_slot(kip, i))
257				break;
258		}
259	}
260	kprobe_garbage_slots = 0;
261	return 0;
262}
263
264void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
265{
266	struct kprobe_insn_page *kip;
267	struct hlist_node *pos;
268
269	mutex_lock(&kprobe_insn_mutex);
270	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271		if (kip->insns <= slot &&
272		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273			int i = (slot - kip->insns) / MAX_INSN_SIZE;
274			if (dirty) {
275				kip->slot_used[i] = SLOT_DIRTY;
276				kip->ngarbage++;
277			} else {
278				collect_one_slot(kip, i);
279			}
280			break;
281		}
282	}
283
284	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285		collect_garbage_slots();
286
287	mutex_unlock(&kprobe_insn_mutex);
288}
289#endif
290
291/* We have preemption disabled.. so it is safe to use __ versions */
292static inline void set_kprobe_instance(struct kprobe *kp)
293{
294	__get_cpu_var(kprobe_instance) = kp;
295}
296
297static inline void reset_kprobe_instance(void)
298{
299	__get_cpu_var(kprobe_instance) = NULL;
300}
301
302/*
303 * This routine is called either:
304 * 	- under the kprobe_mutex - during kprobe_[un]register()
305 * 				OR
306 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
307 */
308struct kprobe __kprobes *get_kprobe(void *addr)
309{
310	struct hlist_head *head;
311	struct hlist_node *node;
312	struct kprobe *p;
313
314	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315	hlist_for_each_entry_rcu(p, node, head, hlist) {
316		if (p->addr == addr)
317			return p;
318	}
319	return NULL;
320}
321
322/*
323 * Aggregate handlers for multiple kprobes support - these handlers
324 * take care of invoking the individual kprobe handlers on p->list
325 */
326static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
327{
328	struct kprobe *kp;
329
330	list_for_each_entry_rcu(kp, &p->list, list) {
331		if (kp->pre_handler && !kprobe_gone(kp)) {
332			set_kprobe_instance(kp);
333			if (kp->pre_handler(kp, regs))
334				return 1;
335		}
336		reset_kprobe_instance();
337	}
338	return 0;
339}
340
341static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
342					unsigned long flags)
343{
344	struct kprobe *kp;
345
346	list_for_each_entry_rcu(kp, &p->list, list) {
347		if (kp->post_handler && !kprobe_gone(kp)) {
348			set_kprobe_instance(kp);
349			kp->post_handler(kp, regs, flags);
350			reset_kprobe_instance();
351		}
352	}
353}
354
355static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
356					int trapnr)
357{
358	struct kprobe *cur = __get_cpu_var(kprobe_instance);
359
360	/*
361	 * if we faulted "during" the execution of a user specified
362	 * probe handler, invoke just that probe's fault handler
363	 */
364	if (cur && cur->fault_handler) {
365		if (cur->fault_handler(cur, regs, trapnr))
366			return 1;
367	}
368	return 0;
369}
370
371static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
372{
373	struct kprobe *cur = __get_cpu_var(kprobe_instance);
374	int ret = 0;
375
376	if (cur && cur->break_handler) {
377		if (cur->break_handler(cur, regs))
378			ret = 1;
379	}
380	reset_kprobe_instance();
381	return ret;
382}
383
384/* Walks the list and increments nmissed count for multiprobe case */
385void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
386{
387	struct kprobe *kp;
388	if (p->pre_handler != aggr_pre_handler) {
389		p->nmissed++;
390	} else {
391		list_for_each_entry_rcu(kp, &p->list, list)
392			kp->nmissed++;
393	}
394	return;
395}
396
397void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
398				struct hlist_head *head)
399{
400	struct kretprobe *rp = ri->rp;
401
402	/* remove rp inst off the rprobe_inst_table */
403	hlist_del(&ri->hlist);
404	INIT_HLIST_NODE(&ri->hlist);
405	if (likely(rp)) {
406		spin_lock(&rp->lock);
407		hlist_add_head(&ri->hlist, &rp->free_instances);
408		spin_unlock(&rp->lock);
409	} else
410		/* Unregistering */
411		hlist_add_head(&ri->hlist, head);
412}
413
414void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
415			 struct hlist_head **head, unsigned long *flags)
416{
417	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
418	spinlock_t *hlist_lock;
419
420	*head = &kretprobe_inst_table[hash];
421	hlist_lock = kretprobe_table_lock_ptr(hash);
422	spin_lock_irqsave(hlist_lock, *flags);
423}
424
425static void __kprobes kretprobe_table_lock(unsigned long hash,
426	unsigned long *flags)
427{
428	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
429	spin_lock_irqsave(hlist_lock, *flags);
430}
431
432void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
433	unsigned long *flags)
434{
435	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
436	spinlock_t *hlist_lock;
437
438	hlist_lock = kretprobe_table_lock_ptr(hash);
439	spin_unlock_irqrestore(hlist_lock, *flags);
440}
441
442void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
443{
444	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445	spin_unlock_irqrestore(hlist_lock, *flags);
446}
447
448/*
449 * This function is called from finish_task_switch when task tk becomes dead,
450 * so that we can recycle any function-return probe instances associated
451 * with this task. These left over instances represent probed functions
452 * that have been called but will never return.
453 */
454void __kprobes kprobe_flush_task(struct task_struct *tk)
455{
456	struct kretprobe_instance *ri;
457	struct hlist_head *head, empty_rp;
458	struct hlist_node *node, *tmp;
459	unsigned long hash, flags = 0;
460
461	if (unlikely(!kprobes_initialized))
462		/* Early boot.  kretprobe_table_locks not yet initialized. */
463		return;
464
465	hash = hash_ptr(tk, KPROBE_HASH_BITS);
466	head = &kretprobe_inst_table[hash];
467	kretprobe_table_lock(hash, &flags);
468	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
469		if (ri->task == tk)
470			recycle_rp_inst(ri, &empty_rp);
471	}
472	kretprobe_table_unlock(hash, &flags);
473	INIT_HLIST_HEAD(&empty_rp);
474	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
475		hlist_del(&ri->hlist);
476		kfree(ri);
477	}
478}
479
480static inline void free_rp_inst(struct kretprobe *rp)
481{
482	struct kretprobe_instance *ri;
483	struct hlist_node *pos, *next;
484
485	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
486		hlist_del(&ri->hlist);
487		kfree(ri);
488	}
489}
490
491static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
492{
493	unsigned long flags, hash;
494	struct kretprobe_instance *ri;
495	struct hlist_node *pos, *next;
496	struct hlist_head *head;
497
498	/* No race here */
499	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
500		kretprobe_table_lock(hash, &flags);
501		head = &kretprobe_inst_table[hash];
502		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
503			if (ri->rp == rp)
504				ri->rp = NULL;
505		}
506		kretprobe_table_unlock(hash, &flags);
507	}
508	free_rp_inst(rp);
509}
510
511/*
512 * Keep all fields in the kprobe consistent
513 */
514static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
515{
516	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
517	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
518}
519
520/*
521* Add the new probe to old_p->list. Fail if this is the
522* second jprobe at the address - two jprobes can't coexist
523*/
524static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
525{
526	if (p->break_handler) {
527		if (old_p->break_handler)
528			return -EEXIST;
529		list_add_tail_rcu(&p->list, &old_p->list);
530		old_p->break_handler = aggr_break_handler;
531	} else
532		list_add_rcu(&p->list, &old_p->list);
533	if (p->post_handler && !old_p->post_handler)
534		old_p->post_handler = aggr_post_handler;
535	return 0;
536}
537
538/*
539 * Fill in the required fields of the "manager kprobe". Replace the
540 * earlier kprobe in the hlist with the manager kprobe
541 */
542static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
543{
544	copy_kprobe(p, ap);
545	flush_insn_slot(ap);
546	ap->addr = p->addr;
547	ap->pre_handler = aggr_pre_handler;
548	ap->fault_handler = aggr_fault_handler;
549	/* We don't care the kprobe which has gone. */
550	if (p->post_handler && !kprobe_gone(p))
551		ap->post_handler = aggr_post_handler;
552	if (p->break_handler && !kprobe_gone(p))
553		ap->break_handler = aggr_break_handler;
554
555	INIT_LIST_HEAD(&ap->list);
556	list_add_rcu(&p->list, &ap->list);
557
558	hlist_replace_rcu(&p->hlist, &ap->hlist);
559}
560
561/*
562 * This is the second or subsequent kprobe at the address - handle
563 * the intricacies
564 */
565static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
566					  struct kprobe *p)
567{
568	int ret = 0;
569	struct kprobe *ap;
570
571	if (kprobe_gone(old_p)) {
572		/*
573		 * Attempting to insert new probe at the same location that
574		 * had a probe in the module vaddr area which already
575		 * freed. So, the instruction slot has already been
576		 * released. We need a new slot for the new probe.
577		 */
578		ret = arch_prepare_kprobe(old_p);
579		if (ret)
580			return ret;
581	}
582	if (old_p->pre_handler == aggr_pre_handler) {
583		copy_kprobe(old_p, p);
584		ret = add_new_kprobe(old_p, p);
585		ap = old_p;
586	} else {
587		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
588		if (!ap) {
589			if (kprobe_gone(old_p))
590				arch_remove_kprobe(old_p);
591			return -ENOMEM;
592		}
593		add_aggr_kprobe(ap, old_p);
594		copy_kprobe(ap, p);
595		ret = add_new_kprobe(ap, p);
596	}
597	if (kprobe_gone(old_p)) {
598		/*
599		 * If the old_p has gone, its breakpoint has been disarmed.
600		 * We have to arm it again after preparing real kprobes.
601		 */
602		ap->flags &= ~KPROBE_FLAG_GONE;
603		if (kprobe_enabled)
604			arch_arm_kprobe(ap);
605	}
606	return ret;
607}
608
609static int __kprobes in_kprobes_functions(unsigned long addr)
610{
611	struct kprobe_blackpoint *kb;
612
613	if (addr >= (unsigned long)__kprobes_text_start &&
614	    addr < (unsigned long)__kprobes_text_end)
615		return -EINVAL;
616	/*
617	 * If there exists a kprobe_blacklist, verify and
618	 * fail any probe registration in the prohibited area
619	 */
620	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
621		if (kb->start_addr) {
622			if (addr >= kb->start_addr &&
623			    addr < (kb->start_addr + kb->range))
624				return -EINVAL;
625		}
626	}
627	return 0;
628}
629
630/*
631 * If we have a symbol_name argument, look it up and add the offset field
632 * to it. This way, we can specify a relative address to a symbol.
633 */
634static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
635{
636	kprobe_opcode_t *addr = p->addr;
637	if (p->symbol_name) {
638		if (addr)
639			return NULL;
640		kprobe_lookup_name(p->symbol_name, addr);
641	}
642
643	if (!addr)
644		return NULL;
645	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
646}
647
648int __kprobes register_kprobe(struct kprobe *p)
649{
650	int ret = 0;
651	struct kprobe *old_p;
652	struct module *probed_mod;
653	kprobe_opcode_t *addr;
654
655	addr = kprobe_addr(p);
656	if (!addr)
657		return -EINVAL;
658	p->addr = addr;
659
660	preempt_disable();
661	if (!__kernel_text_address((unsigned long) p->addr) ||
662	    in_kprobes_functions((unsigned long) p->addr)) {
663		preempt_enable();
664		return -EINVAL;
665	}
666
667	p->flags = 0;
668	/*
669	 * Check if are we probing a module.
670	 */
671	probed_mod = __module_text_address((unsigned long) p->addr);
672	if (probed_mod) {
673		/*
674		 * We must hold a refcount of the probed module while updating
675		 * its code to prohibit unexpected unloading.
676		 */
677		if (unlikely(!try_module_get(probed_mod))) {
678			preempt_enable();
679			return -EINVAL;
680		}
681		/*
682		 * If the module freed .init.text, we couldn't insert
683		 * kprobes in there.
684		 */
685		if (within_module_init((unsigned long)p->addr, probed_mod) &&
686		    probed_mod->state != MODULE_STATE_COMING) {
687			module_put(probed_mod);
688			preempt_enable();
689			return -EINVAL;
690		}
691	}
692	preempt_enable();
693
694	p->nmissed = 0;
695	INIT_LIST_HEAD(&p->list);
696	mutex_lock(&kprobe_mutex);
697	old_p = get_kprobe(p->addr);
698	if (old_p) {
699		ret = register_aggr_kprobe(old_p, p);
700		goto out;
701	}
702
703	mutex_lock(&text_mutex);
704	ret = arch_prepare_kprobe(p);
705	if (ret)
706		goto out_unlock_text;
707
708	INIT_HLIST_NODE(&p->hlist);
709	hlist_add_head_rcu(&p->hlist,
710		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
711
712	if (kprobe_enabled)
713		arch_arm_kprobe(p);
714
715out_unlock_text:
716	mutex_unlock(&text_mutex);
717out:
718	mutex_unlock(&kprobe_mutex);
719
720	if (probed_mod)
721		module_put(probed_mod);
722
723	return ret;
724}
725
726/*
727 * Unregister a kprobe without a scheduler synchronization.
728 */
729static int __kprobes __unregister_kprobe_top(struct kprobe *p)
730{
731	struct kprobe *old_p, *list_p;
732
733	old_p = get_kprobe(p->addr);
734	if (unlikely(!old_p))
735		return -EINVAL;
736
737	if (p != old_p) {
738		list_for_each_entry_rcu(list_p, &old_p->list, list)
739			if (list_p == p)
740			/* kprobe p is a valid probe */
741				goto valid_p;
742		return -EINVAL;
743	}
744valid_p:
745	if (old_p == p ||
746	    (old_p->pre_handler == aggr_pre_handler &&
747	     list_is_singular(&old_p->list))) {
748		/*
749		 * Only probe on the hash list. Disarm only if kprobes are
750		 * enabled and not gone - otherwise, the breakpoint would
751		 * already have been removed. We save on flushing icache.
752		 */
753		if (kprobe_enabled && !kprobe_gone(old_p)) {
754			mutex_lock(&text_mutex);
755			arch_disarm_kprobe(p);
756			mutex_unlock(&text_mutex);
757		}
758		hlist_del_rcu(&old_p->hlist);
759	} else {
760		if (p->break_handler && !kprobe_gone(p))
761			old_p->break_handler = NULL;
762		if (p->post_handler && !kprobe_gone(p)) {
763			list_for_each_entry_rcu(list_p, &old_p->list, list) {
764				if ((list_p != p) && (list_p->post_handler))
765					goto noclean;
766			}
767			old_p->post_handler = NULL;
768		}
769noclean:
770		list_del_rcu(&p->list);
771	}
772	return 0;
773}
774
775static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
776{
777	struct kprobe *old_p;
778
779	if (list_empty(&p->list))
780		arch_remove_kprobe(p);
781	else if (list_is_singular(&p->list)) {
782		/* "p" is the last child of an aggr_kprobe */
783		old_p = list_entry(p->list.next, struct kprobe, list);
784		list_del(&p->list);
785		arch_remove_kprobe(old_p);
786		kfree(old_p);
787	}
788}
789
790int __kprobes register_kprobes(struct kprobe **kps, int num)
791{
792	int i, ret = 0;
793
794	if (num <= 0)
795		return -EINVAL;
796	for (i = 0; i < num; i++) {
797		ret = register_kprobe(kps[i]);
798		if (ret < 0) {
799			if (i > 0)
800				unregister_kprobes(kps, i);
801			break;
802		}
803	}
804	return ret;
805}
806
807void __kprobes unregister_kprobe(struct kprobe *p)
808{
809	unregister_kprobes(&p, 1);
810}
811
812void __kprobes unregister_kprobes(struct kprobe **kps, int num)
813{
814	int i;
815
816	if (num <= 0)
817		return;
818	mutex_lock(&kprobe_mutex);
819	for (i = 0; i < num; i++)
820		if (__unregister_kprobe_top(kps[i]) < 0)
821			kps[i]->addr = NULL;
822	mutex_unlock(&kprobe_mutex);
823
824	synchronize_sched();
825	for (i = 0; i < num; i++)
826		if (kps[i]->addr)
827			__unregister_kprobe_bottom(kps[i]);
828}
829
830static struct notifier_block kprobe_exceptions_nb = {
831	.notifier_call = kprobe_exceptions_notify,
832	.priority = 0x7fffffff /* we need to be notified first */
833};
834
835unsigned long __weak arch_deref_entry_point(void *entry)
836{
837	return (unsigned long)entry;
838}
839
840int __kprobes register_jprobes(struct jprobe **jps, int num)
841{
842	struct jprobe *jp;
843	int ret = 0, i;
844
845	if (num <= 0)
846		return -EINVAL;
847	for (i = 0; i < num; i++) {
848		unsigned long addr;
849		jp = jps[i];
850		addr = arch_deref_entry_point(jp->entry);
851
852		if (!kernel_text_address(addr))
853			ret = -EINVAL;
854		else {
855			/* Todo: Verify probepoint is a function entry point */
856			jp->kp.pre_handler = setjmp_pre_handler;
857			jp->kp.break_handler = longjmp_break_handler;
858			ret = register_kprobe(&jp->kp);
859		}
860		if (ret < 0) {
861			if (i > 0)
862				unregister_jprobes(jps, i);
863			break;
864		}
865	}
866	return ret;
867}
868
869int __kprobes register_jprobe(struct jprobe *jp)
870{
871	return register_jprobes(&jp, 1);
872}
873
874void __kprobes unregister_jprobe(struct jprobe *jp)
875{
876	unregister_jprobes(&jp, 1);
877}
878
879void __kprobes unregister_jprobes(struct jprobe **jps, int num)
880{
881	int i;
882
883	if (num <= 0)
884		return;
885	mutex_lock(&kprobe_mutex);
886	for (i = 0; i < num; i++)
887		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
888			jps[i]->kp.addr = NULL;
889	mutex_unlock(&kprobe_mutex);
890
891	synchronize_sched();
892	for (i = 0; i < num; i++) {
893		if (jps[i]->kp.addr)
894			__unregister_kprobe_bottom(&jps[i]->kp);
895	}
896}
897
898#ifdef CONFIG_KRETPROBES
899/*
900 * This kprobe pre_handler is registered with every kretprobe. When probe
901 * hits it will set up the return probe.
902 */
903static int __kprobes pre_handler_kretprobe(struct kprobe *p,
904					   struct pt_regs *regs)
905{
906	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
907	unsigned long hash, flags = 0;
908	struct kretprobe_instance *ri;
909
910	/*TODO: consider to only swap the RA after the last pre_handler fired */
911	hash = hash_ptr(current, KPROBE_HASH_BITS);
912	spin_lock_irqsave(&rp->lock, flags);
913	if (!hlist_empty(&rp->free_instances)) {
914		ri = hlist_entry(rp->free_instances.first,
915				struct kretprobe_instance, hlist);
916		hlist_del(&ri->hlist);
917		spin_unlock_irqrestore(&rp->lock, flags);
918
919		ri->rp = rp;
920		ri->task = current;
921
922		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
923			spin_unlock_irqrestore(&rp->lock, flags);
924			return 0;
925		}
926
927		arch_prepare_kretprobe(ri, regs);
928
929		/* XXX(hch): why is there no hlist_move_head? */
930		INIT_HLIST_NODE(&ri->hlist);
931		kretprobe_table_lock(hash, &flags);
932		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
933		kretprobe_table_unlock(hash, &flags);
934	} else {
935		rp->nmissed++;
936		spin_unlock_irqrestore(&rp->lock, flags);
937	}
938	return 0;
939}
940
941int __kprobes register_kretprobe(struct kretprobe *rp)
942{
943	int ret = 0;
944	struct kretprobe_instance *inst;
945	int i;
946	void *addr;
947
948	if (kretprobe_blacklist_size) {
949		addr = kprobe_addr(&rp->kp);
950		if (!addr)
951			return -EINVAL;
952
953		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
954			if (kretprobe_blacklist[i].addr == addr)
955				return -EINVAL;
956		}
957	}
958
959	rp->kp.pre_handler = pre_handler_kretprobe;
960	rp->kp.post_handler = NULL;
961	rp->kp.fault_handler = NULL;
962	rp->kp.break_handler = NULL;
963
964	/* Pre-allocate memory for max kretprobe instances */
965	if (rp->maxactive <= 0) {
966#ifdef CONFIG_PREEMPT
967		rp->maxactive = max(10, 2 * NR_CPUS);
968#else
969		rp->maxactive = NR_CPUS;
970#endif
971	}
972	spin_lock_init(&rp->lock);
973	INIT_HLIST_HEAD(&rp->free_instances);
974	for (i = 0; i < rp->maxactive; i++) {
975		inst = kmalloc(sizeof(struct kretprobe_instance) +
976			       rp->data_size, GFP_KERNEL);
977		if (inst == NULL) {
978			free_rp_inst(rp);
979			return -ENOMEM;
980		}
981		INIT_HLIST_NODE(&inst->hlist);
982		hlist_add_head(&inst->hlist, &rp->free_instances);
983	}
984
985	rp->nmissed = 0;
986	/* Establish function entry probe point */
987	ret = register_kprobe(&rp->kp);
988	if (ret != 0)
989		free_rp_inst(rp);
990	return ret;
991}
992
993int __kprobes register_kretprobes(struct kretprobe **rps, int num)
994{
995	int ret = 0, i;
996
997	if (num <= 0)
998		return -EINVAL;
999	for (i = 0; i < num; i++) {
1000		ret = register_kretprobe(rps[i]);
1001		if (ret < 0) {
1002			if (i > 0)
1003				unregister_kretprobes(rps, i);
1004			break;
1005		}
1006	}
1007	return ret;
1008}
1009
1010void __kprobes unregister_kretprobe(struct kretprobe *rp)
1011{
1012	unregister_kretprobes(&rp, 1);
1013}
1014
1015void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1016{
1017	int i;
1018
1019	if (num <= 0)
1020		return;
1021	mutex_lock(&kprobe_mutex);
1022	for (i = 0; i < num; i++)
1023		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1024			rps[i]->kp.addr = NULL;
1025	mutex_unlock(&kprobe_mutex);
1026
1027	synchronize_sched();
1028	for (i = 0; i < num; i++) {
1029		if (rps[i]->kp.addr) {
1030			__unregister_kprobe_bottom(&rps[i]->kp);
1031			cleanup_rp_inst(rps[i]);
1032		}
1033	}
1034}
1035
1036#else /* CONFIG_KRETPROBES */
1037int __kprobes register_kretprobe(struct kretprobe *rp)
1038{
1039	return -ENOSYS;
1040}
1041
1042int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1043{
1044	return -ENOSYS;
1045}
1046void __kprobes unregister_kretprobe(struct kretprobe *rp)
1047{
1048}
1049
1050void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1051{
1052}
1053
1054static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1055					   struct pt_regs *regs)
1056{
1057	return 0;
1058}
1059
1060#endif /* CONFIG_KRETPROBES */
1061
1062/* Set the kprobe gone and remove its instruction buffer. */
1063static void __kprobes kill_kprobe(struct kprobe *p)
1064{
1065	struct kprobe *kp;
1066	p->flags |= KPROBE_FLAG_GONE;
1067	if (p->pre_handler == aggr_pre_handler) {
1068		/*
1069		 * If this is an aggr_kprobe, we have to list all the
1070		 * chained probes and mark them GONE.
1071		 */
1072		list_for_each_entry_rcu(kp, &p->list, list)
1073			kp->flags |= KPROBE_FLAG_GONE;
1074		p->post_handler = NULL;
1075		p->break_handler = NULL;
1076	}
1077	/*
1078	 * Here, we can remove insn_slot safely, because no thread calls
1079	 * the original probed function (which will be freed soon) any more.
1080	 */
1081	arch_remove_kprobe(p);
1082}
1083
1084/* Module notifier call back, checking kprobes on the module */
1085static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1086					     unsigned long val, void *data)
1087{
1088	struct module *mod = data;
1089	struct hlist_head *head;
1090	struct hlist_node *node;
1091	struct kprobe *p;
1092	unsigned int i;
1093	int checkcore = (val == MODULE_STATE_GOING);
1094
1095	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1096		return NOTIFY_DONE;
1097
1098	/*
1099	 * When MODULE_STATE_GOING was notified, both of module .text and
1100	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1101	 * notified, only .init.text section would be freed. We need to
1102	 * disable kprobes which have been inserted in the sections.
1103	 */
1104	mutex_lock(&kprobe_mutex);
1105	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1106		head = &kprobe_table[i];
1107		hlist_for_each_entry_rcu(p, node, head, hlist)
1108			if (within_module_init((unsigned long)p->addr, mod) ||
1109			    (checkcore &&
1110			     within_module_core((unsigned long)p->addr, mod))) {
1111				/*
1112				 * The vaddr this probe is installed will soon
1113				 * be vfreed buy not synced to disk. Hence,
1114				 * disarming the breakpoint isn't needed.
1115				 */
1116				kill_kprobe(p);
1117			}
1118	}
1119	mutex_unlock(&kprobe_mutex);
1120	return NOTIFY_DONE;
1121}
1122
1123static struct notifier_block kprobe_module_nb = {
1124	.notifier_call = kprobes_module_callback,
1125	.priority = 0
1126};
1127
1128static int __init init_kprobes(void)
1129{
1130	int i, err = 0;
1131	unsigned long offset = 0, size = 0;
1132	char *modname, namebuf[128];
1133	const char *symbol_name;
1134	void *addr;
1135	struct kprobe_blackpoint *kb;
1136
1137	/* FIXME allocate the probe table, currently defined statically */
1138	/* initialize all list heads */
1139	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1140		INIT_HLIST_HEAD(&kprobe_table[i]);
1141		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1142		spin_lock_init(&(kretprobe_table_locks[i].lock));
1143	}
1144
1145	/*
1146	 * Lookup and populate the kprobe_blacklist.
1147	 *
1148	 * Unlike the kretprobe blacklist, we'll need to determine
1149	 * the range of addresses that belong to the said functions,
1150	 * since a kprobe need not necessarily be at the beginning
1151	 * of a function.
1152	 */
1153	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1154		kprobe_lookup_name(kb->name, addr);
1155		if (!addr)
1156			continue;
1157
1158		kb->start_addr = (unsigned long)addr;
1159		symbol_name = kallsyms_lookup(kb->start_addr,
1160				&size, &offset, &modname, namebuf);
1161		if (!symbol_name)
1162			kb->range = 0;
1163		else
1164			kb->range = size;
1165	}
1166
1167	if (kretprobe_blacklist_size) {
1168		/* lookup the function address from its name */
1169		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1170			kprobe_lookup_name(kretprobe_blacklist[i].name,
1171					   kretprobe_blacklist[i].addr);
1172			if (!kretprobe_blacklist[i].addr)
1173				printk("kretprobe: lookup failed: %s\n",
1174				       kretprobe_blacklist[i].name);
1175		}
1176	}
1177
1178	/* By default, kprobes are enabled */
1179	kprobe_enabled = true;
1180
1181	err = arch_init_kprobes();
1182	if (!err)
1183		err = register_die_notifier(&kprobe_exceptions_nb);
1184	if (!err)
1185		err = register_module_notifier(&kprobe_module_nb);
1186
1187	kprobes_initialized = (err == 0);
1188
1189	if (!err)
1190		init_test_probes();
1191	return err;
1192}
1193
1194#ifdef CONFIG_DEBUG_FS
1195static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1196		const char *sym, int offset,char *modname)
1197{
1198	char *kprobe_type;
1199
1200	if (p->pre_handler == pre_handler_kretprobe)
1201		kprobe_type = "r";
1202	else if (p->pre_handler == setjmp_pre_handler)
1203		kprobe_type = "j";
1204	else
1205		kprobe_type = "k";
1206	if (sym)
1207		seq_printf(pi, "%p  %s  %s+0x%x  %s %s\n", p->addr, kprobe_type,
1208			sym, offset, (modname ? modname : " "),
1209			(kprobe_gone(p) ? "[GONE]" : ""));
1210	else
1211		seq_printf(pi, "%p  %s  %p %s\n", p->addr, kprobe_type, p->addr,
1212			(kprobe_gone(p) ? "[GONE]" : ""));
1213}
1214
1215static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1216{
1217	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1218}
1219
1220static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1221{
1222	(*pos)++;
1223	if (*pos >= KPROBE_TABLE_SIZE)
1224		return NULL;
1225	return pos;
1226}
1227
1228static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1229{
1230	/* Nothing to do */
1231}
1232
1233static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1234{
1235	struct hlist_head *head;
1236	struct hlist_node *node;
1237	struct kprobe *p, *kp;
1238	const char *sym = NULL;
1239	unsigned int i = *(loff_t *) v;
1240	unsigned long offset = 0;
1241	char *modname, namebuf[128];
1242
1243	head = &kprobe_table[i];
1244	preempt_disable();
1245	hlist_for_each_entry_rcu(p, node, head, hlist) {
1246		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1247					&offset, &modname, namebuf);
1248		if (p->pre_handler == aggr_pre_handler) {
1249			list_for_each_entry_rcu(kp, &p->list, list)
1250				report_probe(pi, kp, sym, offset, modname);
1251		} else
1252			report_probe(pi, p, sym, offset, modname);
1253	}
1254	preempt_enable();
1255	return 0;
1256}
1257
1258static struct seq_operations kprobes_seq_ops = {
1259	.start = kprobe_seq_start,
1260	.next  = kprobe_seq_next,
1261	.stop  = kprobe_seq_stop,
1262	.show  = show_kprobe_addr
1263};
1264
1265static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1266{
1267	return seq_open(filp, &kprobes_seq_ops);
1268}
1269
1270static struct file_operations debugfs_kprobes_operations = {
1271	.open           = kprobes_open,
1272	.read           = seq_read,
1273	.llseek         = seq_lseek,
1274	.release        = seq_release,
1275};
1276
1277static void __kprobes enable_all_kprobes(void)
1278{
1279	struct hlist_head *head;
1280	struct hlist_node *node;
1281	struct kprobe *p;
1282	unsigned int i;
1283
1284	mutex_lock(&kprobe_mutex);
1285
1286	/* If kprobes are already enabled, just return */
1287	if (kprobe_enabled)
1288		goto already_enabled;
1289
1290	mutex_lock(&text_mutex);
1291	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1292		head = &kprobe_table[i];
1293		hlist_for_each_entry_rcu(p, node, head, hlist)
1294			if (!kprobe_gone(p))
1295				arch_arm_kprobe(p);
1296	}
1297	mutex_unlock(&text_mutex);
1298
1299	kprobe_enabled = true;
1300	printk(KERN_INFO "Kprobes globally enabled\n");
1301
1302already_enabled:
1303	mutex_unlock(&kprobe_mutex);
1304	return;
1305}
1306
1307static void __kprobes disable_all_kprobes(void)
1308{
1309	struct hlist_head *head;
1310	struct hlist_node *node;
1311	struct kprobe *p;
1312	unsigned int i;
1313
1314	mutex_lock(&kprobe_mutex);
1315
1316	/* If kprobes are already disabled, just return */
1317	if (!kprobe_enabled)
1318		goto already_disabled;
1319
1320	kprobe_enabled = false;
1321	printk(KERN_INFO "Kprobes globally disabled\n");
1322	mutex_lock(&text_mutex);
1323	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1324		head = &kprobe_table[i];
1325		hlist_for_each_entry_rcu(p, node, head, hlist) {
1326			if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1327				arch_disarm_kprobe(p);
1328		}
1329	}
1330
1331	mutex_unlock(&text_mutex);
1332	mutex_unlock(&kprobe_mutex);
1333	/* Allow all currently running kprobes to complete */
1334	synchronize_sched();
1335	return;
1336
1337already_disabled:
1338	mutex_unlock(&kprobe_mutex);
1339	return;
1340}
1341
1342/*
1343 * XXX: The debugfs bool file interface doesn't allow for callbacks
1344 * when the bool state is switched. We can reuse that facility when
1345 * available
1346 */
1347static ssize_t read_enabled_file_bool(struct file *file,
1348	       char __user *user_buf, size_t count, loff_t *ppos)
1349{
1350	char buf[3];
1351
1352	if (kprobe_enabled)
1353		buf[0] = '1';
1354	else
1355		buf[0] = '0';
1356	buf[1] = '\n';
1357	buf[2] = 0x00;
1358	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1359}
1360
1361static ssize_t write_enabled_file_bool(struct file *file,
1362	       const char __user *user_buf, size_t count, loff_t *ppos)
1363{
1364	char buf[32];
1365	int buf_size;
1366
1367	buf_size = min(count, (sizeof(buf)-1));
1368	if (copy_from_user(buf, user_buf, buf_size))
1369		return -EFAULT;
1370
1371	switch (buf[0]) {
1372	case 'y':
1373	case 'Y':
1374	case '1':
1375		enable_all_kprobes();
1376		break;
1377	case 'n':
1378	case 'N':
1379	case '0':
1380		disable_all_kprobes();
1381		break;
1382	}
1383
1384	return count;
1385}
1386
1387static struct file_operations fops_kp = {
1388	.read =         read_enabled_file_bool,
1389	.write =        write_enabled_file_bool,
1390};
1391
1392static int __kprobes debugfs_kprobe_init(void)
1393{
1394	struct dentry *dir, *file;
1395	unsigned int value = 1;
1396
1397	dir = debugfs_create_dir("kprobes", NULL);
1398	if (!dir)
1399		return -ENOMEM;
1400
1401	file = debugfs_create_file("list", 0444, dir, NULL,
1402				&debugfs_kprobes_operations);
1403	if (!file) {
1404		debugfs_remove(dir);
1405		return -ENOMEM;
1406	}
1407
1408	file = debugfs_create_file("enabled", 0600, dir,
1409					&value, &fops_kp);
1410	if (!file) {
1411		debugfs_remove(dir);
1412		return -ENOMEM;
1413	}
1414
1415	return 0;
1416}
1417
1418late_initcall(debugfs_kprobe_init);
1419#endif /* CONFIG_DEBUG_FS */
1420
1421module_init(init_kprobes);
1422
1423EXPORT_SYMBOL_GPL(register_kprobe);
1424EXPORT_SYMBOL_GPL(unregister_kprobe);
1425EXPORT_SYMBOL_GPL(register_kprobes);
1426EXPORT_SYMBOL_GPL(unregister_kprobes);
1427EXPORT_SYMBOL_GPL(register_jprobe);
1428EXPORT_SYMBOL_GPL(unregister_jprobe);
1429EXPORT_SYMBOL_GPL(register_jprobes);
1430EXPORT_SYMBOL_GPL(unregister_jprobes);
1431EXPORT_SYMBOL_GPL(jprobe_return);
1432EXPORT_SYMBOL_GPL(register_kretprobe);
1433EXPORT_SYMBOL_GPL(unregister_kretprobe);
1434EXPORT_SYMBOL_GPL(register_kretprobes);
1435EXPORT_SYMBOL_GPL(unregister_kretprobes);
1436