kprobes.c revision 6f0f1dd71953d4243c11e490dd49ef24ebaf6c0b
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__get_cpu_var(kprobe_instance) = kp;
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__get_cpu_var(kprobe_instance) = NULL;
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct hlist_node *node;
338	struct kprobe *p;
339
340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341	hlist_for_each_entry_rcu(p, node, head, hlist) {
342		if (p->addr == addr)
343			return p;
344	}
345
346	return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354	return p->pre_handler == aggr_pre_handler;
355}
356
357/*
358 * Keep all fields in the kprobe consistent
359 */
360static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
361{
362	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
363	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
364}
365
366#ifdef CONFIG_OPTPROBES
367/* NOTE: change this value only with kprobe_mutex held */
368static bool kprobes_allow_optimization;
369
370/*
371 * Call all pre_handler on the list, but ignores its return value.
372 * This must be called from arch-dep optimized caller.
373 */
374void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
375{
376	struct kprobe *kp;
377
378	list_for_each_entry_rcu(kp, &p->list, list) {
379		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
380			set_kprobe_instance(kp);
381			kp->pre_handler(kp, regs);
382		}
383		reset_kprobe_instance();
384	}
385}
386
387/* Return true(!0) if the kprobe is ready for optimization. */
388static inline int kprobe_optready(struct kprobe *p)
389{
390	struct optimized_kprobe *op;
391
392	if (kprobe_aggrprobe(p)) {
393		op = container_of(p, struct optimized_kprobe, kp);
394		return arch_prepared_optinsn(&op->optinsn);
395	}
396
397	return 0;
398}
399
400/*
401 * Return an optimized kprobe whose optimizing code replaces
402 * instructions including addr (exclude breakpoint).
403 */
404static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
405{
406	int i;
407	struct kprobe *p = NULL;
408	struct optimized_kprobe *op;
409
410	/* Don't check i == 0, since that is a breakpoint case. */
411	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
412		p = get_kprobe((void *)(addr - i));
413
414	if (p && kprobe_optready(p)) {
415		op = container_of(p, struct optimized_kprobe, kp);
416		if (arch_within_optimized_kprobe(op, addr))
417			return p;
418	}
419
420	return NULL;
421}
422
423/* Optimization staging list, protected by kprobe_mutex */
424static LIST_HEAD(optimizing_list);
425
426static void kprobe_optimizer(struct work_struct *work);
427static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
428#define OPTIMIZE_DELAY 5
429
430/* Kprobe jump optimizer */
431static __kprobes void kprobe_optimizer(struct work_struct *work)
432{
433	struct optimized_kprobe *op, *tmp;
434
435	/* Lock modules while optimizing kprobes */
436	mutex_lock(&module_mutex);
437	mutex_lock(&kprobe_mutex);
438	if (kprobes_all_disarmed || !kprobes_allow_optimization)
439		goto end;
440
441	/*
442	 * Wait for quiesence period to ensure all running interrupts
443	 * are done. Because optprobe may modify multiple instructions
444	 * there is a chance that Nth instruction is interrupted. In that
445	 * case, running interrupt can return to 2nd-Nth byte of jump
446	 * instruction. This wait is for avoiding it.
447	 */
448	synchronize_sched();
449
450	/*
451	 * The optimization/unoptimization refers online_cpus via
452	 * stop_machine() and cpu-hotplug modifies online_cpus.
453	 * And same time, text_mutex will be held in cpu-hotplug and here.
454	 * This combination can cause a deadlock (cpu-hotplug try to lock
455	 * text_mutex but stop_machine can not be done because online_cpus
456	 * has been changed)
457	 * To avoid this deadlock, we need to call get_online_cpus()
458	 * for preventing cpu-hotplug outside of text_mutex locking.
459	 */
460	get_online_cpus();
461	mutex_lock(&text_mutex);
462	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
463		WARN_ON(kprobe_disabled(&op->kp));
464		if (arch_optimize_kprobe(op) < 0)
465			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
466		list_del_init(&op->list);
467	}
468	mutex_unlock(&text_mutex);
469	put_online_cpus();
470end:
471	mutex_unlock(&kprobe_mutex);
472	mutex_unlock(&module_mutex);
473}
474
475/* Optimize kprobe if p is ready to be optimized */
476static __kprobes void optimize_kprobe(struct kprobe *p)
477{
478	struct optimized_kprobe *op;
479
480	/* Check if the kprobe is disabled or not ready for optimization. */
481	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
482	    (kprobe_disabled(p) || kprobes_all_disarmed))
483		return;
484
485	/* Both of break_handler and post_handler are not supported. */
486	if (p->break_handler || p->post_handler)
487		return;
488
489	op = container_of(p, struct optimized_kprobe, kp);
490
491	/* Check there is no other kprobes at the optimized instructions */
492	if (arch_check_optimized_kprobe(op) < 0)
493		return;
494
495	/* Check if it is already optimized. */
496	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
497		return;
498
499	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
500	list_add(&op->list, &optimizing_list);
501	if (!delayed_work_pending(&optimizing_work))
502		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
503}
504
505/* Unoptimize a kprobe if p is optimized */
506static __kprobes void unoptimize_kprobe(struct kprobe *p)
507{
508	struct optimized_kprobe *op;
509
510	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
511		op = container_of(p, struct optimized_kprobe, kp);
512		if (!list_empty(&op->list))
513			/* Dequeue from the optimization queue */
514			list_del_init(&op->list);
515		else
516			/* Replace jump with break */
517			arch_unoptimize_kprobe(op);
518		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
519	}
520}
521
522/* Remove optimized instructions */
523static void __kprobes kill_optimized_kprobe(struct kprobe *p)
524{
525	struct optimized_kprobe *op;
526
527	op = container_of(p, struct optimized_kprobe, kp);
528	if (!list_empty(&op->list)) {
529		/* Dequeue from the optimization queue */
530		list_del_init(&op->list);
531		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
532	}
533	/* Don't unoptimize, because the target code will be freed. */
534	arch_remove_optimized_kprobe(op);
535}
536
537/* Try to prepare optimized instructions */
538static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
539{
540	struct optimized_kprobe *op;
541
542	op = container_of(p, struct optimized_kprobe, kp);
543	arch_prepare_optimized_kprobe(op);
544}
545
546/* Free optimized instructions and optimized_kprobe */
547static __kprobes void free_aggr_kprobe(struct kprobe *p)
548{
549	struct optimized_kprobe *op;
550
551	op = container_of(p, struct optimized_kprobe, kp);
552	arch_remove_optimized_kprobe(op);
553	kfree(op);
554}
555
556/* Allocate new optimized_kprobe and try to prepare optimized instructions */
557static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
558{
559	struct optimized_kprobe *op;
560
561	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
562	if (!op)
563		return NULL;
564
565	INIT_LIST_HEAD(&op->list);
566	op->kp.addr = p->addr;
567	arch_prepare_optimized_kprobe(op);
568
569	return &op->kp;
570}
571
572static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
573
574/*
575 * Prepare an optimized_kprobe and optimize it
576 * NOTE: p must be a normal registered kprobe
577 */
578static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
579{
580	struct kprobe *ap;
581	struct optimized_kprobe *op;
582
583	ap = alloc_aggr_kprobe(p);
584	if (!ap)
585		return;
586
587	op = container_of(ap, struct optimized_kprobe, kp);
588	if (!arch_prepared_optinsn(&op->optinsn)) {
589		/* If failed to setup optimizing, fallback to kprobe */
590		free_aggr_kprobe(ap);
591		return;
592	}
593
594	init_aggr_kprobe(ap, p);
595	optimize_kprobe(ap);
596}
597
598#ifdef CONFIG_SYSCTL
599/* This should be called with kprobe_mutex locked */
600static void __kprobes optimize_all_kprobes(void)
601{
602	struct hlist_head *head;
603	struct hlist_node *node;
604	struct kprobe *p;
605	unsigned int i;
606
607	/* If optimization is already allowed, just return */
608	if (kprobes_allow_optimization)
609		return;
610
611	kprobes_allow_optimization = true;
612	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
613		head = &kprobe_table[i];
614		hlist_for_each_entry_rcu(p, node, head, hlist)
615			if (!kprobe_disabled(p))
616				optimize_kprobe(p);
617	}
618	printk(KERN_INFO "Kprobes globally optimized\n");
619}
620
621/* This should be called with kprobe_mutex locked */
622static void __kprobes unoptimize_all_kprobes(void)
623{
624	struct hlist_head *head;
625	struct hlist_node *node;
626	struct kprobe *p;
627	unsigned int i;
628
629	/* If optimization is already prohibited, just return */
630	if (!kprobes_allow_optimization)
631		return;
632
633	kprobes_allow_optimization = false;
634	printk(KERN_INFO "Kprobes globally unoptimized\n");
635	get_online_cpus();	/* For avoiding text_mutex deadlock */
636	mutex_lock(&text_mutex);
637	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
638		head = &kprobe_table[i];
639		hlist_for_each_entry_rcu(p, node, head, hlist) {
640			if (!kprobe_disabled(p))
641				unoptimize_kprobe(p);
642		}
643	}
644
645	mutex_unlock(&text_mutex);
646	put_online_cpus();
647	/* Allow all currently running kprobes to complete */
648	synchronize_sched();
649}
650
651int sysctl_kprobes_optimization;
652int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
653				      void __user *buffer, size_t *length,
654				      loff_t *ppos)
655{
656	int ret;
657
658	mutex_lock(&kprobe_mutex);
659	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
660	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
661
662	if (sysctl_kprobes_optimization)
663		optimize_all_kprobes();
664	else
665		unoptimize_all_kprobes();
666	mutex_unlock(&kprobe_mutex);
667
668	return ret;
669}
670#endif /* CONFIG_SYSCTL */
671
672static void __kprobes __arm_kprobe(struct kprobe *p)
673{
674	struct kprobe *_p;
675
676	/* Check collision with other optimized kprobes */
677	_p = get_optimized_kprobe((unsigned long)p->addr);
678	if (unlikely(_p))
679		unoptimize_kprobe(_p); /* Fallback to unoptimized kprobe */
680
681	arch_arm_kprobe(p);
682	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
683}
684
685static void __kprobes __disarm_kprobe(struct kprobe *p)
686{
687	struct kprobe *_p;
688
689	unoptimize_kprobe(p);	/* Try to unoptimize */
690	arch_disarm_kprobe(p);
691
692	/* If another kprobe was blocked, optimize it. */
693	_p = get_optimized_kprobe((unsigned long)p->addr);
694	if (unlikely(_p))
695		optimize_kprobe(_p);
696}
697
698#else /* !CONFIG_OPTPROBES */
699
700#define optimize_kprobe(p)			do {} while (0)
701#define unoptimize_kprobe(p)			do {} while (0)
702#define kill_optimized_kprobe(p)		do {} while (0)
703#define prepare_optimized_kprobe(p)		do {} while (0)
704#define try_to_optimize_kprobe(p)		do {} while (0)
705#define __arm_kprobe(p)				arch_arm_kprobe(p)
706#define __disarm_kprobe(p)			arch_disarm_kprobe(p)
707
708static __kprobes void free_aggr_kprobe(struct kprobe *p)
709{
710	kfree(p);
711}
712
713static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
714{
715	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
716}
717#endif /* CONFIG_OPTPROBES */
718
719/* Arm a kprobe with text_mutex */
720static void __kprobes arm_kprobe(struct kprobe *kp)
721{
722	/*
723	 * Here, since __arm_kprobe() doesn't use stop_machine(),
724	 * this doesn't cause deadlock on text_mutex. So, we don't
725	 * need get_online_cpus().
726	 */
727	mutex_lock(&text_mutex);
728	__arm_kprobe(kp);
729	mutex_unlock(&text_mutex);
730}
731
732/* Disarm a kprobe with text_mutex */
733static void __kprobes disarm_kprobe(struct kprobe *kp)
734{
735	get_online_cpus();	/* For avoiding text_mutex deadlock */
736	mutex_lock(&text_mutex);
737	__disarm_kprobe(kp);
738	mutex_unlock(&text_mutex);
739	put_online_cpus();
740}
741
742/*
743 * Aggregate handlers for multiple kprobes support - these handlers
744 * take care of invoking the individual kprobe handlers on p->list
745 */
746static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
747{
748	struct kprobe *kp;
749
750	list_for_each_entry_rcu(kp, &p->list, list) {
751		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
752			set_kprobe_instance(kp);
753			if (kp->pre_handler(kp, regs))
754				return 1;
755		}
756		reset_kprobe_instance();
757	}
758	return 0;
759}
760
761static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
762					unsigned long flags)
763{
764	struct kprobe *kp;
765
766	list_for_each_entry_rcu(kp, &p->list, list) {
767		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
768			set_kprobe_instance(kp);
769			kp->post_handler(kp, regs, flags);
770			reset_kprobe_instance();
771		}
772	}
773}
774
775static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
776					int trapnr)
777{
778	struct kprobe *cur = __get_cpu_var(kprobe_instance);
779
780	/*
781	 * if we faulted "during" the execution of a user specified
782	 * probe handler, invoke just that probe's fault handler
783	 */
784	if (cur && cur->fault_handler) {
785		if (cur->fault_handler(cur, regs, trapnr))
786			return 1;
787	}
788	return 0;
789}
790
791static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
792{
793	struct kprobe *cur = __get_cpu_var(kprobe_instance);
794	int ret = 0;
795
796	if (cur && cur->break_handler) {
797		if (cur->break_handler(cur, regs))
798			ret = 1;
799	}
800	reset_kprobe_instance();
801	return ret;
802}
803
804/* Walks the list and increments nmissed count for multiprobe case */
805void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
806{
807	struct kprobe *kp;
808	if (!kprobe_aggrprobe(p)) {
809		p->nmissed++;
810	} else {
811		list_for_each_entry_rcu(kp, &p->list, list)
812			kp->nmissed++;
813	}
814	return;
815}
816
817void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
818				struct hlist_head *head)
819{
820	struct kretprobe *rp = ri->rp;
821
822	/* remove rp inst off the rprobe_inst_table */
823	hlist_del(&ri->hlist);
824	INIT_HLIST_NODE(&ri->hlist);
825	if (likely(rp)) {
826		spin_lock(&rp->lock);
827		hlist_add_head(&ri->hlist, &rp->free_instances);
828		spin_unlock(&rp->lock);
829	} else
830		/* Unregistering */
831		hlist_add_head(&ri->hlist, head);
832}
833
834void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
835			 struct hlist_head **head, unsigned long *flags)
836__acquires(hlist_lock)
837{
838	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
839	spinlock_t *hlist_lock;
840
841	*head = &kretprobe_inst_table[hash];
842	hlist_lock = kretprobe_table_lock_ptr(hash);
843	spin_lock_irqsave(hlist_lock, *flags);
844}
845
846static void __kprobes kretprobe_table_lock(unsigned long hash,
847	unsigned long *flags)
848__acquires(hlist_lock)
849{
850	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
851	spin_lock_irqsave(hlist_lock, *flags);
852}
853
854void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
855	unsigned long *flags)
856__releases(hlist_lock)
857{
858	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
859	spinlock_t *hlist_lock;
860
861	hlist_lock = kretprobe_table_lock_ptr(hash);
862	spin_unlock_irqrestore(hlist_lock, *flags);
863}
864
865static void __kprobes kretprobe_table_unlock(unsigned long hash,
866       unsigned long *flags)
867__releases(hlist_lock)
868{
869	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
870	spin_unlock_irqrestore(hlist_lock, *flags);
871}
872
873/*
874 * This function is called from finish_task_switch when task tk becomes dead,
875 * so that we can recycle any function-return probe instances associated
876 * with this task. These left over instances represent probed functions
877 * that have been called but will never return.
878 */
879void __kprobes kprobe_flush_task(struct task_struct *tk)
880{
881	struct kretprobe_instance *ri;
882	struct hlist_head *head, empty_rp;
883	struct hlist_node *node, *tmp;
884	unsigned long hash, flags = 0;
885
886	if (unlikely(!kprobes_initialized))
887		/* Early boot.  kretprobe_table_locks not yet initialized. */
888		return;
889
890	hash = hash_ptr(tk, KPROBE_HASH_BITS);
891	head = &kretprobe_inst_table[hash];
892	kretprobe_table_lock(hash, &flags);
893	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
894		if (ri->task == tk)
895			recycle_rp_inst(ri, &empty_rp);
896	}
897	kretprobe_table_unlock(hash, &flags);
898	INIT_HLIST_HEAD(&empty_rp);
899	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
900		hlist_del(&ri->hlist);
901		kfree(ri);
902	}
903}
904
905static inline void free_rp_inst(struct kretprobe *rp)
906{
907	struct kretprobe_instance *ri;
908	struct hlist_node *pos, *next;
909
910	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
911		hlist_del(&ri->hlist);
912		kfree(ri);
913	}
914}
915
916static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
917{
918	unsigned long flags, hash;
919	struct kretprobe_instance *ri;
920	struct hlist_node *pos, *next;
921	struct hlist_head *head;
922
923	/* No race here */
924	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
925		kretprobe_table_lock(hash, &flags);
926		head = &kretprobe_inst_table[hash];
927		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
928			if (ri->rp == rp)
929				ri->rp = NULL;
930		}
931		kretprobe_table_unlock(hash, &flags);
932	}
933	free_rp_inst(rp);
934}
935
936/*
937* Add the new probe to ap->list. Fail if this is the
938* second jprobe at the address - two jprobes can't coexist
939*/
940static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
941{
942	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
943
944	if (p->break_handler || p->post_handler)
945		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
946
947	if (p->break_handler) {
948		if (ap->break_handler)
949			return -EEXIST;
950		list_add_tail_rcu(&p->list, &ap->list);
951		ap->break_handler = aggr_break_handler;
952	} else
953		list_add_rcu(&p->list, &ap->list);
954	if (p->post_handler && !ap->post_handler)
955		ap->post_handler = aggr_post_handler;
956
957	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
958		ap->flags &= ~KPROBE_FLAG_DISABLED;
959		if (!kprobes_all_disarmed)
960			/* Arm the breakpoint again. */
961			__arm_kprobe(ap);
962	}
963	return 0;
964}
965
966/*
967 * Fill in the required fields of the "manager kprobe". Replace the
968 * earlier kprobe in the hlist with the manager kprobe
969 */
970static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
971{
972	/* Copy p's insn slot to ap */
973	copy_kprobe(p, ap);
974	flush_insn_slot(ap);
975	ap->addr = p->addr;
976	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
977	ap->pre_handler = aggr_pre_handler;
978	ap->fault_handler = aggr_fault_handler;
979	/* We don't care the kprobe which has gone. */
980	if (p->post_handler && !kprobe_gone(p))
981		ap->post_handler = aggr_post_handler;
982	if (p->break_handler && !kprobe_gone(p))
983		ap->break_handler = aggr_break_handler;
984
985	INIT_LIST_HEAD(&ap->list);
986	INIT_HLIST_NODE(&ap->hlist);
987
988	list_add_rcu(&p->list, &ap->list);
989	hlist_replace_rcu(&p->hlist, &ap->hlist);
990}
991
992/*
993 * This is the second or subsequent kprobe at the address - handle
994 * the intricacies
995 */
996static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
997					  struct kprobe *p)
998{
999	int ret = 0;
1000	struct kprobe *ap = orig_p;
1001
1002	if (!kprobe_aggrprobe(orig_p)) {
1003		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1004		ap = alloc_aggr_kprobe(orig_p);
1005		if (!ap)
1006			return -ENOMEM;
1007		init_aggr_kprobe(ap, orig_p);
1008	}
1009
1010	if (kprobe_gone(ap)) {
1011		/*
1012		 * Attempting to insert new probe at the same location that
1013		 * had a probe in the module vaddr area which already
1014		 * freed. So, the instruction slot has already been
1015		 * released. We need a new slot for the new probe.
1016		 */
1017		ret = arch_prepare_kprobe(ap);
1018		if (ret)
1019			/*
1020			 * Even if fail to allocate new slot, don't need to
1021			 * free aggr_probe. It will be used next time, or
1022			 * freed by unregister_kprobe.
1023			 */
1024			return ret;
1025
1026		/* Prepare optimized instructions if possible. */
1027		prepare_optimized_kprobe(ap);
1028
1029		/*
1030		 * Clear gone flag to prevent allocating new slot again, and
1031		 * set disabled flag because it is not armed yet.
1032		 */
1033		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1034			    | KPROBE_FLAG_DISABLED;
1035	}
1036
1037	/* Copy ap's insn slot to p */
1038	copy_kprobe(ap, p);
1039	return add_new_kprobe(ap, p);
1040}
1041
1042static int __kprobes in_kprobes_functions(unsigned long addr)
1043{
1044	struct kprobe_blackpoint *kb;
1045
1046	if (addr >= (unsigned long)__kprobes_text_start &&
1047	    addr < (unsigned long)__kprobes_text_end)
1048		return -EINVAL;
1049	/*
1050	 * If there exists a kprobe_blacklist, verify and
1051	 * fail any probe registration in the prohibited area
1052	 */
1053	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1054		if (kb->start_addr) {
1055			if (addr >= kb->start_addr &&
1056			    addr < (kb->start_addr + kb->range))
1057				return -EINVAL;
1058		}
1059	}
1060	return 0;
1061}
1062
1063/*
1064 * If we have a symbol_name argument, look it up and add the offset field
1065 * to it. This way, we can specify a relative address to a symbol.
1066 */
1067static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1068{
1069	kprobe_opcode_t *addr = p->addr;
1070	if (p->symbol_name) {
1071		if (addr)
1072			return NULL;
1073		kprobe_lookup_name(p->symbol_name, addr);
1074	}
1075
1076	if (!addr)
1077		return NULL;
1078	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1079}
1080
1081/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1082static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1083{
1084	struct kprobe *ap, *list_p;
1085
1086	ap = get_kprobe(p->addr);
1087	if (unlikely(!ap))
1088		return NULL;
1089
1090	if (p != ap) {
1091		list_for_each_entry_rcu(list_p, &ap->list, list)
1092			if (list_p == p)
1093			/* kprobe p is a valid probe */
1094				goto valid;
1095		return NULL;
1096	}
1097valid:
1098	return ap;
1099}
1100
1101/* Return error if the kprobe is being re-registered */
1102static inline int check_kprobe_rereg(struct kprobe *p)
1103{
1104	int ret = 0;
1105
1106	mutex_lock(&kprobe_mutex);
1107	if (__get_valid_kprobe(p))
1108		ret = -EINVAL;
1109	mutex_unlock(&kprobe_mutex);
1110
1111	return ret;
1112}
1113
1114int __kprobes register_kprobe(struct kprobe *p)
1115{
1116	int ret = 0;
1117	struct kprobe *old_p;
1118	struct module *probed_mod;
1119	kprobe_opcode_t *addr;
1120
1121	addr = kprobe_addr(p);
1122	if (!addr)
1123		return -EINVAL;
1124	p->addr = addr;
1125
1126	ret = check_kprobe_rereg(p);
1127	if (ret)
1128		return ret;
1129
1130	jump_label_lock();
1131	preempt_disable();
1132	if (!kernel_text_address((unsigned long) p->addr) ||
1133	    in_kprobes_functions((unsigned long) p->addr) ||
1134	    ftrace_text_reserved(p->addr, p->addr) ||
1135	    jump_label_text_reserved(p->addr, p->addr))
1136		goto fail_with_jump_label;
1137
1138	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1139	p->flags &= KPROBE_FLAG_DISABLED;
1140
1141	/*
1142	 * Check if are we probing a module.
1143	 */
1144	probed_mod = __module_text_address((unsigned long) p->addr);
1145	if (probed_mod) {
1146		/*
1147		 * We must hold a refcount of the probed module while updating
1148		 * its code to prohibit unexpected unloading.
1149		 */
1150		if (unlikely(!try_module_get(probed_mod)))
1151			goto fail_with_jump_label;
1152
1153		/*
1154		 * If the module freed .init.text, we couldn't insert
1155		 * kprobes in there.
1156		 */
1157		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1158		    probed_mod->state != MODULE_STATE_COMING) {
1159			module_put(probed_mod);
1160			goto fail_with_jump_label;
1161		}
1162	}
1163	preempt_enable();
1164	jump_label_unlock();
1165
1166	p->nmissed = 0;
1167	INIT_LIST_HEAD(&p->list);
1168	mutex_lock(&kprobe_mutex);
1169
1170	jump_label_lock(); /* needed to call jump_label_text_reserved() */
1171
1172	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1173	mutex_lock(&text_mutex);
1174
1175	old_p = get_kprobe(p->addr);
1176	if (old_p) {
1177		/* Since this may unoptimize old_p, locking text_mutex. */
1178		ret = register_aggr_kprobe(old_p, p);
1179		goto out;
1180	}
1181
1182	ret = arch_prepare_kprobe(p);
1183	if (ret)
1184		goto out;
1185
1186	INIT_HLIST_NODE(&p->hlist);
1187	hlist_add_head_rcu(&p->hlist,
1188		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1189
1190	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1191		__arm_kprobe(p);
1192
1193	/* Try to optimize kprobe */
1194	try_to_optimize_kprobe(p);
1195
1196out:
1197	mutex_unlock(&text_mutex);
1198	put_online_cpus();
1199	jump_label_unlock();
1200	mutex_unlock(&kprobe_mutex);
1201
1202	if (probed_mod)
1203		module_put(probed_mod);
1204
1205	return ret;
1206
1207fail_with_jump_label:
1208	preempt_enable();
1209	jump_label_unlock();
1210	return -EINVAL;
1211}
1212EXPORT_SYMBOL_GPL(register_kprobe);
1213
1214/* Check if all probes on the aggrprobe are disabled */
1215static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1216{
1217	struct kprobe *kp;
1218
1219	list_for_each_entry_rcu(kp, &ap->list, list)
1220		if (!kprobe_disabled(kp))
1221			/*
1222			 * There is an active probe on the list.
1223			 * We can't disable this ap.
1224			 */
1225			return 0;
1226
1227	return 1;
1228}
1229
1230/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1231static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1232{
1233	struct kprobe *orig_p;
1234
1235	/* Get an original kprobe for return */
1236	orig_p = __get_valid_kprobe(p);
1237	if (unlikely(orig_p == NULL))
1238		return NULL;
1239
1240	if (!kprobe_disabled(p)) {
1241		/* Disable probe if it is a child probe */
1242		if (p != orig_p)
1243			p->flags |= KPROBE_FLAG_DISABLED;
1244
1245		/* Try to disarm and disable this/parent probe */
1246		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1247			disarm_kprobe(orig_p);
1248			orig_p->flags |= KPROBE_FLAG_DISABLED;
1249		}
1250	}
1251
1252	return orig_p;
1253}
1254
1255/*
1256 * Unregister a kprobe without a scheduler synchronization.
1257 */
1258static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1259{
1260	struct kprobe *ap, *list_p;
1261
1262	/* Disable kprobe. This will disarm it if needed. */
1263	ap = __disable_kprobe(p);
1264	if (ap == NULL)
1265		return -EINVAL;
1266
1267	if (ap == p)
1268		/*
1269		 * This probe is an independent(and non-optimized) kprobe
1270		 * (not an aggrprobe). Remove from the hash list.
1271		 */
1272		goto disarmed;
1273
1274	/* Following process expects this probe is an aggrprobe */
1275	WARN_ON(!kprobe_aggrprobe(ap));
1276
1277	if (list_is_singular(&ap->list))
1278		/* This probe is the last child of aggrprobe */
1279		goto disarmed;
1280	else {
1281		/* If disabling probe has special handlers, update aggrprobe */
1282		if (p->break_handler && !kprobe_gone(p))
1283			ap->break_handler = NULL;
1284		if (p->post_handler && !kprobe_gone(p)) {
1285			list_for_each_entry_rcu(list_p, &ap->list, list) {
1286				if ((list_p != p) && (list_p->post_handler))
1287					goto noclean;
1288			}
1289			ap->post_handler = NULL;
1290		}
1291noclean:
1292		/*
1293		 * Remove from the aggrprobe: this path will do nothing in
1294		 * __unregister_kprobe_bottom().
1295		 */
1296		list_del_rcu(&p->list);
1297		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1298			/*
1299			 * Try to optimize this probe again, because post
1300			 * handler may have been changed.
1301			 */
1302			optimize_kprobe(ap);
1303	}
1304	return 0;
1305
1306disarmed:
1307	hlist_del_rcu(&ap->hlist);
1308	return 0;
1309}
1310
1311static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1312{
1313	struct kprobe *ap;
1314
1315	if (list_empty(&p->list))
1316		arch_remove_kprobe(p);
1317	else if (list_is_singular(&p->list)) {
1318		/* "p" is the last child of an aggr_kprobe */
1319		ap = list_entry(p->list.next, struct kprobe, list);
1320		list_del(&p->list);
1321		arch_remove_kprobe(ap);
1322		free_aggr_kprobe(ap);
1323	}
1324}
1325
1326int __kprobes register_kprobes(struct kprobe **kps, int num)
1327{
1328	int i, ret = 0;
1329
1330	if (num <= 0)
1331		return -EINVAL;
1332	for (i = 0; i < num; i++) {
1333		ret = register_kprobe(kps[i]);
1334		if (ret < 0) {
1335			if (i > 0)
1336				unregister_kprobes(kps, i);
1337			break;
1338		}
1339	}
1340	return ret;
1341}
1342EXPORT_SYMBOL_GPL(register_kprobes);
1343
1344void __kprobes unregister_kprobe(struct kprobe *p)
1345{
1346	unregister_kprobes(&p, 1);
1347}
1348EXPORT_SYMBOL_GPL(unregister_kprobe);
1349
1350void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1351{
1352	int i;
1353
1354	if (num <= 0)
1355		return;
1356	mutex_lock(&kprobe_mutex);
1357	for (i = 0; i < num; i++)
1358		if (__unregister_kprobe_top(kps[i]) < 0)
1359			kps[i]->addr = NULL;
1360	mutex_unlock(&kprobe_mutex);
1361
1362	synchronize_sched();
1363	for (i = 0; i < num; i++)
1364		if (kps[i]->addr)
1365			__unregister_kprobe_bottom(kps[i]);
1366}
1367EXPORT_SYMBOL_GPL(unregister_kprobes);
1368
1369static struct notifier_block kprobe_exceptions_nb = {
1370	.notifier_call = kprobe_exceptions_notify,
1371	.priority = 0x7fffffff /* we need to be notified first */
1372};
1373
1374unsigned long __weak arch_deref_entry_point(void *entry)
1375{
1376	return (unsigned long)entry;
1377}
1378
1379int __kprobes register_jprobes(struct jprobe **jps, int num)
1380{
1381	struct jprobe *jp;
1382	int ret = 0, i;
1383
1384	if (num <= 0)
1385		return -EINVAL;
1386	for (i = 0; i < num; i++) {
1387		unsigned long addr, offset;
1388		jp = jps[i];
1389		addr = arch_deref_entry_point(jp->entry);
1390
1391		/* Verify probepoint is a function entry point */
1392		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1393		    offset == 0) {
1394			jp->kp.pre_handler = setjmp_pre_handler;
1395			jp->kp.break_handler = longjmp_break_handler;
1396			ret = register_kprobe(&jp->kp);
1397		} else
1398			ret = -EINVAL;
1399
1400		if (ret < 0) {
1401			if (i > 0)
1402				unregister_jprobes(jps, i);
1403			break;
1404		}
1405	}
1406	return ret;
1407}
1408EXPORT_SYMBOL_GPL(register_jprobes);
1409
1410int __kprobes register_jprobe(struct jprobe *jp)
1411{
1412	return register_jprobes(&jp, 1);
1413}
1414EXPORT_SYMBOL_GPL(register_jprobe);
1415
1416void __kprobes unregister_jprobe(struct jprobe *jp)
1417{
1418	unregister_jprobes(&jp, 1);
1419}
1420EXPORT_SYMBOL_GPL(unregister_jprobe);
1421
1422void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1423{
1424	int i;
1425
1426	if (num <= 0)
1427		return;
1428	mutex_lock(&kprobe_mutex);
1429	for (i = 0; i < num; i++)
1430		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1431			jps[i]->kp.addr = NULL;
1432	mutex_unlock(&kprobe_mutex);
1433
1434	synchronize_sched();
1435	for (i = 0; i < num; i++) {
1436		if (jps[i]->kp.addr)
1437			__unregister_kprobe_bottom(&jps[i]->kp);
1438	}
1439}
1440EXPORT_SYMBOL_GPL(unregister_jprobes);
1441
1442#ifdef CONFIG_KRETPROBES
1443/*
1444 * This kprobe pre_handler is registered with every kretprobe. When probe
1445 * hits it will set up the return probe.
1446 */
1447static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1448					   struct pt_regs *regs)
1449{
1450	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1451	unsigned long hash, flags = 0;
1452	struct kretprobe_instance *ri;
1453
1454	/*TODO: consider to only swap the RA after the last pre_handler fired */
1455	hash = hash_ptr(current, KPROBE_HASH_BITS);
1456	spin_lock_irqsave(&rp->lock, flags);
1457	if (!hlist_empty(&rp->free_instances)) {
1458		ri = hlist_entry(rp->free_instances.first,
1459				struct kretprobe_instance, hlist);
1460		hlist_del(&ri->hlist);
1461		spin_unlock_irqrestore(&rp->lock, flags);
1462
1463		ri->rp = rp;
1464		ri->task = current;
1465
1466		if (rp->entry_handler && rp->entry_handler(ri, regs))
1467			return 0;
1468
1469		arch_prepare_kretprobe(ri, regs);
1470
1471		/* XXX(hch): why is there no hlist_move_head? */
1472		INIT_HLIST_NODE(&ri->hlist);
1473		kretprobe_table_lock(hash, &flags);
1474		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1475		kretprobe_table_unlock(hash, &flags);
1476	} else {
1477		rp->nmissed++;
1478		spin_unlock_irqrestore(&rp->lock, flags);
1479	}
1480	return 0;
1481}
1482
1483int __kprobes register_kretprobe(struct kretprobe *rp)
1484{
1485	int ret = 0;
1486	struct kretprobe_instance *inst;
1487	int i;
1488	void *addr;
1489
1490	if (kretprobe_blacklist_size) {
1491		addr = kprobe_addr(&rp->kp);
1492		if (!addr)
1493			return -EINVAL;
1494
1495		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1496			if (kretprobe_blacklist[i].addr == addr)
1497				return -EINVAL;
1498		}
1499	}
1500
1501	rp->kp.pre_handler = pre_handler_kretprobe;
1502	rp->kp.post_handler = NULL;
1503	rp->kp.fault_handler = NULL;
1504	rp->kp.break_handler = NULL;
1505
1506	/* Pre-allocate memory for max kretprobe instances */
1507	if (rp->maxactive <= 0) {
1508#ifdef CONFIG_PREEMPT
1509		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1510#else
1511		rp->maxactive = num_possible_cpus();
1512#endif
1513	}
1514	spin_lock_init(&rp->lock);
1515	INIT_HLIST_HEAD(&rp->free_instances);
1516	for (i = 0; i < rp->maxactive; i++) {
1517		inst = kmalloc(sizeof(struct kretprobe_instance) +
1518			       rp->data_size, GFP_KERNEL);
1519		if (inst == NULL) {
1520			free_rp_inst(rp);
1521			return -ENOMEM;
1522		}
1523		INIT_HLIST_NODE(&inst->hlist);
1524		hlist_add_head(&inst->hlist, &rp->free_instances);
1525	}
1526
1527	rp->nmissed = 0;
1528	/* Establish function entry probe point */
1529	ret = register_kprobe(&rp->kp);
1530	if (ret != 0)
1531		free_rp_inst(rp);
1532	return ret;
1533}
1534EXPORT_SYMBOL_GPL(register_kretprobe);
1535
1536int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1537{
1538	int ret = 0, i;
1539
1540	if (num <= 0)
1541		return -EINVAL;
1542	for (i = 0; i < num; i++) {
1543		ret = register_kretprobe(rps[i]);
1544		if (ret < 0) {
1545			if (i > 0)
1546				unregister_kretprobes(rps, i);
1547			break;
1548		}
1549	}
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(register_kretprobes);
1553
1554void __kprobes unregister_kretprobe(struct kretprobe *rp)
1555{
1556	unregister_kretprobes(&rp, 1);
1557}
1558EXPORT_SYMBOL_GPL(unregister_kretprobe);
1559
1560void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1561{
1562	int i;
1563
1564	if (num <= 0)
1565		return;
1566	mutex_lock(&kprobe_mutex);
1567	for (i = 0; i < num; i++)
1568		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1569			rps[i]->kp.addr = NULL;
1570	mutex_unlock(&kprobe_mutex);
1571
1572	synchronize_sched();
1573	for (i = 0; i < num; i++) {
1574		if (rps[i]->kp.addr) {
1575			__unregister_kprobe_bottom(&rps[i]->kp);
1576			cleanup_rp_inst(rps[i]);
1577		}
1578	}
1579}
1580EXPORT_SYMBOL_GPL(unregister_kretprobes);
1581
1582#else /* CONFIG_KRETPROBES */
1583int __kprobes register_kretprobe(struct kretprobe *rp)
1584{
1585	return -ENOSYS;
1586}
1587EXPORT_SYMBOL_GPL(register_kretprobe);
1588
1589int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1590{
1591	return -ENOSYS;
1592}
1593EXPORT_SYMBOL_GPL(register_kretprobes);
1594
1595void __kprobes unregister_kretprobe(struct kretprobe *rp)
1596{
1597}
1598EXPORT_SYMBOL_GPL(unregister_kretprobe);
1599
1600void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1601{
1602}
1603EXPORT_SYMBOL_GPL(unregister_kretprobes);
1604
1605static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1606					   struct pt_regs *regs)
1607{
1608	return 0;
1609}
1610
1611#endif /* CONFIG_KRETPROBES */
1612
1613/* Set the kprobe gone and remove its instruction buffer. */
1614static void __kprobes kill_kprobe(struct kprobe *p)
1615{
1616	struct kprobe *kp;
1617
1618	p->flags |= KPROBE_FLAG_GONE;
1619	if (kprobe_aggrprobe(p)) {
1620		/*
1621		 * If this is an aggr_kprobe, we have to list all the
1622		 * chained probes and mark them GONE.
1623		 */
1624		list_for_each_entry_rcu(kp, &p->list, list)
1625			kp->flags |= KPROBE_FLAG_GONE;
1626		p->post_handler = NULL;
1627		p->break_handler = NULL;
1628		kill_optimized_kprobe(p);
1629	}
1630	/*
1631	 * Here, we can remove insn_slot safely, because no thread calls
1632	 * the original probed function (which will be freed soon) any more.
1633	 */
1634	arch_remove_kprobe(p);
1635}
1636
1637/* Disable one kprobe */
1638int __kprobes disable_kprobe(struct kprobe *kp)
1639{
1640	int ret = 0;
1641
1642	mutex_lock(&kprobe_mutex);
1643
1644	/* Disable this kprobe */
1645	if (__disable_kprobe(kp) == NULL)
1646		ret = -EINVAL;
1647
1648	mutex_unlock(&kprobe_mutex);
1649	return ret;
1650}
1651EXPORT_SYMBOL_GPL(disable_kprobe);
1652
1653/* Enable one kprobe */
1654int __kprobes enable_kprobe(struct kprobe *kp)
1655{
1656	int ret = 0;
1657	struct kprobe *p;
1658
1659	mutex_lock(&kprobe_mutex);
1660
1661	/* Check whether specified probe is valid. */
1662	p = __get_valid_kprobe(kp);
1663	if (unlikely(p == NULL)) {
1664		ret = -EINVAL;
1665		goto out;
1666	}
1667
1668	if (kprobe_gone(kp)) {
1669		/* This kprobe has gone, we couldn't enable it. */
1670		ret = -EINVAL;
1671		goto out;
1672	}
1673
1674	if (p != kp)
1675		kp->flags &= ~KPROBE_FLAG_DISABLED;
1676
1677	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1678		p->flags &= ~KPROBE_FLAG_DISABLED;
1679		arm_kprobe(p);
1680	}
1681out:
1682	mutex_unlock(&kprobe_mutex);
1683	return ret;
1684}
1685EXPORT_SYMBOL_GPL(enable_kprobe);
1686
1687void __kprobes dump_kprobe(struct kprobe *kp)
1688{
1689	printk(KERN_WARNING "Dumping kprobe:\n");
1690	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1691	       kp->symbol_name, kp->addr, kp->offset);
1692}
1693
1694/* Module notifier call back, checking kprobes on the module */
1695static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1696					     unsigned long val, void *data)
1697{
1698	struct module *mod = data;
1699	struct hlist_head *head;
1700	struct hlist_node *node;
1701	struct kprobe *p;
1702	unsigned int i;
1703	int checkcore = (val == MODULE_STATE_GOING);
1704
1705	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1706		return NOTIFY_DONE;
1707
1708	/*
1709	 * When MODULE_STATE_GOING was notified, both of module .text and
1710	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1711	 * notified, only .init.text section would be freed. We need to
1712	 * disable kprobes which have been inserted in the sections.
1713	 */
1714	mutex_lock(&kprobe_mutex);
1715	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1716		head = &kprobe_table[i];
1717		hlist_for_each_entry_rcu(p, node, head, hlist)
1718			if (within_module_init((unsigned long)p->addr, mod) ||
1719			    (checkcore &&
1720			     within_module_core((unsigned long)p->addr, mod))) {
1721				/*
1722				 * The vaddr this probe is installed will soon
1723				 * be vfreed buy not synced to disk. Hence,
1724				 * disarming the breakpoint isn't needed.
1725				 */
1726				kill_kprobe(p);
1727			}
1728	}
1729	mutex_unlock(&kprobe_mutex);
1730	return NOTIFY_DONE;
1731}
1732
1733static struct notifier_block kprobe_module_nb = {
1734	.notifier_call = kprobes_module_callback,
1735	.priority = 0
1736};
1737
1738static int __init init_kprobes(void)
1739{
1740	int i, err = 0;
1741	unsigned long offset = 0, size = 0;
1742	char *modname, namebuf[128];
1743	const char *symbol_name;
1744	void *addr;
1745	struct kprobe_blackpoint *kb;
1746
1747	/* FIXME allocate the probe table, currently defined statically */
1748	/* initialize all list heads */
1749	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1750		INIT_HLIST_HEAD(&kprobe_table[i]);
1751		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1752		spin_lock_init(&(kretprobe_table_locks[i].lock));
1753	}
1754
1755	/*
1756	 * Lookup and populate the kprobe_blacklist.
1757	 *
1758	 * Unlike the kretprobe blacklist, we'll need to determine
1759	 * the range of addresses that belong to the said functions,
1760	 * since a kprobe need not necessarily be at the beginning
1761	 * of a function.
1762	 */
1763	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1764		kprobe_lookup_name(kb->name, addr);
1765		if (!addr)
1766			continue;
1767
1768		kb->start_addr = (unsigned long)addr;
1769		symbol_name = kallsyms_lookup(kb->start_addr,
1770				&size, &offset, &modname, namebuf);
1771		if (!symbol_name)
1772			kb->range = 0;
1773		else
1774			kb->range = size;
1775	}
1776
1777	if (kretprobe_blacklist_size) {
1778		/* lookup the function address from its name */
1779		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1780			kprobe_lookup_name(kretprobe_blacklist[i].name,
1781					   kretprobe_blacklist[i].addr);
1782			if (!kretprobe_blacklist[i].addr)
1783				printk("kretprobe: lookup failed: %s\n",
1784				       kretprobe_blacklist[i].name);
1785		}
1786	}
1787
1788#if defined(CONFIG_OPTPROBES)
1789#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1790	/* Init kprobe_optinsn_slots */
1791	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1792#endif
1793	/* By default, kprobes can be optimized */
1794	kprobes_allow_optimization = true;
1795#endif
1796
1797	/* By default, kprobes are armed */
1798	kprobes_all_disarmed = false;
1799
1800	err = arch_init_kprobes();
1801	if (!err)
1802		err = register_die_notifier(&kprobe_exceptions_nb);
1803	if (!err)
1804		err = register_module_notifier(&kprobe_module_nb);
1805
1806	kprobes_initialized = (err == 0);
1807
1808	if (!err)
1809		init_test_probes();
1810	return err;
1811}
1812
1813#ifdef CONFIG_DEBUG_FS
1814static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1815		const char *sym, int offset, char *modname, struct kprobe *pp)
1816{
1817	char *kprobe_type;
1818
1819	if (p->pre_handler == pre_handler_kretprobe)
1820		kprobe_type = "r";
1821	else if (p->pre_handler == setjmp_pre_handler)
1822		kprobe_type = "j";
1823	else
1824		kprobe_type = "k";
1825
1826	if (sym)
1827		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1828			p->addr, kprobe_type, sym, offset,
1829			(modname ? modname : " "));
1830	else
1831		seq_printf(pi, "%p  %s  %p ",
1832			p->addr, kprobe_type, p->addr);
1833
1834	if (!pp)
1835		pp = p;
1836	seq_printf(pi, "%s%s%s\n",
1837		(kprobe_gone(p) ? "[GONE]" : ""),
1838		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1839		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1840}
1841
1842static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1843{
1844	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1845}
1846
1847static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1848{
1849	(*pos)++;
1850	if (*pos >= KPROBE_TABLE_SIZE)
1851		return NULL;
1852	return pos;
1853}
1854
1855static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1856{
1857	/* Nothing to do */
1858}
1859
1860static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1861{
1862	struct hlist_head *head;
1863	struct hlist_node *node;
1864	struct kprobe *p, *kp;
1865	const char *sym = NULL;
1866	unsigned int i = *(loff_t *) v;
1867	unsigned long offset = 0;
1868	char *modname, namebuf[128];
1869
1870	head = &kprobe_table[i];
1871	preempt_disable();
1872	hlist_for_each_entry_rcu(p, node, head, hlist) {
1873		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1874					&offset, &modname, namebuf);
1875		if (kprobe_aggrprobe(p)) {
1876			list_for_each_entry_rcu(kp, &p->list, list)
1877				report_probe(pi, kp, sym, offset, modname, p);
1878		} else
1879			report_probe(pi, p, sym, offset, modname, NULL);
1880	}
1881	preempt_enable();
1882	return 0;
1883}
1884
1885static const struct seq_operations kprobes_seq_ops = {
1886	.start = kprobe_seq_start,
1887	.next  = kprobe_seq_next,
1888	.stop  = kprobe_seq_stop,
1889	.show  = show_kprobe_addr
1890};
1891
1892static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1893{
1894	return seq_open(filp, &kprobes_seq_ops);
1895}
1896
1897static const struct file_operations debugfs_kprobes_operations = {
1898	.open           = kprobes_open,
1899	.read           = seq_read,
1900	.llseek         = seq_lseek,
1901	.release        = seq_release,
1902};
1903
1904static void __kprobes arm_all_kprobes(void)
1905{
1906	struct hlist_head *head;
1907	struct hlist_node *node;
1908	struct kprobe *p;
1909	unsigned int i;
1910
1911	mutex_lock(&kprobe_mutex);
1912
1913	/* If kprobes are armed, just return */
1914	if (!kprobes_all_disarmed)
1915		goto already_enabled;
1916
1917	/* Arming kprobes doesn't optimize kprobe itself */
1918	mutex_lock(&text_mutex);
1919	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1920		head = &kprobe_table[i];
1921		hlist_for_each_entry_rcu(p, node, head, hlist)
1922			if (!kprobe_disabled(p))
1923				__arm_kprobe(p);
1924	}
1925	mutex_unlock(&text_mutex);
1926
1927	kprobes_all_disarmed = false;
1928	printk(KERN_INFO "Kprobes globally enabled\n");
1929
1930already_enabled:
1931	mutex_unlock(&kprobe_mutex);
1932	return;
1933}
1934
1935static void __kprobes disarm_all_kprobes(void)
1936{
1937	struct hlist_head *head;
1938	struct hlist_node *node;
1939	struct kprobe *p;
1940	unsigned int i;
1941
1942	mutex_lock(&kprobe_mutex);
1943
1944	/* If kprobes are already disarmed, just return */
1945	if (kprobes_all_disarmed)
1946		goto already_disabled;
1947
1948	kprobes_all_disarmed = true;
1949	printk(KERN_INFO "Kprobes globally disabled\n");
1950
1951	/*
1952	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1953	 * because disarming may also unoptimize kprobes.
1954	 */
1955	get_online_cpus();
1956	mutex_lock(&text_mutex);
1957	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1958		head = &kprobe_table[i];
1959		hlist_for_each_entry_rcu(p, node, head, hlist) {
1960			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1961				__disarm_kprobe(p);
1962		}
1963	}
1964
1965	mutex_unlock(&text_mutex);
1966	put_online_cpus();
1967	mutex_unlock(&kprobe_mutex);
1968	/* Allow all currently running kprobes to complete */
1969	synchronize_sched();
1970	return;
1971
1972already_disabled:
1973	mutex_unlock(&kprobe_mutex);
1974	return;
1975}
1976
1977/*
1978 * XXX: The debugfs bool file interface doesn't allow for callbacks
1979 * when the bool state is switched. We can reuse that facility when
1980 * available
1981 */
1982static ssize_t read_enabled_file_bool(struct file *file,
1983	       char __user *user_buf, size_t count, loff_t *ppos)
1984{
1985	char buf[3];
1986
1987	if (!kprobes_all_disarmed)
1988		buf[0] = '1';
1989	else
1990		buf[0] = '0';
1991	buf[1] = '\n';
1992	buf[2] = 0x00;
1993	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1994}
1995
1996static ssize_t write_enabled_file_bool(struct file *file,
1997	       const char __user *user_buf, size_t count, loff_t *ppos)
1998{
1999	char buf[32];
2000	int buf_size;
2001
2002	buf_size = min(count, (sizeof(buf)-1));
2003	if (copy_from_user(buf, user_buf, buf_size))
2004		return -EFAULT;
2005
2006	switch (buf[0]) {
2007	case 'y':
2008	case 'Y':
2009	case '1':
2010		arm_all_kprobes();
2011		break;
2012	case 'n':
2013	case 'N':
2014	case '0':
2015		disarm_all_kprobes();
2016		break;
2017	}
2018
2019	return count;
2020}
2021
2022static const struct file_operations fops_kp = {
2023	.read =         read_enabled_file_bool,
2024	.write =        write_enabled_file_bool,
2025	.llseek =	default_llseek,
2026};
2027
2028static int __kprobes debugfs_kprobe_init(void)
2029{
2030	struct dentry *dir, *file;
2031	unsigned int value = 1;
2032
2033	dir = debugfs_create_dir("kprobes", NULL);
2034	if (!dir)
2035		return -ENOMEM;
2036
2037	file = debugfs_create_file("list", 0444, dir, NULL,
2038				&debugfs_kprobes_operations);
2039	if (!file) {
2040		debugfs_remove(dir);
2041		return -ENOMEM;
2042	}
2043
2044	file = debugfs_create_file("enabled", 0600, dir,
2045					&value, &fops_kp);
2046	if (!file) {
2047		debugfs_remove(dir);
2048		return -ENOMEM;
2049	}
2050
2051	return 0;
2052}
2053
2054late_initcall(debugfs_kprobe_init);
2055#endif /* CONFIG_DEBUG_FS */
2056
2057module_init(init_kprobes);
2058
2059/* defined in arch/.../kernel/kprobes.c */
2060EXPORT_SYMBOL_GPL(jprobe_return);
2061