kprobes.c revision 8b833c506c05c498d4215e2c260be44225daf6de
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/kdebug.h>
46#include <linux/memory.h>
47
48#include <asm-generic/sections.h>
49#include <asm/cacheflush.h>
50#include <asm/errno.h>
51#include <asm/uaccess.h>
52
53#define KPROBE_HASH_BITS 6
54#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57/*
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
60 */
61#ifndef kprobe_lookup_name
62#define kprobe_lookup_name(name, addr) \
63	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64#endif
65
66static int kprobes_initialized;
67static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70/* NOTE: change this value only with kprobe_mutex held */
71static bool kprobes_all_disarmed;
72
73static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75static struct {
76	spinlock_t lock ____cacheline_aligned_in_smp;
77} kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80{
81	return &(kretprobe_table_locks[hash].lock);
82}
83
84/*
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
88 *
89 * For such cases, we now have a blacklist
90 */
91static struct kprobe_blackpoint kprobe_blacklist[] = {
92	{"preempt_schedule",},
93	{"native_get_debugreg",},
94	{"irq_entries_start",},
95	{"common_interrupt",},
96	{"mcount",},	/* mcount can be called from everywhere */
97	{NULL}    /* Terminator */
98};
99
100#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
101/*
102 * kprobe->ainsn.insn points to the copy of the instruction to be
103 * single-stepped. x86_64, POWER4 and above have no-exec support and
104 * stepping on the instruction on a vmalloced/kmalloced/data page
105 * is a recipe for disaster
106 */
107#define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
108
109struct kprobe_insn_page {
110	struct list_head list;
111	kprobe_opcode_t *insns;		/* Page of instruction slots */
112	char slot_used[INSNS_PER_PAGE];
113	int nused;
114	int ngarbage;
115};
116
117enum kprobe_slot_state {
118	SLOT_CLEAN = 0,
119	SLOT_DIRTY = 1,
120	SLOT_USED = 2,
121};
122
123static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
124static LIST_HEAD(kprobe_insn_pages);
125static int kprobe_garbage_slots;
126static int collect_garbage_slots(void);
127
128static int __kprobes check_safety(void)
129{
130	int ret = 0;
131#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
132	ret = freeze_processes();
133	if (ret == 0) {
134		struct task_struct *p, *q;
135		do_each_thread(p, q) {
136			if (p != current && p->state == TASK_RUNNING &&
137			    p->pid != 0) {
138				printk("Check failed: %s is running\n",p->comm);
139				ret = -1;
140				goto loop_end;
141			}
142		} while_each_thread(p, q);
143	}
144loop_end:
145	thaw_processes();
146#else
147	synchronize_sched();
148#endif
149	return ret;
150}
151
152/**
153 * __get_insn_slot() - Find a slot on an executable page for an instruction.
154 * We allocate an executable page if there's no room on existing ones.
155 */
156static kprobe_opcode_t __kprobes *__get_insn_slot(void)
157{
158	struct kprobe_insn_page *kip;
159
160 retry:
161	list_for_each_entry(kip, &kprobe_insn_pages, list) {
162		if (kip->nused < INSNS_PER_PAGE) {
163			int i;
164			for (i = 0; i < INSNS_PER_PAGE; i++) {
165				if (kip->slot_used[i] == SLOT_CLEAN) {
166					kip->slot_used[i] = SLOT_USED;
167					kip->nused++;
168					return kip->insns + (i * MAX_INSN_SIZE);
169				}
170			}
171			/* Surprise!  No unused slots.  Fix kip->nused. */
172			kip->nused = INSNS_PER_PAGE;
173		}
174	}
175
176	/* If there are any garbage slots, collect it and try again. */
177	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
178		goto retry;
179	}
180	/* All out of space.  Need to allocate a new page. Use slot 0. */
181	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
182	if (!kip)
183		return NULL;
184
185	/*
186	 * Use module_alloc so this page is within +/- 2GB of where the
187	 * kernel image and loaded module images reside. This is required
188	 * so x86_64 can correctly handle the %rip-relative fixups.
189	 */
190	kip->insns = module_alloc(PAGE_SIZE);
191	if (!kip->insns) {
192		kfree(kip);
193		return NULL;
194	}
195	INIT_LIST_HEAD(&kip->list);
196	list_add(&kip->list, &kprobe_insn_pages);
197	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
198	kip->slot_used[0] = SLOT_USED;
199	kip->nused = 1;
200	kip->ngarbage = 0;
201	return kip->insns;
202}
203
204kprobe_opcode_t __kprobes *get_insn_slot(void)
205{
206	kprobe_opcode_t *ret;
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot();
209	mutex_unlock(&kprobe_insn_mutex);
210	return ret;
211}
212
213/* Return 1 if all garbages are collected, otherwise 0. */
214static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215{
216	kip->slot_used[idx] = SLOT_CLEAN;
217	kip->nused--;
218	if (kip->nused == 0) {
219		/*
220		 * Page is no longer in use.  Free it unless
221		 * it's the last one.  We keep the last one
222		 * so as not to have to set it up again the
223		 * next time somebody inserts a probe.
224		 */
225		if (!list_is_singular(&kprobe_insn_pages)) {
226			list_del(&kip->list);
227			module_free(NULL, kip->insns);
228			kfree(kip);
229		}
230		return 1;
231	}
232	return 0;
233}
234
235static int __kprobes collect_garbage_slots(void)
236{
237	struct kprobe_insn_page *kip, *next;
238
239	/* Ensure no-one is preepmted on the garbages */
240	if (check_safety())
241		return -EAGAIN;
242
243	list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < INSNS_PER_PAGE; i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	kprobe_garbage_slots = 0;
255	return 0;
256}
257
258void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
259{
260	struct kprobe_insn_page *kip;
261
262	mutex_lock(&kprobe_insn_mutex);
263	list_for_each_entry(kip, &kprobe_insn_pages, list) {
264		if (kip->insns <= slot &&
265		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
266			int i = (slot - kip->insns) / MAX_INSN_SIZE;
267			if (dirty) {
268				kip->slot_used[i] = SLOT_DIRTY;
269				kip->ngarbage++;
270			} else
271				collect_one_slot(kip, i);
272			break;
273		}
274	}
275
276	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
277		collect_garbage_slots();
278
279	mutex_unlock(&kprobe_insn_mutex);
280}
281#endif
282
283/* We have preemption disabled.. so it is safe to use __ versions */
284static inline void set_kprobe_instance(struct kprobe *kp)
285{
286	__get_cpu_var(kprobe_instance) = kp;
287}
288
289static inline void reset_kprobe_instance(void)
290{
291	__get_cpu_var(kprobe_instance) = NULL;
292}
293
294/*
295 * This routine is called either:
296 * 	- under the kprobe_mutex - during kprobe_[un]register()
297 * 				OR
298 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
299 */
300struct kprobe __kprobes *get_kprobe(void *addr)
301{
302	struct hlist_head *head;
303	struct hlist_node *node;
304	struct kprobe *p;
305
306	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
307	hlist_for_each_entry_rcu(p, node, head, hlist) {
308		if (p->addr == addr)
309			return p;
310	}
311	return NULL;
312}
313
314/* Arm a kprobe with text_mutex */
315static void __kprobes arm_kprobe(struct kprobe *kp)
316{
317	mutex_lock(&text_mutex);
318	arch_arm_kprobe(kp);
319	mutex_unlock(&text_mutex);
320}
321
322/* Disarm a kprobe with text_mutex */
323static void __kprobes disarm_kprobe(struct kprobe *kp)
324{
325	mutex_lock(&text_mutex);
326	arch_disarm_kprobe(kp);
327	mutex_unlock(&text_mutex);
328}
329
330/*
331 * Aggregate handlers for multiple kprobes support - these handlers
332 * take care of invoking the individual kprobe handlers on p->list
333 */
334static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
335{
336	struct kprobe *kp;
337
338	list_for_each_entry_rcu(kp, &p->list, list) {
339		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
340			set_kprobe_instance(kp);
341			if (kp->pre_handler(kp, regs))
342				return 1;
343		}
344		reset_kprobe_instance();
345	}
346	return 0;
347}
348
349static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
350					unsigned long flags)
351{
352	struct kprobe *kp;
353
354	list_for_each_entry_rcu(kp, &p->list, list) {
355		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
356			set_kprobe_instance(kp);
357			kp->post_handler(kp, regs, flags);
358			reset_kprobe_instance();
359		}
360	}
361}
362
363static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
364					int trapnr)
365{
366	struct kprobe *cur = __get_cpu_var(kprobe_instance);
367
368	/*
369	 * if we faulted "during" the execution of a user specified
370	 * probe handler, invoke just that probe's fault handler
371	 */
372	if (cur && cur->fault_handler) {
373		if (cur->fault_handler(cur, regs, trapnr))
374			return 1;
375	}
376	return 0;
377}
378
379static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
380{
381	struct kprobe *cur = __get_cpu_var(kprobe_instance);
382	int ret = 0;
383
384	if (cur && cur->break_handler) {
385		if (cur->break_handler(cur, regs))
386			ret = 1;
387	}
388	reset_kprobe_instance();
389	return ret;
390}
391
392/* Walks the list and increments nmissed count for multiprobe case */
393void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
394{
395	struct kprobe *kp;
396	if (p->pre_handler != aggr_pre_handler) {
397		p->nmissed++;
398	} else {
399		list_for_each_entry_rcu(kp, &p->list, list)
400			kp->nmissed++;
401	}
402	return;
403}
404
405void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
406				struct hlist_head *head)
407{
408	struct kretprobe *rp = ri->rp;
409
410	/* remove rp inst off the rprobe_inst_table */
411	hlist_del(&ri->hlist);
412	INIT_HLIST_NODE(&ri->hlist);
413	if (likely(rp)) {
414		spin_lock(&rp->lock);
415		hlist_add_head(&ri->hlist, &rp->free_instances);
416		spin_unlock(&rp->lock);
417	} else
418		/* Unregistering */
419		hlist_add_head(&ri->hlist, head);
420}
421
422void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
423			 struct hlist_head **head, unsigned long *flags)
424{
425	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
426	spinlock_t *hlist_lock;
427
428	*head = &kretprobe_inst_table[hash];
429	hlist_lock = kretprobe_table_lock_ptr(hash);
430	spin_lock_irqsave(hlist_lock, *flags);
431}
432
433static void __kprobes kretprobe_table_lock(unsigned long hash,
434	unsigned long *flags)
435{
436	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
437	spin_lock_irqsave(hlist_lock, *flags);
438}
439
440void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
441	unsigned long *flags)
442{
443	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
444	spinlock_t *hlist_lock;
445
446	hlist_lock = kretprobe_table_lock_ptr(hash);
447	spin_unlock_irqrestore(hlist_lock, *flags);
448}
449
450void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
451{
452	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
453	spin_unlock_irqrestore(hlist_lock, *flags);
454}
455
456/*
457 * This function is called from finish_task_switch when task tk becomes dead,
458 * so that we can recycle any function-return probe instances associated
459 * with this task. These left over instances represent probed functions
460 * that have been called but will never return.
461 */
462void __kprobes kprobe_flush_task(struct task_struct *tk)
463{
464	struct kretprobe_instance *ri;
465	struct hlist_head *head, empty_rp;
466	struct hlist_node *node, *tmp;
467	unsigned long hash, flags = 0;
468
469	if (unlikely(!kprobes_initialized))
470		/* Early boot.  kretprobe_table_locks not yet initialized. */
471		return;
472
473	hash = hash_ptr(tk, KPROBE_HASH_BITS);
474	head = &kretprobe_inst_table[hash];
475	kretprobe_table_lock(hash, &flags);
476	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
477		if (ri->task == tk)
478			recycle_rp_inst(ri, &empty_rp);
479	}
480	kretprobe_table_unlock(hash, &flags);
481	INIT_HLIST_HEAD(&empty_rp);
482	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
483		hlist_del(&ri->hlist);
484		kfree(ri);
485	}
486}
487
488static inline void free_rp_inst(struct kretprobe *rp)
489{
490	struct kretprobe_instance *ri;
491	struct hlist_node *pos, *next;
492
493	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
494		hlist_del(&ri->hlist);
495		kfree(ri);
496	}
497}
498
499static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
500{
501	unsigned long flags, hash;
502	struct kretprobe_instance *ri;
503	struct hlist_node *pos, *next;
504	struct hlist_head *head;
505
506	/* No race here */
507	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
508		kretprobe_table_lock(hash, &flags);
509		head = &kretprobe_inst_table[hash];
510		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
511			if (ri->rp == rp)
512				ri->rp = NULL;
513		}
514		kretprobe_table_unlock(hash, &flags);
515	}
516	free_rp_inst(rp);
517}
518
519/*
520 * Keep all fields in the kprobe consistent
521 */
522static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
523{
524	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
525	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
526}
527
528/*
529* Add the new probe to ap->list. Fail if this is the
530* second jprobe at the address - two jprobes can't coexist
531*/
532static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
533{
534	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
535	if (p->break_handler) {
536		if (ap->break_handler)
537			return -EEXIST;
538		list_add_tail_rcu(&p->list, &ap->list);
539		ap->break_handler = aggr_break_handler;
540	} else
541		list_add_rcu(&p->list, &ap->list);
542	if (p->post_handler && !ap->post_handler)
543		ap->post_handler = aggr_post_handler;
544
545	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
546		ap->flags &= ~KPROBE_FLAG_DISABLED;
547		if (!kprobes_all_disarmed)
548			/* Arm the breakpoint again. */
549			arm_kprobe(ap);
550	}
551	return 0;
552}
553
554/*
555 * Fill in the required fields of the "manager kprobe". Replace the
556 * earlier kprobe in the hlist with the manager kprobe
557 */
558static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
559{
560	copy_kprobe(p, ap);
561	flush_insn_slot(ap);
562	ap->addr = p->addr;
563	ap->flags = p->flags;
564	ap->pre_handler = aggr_pre_handler;
565	ap->fault_handler = aggr_fault_handler;
566	/* We don't care the kprobe which has gone. */
567	if (p->post_handler && !kprobe_gone(p))
568		ap->post_handler = aggr_post_handler;
569	if (p->break_handler && !kprobe_gone(p))
570		ap->break_handler = aggr_break_handler;
571
572	INIT_LIST_HEAD(&ap->list);
573	list_add_rcu(&p->list, &ap->list);
574
575	hlist_replace_rcu(&p->hlist, &ap->hlist);
576}
577
578/*
579 * This is the second or subsequent kprobe at the address - handle
580 * the intricacies
581 */
582static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
583					  struct kprobe *p)
584{
585	int ret = 0;
586	struct kprobe *ap = old_p;
587
588	if (old_p->pre_handler != aggr_pre_handler) {
589		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
590		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
591		if (!ap)
592			return -ENOMEM;
593		add_aggr_kprobe(ap, old_p);
594	}
595
596	if (kprobe_gone(ap)) {
597		/*
598		 * Attempting to insert new probe at the same location that
599		 * had a probe in the module vaddr area which already
600		 * freed. So, the instruction slot has already been
601		 * released. We need a new slot for the new probe.
602		 */
603		ret = arch_prepare_kprobe(ap);
604		if (ret)
605			/*
606			 * Even if fail to allocate new slot, don't need to
607			 * free aggr_probe. It will be used next time, or
608			 * freed by unregister_kprobe.
609			 */
610			return ret;
611
612		/*
613		 * Clear gone flag to prevent allocating new slot again, and
614		 * set disabled flag because it is not armed yet.
615		 */
616		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
617			    | KPROBE_FLAG_DISABLED;
618	}
619
620	copy_kprobe(ap, p);
621	return add_new_kprobe(ap, p);
622}
623
624/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
625static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
626{
627	struct kprobe *kp;
628
629	list_for_each_entry_rcu(kp, &p->list, list) {
630		if (!kprobe_disabled(kp))
631			/*
632			 * There is an active probe on the list.
633			 * We can't disable aggr_kprobe.
634			 */
635			return 0;
636	}
637	p->flags |= KPROBE_FLAG_DISABLED;
638	return 1;
639}
640
641static int __kprobes in_kprobes_functions(unsigned long addr)
642{
643	struct kprobe_blackpoint *kb;
644
645	if (addr >= (unsigned long)__kprobes_text_start &&
646	    addr < (unsigned long)__kprobes_text_end)
647		return -EINVAL;
648	/*
649	 * If there exists a kprobe_blacklist, verify and
650	 * fail any probe registration in the prohibited area
651	 */
652	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
653		if (kb->start_addr) {
654			if (addr >= kb->start_addr &&
655			    addr < (kb->start_addr + kb->range))
656				return -EINVAL;
657		}
658	}
659	return 0;
660}
661
662/*
663 * If we have a symbol_name argument, look it up and add the offset field
664 * to it. This way, we can specify a relative address to a symbol.
665 */
666static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
667{
668	kprobe_opcode_t *addr = p->addr;
669	if (p->symbol_name) {
670		if (addr)
671			return NULL;
672		kprobe_lookup_name(p->symbol_name, addr);
673	}
674
675	if (!addr)
676		return NULL;
677	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
678}
679
680/* Check passed kprobe is valid and return kprobe in kprobe_table. */
681static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
682{
683	struct kprobe *old_p, *list_p;
684
685	old_p = get_kprobe(p->addr);
686	if (unlikely(!old_p))
687		return NULL;
688
689	if (p != old_p) {
690		list_for_each_entry_rcu(list_p, &old_p->list, list)
691			if (list_p == p)
692			/* kprobe p is a valid probe */
693				goto valid;
694		return NULL;
695	}
696valid:
697	return old_p;
698}
699
700/* Return error if the kprobe is being re-registered */
701static inline int check_kprobe_rereg(struct kprobe *p)
702{
703	int ret = 0;
704	struct kprobe *old_p;
705
706	mutex_lock(&kprobe_mutex);
707	old_p = __get_valid_kprobe(p);
708	if (old_p)
709		ret = -EINVAL;
710	mutex_unlock(&kprobe_mutex);
711	return ret;
712}
713
714int __kprobes register_kprobe(struct kprobe *p)
715{
716	int ret = 0;
717	struct kprobe *old_p;
718	struct module *probed_mod;
719	kprobe_opcode_t *addr;
720
721	addr = kprobe_addr(p);
722	if (!addr)
723		return -EINVAL;
724	p->addr = addr;
725
726	ret = check_kprobe_rereg(p);
727	if (ret)
728		return ret;
729
730	preempt_disable();
731	if (!kernel_text_address((unsigned long) p->addr) ||
732	    in_kprobes_functions((unsigned long) p->addr)) {
733		preempt_enable();
734		return -EINVAL;
735	}
736
737	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
738	p->flags &= KPROBE_FLAG_DISABLED;
739
740	/*
741	 * Check if are we probing a module.
742	 */
743	probed_mod = __module_text_address((unsigned long) p->addr);
744	if (probed_mod) {
745		/*
746		 * We must hold a refcount of the probed module while updating
747		 * its code to prohibit unexpected unloading.
748		 */
749		if (unlikely(!try_module_get(probed_mod))) {
750			preempt_enable();
751			return -EINVAL;
752		}
753		/*
754		 * If the module freed .init.text, we couldn't insert
755		 * kprobes in there.
756		 */
757		if (within_module_init((unsigned long)p->addr, probed_mod) &&
758		    probed_mod->state != MODULE_STATE_COMING) {
759			module_put(probed_mod);
760			preempt_enable();
761			return -EINVAL;
762		}
763	}
764	preempt_enable();
765
766	p->nmissed = 0;
767	INIT_LIST_HEAD(&p->list);
768	mutex_lock(&kprobe_mutex);
769	old_p = get_kprobe(p->addr);
770	if (old_p) {
771		ret = register_aggr_kprobe(old_p, p);
772		goto out;
773	}
774
775	mutex_lock(&text_mutex);
776	ret = arch_prepare_kprobe(p);
777	if (ret)
778		goto out_unlock_text;
779
780	INIT_HLIST_NODE(&p->hlist);
781	hlist_add_head_rcu(&p->hlist,
782		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
783
784	if (!kprobes_all_disarmed && !kprobe_disabled(p))
785		arch_arm_kprobe(p);
786
787out_unlock_text:
788	mutex_unlock(&text_mutex);
789out:
790	mutex_unlock(&kprobe_mutex);
791
792	if (probed_mod)
793		module_put(probed_mod);
794
795	return ret;
796}
797EXPORT_SYMBOL_GPL(register_kprobe);
798
799/*
800 * Unregister a kprobe without a scheduler synchronization.
801 */
802static int __kprobes __unregister_kprobe_top(struct kprobe *p)
803{
804	struct kprobe *old_p, *list_p;
805
806	old_p = __get_valid_kprobe(p);
807	if (old_p == NULL)
808		return -EINVAL;
809
810	if (old_p == p ||
811	    (old_p->pre_handler == aggr_pre_handler &&
812	     list_is_singular(&old_p->list))) {
813		/*
814		 * Only probe on the hash list. Disarm only if kprobes are
815		 * enabled and not gone - otherwise, the breakpoint would
816		 * already have been removed. We save on flushing icache.
817		 */
818		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
819			disarm_kprobe(p);
820		hlist_del_rcu(&old_p->hlist);
821	} else {
822		if (p->break_handler && !kprobe_gone(p))
823			old_p->break_handler = NULL;
824		if (p->post_handler && !kprobe_gone(p)) {
825			list_for_each_entry_rcu(list_p, &old_p->list, list) {
826				if ((list_p != p) && (list_p->post_handler))
827					goto noclean;
828			}
829			old_p->post_handler = NULL;
830		}
831noclean:
832		list_del_rcu(&p->list);
833		if (!kprobe_disabled(old_p)) {
834			try_to_disable_aggr_kprobe(old_p);
835			if (!kprobes_all_disarmed && kprobe_disabled(old_p))
836				disarm_kprobe(old_p);
837		}
838	}
839	return 0;
840}
841
842static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
843{
844	struct kprobe *old_p;
845
846	if (list_empty(&p->list))
847		arch_remove_kprobe(p);
848	else if (list_is_singular(&p->list)) {
849		/* "p" is the last child of an aggr_kprobe */
850		old_p = list_entry(p->list.next, struct kprobe, list);
851		list_del(&p->list);
852		arch_remove_kprobe(old_p);
853		kfree(old_p);
854	}
855}
856
857int __kprobes register_kprobes(struct kprobe **kps, int num)
858{
859	int i, ret = 0;
860
861	if (num <= 0)
862		return -EINVAL;
863	for (i = 0; i < num; i++) {
864		ret = register_kprobe(kps[i]);
865		if (ret < 0) {
866			if (i > 0)
867				unregister_kprobes(kps, i);
868			break;
869		}
870	}
871	return ret;
872}
873EXPORT_SYMBOL_GPL(register_kprobes);
874
875void __kprobes unregister_kprobe(struct kprobe *p)
876{
877	unregister_kprobes(&p, 1);
878}
879EXPORT_SYMBOL_GPL(unregister_kprobe);
880
881void __kprobes unregister_kprobes(struct kprobe **kps, int num)
882{
883	int i;
884
885	if (num <= 0)
886		return;
887	mutex_lock(&kprobe_mutex);
888	for (i = 0; i < num; i++)
889		if (__unregister_kprobe_top(kps[i]) < 0)
890			kps[i]->addr = NULL;
891	mutex_unlock(&kprobe_mutex);
892
893	synchronize_sched();
894	for (i = 0; i < num; i++)
895		if (kps[i]->addr)
896			__unregister_kprobe_bottom(kps[i]);
897}
898EXPORT_SYMBOL_GPL(unregister_kprobes);
899
900static struct notifier_block kprobe_exceptions_nb = {
901	.notifier_call = kprobe_exceptions_notify,
902	.priority = 0x7fffffff /* we need to be notified first */
903};
904
905unsigned long __weak arch_deref_entry_point(void *entry)
906{
907	return (unsigned long)entry;
908}
909
910int __kprobes register_jprobes(struct jprobe **jps, int num)
911{
912	struct jprobe *jp;
913	int ret = 0, i;
914
915	if (num <= 0)
916		return -EINVAL;
917	for (i = 0; i < num; i++) {
918		unsigned long addr;
919		jp = jps[i];
920		addr = arch_deref_entry_point(jp->entry);
921
922		if (!kernel_text_address(addr))
923			ret = -EINVAL;
924		else {
925			/* Todo: Verify probepoint is a function entry point */
926			jp->kp.pre_handler = setjmp_pre_handler;
927			jp->kp.break_handler = longjmp_break_handler;
928			ret = register_kprobe(&jp->kp);
929		}
930		if (ret < 0) {
931			if (i > 0)
932				unregister_jprobes(jps, i);
933			break;
934		}
935	}
936	return ret;
937}
938EXPORT_SYMBOL_GPL(register_jprobes);
939
940int __kprobes register_jprobe(struct jprobe *jp)
941{
942	return register_jprobes(&jp, 1);
943}
944EXPORT_SYMBOL_GPL(register_jprobe);
945
946void __kprobes unregister_jprobe(struct jprobe *jp)
947{
948	unregister_jprobes(&jp, 1);
949}
950EXPORT_SYMBOL_GPL(unregister_jprobe);
951
952void __kprobes unregister_jprobes(struct jprobe **jps, int num)
953{
954	int i;
955
956	if (num <= 0)
957		return;
958	mutex_lock(&kprobe_mutex);
959	for (i = 0; i < num; i++)
960		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
961			jps[i]->kp.addr = NULL;
962	mutex_unlock(&kprobe_mutex);
963
964	synchronize_sched();
965	for (i = 0; i < num; i++) {
966		if (jps[i]->kp.addr)
967			__unregister_kprobe_bottom(&jps[i]->kp);
968	}
969}
970EXPORT_SYMBOL_GPL(unregister_jprobes);
971
972#ifdef CONFIG_KRETPROBES
973/*
974 * This kprobe pre_handler is registered with every kretprobe. When probe
975 * hits it will set up the return probe.
976 */
977static int __kprobes pre_handler_kretprobe(struct kprobe *p,
978					   struct pt_regs *regs)
979{
980	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
981	unsigned long hash, flags = 0;
982	struct kretprobe_instance *ri;
983
984	/*TODO: consider to only swap the RA after the last pre_handler fired */
985	hash = hash_ptr(current, KPROBE_HASH_BITS);
986	spin_lock_irqsave(&rp->lock, flags);
987	if (!hlist_empty(&rp->free_instances)) {
988		ri = hlist_entry(rp->free_instances.first,
989				struct kretprobe_instance, hlist);
990		hlist_del(&ri->hlist);
991		spin_unlock_irqrestore(&rp->lock, flags);
992
993		ri->rp = rp;
994		ri->task = current;
995
996		if (rp->entry_handler && rp->entry_handler(ri, regs))
997			return 0;
998
999		arch_prepare_kretprobe(ri, regs);
1000
1001		/* XXX(hch): why is there no hlist_move_head? */
1002		INIT_HLIST_NODE(&ri->hlist);
1003		kretprobe_table_lock(hash, &flags);
1004		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1005		kretprobe_table_unlock(hash, &flags);
1006	} else {
1007		rp->nmissed++;
1008		spin_unlock_irqrestore(&rp->lock, flags);
1009	}
1010	return 0;
1011}
1012
1013int __kprobes register_kretprobe(struct kretprobe *rp)
1014{
1015	int ret = 0;
1016	struct kretprobe_instance *inst;
1017	int i;
1018	void *addr;
1019
1020	if (kretprobe_blacklist_size) {
1021		addr = kprobe_addr(&rp->kp);
1022		if (!addr)
1023			return -EINVAL;
1024
1025		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1026			if (kretprobe_blacklist[i].addr == addr)
1027				return -EINVAL;
1028		}
1029	}
1030
1031	rp->kp.pre_handler = pre_handler_kretprobe;
1032	rp->kp.post_handler = NULL;
1033	rp->kp.fault_handler = NULL;
1034	rp->kp.break_handler = NULL;
1035
1036	/* Pre-allocate memory for max kretprobe instances */
1037	if (rp->maxactive <= 0) {
1038#ifdef CONFIG_PREEMPT
1039		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1040#else
1041		rp->maxactive = num_possible_cpus();
1042#endif
1043	}
1044	spin_lock_init(&rp->lock);
1045	INIT_HLIST_HEAD(&rp->free_instances);
1046	for (i = 0; i < rp->maxactive; i++) {
1047		inst = kmalloc(sizeof(struct kretprobe_instance) +
1048			       rp->data_size, GFP_KERNEL);
1049		if (inst == NULL) {
1050			free_rp_inst(rp);
1051			return -ENOMEM;
1052		}
1053		INIT_HLIST_NODE(&inst->hlist);
1054		hlist_add_head(&inst->hlist, &rp->free_instances);
1055	}
1056
1057	rp->nmissed = 0;
1058	/* Establish function entry probe point */
1059	ret = register_kprobe(&rp->kp);
1060	if (ret != 0)
1061		free_rp_inst(rp);
1062	return ret;
1063}
1064EXPORT_SYMBOL_GPL(register_kretprobe);
1065
1066int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1067{
1068	int ret = 0, i;
1069
1070	if (num <= 0)
1071		return -EINVAL;
1072	for (i = 0; i < num; i++) {
1073		ret = register_kretprobe(rps[i]);
1074		if (ret < 0) {
1075			if (i > 0)
1076				unregister_kretprobes(rps, i);
1077			break;
1078		}
1079	}
1080	return ret;
1081}
1082EXPORT_SYMBOL_GPL(register_kretprobes);
1083
1084void __kprobes unregister_kretprobe(struct kretprobe *rp)
1085{
1086	unregister_kretprobes(&rp, 1);
1087}
1088EXPORT_SYMBOL_GPL(unregister_kretprobe);
1089
1090void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1091{
1092	int i;
1093
1094	if (num <= 0)
1095		return;
1096	mutex_lock(&kprobe_mutex);
1097	for (i = 0; i < num; i++)
1098		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1099			rps[i]->kp.addr = NULL;
1100	mutex_unlock(&kprobe_mutex);
1101
1102	synchronize_sched();
1103	for (i = 0; i < num; i++) {
1104		if (rps[i]->kp.addr) {
1105			__unregister_kprobe_bottom(&rps[i]->kp);
1106			cleanup_rp_inst(rps[i]);
1107		}
1108	}
1109}
1110EXPORT_SYMBOL_GPL(unregister_kretprobes);
1111
1112#else /* CONFIG_KRETPROBES */
1113int __kprobes register_kretprobe(struct kretprobe *rp)
1114{
1115	return -ENOSYS;
1116}
1117EXPORT_SYMBOL_GPL(register_kretprobe);
1118
1119int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1120{
1121	return -ENOSYS;
1122}
1123EXPORT_SYMBOL_GPL(register_kretprobes);
1124
1125void __kprobes unregister_kretprobe(struct kretprobe *rp)
1126{
1127}
1128EXPORT_SYMBOL_GPL(unregister_kretprobe);
1129
1130void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1131{
1132}
1133EXPORT_SYMBOL_GPL(unregister_kretprobes);
1134
1135static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1136					   struct pt_regs *regs)
1137{
1138	return 0;
1139}
1140
1141#endif /* CONFIG_KRETPROBES */
1142
1143/* Set the kprobe gone and remove its instruction buffer. */
1144static void __kprobes kill_kprobe(struct kprobe *p)
1145{
1146	struct kprobe *kp;
1147
1148	p->flags |= KPROBE_FLAG_GONE;
1149	if (p->pre_handler == aggr_pre_handler) {
1150		/*
1151		 * If this is an aggr_kprobe, we have to list all the
1152		 * chained probes and mark them GONE.
1153		 */
1154		list_for_each_entry_rcu(kp, &p->list, list)
1155			kp->flags |= KPROBE_FLAG_GONE;
1156		p->post_handler = NULL;
1157		p->break_handler = NULL;
1158	}
1159	/*
1160	 * Here, we can remove insn_slot safely, because no thread calls
1161	 * the original probed function (which will be freed soon) any more.
1162	 */
1163	arch_remove_kprobe(p);
1164}
1165
1166void __kprobes dump_kprobe(struct kprobe *kp)
1167{
1168	printk(KERN_WARNING "Dumping kprobe:\n");
1169	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1170	       kp->symbol_name, kp->addr, kp->offset);
1171}
1172
1173/* Module notifier call back, checking kprobes on the module */
1174static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1175					     unsigned long val, void *data)
1176{
1177	struct module *mod = data;
1178	struct hlist_head *head;
1179	struct hlist_node *node;
1180	struct kprobe *p;
1181	unsigned int i;
1182	int checkcore = (val == MODULE_STATE_GOING);
1183
1184	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1185		return NOTIFY_DONE;
1186
1187	/*
1188	 * When MODULE_STATE_GOING was notified, both of module .text and
1189	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1190	 * notified, only .init.text section would be freed. We need to
1191	 * disable kprobes which have been inserted in the sections.
1192	 */
1193	mutex_lock(&kprobe_mutex);
1194	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1195		head = &kprobe_table[i];
1196		hlist_for_each_entry_rcu(p, node, head, hlist)
1197			if (within_module_init((unsigned long)p->addr, mod) ||
1198			    (checkcore &&
1199			     within_module_core((unsigned long)p->addr, mod))) {
1200				/*
1201				 * The vaddr this probe is installed will soon
1202				 * be vfreed buy not synced to disk. Hence,
1203				 * disarming the breakpoint isn't needed.
1204				 */
1205				kill_kprobe(p);
1206			}
1207	}
1208	mutex_unlock(&kprobe_mutex);
1209	return NOTIFY_DONE;
1210}
1211
1212static struct notifier_block kprobe_module_nb = {
1213	.notifier_call = kprobes_module_callback,
1214	.priority = 0
1215};
1216
1217static int __init init_kprobes(void)
1218{
1219	int i, err = 0;
1220	unsigned long offset = 0, size = 0;
1221	char *modname, namebuf[128];
1222	const char *symbol_name;
1223	void *addr;
1224	struct kprobe_blackpoint *kb;
1225
1226	/* FIXME allocate the probe table, currently defined statically */
1227	/* initialize all list heads */
1228	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1229		INIT_HLIST_HEAD(&kprobe_table[i]);
1230		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1231		spin_lock_init(&(kretprobe_table_locks[i].lock));
1232	}
1233
1234	/*
1235	 * Lookup and populate the kprobe_blacklist.
1236	 *
1237	 * Unlike the kretprobe blacklist, we'll need to determine
1238	 * the range of addresses that belong to the said functions,
1239	 * since a kprobe need not necessarily be at the beginning
1240	 * of a function.
1241	 */
1242	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1243		kprobe_lookup_name(kb->name, addr);
1244		if (!addr)
1245			continue;
1246
1247		kb->start_addr = (unsigned long)addr;
1248		symbol_name = kallsyms_lookup(kb->start_addr,
1249				&size, &offset, &modname, namebuf);
1250		if (!symbol_name)
1251			kb->range = 0;
1252		else
1253			kb->range = size;
1254	}
1255
1256	if (kretprobe_blacklist_size) {
1257		/* lookup the function address from its name */
1258		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1259			kprobe_lookup_name(kretprobe_blacklist[i].name,
1260					   kretprobe_blacklist[i].addr);
1261			if (!kretprobe_blacklist[i].addr)
1262				printk("kretprobe: lookup failed: %s\n",
1263				       kretprobe_blacklist[i].name);
1264		}
1265	}
1266
1267	/* By default, kprobes are armed */
1268	kprobes_all_disarmed = false;
1269
1270	err = arch_init_kprobes();
1271	if (!err)
1272		err = register_die_notifier(&kprobe_exceptions_nb);
1273	if (!err)
1274		err = register_module_notifier(&kprobe_module_nb);
1275
1276	kprobes_initialized = (err == 0);
1277
1278	if (!err)
1279		init_test_probes();
1280	return err;
1281}
1282
1283#ifdef CONFIG_DEBUG_FS
1284static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1285		const char *sym, int offset,char *modname)
1286{
1287	char *kprobe_type;
1288
1289	if (p->pre_handler == pre_handler_kretprobe)
1290		kprobe_type = "r";
1291	else if (p->pre_handler == setjmp_pre_handler)
1292		kprobe_type = "j";
1293	else
1294		kprobe_type = "k";
1295	if (sym)
1296		seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1297			p->addr, kprobe_type, sym, offset,
1298			(modname ? modname : " "),
1299			(kprobe_gone(p) ? "[GONE]" : ""),
1300			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1301			 "[DISABLED]" : ""));
1302	else
1303		seq_printf(pi, "%p  %s  %p %s%s\n",
1304			p->addr, kprobe_type, p->addr,
1305			(kprobe_gone(p) ? "[GONE]" : ""),
1306			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1307			 "[DISABLED]" : ""));
1308}
1309
1310static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1311{
1312	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1313}
1314
1315static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1316{
1317	(*pos)++;
1318	if (*pos >= KPROBE_TABLE_SIZE)
1319		return NULL;
1320	return pos;
1321}
1322
1323static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1324{
1325	/* Nothing to do */
1326}
1327
1328static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1329{
1330	struct hlist_head *head;
1331	struct hlist_node *node;
1332	struct kprobe *p, *kp;
1333	const char *sym = NULL;
1334	unsigned int i = *(loff_t *) v;
1335	unsigned long offset = 0;
1336	char *modname, namebuf[128];
1337
1338	head = &kprobe_table[i];
1339	preempt_disable();
1340	hlist_for_each_entry_rcu(p, node, head, hlist) {
1341		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1342					&offset, &modname, namebuf);
1343		if (p->pre_handler == aggr_pre_handler) {
1344			list_for_each_entry_rcu(kp, &p->list, list)
1345				report_probe(pi, kp, sym, offset, modname);
1346		} else
1347			report_probe(pi, p, sym, offset, modname);
1348	}
1349	preempt_enable();
1350	return 0;
1351}
1352
1353static const struct seq_operations kprobes_seq_ops = {
1354	.start = kprobe_seq_start,
1355	.next  = kprobe_seq_next,
1356	.stop  = kprobe_seq_stop,
1357	.show  = show_kprobe_addr
1358};
1359
1360static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1361{
1362	return seq_open(filp, &kprobes_seq_ops);
1363}
1364
1365static const struct file_operations debugfs_kprobes_operations = {
1366	.open           = kprobes_open,
1367	.read           = seq_read,
1368	.llseek         = seq_lseek,
1369	.release        = seq_release,
1370};
1371
1372/* Disable one kprobe */
1373int __kprobes disable_kprobe(struct kprobe *kp)
1374{
1375	int ret = 0;
1376	struct kprobe *p;
1377
1378	mutex_lock(&kprobe_mutex);
1379
1380	/* Check whether specified probe is valid. */
1381	p = __get_valid_kprobe(kp);
1382	if (unlikely(p == NULL)) {
1383		ret = -EINVAL;
1384		goto out;
1385	}
1386
1387	/* If the probe is already disabled (or gone), just return */
1388	if (kprobe_disabled(kp))
1389		goto out;
1390
1391	kp->flags |= KPROBE_FLAG_DISABLED;
1392	if (p != kp)
1393		/* When kp != p, p is always enabled. */
1394		try_to_disable_aggr_kprobe(p);
1395
1396	if (!kprobes_all_disarmed && kprobe_disabled(p))
1397		disarm_kprobe(p);
1398out:
1399	mutex_unlock(&kprobe_mutex);
1400	return ret;
1401}
1402EXPORT_SYMBOL_GPL(disable_kprobe);
1403
1404/* Enable one kprobe */
1405int __kprobes enable_kprobe(struct kprobe *kp)
1406{
1407	int ret = 0;
1408	struct kprobe *p;
1409
1410	mutex_lock(&kprobe_mutex);
1411
1412	/* Check whether specified probe is valid. */
1413	p = __get_valid_kprobe(kp);
1414	if (unlikely(p == NULL)) {
1415		ret = -EINVAL;
1416		goto out;
1417	}
1418
1419	if (kprobe_gone(kp)) {
1420		/* This kprobe has gone, we couldn't enable it. */
1421		ret = -EINVAL;
1422		goto out;
1423	}
1424
1425	if (!kprobes_all_disarmed && kprobe_disabled(p))
1426		arm_kprobe(p);
1427
1428	p->flags &= ~KPROBE_FLAG_DISABLED;
1429	if (p != kp)
1430		kp->flags &= ~KPROBE_FLAG_DISABLED;
1431out:
1432	mutex_unlock(&kprobe_mutex);
1433	return ret;
1434}
1435EXPORT_SYMBOL_GPL(enable_kprobe);
1436
1437static void __kprobes arm_all_kprobes(void)
1438{
1439	struct hlist_head *head;
1440	struct hlist_node *node;
1441	struct kprobe *p;
1442	unsigned int i;
1443
1444	mutex_lock(&kprobe_mutex);
1445
1446	/* If kprobes are armed, just return */
1447	if (!kprobes_all_disarmed)
1448		goto already_enabled;
1449
1450	mutex_lock(&text_mutex);
1451	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1452		head = &kprobe_table[i];
1453		hlist_for_each_entry_rcu(p, node, head, hlist)
1454			if (!kprobe_disabled(p))
1455				arch_arm_kprobe(p);
1456	}
1457	mutex_unlock(&text_mutex);
1458
1459	kprobes_all_disarmed = false;
1460	printk(KERN_INFO "Kprobes globally enabled\n");
1461
1462already_enabled:
1463	mutex_unlock(&kprobe_mutex);
1464	return;
1465}
1466
1467static void __kprobes disarm_all_kprobes(void)
1468{
1469	struct hlist_head *head;
1470	struct hlist_node *node;
1471	struct kprobe *p;
1472	unsigned int i;
1473
1474	mutex_lock(&kprobe_mutex);
1475
1476	/* If kprobes are already disarmed, just return */
1477	if (kprobes_all_disarmed)
1478		goto already_disabled;
1479
1480	kprobes_all_disarmed = true;
1481	printk(KERN_INFO "Kprobes globally disabled\n");
1482	mutex_lock(&text_mutex);
1483	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1484		head = &kprobe_table[i];
1485		hlist_for_each_entry_rcu(p, node, head, hlist) {
1486			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1487				arch_disarm_kprobe(p);
1488		}
1489	}
1490
1491	mutex_unlock(&text_mutex);
1492	mutex_unlock(&kprobe_mutex);
1493	/* Allow all currently running kprobes to complete */
1494	synchronize_sched();
1495	return;
1496
1497already_disabled:
1498	mutex_unlock(&kprobe_mutex);
1499	return;
1500}
1501
1502/*
1503 * XXX: The debugfs bool file interface doesn't allow for callbacks
1504 * when the bool state is switched. We can reuse that facility when
1505 * available
1506 */
1507static ssize_t read_enabled_file_bool(struct file *file,
1508	       char __user *user_buf, size_t count, loff_t *ppos)
1509{
1510	char buf[3];
1511
1512	if (!kprobes_all_disarmed)
1513		buf[0] = '1';
1514	else
1515		buf[0] = '0';
1516	buf[1] = '\n';
1517	buf[2] = 0x00;
1518	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1519}
1520
1521static ssize_t write_enabled_file_bool(struct file *file,
1522	       const char __user *user_buf, size_t count, loff_t *ppos)
1523{
1524	char buf[32];
1525	int buf_size;
1526
1527	buf_size = min(count, (sizeof(buf)-1));
1528	if (copy_from_user(buf, user_buf, buf_size))
1529		return -EFAULT;
1530
1531	switch (buf[0]) {
1532	case 'y':
1533	case 'Y':
1534	case '1':
1535		arm_all_kprobes();
1536		break;
1537	case 'n':
1538	case 'N':
1539	case '0':
1540		disarm_all_kprobes();
1541		break;
1542	}
1543
1544	return count;
1545}
1546
1547static const struct file_operations fops_kp = {
1548	.read =         read_enabled_file_bool,
1549	.write =        write_enabled_file_bool,
1550};
1551
1552static int __kprobes debugfs_kprobe_init(void)
1553{
1554	struct dentry *dir, *file;
1555	unsigned int value = 1;
1556
1557	dir = debugfs_create_dir("kprobes", NULL);
1558	if (!dir)
1559		return -ENOMEM;
1560
1561	file = debugfs_create_file("list", 0444, dir, NULL,
1562				&debugfs_kprobes_operations);
1563	if (!file) {
1564		debugfs_remove(dir);
1565		return -ENOMEM;
1566	}
1567
1568	file = debugfs_create_file("enabled", 0600, dir,
1569					&value, &fops_kp);
1570	if (!file) {
1571		debugfs_remove(dir);
1572		return -ENOMEM;
1573	}
1574
1575	return 0;
1576}
1577
1578late_initcall(debugfs_kprobe_init);
1579#endif /* CONFIG_DEBUG_FS */
1580
1581module_init(init_kprobes);
1582
1583/* defined in arch/.../kernel/kprobes.c */
1584EXPORT_SYMBOL_GPL(jprobe_return);
1585