kprobes.c revision a00e817f42663941ea0aa5f85a9d1c4f8b212839
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/kdebug.h>
46#include <linux/memory.h>
47
48#include <asm-generic/sections.h>
49#include <asm/cacheflush.h>
50#include <asm/errno.h>
51#include <asm/uaccess.h>
52
53#define KPROBE_HASH_BITS 6
54#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57/*
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
60 */
61#ifndef kprobe_lookup_name
62#define kprobe_lookup_name(name, addr) \
63	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64#endif
65
66static int kprobes_initialized;
67static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70/* NOTE: change this value only with kprobe_mutex held */
71static bool kprobes_all_disarmed;
72
73static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75static struct {
76	spinlock_t lock ____cacheline_aligned_in_smp;
77} kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80{
81	return &(kretprobe_table_locks[hash].lock);
82}
83
84/*
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
88 *
89 * For such cases, we now have a blacklist
90 */
91static struct kprobe_blackpoint kprobe_blacklist[] = {
92	{"preempt_schedule",},
93	{"native_get_debugreg",},
94	{"irq_entries_start",},
95	{"common_interrupt",},
96	{NULL}    /* Terminator */
97};
98
99#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
100/*
101 * kprobe->ainsn.insn points to the copy of the instruction to be
102 * single-stepped. x86_64, POWER4 and above have no-exec support and
103 * stepping on the instruction on a vmalloced/kmalloced/data page
104 * is a recipe for disaster
105 */
106#define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
107
108struct kprobe_insn_page {
109	struct list_head list;
110	kprobe_opcode_t *insns;		/* Page of instruction slots */
111	char slot_used[INSNS_PER_PAGE];
112	int nused;
113	int ngarbage;
114};
115
116enum kprobe_slot_state {
117	SLOT_CLEAN = 0,
118	SLOT_DIRTY = 1,
119	SLOT_USED = 2,
120};
121
122static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
123static LIST_HEAD(kprobe_insn_pages);
124static int kprobe_garbage_slots;
125static int collect_garbage_slots(void);
126
127static int __kprobes check_safety(void)
128{
129	int ret = 0;
130#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
131	ret = freeze_processes();
132	if (ret == 0) {
133		struct task_struct *p, *q;
134		do_each_thread(p, q) {
135			if (p != current && p->state == TASK_RUNNING &&
136			    p->pid != 0) {
137				printk("Check failed: %s is running\n",p->comm);
138				ret = -1;
139				goto loop_end;
140			}
141		} while_each_thread(p, q);
142	}
143loop_end:
144	thaw_processes();
145#else
146	synchronize_sched();
147#endif
148	return ret;
149}
150
151/**
152 * __get_insn_slot() - Find a slot on an executable page for an instruction.
153 * We allocate an executable page if there's no room on existing ones.
154 */
155static kprobe_opcode_t __kprobes *__get_insn_slot(void)
156{
157	struct kprobe_insn_page *kip;
158
159 retry:
160	list_for_each_entry(kip, &kprobe_insn_pages, list) {
161		if (kip->nused < INSNS_PER_PAGE) {
162			int i;
163			for (i = 0; i < INSNS_PER_PAGE; i++) {
164				if (kip->slot_used[i] == SLOT_CLEAN) {
165					kip->slot_used[i] = SLOT_USED;
166					kip->nused++;
167					return kip->insns + (i * MAX_INSN_SIZE);
168				}
169			}
170			/* Surprise!  No unused slots.  Fix kip->nused. */
171			kip->nused = INSNS_PER_PAGE;
172		}
173	}
174
175	/* If there are any garbage slots, collect it and try again. */
176	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
177		goto retry;
178	}
179	/* All out of space.  Need to allocate a new page. Use slot 0. */
180	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
181	if (!kip)
182		return NULL;
183
184	/*
185	 * Use module_alloc so this page is within +/- 2GB of where the
186	 * kernel image and loaded module images reside. This is required
187	 * so x86_64 can correctly handle the %rip-relative fixups.
188	 */
189	kip->insns = module_alloc(PAGE_SIZE);
190	if (!kip->insns) {
191		kfree(kip);
192		return NULL;
193	}
194	INIT_LIST_HEAD(&kip->list);
195	list_add(&kip->list, &kprobe_insn_pages);
196	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
197	kip->slot_used[0] = SLOT_USED;
198	kip->nused = 1;
199	kip->ngarbage = 0;
200	return kip->insns;
201}
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret;
206	mutex_lock(&kprobe_insn_mutex);
207	ret = __get_insn_slot();
208	mutex_unlock(&kprobe_insn_mutex);
209	return ret;
210}
211
212/* Return 1 if all garbages are collected, otherwise 0. */
213static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214{
215	kip->slot_used[idx] = SLOT_CLEAN;
216	kip->nused--;
217	if (kip->nused == 0) {
218		/*
219		 * Page is no longer in use.  Free it unless
220		 * it's the last one.  We keep the last one
221		 * so as not to have to set it up again the
222		 * next time somebody inserts a probe.
223		 */
224		if (!list_is_singular(&kprobe_insn_pages)) {
225			list_del(&kip->list);
226			module_free(NULL, kip->insns);
227			kfree(kip);
228		}
229		return 1;
230	}
231	return 0;
232}
233
234static int __kprobes collect_garbage_slots(void)
235{
236	struct kprobe_insn_page *kip, *next;
237
238	/* Ensure no-one is preepmted on the garbages */
239	if (check_safety())
240		return -EAGAIN;
241
242	list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
243		int i;
244		if (kip->ngarbage == 0)
245			continue;
246		kip->ngarbage = 0;	/* we will collect all garbages */
247		for (i = 0; i < INSNS_PER_PAGE; i++) {
248			if (kip->slot_used[i] == SLOT_DIRTY &&
249			    collect_one_slot(kip, i))
250				break;
251		}
252	}
253	kprobe_garbage_slots = 0;
254	return 0;
255}
256
257void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
258{
259	struct kprobe_insn_page *kip;
260
261	mutex_lock(&kprobe_insn_mutex);
262	list_for_each_entry(kip, &kprobe_insn_pages, list) {
263		if (kip->insns <= slot &&
264		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
265			int i = (slot - kip->insns) / MAX_INSN_SIZE;
266			if (dirty) {
267				kip->slot_used[i] = SLOT_DIRTY;
268				kip->ngarbage++;
269			} else
270				collect_one_slot(kip, i);
271			break;
272		}
273	}
274
275	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
276		collect_garbage_slots();
277
278	mutex_unlock(&kprobe_insn_mutex);
279}
280#endif
281
282/* We have preemption disabled.. so it is safe to use __ versions */
283static inline void set_kprobe_instance(struct kprobe *kp)
284{
285	__get_cpu_var(kprobe_instance) = kp;
286}
287
288static inline void reset_kprobe_instance(void)
289{
290	__get_cpu_var(kprobe_instance) = NULL;
291}
292
293/*
294 * This routine is called either:
295 * 	- under the kprobe_mutex - during kprobe_[un]register()
296 * 				OR
297 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
298 */
299struct kprobe __kprobes *get_kprobe(void *addr)
300{
301	struct hlist_head *head;
302	struct hlist_node *node;
303	struct kprobe *p;
304
305	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
306	hlist_for_each_entry_rcu(p, node, head, hlist) {
307		if (p->addr == addr)
308			return p;
309	}
310	return NULL;
311}
312
313/* Arm a kprobe with text_mutex */
314static void __kprobes arm_kprobe(struct kprobe *kp)
315{
316	mutex_lock(&text_mutex);
317	arch_arm_kprobe(kp);
318	mutex_unlock(&text_mutex);
319}
320
321/* Disarm a kprobe with text_mutex */
322static void __kprobes disarm_kprobe(struct kprobe *kp)
323{
324	mutex_lock(&text_mutex);
325	arch_disarm_kprobe(kp);
326	mutex_unlock(&text_mutex);
327}
328
329/*
330 * Aggregate handlers for multiple kprobes support - these handlers
331 * take care of invoking the individual kprobe handlers on p->list
332 */
333static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
334{
335	struct kprobe *kp;
336
337	list_for_each_entry_rcu(kp, &p->list, list) {
338		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
339			set_kprobe_instance(kp);
340			if (kp->pre_handler(kp, regs))
341				return 1;
342		}
343		reset_kprobe_instance();
344	}
345	return 0;
346}
347
348static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
349					unsigned long flags)
350{
351	struct kprobe *kp;
352
353	list_for_each_entry_rcu(kp, &p->list, list) {
354		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
355			set_kprobe_instance(kp);
356			kp->post_handler(kp, regs, flags);
357			reset_kprobe_instance();
358		}
359	}
360}
361
362static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
363					int trapnr)
364{
365	struct kprobe *cur = __get_cpu_var(kprobe_instance);
366
367	/*
368	 * if we faulted "during" the execution of a user specified
369	 * probe handler, invoke just that probe's fault handler
370	 */
371	if (cur && cur->fault_handler) {
372		if (cur->fault_handler(cur, regs, trapnr))
373			return 1;
374	}
375	return 0;
376}
377
378static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
379{
380	struct kprobe *cur = __get_cpu_var(kprobe_instance);
381	int ret = 0;
382
383	if (cur && cur->break_handler) {
384		if (cur->break_handler(cur, regs))
385			ret = 1;
386	}
387	reset_kprobe_instance();
388	return ret;
389}
390
391/* Walks the list and increments nmissed count for multiprobe case */
392void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
393{
394	struct kprobe *kp;
395	if (p->pre_handler != aggr_pre_handler) {
396		p->nmissed++;
397	} else {
398		list_for_each_entry_rcu(kp, &p->list, list)
399			kp->nmissed++;
400	}
401	return;
402}
403
404void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
405				struct hlist_head *head)
406{
407	struct kretprobe *rp = ri->rp;
408
409	/* remove rp inst off the rprobe_inst_table */
410	hlist_del(&ri->hlist);
411	INIT_HLIST_NODE(&ri->hlist);
412	if (likely(rp)) {
413		spin_lock(&rp->lock);
414		hlist_add_head(&ri->hlist, &rp->free_instances);
415		spin_unlock(&rp->lock);
416	} else
417		/* Unregistering */
418		hlist_add_head(&ri->hlist, head);
419}
420
421void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
422			 struct hlist_head **head, unsigned long *flags)
423{
424	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
425	spinlock_t *hlist_lock;
426
427	*head = &kretprobe_inst_table[hash];
428	hlist_lock = kretprobe_table_lock_ptr(hash);
429	spin_lock_irqsave(hlist_lock, *flags);
430}
431
432static void __kprobes kretprobe_table_lock(unsigned long hash,
433	unsigned long *flags)
434{
435	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
436	spin_lock_irqsave(hlist_lock, *flags);
437}
438
439void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
440	unsigned long *flags)
441{
442	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
443	spinlock_t *hlist_lock;
444
445	hlist_lock = kretprobe_table_lock_ptr(hash);
446	spin_unlock_irqrestore(hlist_lock, *flags);
447}
448
449void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
450{
451	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
452	spin_unlock_irqrestore(hlist_lock, *flags);
453}
454
455/*
456 * This function is called from finish_task_switch when task tk becomes dead,
457 * so that we can recycle any function-return probe instances associated
458 * with this task. These left over instances represent probed functions
459 * that have been called but will never return.
460 */
461void __kprobes kprobe_flush_task(struct task_struct *tk)
462{
463	struct kretprobe_instance *ri;
464	struct hlist_head *head, empty_rp;
465	struct hlist_node *node, *tmp;
466	unsigned long hash, flags = 0;
467
468	if (unlikely(!kprobes_initialized))
469		/* Early boot.  kretprobe_table_locks not yet initialized. */
470		return;
471
472	hash = hash_ptr(tk, KPROBE_HASH_BITS);
473	head = &kretprobe_inst_table[hash];
474	kretprobe_table_lock(hash, &flags);
475	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
476		if (ri->task == tk)
477			recycle_rp_inst(ri, &empty_rp);
478	}
479	kretprobe_table_unlock(hash, &flags);
480	INIT_HLIST_HEAD(&empty_rp);
481	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
482		hlist_del(&ri->hlist);
483		kfree(ri);
484	}
485}
486
487static inline void free_rp_inst(struct kretprobe *rp)
488{
489	struct kretprobe_instance *ri;
490	struct hlist_node *pos, *next;
491
492	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
493		hlist_del(&ri->hlist);
494		kfree(ri);
495	}
496}
497
498static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
499{
500	unsigned long flags, hash;
501	struct kretprobe_instance *ri;
502	struct hlist_node *pos, *next;
503	struct hlist_head *head;
504
505	/* No race here */
506	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
507		kretprobe_table_lock(hash, &flags);
508		head = &kretprobe_inst_table[hash];
509		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
510			if (ri->rp == rp)
511				ri->rp = NULL;
512		}
513		kretprobe_table_unlock(hash, &flags);
514	}
515	free_rp_inst(rp);
516}
517
518/*
519 * Keep all fields in the kprobe consistent
520 */
521static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
522{
523	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
524	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
525}
526
527/*
528* Add the new probe to ap->list. Fail if this is the
529* second jprobe at the address - two jprobes can't coexist
530*/
531static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
532{
533	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
534	if (p->break_handler) {
535		if (ap->break_handler)
536			return -EEXIST;
537		list_add_tail_rcu(&p->list, &ap->list);
538		ap->break_handler = aggr_break_handler;
539	} else
540		list_add_rcu(&p->list, &ap->list);
541	if (p->post_handler && !ap->post_handler)
542		ap->post_handler = aggr_post_handler;
543
544	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
545		ap->flags &= ~KPROBE_FLAG_DISABLED;
546		if (!kprobes_all_disarmed)
547			/* Arm the breakpoint again. */
548			arm_kprobe(ap);
549	}
550	return 0;
551}
552
553/*
554 * Fill in the required fields of the "manager kprobe". Replace the
555 * earlier kprobe in the hlist with the manager kprobe
556 */
557static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
558{
559	copy_kprobe(p, ap);
560	flush_insn_slot(ap);
561	ap->addr = p->addr;
562	ap->flags = p->flags;
563	ap->pre_handler = aggr_pre_handler;
564	ap->fault_handler = aggr_fault_handler;
565	/* We don't care the kprobe which has gone. */
566	if (p->post_handler && !kprobe_gone(p))
567		ap->post_handler = aggr_post_handler;
568	if (p->break_handler && !kprobe_gone(p))
569		ap->break_handler = aggr_break_handler;
570
571	INIT_LIST_HEAD(&ap->list);
572	list_add_rcu(&p->list, &ap->list);
573
574	hlist_replace_rcu(&p->hlist, &ap->hlist);
575}
576
577/*
578 * This is the second or subsequent kprobe at the address - handle
579 * the intricacies
580 */
581static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
582					  struct kprobe *p)
583{
584	int ret = 0;
585	struct kprobe *ap = old_p;
586
587	if (old_p->pre_handler != aggr_pre_handler) {
588		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
589		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
590		if (!ap)
591			return -ENOMEM;
592		add_aggr_kprobe(ap, old_p);
593	}
594
595	if (kprobe_gone(ap)) {
596		/*
597		 * Attempting to insert new probe at the same location that
598		 * had a probe in the module vaddr area which already
599		 * freed. So, the instruction slot has already been
600		 * released. We need a new slot for the new probe.
601		 */
602		ret = arch_prepare_kprobe(ap);
603		if (ret)
604			/*
605			 * Even if fail to allocate new slot, don't need to
606			 * free aggr_probe. It will be used next time, or
607			 * freed by unregister_kprobe.
608			 */
609			return ret;
610
611		/*
612		 * Clear gone flag to prevent allocating new slot again, and
613		 * set disabled flag because it is not armed yet.
614		 */
615		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
616			    | KPROBE_FLAG_DISABLED;
617	}
618
619	copy_kprobe(ap, p);
620	return add_new_kprobe(ap, p);
621}
622
623/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
624static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
625{
626	struct kprobe *kp;
627
628	list_for_each_entry_rcu(kp, &p->list, list) {
629		if (!kprobe_disabled(kp))
630			/*
631			 * There is an active probe on the list.
632			 * We can't disable aggr_kprobe.
633			 */
634			return 0;
635	}
636	p->flags |= KPROBE_FLAG_DISABLED;
637	return 1;
638}
639
640static int __kprobes in_kprobes_functions(unsigned long addr)
641{
642	struct kprobe_blackpoint *kb;
643
644	if (addr >= (unsigned long)__kprobes_text_start &&
645	    addr < (unsigned long)__kprobes_text_end)
646		return -EINVAL;
647	/*
648	 * If there exists a kprobe_blacklist, verify and
649	 * fail any probe registration in the prohibited area
650	 */
651	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
652		if (kb->start_addr) {
653			if (addr >= kb->start_addr &&
654			    addr < (kb->start_addr + kb->range))
655				return -EINVAL;
656		}
657	}
658	return 0;
659}
660
661/*
662 * If we have a symbol_name argument, look it up and add the offset field
663 * to it. This way, we can specify a relative address to a symbol.
664 */
665static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
666{
667	kprobe_opcode_t *addr = p->addr;
668	if (p->symbol_name) {
669		if (addr)
670			return NULL;
671		kprobe_lookup_name(p->symbol_name, addr);
672	}
673
674	if (!addr)
675		return NULL;
676	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
677}
678
679int __kprobes register_kprobe(struct kprobe *p)
680{
681	int ret = 0;
682	struct kprobe *old_p;
683	struct module *probed_mod;
684	kprobe_opcode_t *addr;
685
686	addr = kprobe_addr(p);
687	if (!addr)
688		return -EINVAL;
689	p->addr = addr;
690
691	preempt_disable();
692	if (!kernel_text_address((unsigned long) p->addr) ||
693	    in_kprobes_functions((unsigned long) p->addr)) {
694		preempt_enable();
695		return -EINVAL;
696	}
697
698	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
699	p->flags &= KPROBE_FLAG_DISABLED;
700
701	/*
702	 * Check if are we probing a module.
703	 */
704	probed_mod = __module_text_address((unsigned long) p->addr);
705	if (probed_mod) {
706		/*
707		 * We must hold a refcount of the probed module while updating
708		 * its code to prohibit unexpected unloading.
709		 */
710		if (unlikely(!try_module_get(probed_mod))) {
711			preempt_enable();
712			return -EINVAL;
713		}
714		/*
715		 * If the module freed .init.text, we couldn't insert
716		 * kprobes in there.
717		 */
718		if (within_module_init((unsigned long)p->addr, probed_mod) &&
719		    probed_mod->state != MODULE_STATE_COMING) {
720			module_put(probed_mod);
721			preempt_enable();
722			return -EINVAL;
723		}
724	}
725	preempt_enable();
726
727	p->nmissed = 0;
728	INIT_LIST_HEAD(&p->list);
729	mutex_lock(&kprobe_mutex);
730	old_p = get_kprobe(p->addr);
731	if (old_p) {
732		ret = register_aggr_kprobe(old_p, p);
733		goto out;
734	}
735
736	mutex_lock(&text_mutex);
737	ret = arch_prepare_kprobe(p);
738	if (ret)
739		goto out_unlock_text;
740
741	INIT_HLIST_NODE(&p->hlist);
742	hlist_add_head_rcu(&p->hlist,
743		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
744
745	if (!kprobes_all_disarmed && !kprobe_disabled(p))
746		arch_arm_kprobe(p);
747
748out_unlock_text:
749	mutex_unlock(&text_mutex);
750out:
751	mutex_unlock(&kprobe_mutex);
752
753	if (probed_mod)
754		module_put(probed_mod);
755
756	return ret;
757}
758EXPORT_SYMBOL_GPL(register_kprobe);
759
760/* Check passed kprobe is valid and return kprobe in kprobe_table. */
761static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
762{
763	struct kprobe *old_p, *list_p;
764
765	old_p = get_kprobe(p->addr);
766	if (unlikely(!old_p))
767		return NULL;
768
769	if (p != old_p) {
770		list_for_each_entry_rcu(list_p, &old_p->list, list)
771			if (list_p == p)
772			/* kprobe p is a valid probe */
773				goto valid;
774		return NULL;
775	}
776valid:
777	return old_p;
778}
779
780/*
781 * Unregister a kprobe without a scheduler synchronization.
782 */
783static int __kprobes __unregister_kprobe_top(struct kprobe *p)
784{
785	struct kprobe *old_p, *list_p;
786
787	old_p = __get_valid_kprobe(p);
788	if (old_p == NULL)
789		return -EINVAL;
790
791	if (old_p == p ||
792	    (old_p->pre_handler == aggr_pre_handler &&
793	     list_is_singular(&old_p->list))) {
794		/*
795		 * Only probe on the hash list. Disarm only if kprobes are
796		 * enabled and not gone - otherwise, the breakpoint would
797		 * already have been removed. We save on flushing icache.
798		 */
799		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
800			disarm_kprobe(p);
801		hlist_del_rcu(&old_p->hlist);
802	} else {
803		if (p->break_handler && !kprobe_gone(p))
804			old_p->break_handler = NULL;
805		if (p->post_handler && !kprobe_gone(p)) {
806			list_for_each_entry_rcu(list_p, &old_p->list, list) {
807				if ((list_p != p) && (list_p->post_handler))
808					goto noclean;
809			}
810			old_p->post_handler = NULL;
811		}
812noclean:
813		list_del_rcu(&p->list);
814		if (!kprobe_disabled(old_p)) {
815			try_to_disable_aggr_kprobe(old_p);
816			if (!kprobes_all_disarmed && kprobe_disabled(old_p))
817				disarm_kprobe(old_p);
818		}
819	}
820	return 0;
821}
822
823static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
824{
825	struct kprobe *old_p;
826
827	if (list_empty(&p->list))
828		arch_remove_kprobe(p);
829	else if (list_is_singular(&p->list)) {
830		/* "p" is the last child of an aggr_kprobe */
831		old_p = list_entry(p->list.next, struct kprobe, list);
832		list_del(&p->list);
833		arch_remove_kprobe(old_p);
834		kfree(old_p);
835	}
836}
837
838int __kprobes register_kprobes(struct kprobe **kps, int num)
839{
840	int i, ret = 0;
841
842	if (num <= 0)
843		return -EINVAL;
844	for (i = 0; i < num; i++) {
845		ret = register_kprobe(kps[i]);
846		if (ret < 0) {
847			if (i > 0)
848				unregister_kprobes(kps, i);
849			break;
850		}
851	}
852	return ret;
853}
854EXPORT_SYMBOL_GPL(register_kprobes);
855
856void __kprobes unregister_kprobe(struct kprobe *p)
857{
858	unregister_kprobes(&p, 1);
859}
860EXPORT_SYMBOL_GPL(unregister_kprobe);
861
862void __kprobes unregister_kprobes(struct kprobe **kps, int num)
863{
864	int i;
865
866	if (num <= 0)
867		return;
868	mutex_lock(&kprobe_mutex);
869	for (i = 0; i < num; i++)
870		if (__unregister_kprobe_top(kps[i]) < 0)
871			kps[i]->addr = NULL;
872	mutex_unlock(&kprobe_mutex);
873
874	synchronize_sched();
875	for (i = 0; i < num; i++)
876		if (kps[i]->addr)
877			__unregister_kprobe_bottom(kps[i]);
878}
879EXPORT_SYMBOL_GPL(unregister_kprobes);
880
881static struct notifier_block kprobe_exceptions_nb = {
882	.notifier_call = kprobe_exceptions_notify,
883	.priority = 0x7fffffff /* we need to be notified first */
884};
885
886unsigned long __weak arch_deref_entry_point(void *entry)
887{
888	return (unsigned long)entry;
889}
890
891int __kprobes register_jprobes(struct jprobe **jps, int num)
892{
893	struct jprobe *jp;
894	int ret = 0, i;
895
896	if (num <= 0)
897		return -EINVAL;
898	for (i = 0; i < num; i++) {
899		unsigned long addr;
900		jp = jps[i];
901		addr = arch_deref_entry_point(jp->entry);
902
903		if (!kernel_text_address(addr))
904			ret = -EINVAL;
905		else {
906			/* Todo: Verify probepoint is a function entry point */
907			jp->kp.pre_handler = setjmp_pre_handler;
908			jp->kp.break_handler = longjmp_break_handler;
909			ret = register_kprobe(&jp->kp);
910		}
911		if (ret < 0) {
912			if (i > 0)
913				unregister_jprobes(jps, i);
914			break;
915		}
916	}
917	return ret;
918}
919EXPORT_SYMBOL_GPL(register_jprobes);
920
921int __kprobes register_jprobe(struct jprobe *jp)
922{
923	return register_jprobes(&jp, 1);
924}
925EXPORT_SYMBOL_GPL(register_jprobe);
926
927void __kprobes unregister_jprobe(struct jprobe *jp)
928{
929	unregister_jprobes(&jp, 1);
930}
931EXPORT_SYMBOL_GPL(unregister_jprobe);
932
933void __kprobes unregister_jprobes(struct jprobe **jps, int num)
934{
935	int i;
936
937	if (num <= 0)
938		return;
939	mutex_lock(&kprobe_mutex);
940	for (i = 0; i < num; i++)
941		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
942			jps[i]->kp.addr = NULL;
943	mutex_unlock(&kprobe_mutex);
944
945	synchronize_sched();
946	for (i = 0; i < num; i++) {
947		if (jps[i]->kp.addr)
948			__unregister_kprobe_bottom(&jps[i]->kp);
949	}
950}
951EXPORT_SYMBOL_GPL(unregister_jprobes);
952
953#ifdef CONFIG_KRETPROBES
954/*
955 * This kprobe pre_handler is registered with every kretprobe. When probe
956 * hits it will set up the return probe.
957 */
958static int __kprobes pre_handler_kretprobe(struct kprobe *p,
959					   struct pt_regs *regs)
960{
961	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
962	unsigned long hash, flags = 0;
963	struct kretprobe_instance *ri;
964
965	/*TODO: consider to only swap the RA after the last pre_handler fired */
966	hash = hash_ptr(current, KPROBE_HASH_BITS);
967	spin_lock_irqsave(&rp->lock, flags);
968	if (!hlist_empty(&rp->free_instances)) {
969		ri = hlist_entry(rp->free_instances.first,
970				struct kretprobe_instance, hlist);
971		hlist_del(&ri->hlist);
972		spin_unlock_irqrestore(&rp->lock, flags);
973
974		ri->rp = rp;
975		ri->task = current;
976
977		if (rp->entry_handler && rp->entry_handler(ri, regs))
978			return 0;
979
980		arch_prepare_kretprobe(ri, regs);
981
982		/* XXX(hch): why is there no hlist_move_head? */
983		INIT_HLIST_NODE(&ri->hlist);
984		kretprobe_table_lock(hash, &flags);
985		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
986		kretprobe_table_unlock(hash, &flags);
987	} else {
988		rp->nmissed++;
989		spin_unlock_irqrestore(&rp->lock, flags);
990	}
991	return 0;
992}
993
994int __kprobes register_kretprobe(struct kretprobe *rp)
995{
996	int ret = 0;
997	struct kretprobe_instance *inst;
998	int i;
999	void *addr;
1000
1001	if (kretprobe_blacklist_size) {
1002		addr = kprobe_addr(&rp->kp);
1003		if (!addr)
1004			return -EINVAL;
1005
1006		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1007			if (kretprobe_blacklist[i].addr == addr)
1008				return -EINVAL;
1009		}
1010	}
1011
1012	rp->kp.pre_handler = pre_handler_kretprobe;
1013	rp->kp.post_handler = NULL;
1014	rp->kp.fault_handler = NULL;
1015	rp->kp.break_handler = NULL;
1016
1017	/* Pre-allocate memory for max kretprobe instances */
1018	if (rp->maxactive <= 0) {
1019#ifdef CONFIG_PREEMPT
1020		rp->maxactive = max(10, 2 * NR_CPUS);
1021#else
1022		rp->maxactive = NR_CPUS;
1023#endif
1024	}
1025	spin_lock_init(&rp->lock);
1026	INIT_HLIST_HEAD(&rp->free_instances);
1027	for (i = 0; i < rp->maxactive; i++) {
1028		inst = kmalloc(sizeof(struct kretprobe_instance) +
1029			       rp->data_size, GFP_KERNEL);
1030		if (inst == NULL) {
1031			free_rp_inst(rp);
1032			return -ENOMEM;
1033		}
1034		INIT_HLIST_NODE(&inst->hlist);
1035		hlist_add_head(&inst->hlist, &rp->free_instances);
1036	}
1037
1038	rp->nmissed = 0;
1039	/* Establish function entry probe point */
1040	ret = register_kprobe(&rp->kp);
1041	if (ret != 0)
1042		free_rp_inst(rp);
1043	return ret;
1044}
1045EXPORT_SYMBOL_GPL(register_kretprobe);
1046
1047int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1048{
1049	int ret = 0, i;
1050
1051	if (num <= 0)
1052		return -EINVAL;
1053	for (i = 0; i < num; i++) {
1054		ret = register_kretprobe(rps[i]);
1055		if (ret < 0) {
1056			if (i > 0)
1057				unregister_kretprobes(rps, i);
1058			break;
1059		}
1060	}
1061	return ret;
1062}
1063EXPORT_SYMBOL_GPL(register_kretprobes);
1064
1065void __kprobes unregister_kretprobe(struct kretprobe *rp)
1066{
1067	unregister_kretprobes(&rp, 1);
1068}
1069EXPORT_SYMBOL_GPL(unregister_kretprobe);
1070
1071void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1072{
1073	int i;
1074
1075	if (num <= 0)
1076		return;
1077	mutex_lock(&kprobe_mutex);
1078	for (i = 0; i < num; i++)
1079		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1080			rps[i]->kp.addr = NULL;
1081	mutex_unlock(&kprobe_mutex);
1082
1083	synchronize_sched();
1084	for (i = 0; i < num; i++) {
1085		if (rps[i]->kp.addr) {
1086			__unregister_kprobe_bottom(&rps[i]->kp);
1087			cleanup_rp_inst(rps[i]);
1088		}
1089	}
1090}
1091EXPORT_SYMBOL_GPL(unregister_kretprobes);
1092
1093#else /* CONFIG_KRETPROBES */
1094int __kprobes register_kretprobe(struct kretprobe *rp)
1095{
1096	return -ENOSYS;
1097}
1098EXPORT_SYMBOL_GPL(register_kretprobe);
1099
1100int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1101{
1102	return -ENOSYS;
1103}
1104EXPORT_SYMBOL_GPL(register_kretprobes);
1105
1106void __kprobes unregister_kretprobe(struct kretprobe *rp)
1107{
1108}
1109EXPORT_SYMBOL_GPL(unregister_kretprobe);
1110
1111void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1112{
1113}
1114EXPORT_SYMBOL_GPL(unregister_kretprobes);
1115
1116static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1117					   struct pt_regs *regs)
1118{
1119	return 0;
1120}
1121
1122#endif /* CONFIG_KRETPROBES */
1123
1124/* Set the kprobe gone and remove its instruction buffer. */
1125static void __kprobes kill_kprobe(struct kprobe *p)
1126{
1127	struct kprobe *kp;
1128
1129	p->flags |= KPROBE_FLAG_GONE;
1130	if (p->pre_handler == aggr_pre_handler) {
1131		/*
1132		 * If this is an aggr_kprobe, we have to list all the
1133		 * chained probes and mark them GONE.
1134		 */
1135		list_for_each_entry_rcu(kp, &p->list, list)
1136			kp->flags |= KPROBE_FLAG_GONE;
1137		p->post_handler = NULL;
1138		p->break_handler = NULL;
1139	}
1140	/*
1141	 * Here, we can remove insn_slot safely, because no thread calls
1142	 * the original probed function (which will be freed soon) any more.
1143	 */
1144	arch_remove_kprobe(p);
1145}
1146
1147void __kprobes dump_kprobe(struct kprobe *kp)
1148{
1149	printk(KERN_WARNING "Dumping kprobe:\n");
1150	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1151	       kp->symbol_name, kp->addr, kp->offset);
1152}
1153
1154/* Module notifier call back, checking kprobes on the module */
1155static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1156					     unsigned long val, void *data)
1157{
1158	struct module *mod = data;
1159	struct hlist_head *head;
1160	struct hlist_node *node;
1161	struct kprobe *p;
1162	unsigned int i;
1163	int checkcore = (val == MODULE_STATE_GOING);
1164
1165	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1166		return NOTIFY_DONE;
1167
1168	/*
1169	 * When MODULE_STATE_GOING was notified, both of module .text and
1170	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1171	 * notified, only .init.text section would be freed. We need to
1172	 * disable kprobes which have been inserted in the sections.
1173	 */
1174	mutex_lock(&kprobe_mutex);
1175	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1176		head = &kprobe_table[i];
1177		hlist_for_each_entry_rcu(p, node, head, hlist)
1178			if (within_module_init((unsigned long)p->addr, mod) ||
1179			    (checkcore &&
1180			     within_module_core((unsigned long)p->addr, mod))) {
1181				/*
1182				 * The vaddr this probe is installed will soon
1183				 * be vfreed buy not synced to disk. Hence,
1184				 * disarming the breakpoint isn't needed.
1185				 */
1186				kill_kprobe(p);
1187			}
1188	}
1189	mutex_unlock(&kprobe_mutex);
1190	return NOTIFY_DONE;
1191}
1192
1193static struct notifier_block kprobe_module_nb = {
1194	.notifier_call = kprobes_module_callback,
1195	.priority = 0
1196};
1197
1198static int __init init_kprobes(void)
1199{
1200	int i, err = 0;
1201	unsigned long offset = 0, size = 0;
1202	char *modname, namebuf[128];
1203	const char *symbol_name;
1204	void *addr;
1205	struct kprobe_blackpoint *kb;
1206
1207	/* FIXME allocate the probe table, currently defined statically */
1208	/* initialize all list heads */
1209	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1210		INIT_HLIST_HEAD(&kprobe_table[i]);
1211		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1212		spin_lock_init(&(kretprobe_table_locks[i].lock));
1213	}
1214
1215	/*
1216	 * Lookup and populate the kprobe_blacklist.
1217	 *
1218	 * Unlike the kretprobe blacklist, we'll need to determine
1219	 * the range of addresses that belong to the said functions,
1220	 * since a kprobe need not necessarily be at the beginning
1221	 * of a function.
1222	 */
1223	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1224		kprobe_lookup_name(kb->name, addr);
1225		if (!addr)
1226			continue;
1227
1228		kb->start_addr = (unsigned long)addr;
1229		symbol_name = kallsyms_lookup(kb->start_addr,
1230				&size, &offset, &modname, namebuf);
1231		if (!symbol_name)
1232			kb->range = 0;
1233		else
1234			kb->range = size;
1235	}
1236
1237	if (kretprobe_blacklist_size) {
1238		/* lookup the function address from its name */
1239		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1240			kprobe_lookup_name(kretprobe_blacklist[i].name,
1241					   kretprobe_blacklist[i].addr);
1242			if (!kretprobe_blacklist[i].addr)
1243				printk("kretprobe: lookup failed: %s\n",
1244				       kretprobe_blacklist[i].name);
1245		}
1246	}
1247
1248	/* By default, kprobes are armed */
1249	kprobes_all_disarmed = false;
1250
1251	err = arch_init_kprobes();
1252	if (!err)
1253		err = register_die_notifier(&kprobe_exceptions_nb);
1254	if (!err)
1255		err = register_module_notifier(&kprobe_module_nb);
1256
1257	kprobes_initialized = (err == 0);
1258
1259	if (!err)
1260		init_test_probes();
1261	return err;
1262}
1263
1264#ifdef CONFIG_DEBUG_FS
1265static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1266		const char *sym, int offset,char *modname)
1267{
1268	char *kprobe_type;
1269
1270	if (p->pre_handler == pre_handler_kretprobe)
1271		kprobe_type = "r";
1272	else if (p->pre_handler == setjmp_pre_handler)
1273		kprobe_type = "j";
1274	else
1275		kprobe_type = "k";
1276	if (sym)
1277		seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1278			p->addr, kprobe_type, sym, offset,
1279			(modname ? modname : " "),
1280			(kprobe_gone(p) ? "[GONE]" : ""),
1281			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1282			 "[DISABLED]" : ""));
1283	else
1284		seq_printf(pi, "%p  %s  %p %s%s\n",
1285			p->addr, kprobe_type, p->addr,
1286			(kprobe_gone(p) ? "[GONE]" : ""),
1287			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1288			 "[DISABLED]" : ""));
1289}
1290
1291static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1292{
1293	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1294}
1295
1296static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1297{
1298	(*pos)++;
1299	if (*pos >= KPROBE_TABLE_SIZE)
1300		return NULL;
1301	return pos;
1302}
1303
1304static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1305{
1306	/* Nothing to do */
1307}
1308
1309static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1310{
1311	struct hlist_head *head;
1312	struct hlist_node *node;
1313	struct kprobe *p, *kp;
1314	const char *sym = NULL;
1315	unsigned int i = *(loff_t *) v;
1316	unsigned long offset = 0;
1317	char *modname, namebuf[128];
1318
1319	head = &kprobe_table[i];
1320	preempt_disable();
1321	hlist_for_each_entry_rcu(p, node, head, hlist) {
1322		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1323					&offset, &modname, namebuf);
1324		if (p->pre_handler == aggr_pre_handler) {
1325			list_for_each_entry_rcu(kp, &p->list, list)
1326				report_probe(pi, kp, sym, offset, modname);
1327		} else
1328			report_probe(pi, p, sym, offset, modname);
1329	}
1330	preempt_enable();
1331	return 0;
1332}
1333
1334static struct seq_operations kprobes_seq_ops = {
1335	.start = kprobe_seq_start,
1336	.next  = kprobe_seq_next,
1337	.stop  = kprobe_seq_stop,
1338	.show  = show_kprobe_addr
1339};
1340
1341static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1342{
1343	return seq_open(filp, &kprobes_seq_ops);
1344}
1345
1346static struct file_operations debugfs_kprobes_operations = {
1347	.open           = kprobes_open,
1348	.read           = seq_read,
1349	.llseek         = seq_lseek,
1350	.release        = seq_release,
1351};
1352
1353/* Disable one kprobe */
1354int __kprobes disable_kprobe(struct kprobe *kp)
1355{
1356	int ret = 0;
1357	struct kprobe *p;
1358
1359	mutex_lock(&kprobe_mutex);
1360
1361	/* Check whether specified probe is valid. */
1362	p = __get_valid_kprobe(kp);
1363	if (unlikely(p == NULL)) {
1364		ret = -EINVAL;
1365		goto out;
1366	}
1367
1368	/* If the probe is already disabled (or gone), just return */
1369	if (kprobe_disabled(kp))
1370		goto out;
1371
1372	kp->flags |= KPROBE_FLAG_DISABLED;
1373	if (p != kp)
1374		/* When kp != p, p is always enabled. */
1375		try_to_disable_aggr_kprobe(p);
1376
1377	if (!kprobes_all_disarmed && kprobe_disabled(p))
1378		disarm_kprobe(p);
1379out:
1380	mutex_unlock(&kprobe_mutex);
1381	return ret;
1382}
1383EXPORT_SYMBOL_GPL(disable_kprobe);
1384
1385/* Enable one kprobe */
1386int __kprobes enable_kprobe(struct kprobe *kp)
1387{
1388	int ret = 0;
1389	struct kprobe *p;
1390
1391	mutex_lock(&kprobe_mutex);
1392
1393	/* Check whether specified probe is valid. */
1394	p = __get_valid_kprobe(kp);
1395	if (unlikely(p == NULL)) {
1396		ret = -EINVAL;
1397		goto out;
1398	}
1399
1400	if (kprobe_gone(kp)) {
1401		/* This kprobe has gone, we couldn't enable it. */
1402		ret = -EINVAL;
1403		goto out;
1404	}
1405
1406	if (!kprobes_all_disarmed && kprobe_disabled(p))
1407		arm_kprobe(p);
1408
1409	p->flags &= ~KPROBE_FLAG_DISABLED;
1410	if (p != kp)
1411		kp->flags &= ~KPROBE_FLAG_DISABLED;
1412out:
1413	mutex_unlock(&kprobe_mutex);
1414	return ret;
1415}
1416EXPORT_SYMBOL_GPL(enable_kprobe);
1417
1418static void __kprobes arm_all_kprobes(void)
1419{
1420	struct hlist_head *head;
1421	struct hlist_node *node;
1422	struct kprobe *p;
1423	unsigned int i;
1424
1425	mutex_lock(&kprobe_mutex);
1426
1427	/* If kprobes are armed, just return */
1428	if (!kprobes_all_disarmed)
1429		goto already_enabled;
1430
1431	mutex_lock(&text_mutex);
1432	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1433		head = &kprobe_table[i];
1434		hlist_for_each_entry_rcu(p, node, head, hlist)
1435			if (!kprobe_disabled(p))
1436				arch_arm_kprobe(p);
1437	}
1438	mutex_unlock(&text_mutex);
1439
1440	kprobes_all_disarmed = false;
1441	printk(KERN_INFO "Kprobes globally enabled\n");
1442
1443already_enabled:
1444	mutex_unlock(&kprobe_mutex);
1445	return;
1446}
1447
1448static void __kprobes disarm_all_kprobes(void)
1449{
1450	struct hlist_head *head;
1451	struct hlist_node *node;
1452	struct kprobe *p;
1453	unsigned int i;
1454
1455	mutex_lock(&kprobe_mutex);
1456
1457	/* If kprobes are already disarmed, just return */
1458	if (kprobes_all_disarmed)
1459		goto already_disabled;
1460
1461	kprobes_all_disarmed = true;
1462	printk(KERN_INFO "Kprobes globally disabled\n");
1463	mutex_lock(&text_mutex);
1464	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1465		head = &kprobe_table[i];
1466		hlist_for_each_entry_rcu(p, node, head, hlist) {
1467			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1468				arch_disarm_kprobe(p);
1469		}
1470	}
1471
1472	mutex_unlock(&text_mutex);
1473	mutex_unlock(&kprobe_mutex);
1474	/* Allow all currently running kprobes to complete */
1475	synchronize_sched();
1476	return;
1477
1478already_disabled:
1479	mutex_unlock(&kprobe_mutex);
1480	return;
1481}
1482
1483/*
1484 * XXX: The debugfs bool file interface doesn't allow for callbacks
1485 * when the bool state is switched. We can reuse that facility when
1486 * available
1487 */
1488static ssize_t read_enabled_file_bool(struct file *file,
1489	       char __user *user_buf, size_t count, loff_t *ppos)
1490{
1491	char buf[3];
1492
1493	if (!kprobes_all_disarmed)
1494		buf[0] = '1';
1495	else
1496		buf[0] = '0';
1497	buf[1] = '\n';
1498	buf[2] = 0x00;
1499	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1500}
1501
1502static ssize_t write_enabled_file_bool(struct file *file,
1503	       const char __user *user_buf, size_t count, loff_t *ppos)
1504{
1505	char buf[32];
1506	int buf_size;
1507
1508	buf_size = min(count, (sizeof(buf)-1));
1509	if (copy_from_user(buf, user_buf, buf_size))
1510		return -EFAULT;
1511
1512	switch (buf[0]) {
1513	case 'y':
1514	case 'Y':
1515	case '1':
1516		arm_all_kprobes();
1517		break;
1518	case 'n':
1519	case 'N':
1520	case '0':
1521		disarm_all_kprobes();
1522		break;
1523	}
1524
1525	return count;
1526}
1527
1528static struct file_operations fops_kp = {
1529	.read =         read_enabled_file_bool,
1530	.write =        write_enabled_file_bool,
1531};
1532
1533static int __kprobes debugfs_kprobe_init(void)
1534{
1535	struct dentry *dir, *file;
1536	unsigned int value = 1;
1537
1538	dir = debugfs_create_dir("kprobes", NULL);
1539	if (!dir)
1540		return -ENOMEM;
1541
1542	file = debugfs_create_file("list", 0444, dir, NULL,
1543				&debugfs_kprobes_operations);
1544	if (!file) {
1545		debugfs_remove(dir);
1546		return -ENOMEM;
1547	}
1548
1549	file = debugfs_create_file("enabled", 0600, dir,
1550					&value, &fops_kp);
1551	if (!file) {
1552		debugfs_remove(dir);
1553		return -ENOMEM;
1554	}
1555
1556	return 0;
1557}
1558
1559late_initcall(debugfs_kprobe_init);
1560#endif /* CONFIG_DEBUG_FS */
1561
1562module_init(init_kprobes);
1563
1564/* defined in arch/.../kernel/kprobes.c */
1565EXPORT_SYMBOL_GPL(jprobe_return);
1566