kprobes.c revision 5a4ccaf37ffece09ef33f1cfec67efa8ee56f967
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/kdebug.h>
46
47#include <asm-generic/sections.h>
48#include <asm/cacheflush.h>
49#include <asm/errno.h>
50#include <asm/uaccess.h>
51
52#define KPROBE_HASH_BITS 6
53#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54
55
56/*
57 * Some oddball architectures like 64bit powerpc have function descriptors
58 * so this must be overridable.
59 */
60#ifndef kprobe_lookup_name
61#define kprobe_lookup_name(name, addr) \
62	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63#endif
64
65static int kprobes_initialized;
66static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68
69/* NOTE: change this value only with kprobe_mutex held */
70static bool kprobe_enabled;
71
72static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
73static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74static struct {
75	spinlock_t lock ____cacheline_aligned_in_smp;
76} kretprobe_table_locks[KPROBE_TABLE_SIZE];
77
78static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79{
80	return &(kretprobe_table_locks[hash].lock);
81}
82
83/*
84 * Normally, functions that we'd want to prohibit kprobes in, are marked
85 * __kprobes. But, there are cases where such functions already belong to
86 * a different section (__sched for preempt_schedule)
87 *
88 * For such cases, we now have a blacklist
89 */
90static struct kprobe_blackpoint kprobe_blacklist[] = {
91	{"preempt_schedule",},
92	{NULL}    /* Terminator */
93};
94
95#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96/*
97 * kprobe->ainsn.insn points to the copy of the instruction to be
98 * single-stepped. x86_64, POWER4 and above have no-exec support and
99 * stepping on the instruction on a vmalloced/kmalloced/data page
100 * is a recipe for disaster
101 */
102#define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103
104struct kprobe_insn_page {
105	struct hlist_node hlist;
106	kprobe_opcode_t *insns;		/* Page of instruction slots */
107	char slot_used[INSNS_PER_PAGE];
108	int nused;
109	int ngarbage;
110};
111
112enum kprobe_slot_state {
113	SLOT_CLEAN = 0,
114	SLOT_DIRTY = 1,
115	SLOT_USED = 2,
116};
117
118static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
119static struct hlist_head kprobe_insn_pages;
120static int kprobe_garbage_slots;
121static int collect_garbage_slots(void);
122
123static int __kprobes check_safety(void)
124{
125	int ret = 0;
126#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
127	ret = freeze_processes();
128	if (ret == 0) {
129		struct task_struct *p, *q;
130		do_each_thread(p, q) {
131			if (p != current && p->state == TASK_RUNNING &&
132			    p->pid != 0) {
133				printk("Check failed: %s is running\n",p->comm);
134				ret = -1;
135				goto loop_end;
136			}
137		} while_each_thread(p, q);
138	}
139loop_end:
140	thaw_processes();
141#else
142	synchronize_sched();
143#endif
144	return ret;
145}
146
147/**
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
150 */
151static kprobe_opcode_t __kprobes *__get_insn_slot(void)
152{
153	struct kprobe_insn_page *kip;
154	struct hlist_node *pos;
155
156 retry:
157	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
158		if (kip->nused < INSNS_PER_PAGE) {
159			int i;
160			for (i = 0; i < INSNS_PER_PAGE; i++) {
161				if (kip->slot_used[i] == SLOT_CLEAN) {
162					kip->slot_used[i] = SLOT_USED;
163					kip->nused++;
164					return kip->insns + (i * MAX_INSN_SIZE);
165				}
166			}
167			/* Surprise!  No unused slots.  Fix kip->nused. */
168			kip->nused = INSNS_PER_PAGE;
169		}
170	}
171
172	/* If there are any garbage slots, collect it and try again. */
173	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174		goto retry;
175	}
176	/* All out of space.  Need to allocate a new page. Use slot 0. */
177	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178	if (!kip)
179		return NULL;
180
181	/*
182	 * Use module_alloc so this page is within +/- 2GB of where the
183	 * kernel image and loaded module images reside. This is required
184	 * so x86_64 can correctly handle the %rip-relative fixups.
185	 */
186	kip->insns = module_alloc(PAGE_SIZE);
187	if (!kip->insns) {
188		kfree(kip);
189		return NULL;
190	}
191	INIT_HLIST_NODE(&kip->hlist);
192	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
193	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194	kip->slot_used[0] = SLOT_USED;
195	kip->nused = 1;
196	kip->ngarbage = 0;
197	return kip->insns;
198}
199
200kprobe_opcode_t __kprobes *get_insn_slot(void)
201{
202	kprobe_opcode_t *ret;
203	mutex_lock(&kprobe_insn_mutex);
204	ret = __get_insn_slot();
205	mutex_unlock(&kprobe_insn_mutex);
206	return ret;
207}
208
209/* Return 1 if all garbages are collected, otherwise 0. */
210static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
211{
212	kip->slot_used[idx] = SLOT_CLEAN;
213	kip->nused--;
214	if (kip->nused == 0) {
215		/*
216		 * Page is no longer in use.  Free it unless
217		 * it's the last one.  We keep the last one
218		 * so as not to have to set it up again the
219		 * next time somebody inserts a probe.
220		 */
221		hlist_del(&kip->hlist);
222		if (hlist_empty(&kprobe_insn_pages)) {
223			INIT_HLIST_NODE(&kip->hlist);
224			hlist_add_head(&kip->hlist,
225				       &kprobe_insn_pages);
226		} else {
227			module_free(NULL, kip->insns);
228			kfree(kip);
229		}
230		return 1;
231	}
232	return 0;
233}
234
235static int __kprobes collect_garbage_slots(void)
236{
237	struct kprobe_insn_page *kip;
238	struct hlist_node *pos, *next;
239	int safety;
240
241	/* Ensure no-one is preepmted on the garbages */
242	mutex_unlock(&kprobe_insn_mutex);
243	safety = check_safety();
244	mutex_lock(&kprobe_insn_mutex);
245	if (safety != 0)
246		return -EAGAIN;
247
248	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
249		int i;
250		if (kip->ngarbage == 0)
251			continue;
252		kip->ngarbage = 0;	/* we will collect all garbages */
253		for (i = 0; i < INSNS_PER_PAGE; i++) {
254			if (kip->slot_used[i] == SLOT_DIRTY &&
255			    collect_one_slot(kip, i))
256				break;
257		}
258	}
259	kprobe_garbage_slots = 0;
260	return 0;
261}
262
263void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
264{
265	struct kprobe_insn_page *kip;
266	struct hlist_node *pos;
267
268	mutex_lock(&kprobe_insn_mutex);
269	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
270		if (kip->insns <= slot &&
271		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
272			int i = (slot - kip->insns) / MAX_INSN_SIZE;
273			if (dirty) {
274				kip->slot_used[i] = SLOT_DIRTY;
275				kip->ngarbage++;
276			} else {
277				collect_one_slot(kip, i);
278			}
279			break;
280		}
281	}
282
283	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
284		collect_garbage_slots();
285
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#endif
289
290/* We have preemption disabled.. so it is safe to use __ versions */
291static inline void set_kprobe_instance(struct kprobe *kp)
292{
293	__get_cpu_var(kprobe_instance) = kp;
294}
295
296static inline void reset_kprobe_instance(void)
297{
298	__get_cpu_var(kprobe_instance) = NULL;
299}
300
301/*
302 * This routine is called either:
303 * 	- under the kprobe_mutex - during kprobe_[un]register()
304 * 				OR
305 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
306 */
307struct kprobe __kprobes *get_kprobe(void *addr)
308{
309	struct hlist_head *head;
310	struct hlist_node *node;
311	struct kprobe *p;
312
313	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
314	hlist_for_each_entry_rcu(p, node, head, hlist) {
315		if (p->addr == addr)
316			return p;
317	}
318	return NULL;
319}
320
321/*
322 * Aggregate handlers for multiple kprobes support - these handlers
323 * take care of invoking the individual kprobe handlers on p->list
324 */
325static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
326{
327	struct kprobe *kp;
328
329	list_for_each_entry_rcu(kp, &p->list, list) {
330		if (kp->pre_handler && !kprobe_gone(kp)) {
331			set_kprobe_instance(kp);
332			if (kp->pre_handler(kp, regs))
333				return 1;
334		}
335		reset_kprobe_instance();
336	}
337	return 0;
338}
339
340static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
341					unsigned long flags)
342{
343	struct kprobe *kp;
344
345	list_for_each_entry_rcu(kp, &p->list, list) {
346		if (kp->post_handler && !kprobe_gone(kp)) {
347			set_kprobe_instance(kp);
348			kp->post_handler(kp, regs, flags);
349			reset_kprobe_instance();
350		}
351	}
352}
353
354static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
355					int trapnr)
356{
357	struct kprobe *cur = __get_cpu_var(kprobe_instance);
358
359	/*
360	 * if we faulted "during" the execution of a user specified
361	 * probe handler, invoke just that probe's fault handler
362	 */
363	if (cur && cur->fault_handler) {
364		if (cur->fault_handler(cur, regs, trapnr))
365			return 1;
366	}
367	return 0;
368}
369
370static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
371{
372	struct kprobe *cur = __get_cpu_var(kprobe_instance);
373	int ret = 0;
374
375	if (cur && cur->break_handler) {
376		if (cur->break_handler(cur, regs))
377			ret = 1;
378	}
379	reset_kprobe_instance();
380	return ret;
381}
382
383/* Walks the list and increments nmissed count for multiprobe case */
384void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
385{
386	struct kprobe *kp;
387	if (p->pre_handler != aggr_pre_handler) {
388		p->nmissed++;
389	} else {
390		list_for_each_entry_rcu(kp, &p->list, list)
391			kp->nmissed++;
392	}
393	return;
394}
395
396void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
397				struct hlist_head *head)
398{
399	struct kretprobe *rp = ri->rp;
400
401	/* remove rp inst off the rprobe_inst_table */
402	hlist_del(&ri->hlist);
403	INIT_HLIST_NODE(&ri->hlist);
404	if (likely(rp)) {
405		spin_lock(&rp->lock);
406		hlist_add_head(&ri->hlist, &rp->free_instances);
407		spin_unlock(&rp->lock);
408	} else
409		/* Unregistering */
410		hlist_add_head(&ri->hlist, head);
411}
412
413void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
414			 struct hlist_head **head, unsigned long *flags)
415{
416	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
417	spinlock_t *hlist_lock;
418
419	*head = &kretprobe_inst_table[hash];
420	hlist_lock = kretprobe_table_lock_ptr(hash);
421	spin_lock_irqsave(hlist_lock, *flags);
422}
423
424static void __kprobes kretprobe_table_lock(unsigned long hash,
425	unsigned long *flags)
426{
427	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
428	spin_lock_irqsave(hlist_lock, *flags);
429}
430
431void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
432	unsigned long *flags)
433{
434	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
435	spinlock_t *hlist_lock;
436
437	hlist_lock = kretprobe_table_lock_ptr(hash);
438	spin_unlock_irqrestore(hlist_lock, *flags);
439}
440
441void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
442{
443	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
444	spin_unlock_irqrestore(hlist_lock, *flags);
445}
446
447/*
448 * This function is called from finish_task_switch when task tk becomes dead,
449 * so that we can recycle any function-return probe instances associated
450 * with this task. These left over instances represent probed functions
451 * that have been called but will never return.
452 */
453void __kprobes kprobe_flush_task(struct task_struct *tk)
454{
455	struct kretprobe_instance *ri;
456	struct hlist_head *head, empty_rp;
457	struct hlist_node *node, *tmp;
458	unsigned long hash, flags = 0;
459
460	if (unlikely(!kprobes_initialized))
461		/* Early boot.  kretprobe_table_locks not yet initialized. */
462		return;
463
464	hash = hash_ptr(tk, KPROBE_HASH_BITS);
465	head = &kretprobe_inst_table[hash];
466	kretprobe_table_lock(hash, &flags);
467	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
468		if (ri->task == tk)
469			recycle_rp_inst(ri, &empty_rp);
470	}
471	kretprobe_table_unlock(hash, &flags);
472	INIT_HLIST_HEAD(&empty_rp);
473	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
474		hlist_del(&ri->hlist);
475		kfree(ri);
476	}
477}
478
479static inline void free_rp_inst(struct kretprobe *rp)
480{
481	struct kretprobe_instance *ri;
482	struct hlist_node *pos, *next;
483
484	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
485		hlist_del(&ri->hlist);
486		kfree(ri);
487	}
488}
489
490static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
491{
492	unsigned long flags, hash;
493	struct kretprobe_instance *ri;
494	struct hlist_node *pos, *next;
495	struct hlist_head *head;
496
497	/* No race here */
498	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
499		kretprobe_table_lock(hash, &flags);
500		head = &kretprobe_inst_table[hash];
501		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
502			if (ri->rp == rp)
503				ri->rp = NULL;
504		}
505		kretprobe_table_unlock(hash, &flags);
506	}
507	free_rp_inst(rp);
508}
509
510/*
511 * Keep all fields in the kprobe consistent
512 */
513static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
514{
515	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
516	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
517}
518
519/*
520* Add the new probe to old_p->list. Fail if this is the
521* second jprobe at the address - two jprobes can't coexist
522*/
523static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
524{
525	if (p->break_handler) {
526		if (old_p->break_handler)
527			return -EEXIST;
528		list_add_tail_rcu(&p->list, &old_p->list);
529		old_p->break_handler = aggr_break_handler;
530	} else
531		list_add_rcu(&p->list, &old_p->list);
532	if (p->post_handler && !old_p->post_handler)
533		old_p->post_handler = aggr_post_handler;
534	return 0;
535}
536
537/*
538 * Fill in the required fields of the "manager kprobe". Replace the
539 * earlier kprobe in the hlist with the manager kprobe
540 */
541static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
542{
543	copy_kprobe(p, ap);
544	flush_insn_slot(ap);
545	ap->addr = p->addr;
546	ap->pre_handler = aggr_pre_handler;
547	ap->fault_handler = aggr_fault_handler;
548	/* We don't care the kprobe which has gone. */
549	if (p->post_handler && !kprobe_gone(p))
550		ap->post_handler = aggr_post_handler;
551	if (p->break_handler && !kprobe_gone(p))
552		ap->break_handler = aggr_break_handler;
553
554	INIT_LIST_HEAD(&ap->list);
555	list_add_rcu(&p->list, &ap->list);
556
557	hlist_replace_rcu(&p->hlist, &ap->hlist);
558}
559
560/*
561 * This is the second or subsequent kprobe at the address - handle
562 * the intricacies
563 */
564static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
565					  struct kprobe *p)
566{
567	int ret = 0;
568	struct kprobe *ap;
569
570	if (kprobe_gone(old_p)) {
571		/*
572		 * Attempting to insert new probe at the same location that
573		 * had a probe in the module vaddr area which already
574		 * freed. So, the instruction slot has already been
575		 * released. We need a new slot for the new probe.
576		 */
577		ret = arch_prepare_kprobe(old_p);
578		if (ret)
579			return ret;
580	}
581	if (old_p->pre_handler == aggr_pre_handler) {
582		copy_kprobe(old_p, p);
583		ret = add_new_kprobe(old_p, p);
584		ap = old_p;
585	} else {
586		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587		if (!ap) {
588			if (kprobe_gone(old_p))
589				arch_remove_kprobe(old_p);
590			return -ENOMEM;
591		}
592		add_aggr_kprobe(ap, old_p);
593		copy_kprobe(ap, p);
594		ret = add_new_kprobe(ap, p);
595	}
596	if (kprobe_gone(old_p)) {
597		/*
598		 * If the old_p has gone, its breakpoint has been disarmed.
599		 * We have to arm it again after preparing real kprobes.
600		 */
601		ap->flags &= ~KPROBE_FLAG_GONE;
602		if (kprobe_enabled)
603			arch_arm_kprobe(ap);
604	}
605	return ret;
606}
607
608static int __kprobes in_kprobes_functions(unsigned long addr)
609{
610	struct kprobe_blackpoint *kb;
611
612	if (addr >= (unsigned long)__kprobes_text_start &&
613	    addr < (unsigned long)__kprobes_text_end)
614		return -EINVAL;
615	/*
616	 * If there exists a kprobe_blacklist, verify and
617	 * fail any probe registration in the prohibited area
618	 */
619	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
620		if (kb->start_addr) {
621			if (addr >= kb->start_addr &&
622			    addr < (kb->start_addr + kb->range))
623				return -EINVAL;
624		}
625	}
626	return 0;
627}
628
629/*
630 * If we have a symbol_name argument, look it up and add the offset field
631 * to it. This way, we can specify a relative address to a symbol.
632 */
633static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
634{
635	kprobe_opcode_t *addr = p->addr;
636	if (p->symbol_name) {
637		if (addr)
638			return NULL;
639		kprobe_lookup_name(p->symbol_name, addr);
640	}
641
642	if (!addr)
643		return NULL;
644	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
645}
646
647int __kprobes register_kprobe(struct kprobe *p)
648{
649	int ret = 0;
650	struct kprobe *old_p;
651	struct module *probed_mod;
652	kprobe_opcode_t *addr;
653
654	addr = kprobe_addr(p);
655	if (!addr)
656		return -EINVAL;
657	p->addr = addr;
658
659	preempt_disable();
660	if (!__kernel_text_address((unsigned long) p->addr) ||
661	    in_kprobes_functions((unsigned long) p->addr)) {
662		preempt_enable();
663		return -EINVAL;
664	}
665
666	p->flags = 0;
667	/*
668	 * Check if are we probing a module.
669	 */
670	probed_mod = __module_text_address((unsigned long) p->addr);
671	if (probed_mod) {
672		/*
673		 * We must hold a refcount of the probed module while updating
674		 * its code to prohibit unexpected unloading.
675		 */
676		if (unlikely(!try_module_get(probed_mod))) {
677			preempt_enable();
678			return -EINVAL;
679		}
680		/*
681		 * If the module freed .init.text, we couldn't insert
682		 * kprobes in there.
683		 */
684		if (within_module_init((unsigned long)p->addr, probed_mod) &&
685		    probed_mod->state != MODULE_STATE_COMING) {
686			module_put(probed_mod);
687			preempt_enable();
688			return -EINVAL;
689		}
690	}
691	preempt_enable();
692
693	p->nmissed = 0;
694	INIT_LIST_HEAD(&p->list);
695	mutex_lock(&kprobe_mutex);
696	old_p = get_kprobe(p->addr);
697	if (old_p) {
698		ret = register_aggr_kprobe(old_p, p);
699		goto out;
700	}
701
702	ret = arch_prepare_kprobe(p);
703	if (ret)
704		goto out;
705
706	INIT_HLIST_NODE(&p->hlist);
707	hlist_add_head_rcu(&p->hlist,
708		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
709
710	if (kprobe_enabled)
711		arch_arm_kprobe(p);
712
713out:
714	mutex_unlock(&kprobe_mutex);
715
716	if (probed_mod)
717		module_put(probed_mod);
718
719	return ret;
720}
721
722/*
723 * Unregister a kprobe without a scheduler synchronization.
724 */
725static int __kprobes __unregister_kprobe_top(struct kprobe *p)
726{
727	struct kprobe *old_p, *list_p;
728
729	old_p = get_kprobe(p->addr);
730	if (unlikely(!old_p))
731		return -EINVAL;
732
733	if (p != old_p) {
734		list_for_each_entry_rcu(list_p, &old_p->list, list)
735			if (list_p == p)
736			/* kprobe p is a valid probe */
737				goto valid_p;
738		return -EINVAL;
739	}
740valid_p:
741	if (old_p == p ||
742	    (old_p->pre_handler == aggr_pre_handler &&
743	     list_is_singular(&old_p->list))) {
744		/*
745		 * Only probe on the hash list. Disarm only if kprobes are
746		 * enabled and not gone - otherwise, the breakpoint would
747		 * already have been removed. We save on flushing icache.
748		 */
749		if (kprobe_enabled && !kprobe_gone(old_p))
750			arch_disarm_kprobe(p);
751		hlist_del_rcu(&old_p->hlist);
752	} else {
753		if (p->break_handler && !kprobe_gone(p))
754			old_p->break_handler = NULL;
755		if (p->post_handler && !kprobe_gone(p)) {
756			list_for_each_entry_rcu(list_p, &old_p->list, list) {
757				if ((list_p != p) && (list_p->post_handler))
758					goto noclean;
759			}
760			old_p->post_handler = NULL;
761		}
762noclean:
763		list_del_rcu(&p->list);
764	}
765	return 0;
766}
767
768static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
769{
770	struct kprobe *old_p;
771
772	if (list_empty(&p->list))
773		arch_remove_kprobe(p);
774	else if (list_is_singular(&p->list)) {
775		/* "p" is the last child of an aggr_kprobe */
776		old_p = list_entry(p->list.next, struct kprobe, list);
777		list_del(&p->list);
778		arch_remove_kprobe(old_p);
779		kfree(old_p);
780	}
781}
782
783int __kprobes register_kprobes(struct kprobe **kps, int num)
784{
785	int i, ret = 0;
786
787	if (num <= 0)
788		return -EINVAL;
789	for (i = 0; i < num; i++) {
790		ret = register_kprobe(kps[i]);
791		if (ret < 0) {
792			if (i > 0)
793				unregister_kprobes(kps, i);
794			break;
795		}
796	}
797	return ret;
798}
799
800void __kprobes unregister_kprobe(struct kprobe *p)
801{
802	unregister_kprobes(&p, 1);
803}
804
805void __kprobes unregister_kprobes(struct kprobe **kps, int num)
806{
807	int i;
808
809	if (num <= 0)
810		return;
811	mutex_lock(&kprobe_mutex);
812	for (i = 0; i < num; i++)
813		if (__unregister_kprobe_top(kps[i]) < 0)
814			kps[i]->addr = NULL;
815	mutex_unlock(&kprobe_mutex);
816
817	synchronize_sched();
818	for (i = 0; i < num; i++)
819		if (kps[i]->addr)
820			__unregister_kprobe_bottom(kps[i]);
821}
822
823static struct notifier_block kprobe_exceptions_nb = {
824	.notifier_call = kprobe_exceptions_notify,
825	.priority = 0x7fffffff /* we need to be notified first */
826};
827
828unsigned long __weak arch_deref_entry_point(void *entry)
829{
830	return (unsigned long)entry;
831}
832
833int __kprobes register_jprobes(struct jprobe **jps, int num)
834{
835	struct jprobe *jp;
836	int ret = 0, i;
837
838	if (num <= 0)
839		return -EINVAL;
840	for (i = 0; i < num; i++) {
841		unsigned long addr;
842		jp = jps[i];
843		addr = arch_deref_entry_point(jp->entry);
844
845		if (!kernel_text_address(addr))
846			ret = -EINVAL;
847		else {
848			/* Todo: Verify probepoint is a function entry point */
849			jp->kp.pre_handler = setjmp_pre_handler;
850			jp->kp.break_handler = longjmp_break_handler;
851			ret = register_kprobe(&jp->kp);
852		}
853		if (ret < 0) {
854			if (i > 0)
855				unregister_jprobes(jps, i);
856			break;
857		}
858	}
859	return ret;
860}
861
862int __kprobes register_jprobe(struct jprobe *jp)
863{
864	return register_jprobes(&jp, 1);
865}
866
867void __kprobes unregister_jprobe(struct jprobe *jp)
868{
869	unregister_jprobes(&jp, 1);
870}
871
872void __kprobes unregister_jprobes(struct jprobe **jps, int num)
873{
874	int i;
875
876	if (num <= 0)
877		return;
878	mutex_lock(&kprobe_mutex);
879	for (i = 0; i < num; i++)
880		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
881			jps[i]->kp.addr = NULL;
882	mutex_unlock(&kprobe_mutex);
883
884	synchronize_sched();
885	for (i = 0; i < num; i++) {
886		if (jps[i]->kp.addr)
887			__unregister_kprobe_bottom(&jps[i]->kp);
888	}
889}
890
891#ifdef CONFIG_KRETPROBES
892/*
893 * This kprobe pre_handler is registered with every kretprobe. When probe
894 * hits it will set up the return probe.
895 */
896static int __kprobes pre_handler_kretprobe(struct kprobe *p,
897					   struct pt_regs *regs)
898{
899	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
900	unsigned long hash, flags = 0;
901	struct kretprobe_instance *ri;
902
903	/*TODO: consider to only swap the RA after the last pre_handler fired */
904	hash = hash_ptr(current, KPROBE_HASH_BITS);
905	spin_lock_irqsave(&rp->lock, flags);
906	if (!hlist_empty(&rp->free_instances)) {
907		ri = hlist_entry(rp->free_instances.first,
908				struct kretprobe_instance, hlist);
909		hlist_del(&ri->hlist);
910		spin_unlock_irqrestore(&rp->lock, flags);
911
912		ri->rp = rp;
913		ri->task = current;
914
915		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
916			spin_unlock_irqrestore(&rp->lock, flags);
917			return 0;
918		}
919
920		arch_prepare_kretprobe(ri, regs);
921
922		/* XXX(hch): why is there no hlist_move_head? */
923		INIT_HLIST_NODE(&ri->hlist);
924		kretprobe_table_lock(hash, &flags);
925		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
926		kretprobe_table_unlock(hash, &flags);
927	} else {
928		rp->nmissed++;
929		spin_unlock_irqrestore(&rp->lock, flags);
930	}
931	return 0;
932}
933
934int __kprobes register_kretprobe(struct kretprobe *rp)
935{
936	int ret = 0;
937	struct kretprobe_instance *inst;
938	int i;
939	void *addr;
940
941	if (kretprobe_blacklist_size) {
942		addr = kprobe_addr(&rp->kp);
943		if (!addr)
944			return -EINVAL;
945
946		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
947			if (kretprobe_blacklist[i].addr == addr)
948				return -EINVAL;
949		}
950	}
951
952	rp->kp.pre_handler = pre_handler_kretprobe;
953	rp->kp.post_handler = NULL;
954	rp->kp.fault_handler = NULL;
955	rp->kp.break_handler = NULL;
956
957	/* Pre-allocate memory for max kretprobe instances */
958	if (rp->maxactive <= 0) {
959#ifdef CONFIG_PREEMPT
960		rp->maxactive = max(10, 2 * NR_CPUS);
961#else
962		rp->maxactive = NR_CPUS;
963#endif
964	}
965	spin_lock_init(&rp->lock);
966	INIT_HLIST_HEAD(&rp->free_instances);
967	for (i = 0; i < rp->maxactive; i++) {
968		inst = kmalloc(sizeof(struct kretprobe_instance) +
969			       rp->data_size, GFP_KERNEL);
970		if (inst == NULL) {
971			free_rp_inst(rp);
972			return -ENOMEM;
973		}
974		INIT_HLIST_NODE(&inst->hlist);
975		hlist_add_head(&inst->hlist, &rp->free_instances);
976	}
977
978	rp->nmissed = 0;
979	/* Establish function entry probe point */
980	ret = register_kprobe(&rp->kp);
981	if (ret != 0)
982		free_rp_inst(rp);
983	return ret;
984}
985
986int __kprobes register_kretprobes(struct kretprobe **rps, int num)
987{
988	int ret = 0, i;
989
990	if (num <= 0)
991		return -EINVAL;
992	for (i = 0; i < num; i++) {
993		ret = register_kretprobe(rps[i]);
994		if (ret < 0) {
995			if (i > 0)
996				unregister_kretprobes(rps, i);
997			break;
998		}
999	}
1000	return ret;
1001}
1002
1003void __kprobes unregister_kretprobe(struct kretprobe *rp)
1004{
1005	unregister_kretprobes(&rp, 1);
1006}
1007
1008void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1009{
1010	int i;
1011
1012	if (num <= 0)
1013		return;
1014	mutex_lock(&kprobe_mutex);
1015	for (i = 0; i < num; i++)
1016		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1017			rps[i]->kp.addr = NULL;
1018	mutex_unlock(&kprobe_mutex);
1019
1020	synchronize_sched();
1021	for (i = 0; i < num; i++) {
1022		if (rps[i]->kp.addr) {
1023			__unregister_kprobe_bottom(&rps[i]->kp);
1024			cleanup_rp_inst(rps[i]);
1025		}
1026	}
1027}
1028
1029#else /* CONFIG_KRETPROBES */
1030int __kprobes register_kretprobe(struct kretprobe *rp)
1031{
1032	return -ENOSYS;
1033}
1034
1035int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1036{
1037	return -ENOSYS;
1038}
1039void __kprobes unregister_kretprobe(struct kretprobe *rp)
1040{
1041}
1042
1043void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1044{
1045}
1046
1047static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1048					   struct pt_regs *regs)
1049{
1050	return 0;
1051}
1052
1053#endif /* CONFIG_KRETPROBES */
1054
1055/* Set the kprobe gone and remove its instruction buffer. */
1056static void __kprobes kill_kprobe(struct kprobe *p)
1057{
1058	struct kprobe *kp;
1059	p->flags |= KPROBE_FLAG_GONE;
1060	if (p->pre_handler == aggr_pre_handler) {
1061		/*
1062		 * If this is an aggr_kprobe, we have to list all the
1063		 * chained probes and mark them GONE.
1064		 */
1065		list_for_each_entry_rcu(kp, &p->list, list)
1066			kp->flags |= KPROBE_FLAG_GONE;
1067		p->post_handler = NULL;
1068		p->break_handler = NULL;
1069	}
1070	/*
1071	 * Here, we can remove insn_slot safely, because no thread calls
1072	 * the original probed function (which will be freed soon) any more.
1073	 */
1074	arch_remove_kprobe(p);
1075}
1076
1077/* Module notifier call back, checking kprobes on the module */
1078static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1079					     unsigned long val, void *data)
1080{
1081	struct module *mod = data;
1082	struct hlist_head *head;
1083	struct hlist_node *node;
1084	struct kprobe *p;
1085	unsigned int i;
1086	int checkcore = (val == MODULE_STATE_GOING);
1087
1088	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1089		return NOTIFY_DONE;
1090
1091	/*
1092	 * When MODULE_STATE_GOING was notified, both of module .text and
1093	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1094	 * notified, only .init.text section would be freed. We need to
1095	 * disable kprobes which have been inserted in the sections.
1096	 */
1097	mutex_lock(&kprobe_mutex);
1098	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1099		head = &kprobe_table[i];
1100		hlist_for_each_entry_rcu(p, node, head, hlist)
1101			if (within_module_init((unsigned long)p->addr, mod) ||
1102			    (checkcore &&
1103			     within_module_core((unsigned long)p->addr, mod))) {
1104				/*
1105				 * The vaddr this probe is installed will soon
1106				 * be vfreed buy not synced to disk. Hence,
1107				 * disarming the breakpoint isn't needed.
1108				 */
1109				kill_kprobe(p);
1110			}
1111	}
1112	mutex_unlock(&kprobe_mutex);
1113	return NOTIFY_DONE;
1114}
1115
1116static struct notifier_block kprobe_module_nb = {
1117	.notifier_call = kprobes_module_callback,
1118	.priority = 0
1119};
1120
1121static int __init init_kprobes(void)
1122{
1123	int i, err = 0;
1124	unsigned long offset = 0, size = 0;
1125	char *modname, namebuf[128];
1126	const char *symbol_name;
1127	void *addr;
1128	struct kprobe_blackpoint *kb;
1129
1130	/* FIXME allocate the probe table, currently defined statically */
1131	/* initialize all list heads */
1132	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1133		INIT_HLIST_HEAD(&kprobe_table[i]);
1134		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1135		spin_lock_init(&(kretprobe_table_locks[i].lock));
1136	}
1137
1138	/*
1139	 * Lookup and populate the kprobe_blacklist.
1140	 *
1141	 * Unlike the kretprobe blacklist, we'll need to determine
1142	 * the range of addresses that belong to the said functions,
1143	 * since a kprobe need not necessarily be at the beginning
1144	 * of a function.
1145	 */
1146	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1147		kprobe_lookup_name(kb->name, addr);
1148		if (!addr)
1149			continue;
1150
1151		kb->start_addr = (unsigned long)addr;
1152		symbol_name = kallsyms_lookup(kb->start_addr,
1153				&size, &offset, &modname, namebuf);
1154		if (!symbol_name)
1155			kb->range = 0;
1156		else
1157			kb->range = size;
1158	}
1159
1160	if (kretprobe_blacklist_size) {
1161		/* lookup the function address from its name */
1162		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1163			kprobe_lookup_name(kretprobe_blacklist[i].name,
1164					   kretprobe_blacklist[i].addr);
1165			if (!kretprobe_blacklist[i].addr)
1166				printk("kretprobe: lookup failed: %s\n",
1167				       kretprobe_blacklist[i].name);
1168		}
1169	}
1170
1171	/* By default, kprobes are enabled */
1172	kprobe_enabled = true;
1173
1174	err = arch_init_kprobes();
1175	if (!err)
1176		err = register_die_notifier(&kprobe_exceptions_nb);
1177	if (!err)
1178		err = register_module_notifier(&kprobe_module_nb);
1179
1180	kprobes_initialized = (err == 0);
1181
1182	if (!err)
1183		init_test_probes();
1184	return err;
1185}
1186
1187#ifdef CONFIG_DEBUG_FS
1188static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1189		const char *sym, int offset,char *modname)
1190{
1191	char *kprobe_type;
1192
1193	if (p->pre_handler == pre_handler_kretprobe)
1194		kprobe_type = "r";
1195	else if (p->pre_handler == setjmp_pre_handler)
1196		kprobe_type = "j";
1197	else
1198		kprobe_type = "k";
1199	if (sym)
1200		seq_printf(pi, "%p  %s  %s+0x%x  %s %s\n", p->addr, kprobe_type,
1201			sym, offset, (modname ? modname : " "),
1202			(kprobe_gone(p) ? "[GONE]" : ""));
1203	else
1204		seq_printf(pi, "%p  %s  %p %s\n", p->addr, kprobe_type, p->addr,
1205			(kprobe_gone(p) ? "[GONE]" : ""));
1206}
1207
1208static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1209{
1210	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1211}
1212
1213static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1214{
1215	(*pos)++;
1216	if (*pos >= KPROBE_TABLE_SIZE)
1217		return NULL;
1218	return pos;
1219}
1220
1221static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1222{
1223	/* Nothing to do */
1224}
1225
1226static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1227{
1228	struct hlist_head *head;
1229	struct hlist_node *node;
1230	struct kprobe *p, *kp;
1231	const char *sym = NULL;
1232	unsigned int i = *(loff_t *) v;
1233	unsigned long offset = 0;
1234	char *modname, namebuf[128];
1235
1236	head = &kprobe_table[i];
1237	preempt_disable();
1238	hlist_for_each_entry_rcu(p, node, head, hlist) {
1239		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1240					&offset, &modname, namebuf);
1241		if (p->pre_handler == aggr_pre_handler) {
1242			list_for_each_entry_rcu(kp, &p->list, list)
1243				report_probe(pi, kp, sym, offset, modname);
1244		} else
1245			report_probe(pi, p, sym, offset, modname);
1246	}
1247	preempt_enable();
1248	return 0;
1249}
1250
1251static struct seq_operations kprobes_seq_ops = {
1252	.start = kprobe_seq_start,
1253	.next  = kprobe_seq_next,
1254	.stop  = kprobe_seq_stop,
1255	.show  = show_kprobe_addr
1256};
1257
1258static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1259{
1260	return seq_open(filp, &kprobes_seq_ops);
1261}
1262
1263static struct file_operations debugfs_kprobes_operations = {
1264	.open           = kprobes_open,
1265	.read           = seq_read,
1266	.llseek         = seq_lseek,
1267	.release        = seq_release,
1268};
1269
1270static void __kprobes enable_all_kprobes(void)
1271{
1272	struct hlist_head *head;
1273	struct hlist_node *node;
1274	struct kprobe *p;
1275	unsigned int i;
1276
1277	mutex_lock(&kprobe_mutex);
1278
1279	/* If kprobes are already enabled, just return */
1280	if (kprobe_enabled)
1281		goto already_enabled;
1282
1283	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1284		head = &kprobe_table[i];
1285		hlist_for_each_entry_rcu(p, node, head, hlist)
1286			if (!kprobe_gone(p))
1287				arch_arm_kprobe(p);
1288	}
1289
1290	kprobe_enabled = true;
1291	printk(KERN_INFO "Kprobes globally enabled\n");
1292
1293already_enabled:
1294	mutex_unlock(&kprobe_mutex);
1295	return;
1296}
1297
1298static void __kprobes disable_all_kprobes(void)
1299{
1300	struct hlist_head *head;
1301	struct hlist_node *node;
1302	struct kprobe *p;
1303	unsigned int i;
1304
1305	mutex_lock(&kprobe_mutex);
1306
1307	/* If kprobes are already disabled, just return */
1308	if (!kprobe_enabled)
1309		goto already_disabled;
1310
1311	kprobe_enabled = false;
1312	printk(KERN_INFO "Kprobes globally disabled\n");
1313	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1314		head = &kprobe_table[i];
1315		hlist_for_each_entry_rcu(p, node, head, hlist) {
1316			if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1317				arch_disarm_kprobe(p);
1318		}
1319	}
1320
1321	mutex_unlock(&kprobe_mutex);
1322	/* Allow all currently running kprobes to complete */
1323	synchronize_sched();
1324	return;
1325
1326already_disabled:
1327	mutex_unlock(&kprobe_mutex);
1328	return;
1329}
1330
1331/*
1332 * XXX: The debugfs bool file interface doesn't allow for callbacks
1333 * when the bool state is switched. We can reuse that facility when
1334 * available
1335 */
1336static ssize_t read_enabled_file_bool(struct file *file,
1337	       char __user *user_buf, size_t count, loff_t *ppos)
1338{
1339	char buf[3];
1340
1341	if (kprobe_enabled)
1342		buf[0] = '1';
1343	else
1344		buf[0] = '0';
1345	buf[1] = '\n';
1346	buf[2] = 0x00;
1347	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1348}
1349
1350static ssize_t write_enabled_file_bool(struct file *file,
1351	       const char __user *user_buf, size_t count, loff_t *ppos)
1352{
1353	char buf[32];
1354	int buf_size;
1355
1356	buf_size = min(count, (sizeof(buf)-1));
1357	if (copy_from_user(buf, user_buf, buf_size))
1358		return -EFAULT;
1359
1360	switch (buf[0]) {
1361	case 'y':
1362	case 'Y':
1363	case '1':
1364		enable_all_kprobes();
1365		break;
1366	case 'n':
1367	case 'N':
1368	case '0':
1369		disable_all_kprobes();
1370		break;
1371	}
1372
1373	return count;
1374}
1375
1376static struct file_operations fops_kp = {
1377	.read =         read_enabled_file_bool,
1378	.write =        write_enabled_file_bool,
1379};
1380
1381static int __kprobes debugfs_kprobe_init(void)
1382{
1383	struct dentry *dir, *file;
1384	unsigned int value = 1;
1385
1386	dir = debugfs_create_dir("kprobes", NULL);
1387	if (!dir)
1388		return -ENOMEM;
1389
1390	file = debugfs_create_file("list", 0444, dir, NULL,
1391				&debugfs_kprobes_operations);
1392	if (!file) {
1393		debugfs_remove(dir);
1394		return -ENOMEM;
1395	}
1396
1397	file = debugfs_create_file("enabled", 0600, dir,
1398					&value, &fops_kp);
1399	if (!file) {
1400		debugfs_remove(dir);
1401		return -ENOMEM;
1402	}
1403
1404	return 0;
1405}
1406
1407late_initcall(debugfs_kprobe_init);
1408#endif /* CONFIG_DEBUG_FS */
1409
1410module_init(init_kprobes);
1411
1412EXPORT_SYMBOL_GPL(register_kprobe);
1413EXPORT_SYMBOL_GPL(unregister_kprobe);
1414EXPORT_SYMBOL_GPL(register_kprobes);
1415EXPORT_SYMBOL_GPL(unregister_kprobes);
1416EXPORT_SYMBOL_GPL(register_jprobe);
1417EXPORT_SYMBOL_GPL(unregister_jprobe);
1418EXPORT_SYMBOL_GPL(register_jprobes);
1419EXPORT_SYMBOL_GPL(unregister_jprobes);
1420EXPORT_SYMBOL_GPL(jprobe_return);
1421EXPORT_SYMBOL_GPL(register_kretprobe);
1422EXPORT_SYMBOL_GPL(unregister_kretprobe);
1423EXPORT_SYMBOL_GPL(register_kretprobes);
1424EXPORT_SYMBOL_GPL(unregister_kretprobes);
1425