kprobes.c revision b76834bc1b6db0a0923eed85c81b1113021b0612
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct hlist_node *node;
338	struct kprobe *p;
339
340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341	hlist_for_each_entry_rcu(p, node, head, hlist) {
342		if (p->addr == addr)
343			return p;
344	}
345
346	return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354	return p->pre_handler == aggr_pre_handler;
355}
356
357/*
358 * Keep all fields in the kprobe consistent
359 */
360static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
361{
362	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
363	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
364}
365
366#ifdef CONFIG_OPTPROBES
367/* NOTE: change this value only with kprobe_mutex held */
368static bool kprobes_allow_optimization;
369
370/*
371 * Call all pre_handler on the list, but ignores its return value.
372 * This must be called from arch-dep optimized caller.
373 */
374void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
375{
376	struct kprobe *kp;
377
378	list_for_each_entry_rcu(kp, &p->list, list) {
379		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
380			set_kprobe_instance(kp);
381			kp->pre_handler(kp, regs);
382		}
383		reset_kprobe_instance();
384	}
385}
386
387/* Return true(!0) if the kprobe is ready for optimization. */
388static inline int kprobe_optready(struct kprobe *p)
389{
390	struct optimized_kprobe *op;
391
392	if (kprobe_aggrprobe(p)) {
393		op = container_of(p, struct optimized_kprobe, kp);
394		return arch_prepared_optinsn(&op->optinsn);
395	}
396
397	return 0;
398}
399
400/*
401 * Return an optimized kprobe whose optimizing code replaces
402 * instructions including addr (exclude breakpoint).
403 */
404static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
405{
406	int i;
407	struct kprobe *p = NULL;
408	struct optimized_kprobe *op;
409
410	/* Don't check i == 0, since that is a breakpoint case. */
411	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
412		p = get_kprobe((void *)(addr - i));
413
414	if (p && kprobe_optready(p)) {
415		op = container_of(p, struct optimized_kprobe, kp);
416		if (arch_within_optimized_kprobe(op, addr))
417			return p;
418	}
419
420	return NULL;
421}
422
423/* Optimization staging list, protected by kprobe_mutex */
424static LIST_HEAD(optimizing_list);
425
426static void kprobe_optimizer(struct work_struct *work);
427static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
428#define OPTIMIZE_DELAY 5
429
430/* Kprobe jump optimizer */
431static __kprobes void kprobe_optimizer(struct work_struct *work)
432{
433	struct optimized_kprobe *op, *tmp;
434
435	/* Lock modules while optimizing kprobes */
436	mutex_lock(&module_mutex);
437	mutex_lock(&kprobe_mutex);
438	if (kprobes_all_disarmed || !kprobes_allow_optimization)
439		goto end;
440
441	/*
442	 * Wait for quiesence period to ensure all running interrupts
443	 * are done. Because optprobe may modify multiple instructions
444	 * there is a chance that Nth instruction is interrupted. In that
445	 * case, running interrupt can return to 2nd-Nth byte of jump
446	 * instruction. This wait is for avoiding it.
447	 */
448	synchronize_sched();
449
450	/*
451	 * The optimization/unoptimization refers online_cpus via
452	 * stop_machine() and cpu-hotplug modifies online_cpus.
453	 * And same time, text_mutex will be held in cpu-hotplug and here.
454	 * This combination can cause a deadlock (cpu-hotplug try to lock
455	 * text_mutex but stop_machine can not be done because online_cpus
456	 * has been changed)
457	 * To avoid this deadlock, we need to call get_online_cpus()
458	 * for preventing cpu-hotplug outside of text_mutex locking.
459	 */
460	get_online_cpus();
461	mutex_lock(&text_mutex);
462	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
463		WARN_ON(kprobe_disabled(&op->kp));
464		if (arch_optimize_kprobe(op) < 0)
465			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
466		list_del_init(&op->list);
467	}
468	mutex_unlock(&text_mutex);
469	put_online_cpus();
470end:
471	mutex_unlock(&kprobe_mutex);
472	mutex_unlock(&module_mutex);
473}
474
475/* Optimize kprobe if p is ready to be optimized */
476static __kprobes void optimize_kprobe(struct kprobe *p)
477{
478	struct optimized_kprobe *op;
479
480	/* Check if the kprobe is disabled or not ready for optimization. */
481	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
482	    (kprobe_disabled(p) || kprobes_all_disarmed))
483		return;
484
485	/* Both of break_handler and post_handler are not supported. */
486	if (p->break_handler || p->post_handler)
487		return;
488
489	op = container_of(p, struct optimized_kprobe, kp);
490
491	/* Check there is no other kprobes at the optimized instructions */
492	if (arch_check_optimized_kprobe(op) < 0)
493		return;
494
495	/* Check if it is already optimized. */
496	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
497		return;
498
499	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
500	list_add(&op->list, &optimizing_list);
501	if (!delayed_work_pending(&optimizing_work))
502		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
503}
504
505/* Unoptimize a kprobe if p is optimized */
506static __kprobes void unoptimize_kprobe(struct kprobe *p)
507{
508	struct optimized_kprobe *op;
509
510	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
511		op = container_of(p, struct optimized_kprobe, kp);
512		if (!list_empty(&op->list))
513			/* Dequeue from the optimization queue */
514			list_del_init(&op->list);
515		else
516			/* Replace jump with break */
517			arch_unoptimize_kprobe(op);
518		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
519	}
520}
521
522/* Remove optimized instructions */
523static void __kprobes kill_optimized_kprobe(struct kprobe *p)
524{
525	struct optimized_kprobe *op;
526
527	op = container_of(p, struct optimized_kprobe, kp);
528	if (!list_empty(&op->list)) {
529		/* Dequeue from the optimization queue */
530		list_del_init(&op->list);
531		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
532	}
533	/* Don't unoptimize, because the target code will be freed. */
534	arch_remove_optimized_kprobe(op);
535}
536
537/* Try to prepare optimized instructions */
538static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
539{
540	struct optimized_kprobe *op;
541
542	op = container_of(p, struct optimized_kprobe, kp);
543	arch_prepare_optimized_kprobe(op);
544}
545
546/* Free optimized instructions and optimized_kprobe */
547static __kprobes void free_aggr_kprobe(struct kprobe *p)
548{
549	struct optimized_kprobe *op;
550
551	op = container_of(p, struct optimized_kprobe, kp);
552	arch_remove_optimized_kprobe(op);
553	kfree(op);
554}
555
556/* Allocate new optimized_kprobe and try to prepare optimized instructions */
557static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
558{
559	struct optimized_kprobe *op;
560
561	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
562	if (!op)
563		return NULL;
564
565	INIT_LIST_HEAD(&op->list);
566	op->kp.addr = p->addr;
567	arch_prepare_optimized_kprobe(op);
568
569	return &op->kp;
570}
571
572static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
573
574/*
575 * Prepare an optimized_kprobe and optimize it
576 * NOTE: p must be a normal registered kprobe
577 */
578static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
579{
580	struct kprobe *ap;
581	struct optimized_kprobe *op;
582
583	ap = alloc_aggr_kprobe(p);
584	if (!ap)
585		return;
586
587	op = container_of(ap, struct optimized_kprobe, kp);
588	if (!arch_prepared_optinsn(&op->optinsn)) {
589		/* If failed to setup optimizing, fallback to kprobe */
590		free_aggr_kprobe(ap);
591		return;
592	}
593
594	init_aggr_kprobe(ap, p);
595	optimize_kprobe(ap);
596}
597
598#ifdef CONFIG_SYSCTL
599/* This should be called with kprobe_mutex locked */
600static void __kprobes optimize_all_kprobes(void)
601{
602	struct hlist_head *head;
603	struct hlist_node *node;
604	struct kprobe *p;
605	unsigned int i;
606
607	/* If optimization is already allowed, just return */
608	if (kprobes_allow_optimization)
609		return;
610
611	kprobes_allow_optimization = true;
612	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
613		head = &kprobe_table[i];
614		hlist_for_each_entry_rcu(p, node, head, hlist)
615			if (!kprobe_disabled(p))
616				optimize_kprobe(p);
617	}
618	printk(KERN_INFO "Kprobes globally optimized\n");
619}
620
621/* This should be called with kprobe_mutex locked */
622static void __kprobes unoptimize_all_kprobes(void)
623{
624	struct hlist_head *head;
625	struct hlist_node *node;
626	struct kprobe *p;
627	unsigned int i;
628
629	/* If optimization is already prohibited, just return */
630	if (!kprobes_allow_optimization)
631		return;
632
633	kprobes_allow_optimization = false;
634	printk(KERN_INFO "Kprobes globally unoptimized\n");
635	get_online_cpus();	/* For avoiding text_mutex deadlock */
636	mutex_lock(&text_mutex);
637	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
638		head = &kprobe_table[i];
639		hlist_for_each_entry_rcu(p, node, head, hlist) {
640			if (!kprobe_disabled(p))
641				unoptimize_kprobe(p);
642		}
643	}
644
645	mutex_unlock(&text_mutex);
646	put_online_cpus();
647	/* Allow all currently running kprobes to complete */
648	synchronize_sched();
649}
650
651int sysctl_kprobes_optimization;
652int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
653				      void __user *buffer, size_t *length,
654				      loff_t *ppos)
655{
656	int ret;
657
658	mutex_lock(&kprobe_mutex);
659	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
660	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
661
662	if (sysctl_kprobes_optimization)
663		optimize_all_kprobes();
664	else
665		unoptimize_all_kprobes();
666	mutex_unlock(&kprobe_mutex);
667
668	return ret;
669}
670#endif /* CONFIG_SYSCTL */
671
672static void __kprobes __arm_kprobe(struct kprobe *p)
673{
674	struct kprobe *old_p;
675
676	/* Check collision with other optimized kprobes */
677	old_p = get_optimized_kprobe((unsigned long)p->addr);
678	if (unlikely(old_p))
679		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
680
681	arch_arm_kprobe(p);
682	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
683}
684
685static void __kprobes __disarm_kprobe(struct kprobe *p)
686{
687	struct kprobe *old_p;
688
689	unoptimize_kprobe(p);	/* Try to unoptimize */
690	arch_disarm_kprobe(p);
691
692	/* If another kprobe was blocked, optimize it. */
693	old_p = get_optimized_kprobe((unsigned long)p->addr);
694	if (unlikely(old_p))
695		optimize_kprobe(old_p);
696}
697
698#else /* !CONFIG_OPTPROBES */
699
700#define optimize_kprobe(p)			do {} while (0)
701#define unoptimize_kprobe(p)			do {} while (0)
702#define kill_optimized_kprobe(p)		do {} while (0)
703#define prepare_optimized_kprobe(p)		do {} while (0)
704#define try_to_optimize_kprobe(p)		do {} while (0)
705#define __arm_kprobe(p)				arch_arm_kprobe(p)
706#define __disarm_kprobe(p)			arch_disarm_kprobe(p)
707
708static __kprobes void free_aggr_kprobe(struct kprobe *p)
709{
710	kfree(p);
711}
712
713static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
714{
715	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
716}
717#endif /* CONFIG_OPTPROBES */
718
719/* Arm a kprobe with text_mutex */
720static void __kprobes arm_kprobe(struct kprobe *kp)
721{
722	/*
723	 * Here, since __arm_kprobe() doesn't use stop_machine(),
724	 * this doesn't cause deadlock on text_mutex. So, we don't
725	 * need get_online_cpus().
726	 */
727	mutex_lock(&text_mutex);
728	__arm_kprobe(kp);
729	mutex_unlock(&text_mutex);
730}
731
732/* Disarm a kprobe with text_mutex */
733static void __kprobes disarm_kprobe(struct kprobe *kp)
734{
735	get_online_cpus();	/* For avoiding text_mutex deadlock */
736	mutex_lock(&text_mutex);
737	__disarm_kprobe(kp);
738	mutex_unlock(&text_mutex);
739	put_online_cpus();
740}
741
742/*
743 * Aggregate handlers for multiple kprobes support - these handlers
744 * take care of invoking the individual kprobe handlers on p->list
745 */
746static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
747{
748	struct kprobe *kp;
749
750	list_for_each_entry_rcu(kp, &p->list, list) {
751		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
752			set_kprobe_instance(kp);
753			if (kp->pre_handler(kp, regs))
754				return 1;
755		}
756		reset_kprobe_instance();
757	}
758	return 0;
759}
760
761static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
762					unsigned long flags)
763{
764	struct kprobe *kp;
765
766	list_for_each_entry_rcu(kp, &p->list, list) {
767		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
768			set_kprobe_instance(kp);
769			kp->post_handler(kp, regs, flags);
770			reset_kprobe_instance();
771		}
772	}
773}
774
775static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
776					int trapnr)
777{
778	struct kprobe *cur = __this_cpu_read(kprobe_instance);
779
780	/*
781	 * if we faulted "during" the execution of a user specified
782	 * probe handler, invoke just that probe's fault handler
783	 */
784	if (cur && cur->fault_handler) {
785		if (cur->fault_handler(cur, regs, trapnr))
786			return 1;
787	}
788	return 0;
789}
790
791static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
792{
793	struct kprobe *cur = __this_cpu_read(kprobe_instance);
794	int ret = 0;
795
796	if (cur && cur->break_handler) {
797		if (cur->break_handler(cur, regs))
798			ret = 1;
799	}
800	reset_kprobe_instance();
801	return ret;
802}
803
804/* Walks the list and increments nmissed count for multiprobe case */
805void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
806{
807	struct kprobe *kp;
808	if (!kprobe_aggrprobe(p)) {
809		p->nmissed++;
810	} else {
811		list_for_each_entry_rcu(kp, &p->list, list)
812			kp->nmissed++;
813	}
814	return;
815}
816
817void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
818				struct hlist_head *head)
819{
820	struct kretprobe *rp = ri->rp;
821
822	/* remove rp inst off the rprobe_inst_table */
823	hlist_del(&ri->hlist);
824	INIT_HLIST_NODE(&ri->hlist);
825	if (likely(rp)) {
826		spin_lock(&rp->lock);
827		hlist_add_head(&ri->hlist, &rp->free_instances);
828		spin_unlock(&rp->lock);
829	} else
830		/* Unregistering */
831		hlist_add_head(&ri->hlist, head);
832}
833
834void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
835			 struct hlist_head **head, unsigned long *flags)
836__acquires(hlist_lock)
837{
838	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
839	spinlock_t *hlist_lock;
840
841	*head = &kretprobe_inst_table[hash];
842	hlist_lock = kretprobe_table_lock_ptr(hash);
843	spin_lock_irqsave(hlist_lock, *flags);
844}
845
846static void __kprobes kretprobe_table_lock(unsigned long hash,
847	unsigned long *flags)
848__acquires(hlist_lock)
849{
850	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
851	spin_lock_irqsave(hlist_lock, *flags);
852}
853
854void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
855	unsigned long *flags)
856__releases(hlist_lock)
857{
858	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
859	spinlock_t *hlist_lock;
860
861	hlist_lock = kretprobe_table_lock_ptr(hash);
862	spin_unlock_irqrestore(hlist_lock, *flags);
863}
864
865static void __kprobes kretprobe_table_unlock(unsigned long hash,
866       unsigned long *flags)
867__releases(hlist_lock)
868{
869	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
870	spin_unlock_irqrestore(hlist_lock, *flags);
871}
872
873/*
874 * This function is called from finish_task_switch when task tk becomes dead,
875 * so that we can recycle any function-return probe instances associated
876 * with this task. These left over instances represent probed functions
877 * that have been called but will never return.
878 */
879void __kprobes kprobe_flush_task(struct task_struct *tk)
880{
881	struct kretprobe_instance *ri;
882	struct hlist_head *head, empty_rp;
883	struct hlist_node *node, *tmp;
884	unsigned long hash, flags = 0;
885
886	if (unlikely(!kprobes_initialized))
887		/* Early boot.  kretprobe_table_locks not yet initialized. */
888		return;
889
890	hash = hash_ptr(tk, KPROBE_HASH_BITS);
891	head = &kretprobe_inst_table[hash];
892	kretprobe_table_lock(hash, &flags);
893	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
894		if (ri->task == tk)
895			recycle_rp_inst(ri, &empty_rp);
896	}
897	kretprobe_table_unlock(hash, &flags);
898	INIT_HLIST_HEAD(&empty_rp);
899	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
900		hlist_del(&ri->hlist);
901		kfree(ri);
902	}
903}
904
905static inline void free_rp_inst(struct kretprobe *rp)
906{
907	struct kretprobe_instance *ri;
908	struct hlist_node *pos, *next;
909
910	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
911		hlist_del(&ri->hlist);
912		kfree(ri);
913	}
914}
915
916static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
917{
918	unsigned long flags, hash;
919	struct kretprobe_instance *ri;
920	struct hlist_node *pos, *next;
921	struct hlist_head *head;
922
923	/* No race here */
924	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
925		kretprobe_table_lock(hash, &flags);
926		head = &kretprobe_inst_table[hash];
927		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
928			if (ri->rp == rp)
929				ri->rp = NULL;
930		}
931		kretprobe_table_unlock(hash, &flags);
932	}
933	free_rp_inst(rp);
934}
935
936/*
937* Add the new probe to ap->list. Fail if this is the
938* second jprobe at the address - two jprobes can't coexist
939*/
940static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
941{
942	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
943
944	if (p->break_handler || p->post_handler)
945		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
946
947	if (p->break_handler) {
948		if (ap->break_handler)
949			return -EEXIST;
950		list_add_tail_rcu(&p->list, &ap->list);
951		ap->break_handler = aggr_break_handler;
952	} else
953		list_add_rcu(&p->list, &ap->list);
954	if (p->post_handler && !ap->post_handler)
955		ap->post_handler = aggr_post_handler;
956
957	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
958		ap->flags &= ~KPROBE_FLAG_DISABLED;
959		if (!kprobes_all_disarmed)
960			/* Arm the breakpoint again. */
961			__arm_kprobe(ap);
962	}
963	return 0;
964}
965
966/*
967 * Fill in the required fields of the "manager kprobe". Replace the
968 * earlier kprobe in the hlist with the manager kprobe
969 */
970static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
971{
972	/* Copy p's insn slot to ap */
973	copy_kprobe(p, ap);
974	flush_insn_slot(ap);
975	ap->addr = p->addr;
976	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
977	ap->pre_handler = aggr_pre_handler;
978	ap->fault_handler = aggr_fault_handler;
979	/* We don't care the kprobe which has gone. */
980	if (p->post_handler && !kprobe_gone(p))
981		ap->post_handler = aggr_post_handler;
982	if (p->break_handler && !kprobe_gone(p))
983		ap->break_handler = aggr_break_handler;
984
985	INIT_LIST_HEAD(&ap->list);
986	INIT_HLIST_NODE(&ap->hlist);
987
988	list_add_rcu(&p->list, &ap->list);
989	hlist_replace_rcu(&p->hlist, &ap->hlist);
990}
991
992/*
993 * This is the second or subsequent kprobe at the address - handle
994 * the intricacies
995 */
996static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
997					  struct kprobe *p)
998{
999	int ret = 0;
1000	struct kprobe *ap = old_p;
1001
1002	if (!kprobe_aggrprobe(old_p)) {
1003		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1004		ap = alloc_aggr_kprobe(old_p);
1005		if (!ap)
1006			return -ENOMEM;
1007		init_aggr_kprobe(ap, old_p);
1008	}
1009
1010	if (kprobe_gone(ap)) {
1011		/*
1012		 * Attempting to insert new probe at the same location that
1013		 * had a probe in the module vaddr area which already
1014		 * freed. So, the instruction slot has already been
1015		 * released. We need a new slot for the new probe.
1016		 */
1017		ret = arch_prepare_kprobe(ap);
1018		if (ret)
1019			/*
1020			 * Even if fail to allocate new slot, don't need to
1021			 * free aggr_probe. It will be used next time, or
1022			 * freed by unregister_kprobe.
1023			 */
1024			return ret;
1025
1026		/* Prepare optimized instructions if possible. */
1027		prepare_optimized_kprobe(ap);
1028
1029		/*
1030		 * Clear gone flag to prevent allocating new slot again, and
1031		 * set disabled flag because it is not armed yet.
1032		 */
1033		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1034			    | KPROBE_FLAG_DISABLED;
1035	}
1036
1037	/* Copy ap's insn slot to p */
1038	copy_kprobe(ap, p);
1039	return add_new_kprobe(ap, p);
1040}
1041
1042/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1043static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1044{
1045	struct kprobe *kp;
1046
1047	list_for_each_entry_rcu(kp, &p->list, list) {
1048		if (!kprobe_disabled(kp))
1049			/*
1050			 * There is an active probe on the list.
1051			 * We can't disable aggr_kprobe.
1052			 */
1053			return 0;
1054	}
1055	p->flags |= KPROBE_FLAG_DISABLED;
1056	return 1;
1057}
1058
1059static int __kprobes in_kprobes_functions(unsigned long addr)
1060{
1061	struct kprobe_blackpoint *kb;
1062
1063	if (addr >= (unsigned long)__kprobes_text_start &&
1064	    addr < (unsigned long)__kprobes_text_end)
1065		return -EINVAL;
1066	/*
1067	 * If there exists a kprobe_blacklist, verify and
1068	 * fail any probe registration in the prohibited area
1069	 */
1070	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1071		if (kb->start_addr) {
1072			if (addr >= kb->start_addr &&
1073			    addr < (kb->start_addr + kb->range))
1074				return -EINVAL;
1075		}
1076	}
1077	return 0;
1078}
1079
1080/*
1081 * If we have a symbol_name argument, look it up and add the offset field
1082 * to it. This way, we can specify a relative address to a symbol.
1083 */
1084static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1085{
1086	kprobe_opcode_t *addr = p->addr;
1087	if (p->symbol_name) {
1088		if (addr)
1089			return NULL;
1090		kprobe_lookup_name(p->symbol_name, addr);
1091	}
1092
1093	if (!addr)
1094		return NULL;
1095	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1096}
1097
1098/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1099static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1100{
1101	struct kprobe *old_p, *list_p;
1102
1103	old_p = get_kprobe(p->addr);
1104	if (unlikely(!old_p))
1105		return NULL;
1106
1107	if (p != old_p) {
1108		list_for_each_entry_rcu(list_p, &old_p->list, list)
1109			if (list_p == p)
1110			/* kprobe p is a valid probe */
1111				goto valid;
1112		return NULL;
1113	}
1114valid:
1115	return old_p;
1116}
1117
1118/* Return error if the kprobe is being re-registered */
1119static inline int check_kprobe_rereg(struct kprobe *p)
1120{
1121	int ret = 0;
1122	struct kprobe *old_p;
1123
1124	mutex_lock(&kprobe_mutex);
1125	old_p = __get_valid_kprobe(p);
1126	if (old_p)
1127		ret = -EINVAL;
1128	mutex_unlock(&kprobe_mutex);
1129	return ret;
1130}
1131
1132int __kprobes register_kprobe(struct kprobe *p)
1133{
1134	int ret = 0;
1135	struct kprobe *old_p;
1136	struct module *probed_mod;
1137	kprobe_opcode_t *addr;
1138
1139	addr = kprobe_addr(p);
1140	if (!addr)
1141		return -EINVAL;
1142	p->addr = addr;
1143
1144	ret = check_kprobe_rereg(p);
1145	if (ret)
1146		return ret;
1147
1148	jump_label_lock();
1149	preempt_disable();
1150	if (!kernel_text_address((unsigned long) p->addr) ||
1151	    in_kprobes_functions((unsigned long) p->addr) ||
1152	    ftrace_text_reserved(p->addr, p->addr) ||
1153	    jump_label_text_reserved(p->addr, p->addr))
1154		goto fail_with_jump_label;
1155
1156	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1157	p->flags &= KPROBE_FLAG_DISABLED;
1158
1159	/*
1160	 * Check if are we probing a module.
1161	 */
1162	probed_mod = __module_text_address((unsigned long) p->addr);
1163	if (probed_mod) {
1164		/*
1165		 * We must hold a refcount of the probed module while updating
1166		 * its code to prohibit unexpected unloading.
1167		 */
1168		if (unlikely(!try_module_get(probed_mod)))
1169			goto fail_with_jump_label;
1170
1171		/*
1172		 * If the module freed .init.text, we couldn't insert
1173		 * kprobes in there.
1174		 */
1175		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1176		    probed_mod->state != MODULE_STATE_COMING) {
1177			module_put(probed_mod);
1178			goto fail_with_jump_label;
1179		}
1180	}
1181	preempt_enable();
1182	jump_label_unlock();
1183
1184	p->nmissed = 0;
1185	INIT_LIST_HEAD(&p->list);
1186	mutex_lock(&kprobe_mutex);
1187
1188	jump_label_lock(); /* needed to call jump_label_text_reserved() */
1189
1190	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1191	mutex_lock(&text_mutex);
1192
1193	old_p = get_kprobe(p->addr);
1194	if (old_p) {
1195		/* Since this may unoptimize old_p, locking text_mutex. */
1196		ret = register_aggr_kprobe(old_p, p);
1197		goto out;
1198	}
1199
1200	ret = arch_prepare_kprobe(p);
1201	if (ret)
1202		goto out;
1203
1204	INIT_HLIST_NODE(&p->hlist);
1205	hlist_add_head_rcu(&p->hlist,
1206		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1207
1208	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1209		__arm_kprobe(p);
1210
1211	/* Try to optimize kprobe */
1212	try_to_optimize_kprobe(p);
1213
1214out:
1215	mutex_unlock(&text_mutex);
1216	put_online_cpus();
1217	jump_label_unlock();
1218	mutex_unlock(&kprobe_mutex);
1219
1220	if (probed_mod)
1221		module_put(probed_mod);
1222
1223	return ret;
1224
1225fail_with_jump_label:
1226	preempt_enable();
1227	jump_label_unlock();
1228	return -EINVAL;
1229}
1230EXPORT_SYMBOL_GPL(register_kprobe);
1231
1232/*
1233 * Unregister a kprobe without a scheduler synchronization.
1234 */
1235static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1236{
1237	struct kprobe *old_p, *list_p;
1238
1239	old_p = __get_valid_kprobe(p);
1240	if (old_p == NULL)
1241		return -EINVAL;
1242
1243	if (old_p == p ||
1244	    (kprobe_aggrprobe(old_p) &&
1245	     list_is_singular(&old_p->list))) {
1246		/*
1247		 * Only probe on the hash list. Disarm only if kprobes are
1248		 * enabled and not gone - otherwise, the breakpoint would
1249		 * already have been removed. We save on flushing icache.
1250		 */
1251		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1252			disarm_kprobe(old_p);
1253		hlist_del_rcu(&old_p->hlist);
1254	} else {
1255		if (p->break_handler && !kprobe_gone(p))
1256			old_p->break_handler = NULL;
1257		if (p->post_handler && !kprobe_gone(p)) {
1258			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1259				if ((list_p != p) && (list_p->post_handler))
1260					goto noclean;
1261			}
1262			old_p->post_handler = NULL;
1263		}
1264noclean:
1265		list_del_rcu(&p->list);
1266		if (!kprobe_disabled(old_p)) {
1267			try_to_disable_aggr_kprobe(old_p);
1268			if (!kprobes_all_disarmed) {
1269				if (kprobe_disabled(old_p))
1270					disarm_kprobe(old_p);
1271				else
1272					/* Try to optimize this probe again */
1273					optimize_kprobe(old_p);
1274			}
1275		}
1276	}
1277	return 0;
1278}
1279
1280static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1281{
1282	struct kprobe *old_p;
1283
1284	if (list_empty(&p->list))
1285		arch_remove_kprobe(p);
1286	else if (list_is_singular(&p->list)) {
1287		/* "p" is the last child of an aggr_kprobe */
1288		old_p = list_entry(p->list.next, struct kprobe, list);
1289		list_del(&p->list);
1290		arch_remove_kprobe(old_p);
1291		free_aggr_kprobe(old_p);
1292	}
1293}
1294
1295int __kprobes register_kprobes(struct kprobe **kps, int num)
1296{
1297	int i, ret = 0;
1298
1299	if (num <= 0)
1300		return -EINVAL;
1301	for (i = 0; i < num; i++) {
1302		ret = register_kprobe(kps[i]);
1303		if (ret < 0) {
1304			if (i > 0)
1305				unregister_kprobes(kps, i);
1306			break;
1307		}
1308	}
1309	return ret;
1310}
1311EXPORT_SYMBOL_GPL(register_kprobes);
1312
1313void __kprobes unregister_kprobe(struct kprobe *p)
1314{
1315	unregister_kprobes(&p, 1);
1316}
1317EXPORT_SYMBOL_GPL(unregister_kprobe);
1318
1319void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1320{
1321	int i;
1322
1323	if (num <= 0)
1324		return;
1325	mutex_lock(&kprobe_mutex);
1326	for (i = 0; i < num; i++)
1327		if (__unregister_kprobe_top(kps[i]) < 0)
1328			kps[i]->addr = NULL;
1329	mutex_unlock(&kprobe_mutex);
1330
1331	synchronize_sched();
1332	for (i = 0; i < num; i++)
1333		if (kps[i]->addr)
1334			__unregister_kprobe_bottom(kps[i]);
1335}
1336EXPORT_SYMBOL_GPL(unregister_kprobes);
1337
1338static struct notifier_block kprobe_exceptions_nb = {
1339	.notifier_call = kprobe_exceptions_notify,
1340	.priority = 0x7fffffff /* we need to be notified first */
1341};
1342
1343unsigned long __weak arch_deref_entry_point(void *entry)
1344{
1345	return (unsigned long)entry;
1346}
1347
1348int __kprobes register_jprobes(struct jprobe **jps, int num)
1349{
1350	struct jprobe *jp;
1351	int ret = 0, i;
1352
1353	if (num <= 0)
1354		return -EINVAL;
1355	for (i = 0; i < num; i++) {
1356		unsigned long addr, offset;
1357		jp = jps[i];
1358		addr = arch_deref_entry_point(jp->entry);
1359
1360		/* Verify probepoint is a function entry point */
1361		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1362		    offset == 0) {
1363			jp->kp.pre_handler = setjmp_pre_handler;
1364			jp->kp.break_handler = longjmp_break_handler;
1365			ret = register_kprobe(&jp->kp);
1366		} else
1367			ret = -EINVAL;
1368
1369		if (ret < 0) {
1370			if (i > 0)
1371				unregister_jprobes(jps, i);
1372			break;
1373		}
1374	}
1375	return ret;
1376}
1377EXPORT_SYMBOL_GPL(register_jprobes);
1378
1379int __kprobes register_jprobe(struct jprobe *jp)
1380{
1381	return register_jprobes(&jp, 1);
1382}
1383EXPORT_SYMBOL_GPL(register_jprobe);
1384
1385void __kprobes unregister_jprobe(struct jprobe *jp)
1386{
1387	unregister_jprobes(&jp, 1);
1388}
1389EXPORT_SYMBOL_GPL(unregister_jprobe);
1390
1391void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1392{
1393	int i;
1394
1395	if (num <= 0)
1396		return;
1397	mutex_lock(&kprobe_mutex);
1398	for (i = 0; i < num; i++)
1399		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1400			jps[i]->kp.addr = NULL;
1401	mutex_unlock(&kprobe_mutex);
1402
1403	synchronize_sched();
1404	for (i = 0; i < num; i++) {
1405		if (jps[i]->kp.addr)
1406			__unregister_kprobe_bottom(&jps[i]->kp);
1407	}
1408}
1409EXPORT_SYMBOL_GPL(unregister_jprobes);
1410
1411#ifdef CONFIG_KRETPROBES
1412/*
1413 * This kprobe pre_handler is registered with every kretprobe. When probe
1414 * hits it will set up the return probe.
1415 */
1416static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1417					   struct pt_regs *regs)
1418{
1419	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1420	unsigned long hash, flags = 0;
1421	struct kretprobe_instance *ri;
1422
1423	/*TODO: consider to only swap the RA after the last pre_handler fired */
1424	hash = hash_ptr(current, KPROBE_HASH_BITS);
1425	spin_lock_irqsave(&rp->lock, flags);
1426	if (!hlist_empty(&rp->free_instances)) {
1427		ri = hlist_entry(rp->free_instances.first,
1428				struct kretprobe_instance, hlist);
1429		hlist_del(&ri->hlist);
1430		spin_unlock_irqrestore(&rp->lock, flags);
1431
1432		ri->rp = rp;
1433		ri->task = current;
1434
1435		if (rp->entry_handler && rp->entry_handler(ri, regs))
1436			return 0;
1437
1438		arch_prepare_kretprobe(ri, regs);
1439
1440		/* XXX(hch): why is there no hlist_move_head? */
1441		INIT_HLIST_NODE(&ri->hlist);
1442		kretprobe_table_lock(hash, &flags);
1443		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1444		kretprobe_table_unlock(hash, &flags);
1445	} else {
1446		rp->nmissed++;
1447		spin_unlock_irqrestore(&rp->lock, flags);
1448	}
1449	return 0;
1450}
1451
1452int __kprobes register_kretprobe(struct kretprobe *rp)
1453{
1454	int ret = 0;
1455	struct kretprobe_instance *inst;
1456	int i;
1457	void *addr;
1458
1459	if (kretprobe_blacklist_size) {
1460		addr = kprobe_addr(&rp->kp);
1461		if (!addr)
1462			return -EINVAL;
1463
1464		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1465			if (kretprobe_blacklist[i].addr == addr)
1466				return -EINVAL;
1467		}
1468	}
1469
1470	rp->kp.pre_handler = pre_handler_kretprobe;
1471	rp->kp.post_handler = NULL;
1472	rp->kp.fault_handler = NULL;
1473	rp->kp.break_handler = NULL;
1474
1475	/* Pre-allocate memory for max kretprobe instances */
1476	if (rp->maxactive <= 0) {
1477#ifdef CONFIG_PREEMPT
1478		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1479#else
1480		rp->maxactive = num_possible_cpus();
1481#endif
1482	}
1483	spin_lock_init(&rp->lock);
1484	INIT_HLIST_HEAD(&rp->free_instances);
1485	for (i = 0; i < rp->maxactive; i++) {
1486		inst = kmalloc(sizeof(struct kretprobe_instance) +
1487			       rp->data_size, GFP_KERNEL);
1488		if (inst == NULL) {
1489			free_rp_inst(rp);
1490			return -ENOMEM;
1491		}
1492		INIT_HLIST_NODE(&inst->hlist);
1493		hlist_add_head(&inst->hlist, &rp->free_instances);
1494	}
1495
1496	rp->nmissed = 0;
1497	/* Establish function entry probe point */
1498	ret = register_kprobe(&rp->kp);
1499	if (ret != 0)
1500		free_rp_inst(rp);
1501	return ret;
1502}
1503EXPORT_SYMBOL_GPL(register_kretprobe);
1504
1505int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1506{
1507	int ret = 0, i;
1508
1509	if (num <= 0)
1510		return -EINVAL;
1511	for (i = 0; i < num; i++) {
1512		ret = register_kretprobe(rps[i]);
1513		if (ret < 0) {
1514			if (i > 0)
1515				unregister_kretprobes(rps, i);
1516			break;
1517		}
1518	}
1519	return ret;
1520}
1521EXPORT_SYMBOL_GPL(register_kretprobes);
1522
1523void __kprobes unregister_kretprobe(struct kretprobe *rp)
1524{
1525	unregister_kretprobes(&rp, 1);
1526}
1527EXPORT_SYMBOL_GPL(unregister_kretprobe);
1528
1529void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1530{
1531	int i;
1532
1533	if (num <= 0)
1534		return;
1535	mutex_lock(&kprobe_mutex);
1536	for (i = 0; i < num; i++)
1537		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1538			rps[i]->kp.addr = NULL;
1539	mutex_unlock(&kprobe_mutex);
1540
1541	synchronize_sched();
1542	for (i = 0; i < num; i++) {
1543		if (rps[i]->kp.addr) {
1544			__unregister_kprobe_bottom(&rps[i]->kp);
1545			cleanup_rp_inst(rps[i]);
1546		}
1547	}
1548}
1549EXPORT_SYMBOL_GPL(unregister_kretprobes);
1550
1551#else /* CONFIG_KRETPROBES */
1552int __kprobes register_kretprobe(struct kretprobe *rp)
1553{
1554	return -ENOSYS;
1555}
1556EXPORT_SYMBOL_GPL(register_kretprobe);
1557
1558int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1559{
1560	return -ENOSYS;
1561}
1562EXPORT_SYMBOL_GPL(register_kretprobes);
1563
1564void __kprobes unregister_kretprobe(struct kretprobe *rp)
1565{
1566}
1567EXPORT_SYMBOL_GPL(unregister_kretprobe);
1568
1569void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1570{
1571}
1572EXPORT_SYMBOL_GPL(unregister_kretprobes);
1573
1574static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1575					   struct pt_regs *regs)
1576{
1577	return 0;
1578}
1579
1580#endif /* CONFIG_KRETPROBES */
1581
1582/* Set the kprobe gone and remove its instruction buffer. */
1583static void __kprobes kill_kprobe(struct kprobe *p)
1584{
1585	struct kprobe *kp;
1586
1587	p->flags |= KPROBE_FLAG_GONE;
1588	if (kprobe_aggrprobe(p)) {
1589		/*
1590		 * If this is an aggr_kprobe, we have to list all the
1591		 * chained probes and mark them GONE.
1592		 */
1593		list_for_each_entry_rcu(kp, &p->list, list)
1594			kp->flags |= KPROBE_FLAG_GONE;
1595		p->post_handler = NULL;
1596		p->break_handler = NULL;
1597		kill_optimized_kprobe(p);
1598	}
1599	/*
1600	 * Here, we can remove insn_slot safely, because no thread calls
1601	 * the original probed function (which will be freed soon) any more.
1602	 */
1603	arch_remove_kprobe(p);
1604}
1605
1606/* Disable one kprobe */
1607int __kprobes disable_kprobe(struct kprobe *kp)
1608{
1609	int ret = 0;
1610	struct kprobe *p;
1611
1612	mutex_lock(&kprobe_mutex);
1613
1614	/* Check whether specified probe is valid. */
1615	p = __get_valid_kprobe(kp);
1616	if (unlikely(p == NULL)) {
1617		ret = -EINVAL;
1618		goto out;
1619	}
1620
1621	/* If the probe is already disabled (or gone), just return */
1622	if (kprobe_disabled(kp))
1623		goto out;
1624
1625	kp->flags |= KPROBE_FLAG_DISABLED;
1626	if (p != kp)
1627		/* When kp != p, p is always enabled. */
1628		try_to_disable_aggr_kprobe(p);
1629
1630	if (!kprobes_all_disarmed && kprobe_disabled(p))
1631		disarm_kprobe(p);
1632out:
1633	mutex_unlock(&kprobe_mutex);
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(disable_kprobe);
1637
1638/* Enable one kprobe */
1639int __kprobes enable_kprobe(struct kprobe *kp)
1640{
1641	int ret = 0;
1642	struct kprobe *p;
1643
1644	mutex_lock(&kprobe_mutex);
1645
1646	/* Check whether specified probe is valid. */
1647	p = __get_valid_kprobe(kp);
1648	if (unlikely(p == NULL)) {
1649		ret = -EINVAL;
1650		goto out;
1651	}
1652
1653	if (kprobe_gone(kp)) {
1654		/* This kprobe has gone, we couldn't enable it. */
1655		ret = -EINVAL;
1656		goto out;
1657	}
1658
1659	if (p != kp)
1660		kp->flags &= ~KPROBE_FLAG_DISABLED;
1661
1662	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1663		p->flags &= ~KPROBE_FLAG_DISABLED;
1664		arm_kprobe(p);
1665	}
1666out:
1667	mutex_unlock(&kprobe_mutex);
1668	return ret;
1669}
1670EXPORT_SYMBOL_GPL(enable_kprobe);
1671
1672void __kprobes dump_kprobe(struct kprobe *kp)
1673{
1674	printk(KERN_WARNING "Dumping kprobe:\n");
1675	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1676	       kp->symbol_name, kp->addr, kp->offset);
1677}
1678
1679/* Module notifier call back, checking kprobes on the module */
1680static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1681					     unsigned long val, void *data)
1682{
1683	struct module *mod = data;
1684	struct hlist_head *head;
1685	struct hlist_node *node;
1686	struct kprobe *p;
1687	unsigned int i;
1688	int checkcore = (val == MODULE_STATE_GOING);
1689
1690	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1691		return NOTIFY_DONE;
1692
1693	/*
1694	 * When MODULE_STATE_GOING was notified, both of module .text and
1695	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1696	 * notified, only .init.text section would be freed. We need to
1697	 * disable kprobes which have been inserted in the sections.
1698	 */
1699	mutex_lock(&kprobe_mutex);
1700	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1701		head = &kprobe_table[i];
1702		hlist_for_each_entry_rcu(p, node, head, hlist)
1703			if (within_module_init((unsigned long)p->addr, mod) ||
1704			    (checkcore &&
1705			     within_module_core((unsigned long)p->addr, mod))) {
1706				/*
1707				 * The vaddr this probe is installed will soon
1708				 * be vfreed buy not synced to disk. Hence,
1709				 * disarming the breakpoint isn't needed.
1710				 */
1711				kill_kprobe(p);
1712			}
1713	}
1714	mutex_unlock(&kprobe_mutex);
1715	return NOTIFY_DONE;
1716}
1717
1718static struct notifier_block kprobe_module_nb = {
1719	.notifier_call = kprobes_module_callback,
1720	.priority = 0
1721};
1722
1723static int __init init_kprobes(void)
1724{
1725	int i, err = 0;
1726	unsigned long offset = 0, size = 0;
1727	char *modname, namebuf[128];
1728	const char *symbol_name;
1729	void *addr;
1730	struct kprobe_blackpoint *kb;
1731
1732	/* FIXME allocate the probe table, currently defined statically */
1733	/* initialize all list heads */
1734	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1735		INIT_HLIST_HEAD(&kprobe_table[i]);
1736		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1737		spin_lock_init(&(kretprobe_table_locks[i].lock));
1738	}
1739
1740	/*
1741	 * Lookup and populate the kprobe_blacklist.
1742	 *
1743	 * Unlike the kretprobe blacklist, we'll need to determine
1744	 * the range of addresses that belong to the said functions,
1745	 * since a kprobe need not necessarily be at the beginning
1746	 * of a function.
1747	 */
1748	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1749		kprobe_lookup_name(kb->name, addr);
1750		if (!addr)
1751			continue;
1752
1753		kb->start_addr = (unsigned long)addr;
1754		symbol_name = kallsyms_lookup(kb->start_addr,
1755				&size, &offset, &modname, namebuf);
1756		if (!symbol_name)
1757			kb->range = 0;
1758		else
1759			kb->range = size;
1760	}
1761
1762	if (kretprobe_blacklist_size) {
1763		/* lookup the function address from its name */
1764		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1765			kprobe_lookup_name(kretprobe_blacklist[i].name,
1766					   kretprobe_blacklist[i].addr);
1767			if (!kretprobe_blacklist[i].addr)
1768				printk("kretprobe: lookup failed: %s\n",
1769				       kretprobe_blacklist[i].name);
1770		}
1771	}
1772
1773#if defined(CONFIG_OPTPROBES)
1774#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1775	/* Init kprobe_optinsn_slots */
1776	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1777#endif
1778	/* By default, kprobes can be optimized */
1779	kprobes_allow_optimization = true;
1780#endif
1781
1782	/* By default, kprobes are armed */
1783	kprobes_all_disarmed = false;
1784
1785	err = arch_init_kprobes();
1786	if (!err)
1787		err = register_die_notifier(&kprobe_exceptions_nb);
1788	if (!err)
1789		err = register_module_notifier(&kprobe_module_nb);
1790
1791	kprobes_initialized = (err == 0);
1792
1793	if (!err)
1794		init_test_probes();
1795	return err;
1796}
1797
1798#ifdef CONFIG_DEBUG_FS
1799static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1800		const char *sym, int offset, char *modname, struct kprobe *pp)
1801{
1802	char *kprobe_type;
1803
1804	if (p->pre_handler == pre_handler_kretprobe)
1805		kprobe_type = "r";
1806	else if (p->pre_handler == setjmp_pre_handler)
1807		kprobe_type = "j";
1808	else
1809		kprobe_type = "k";
1810
1811	if (sym)
1812		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1813			p->addr, kprobe_type, sym, offset,
1814			(modname ? modname : " "));
1815	else
1816		seq_printf(pi, "%p  %s  %p ",
1817			p->addr, kprobe_type, p->addr);
1818
1819	if (!pp)
1820		pp = p;
1821	seq_printf(pi, "%s%s%s\n",
1822		(kprobe_gone(p) ? "[GONE]" : ""),
1823		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1824		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1825}
1826
1827static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1828{
1829	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1830}
1831
1832static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1833{
1834	(*pos)++;
1835	if (*pos >= KPROBE_TABLE_SIZE)
1836		return NULL;
1837	return pos;
1838}
1839
1840static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1841{
1842	/* Nothing to do */
1843}
1844
1845static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1846{
1847	struct hlist_head *head;
1848	struct hlist_node *node;
1849	struct kprobe *p, *kp;
1850	const char *sym = NULL;
1851	unsigned int i = *(loff_t *) v;
1852	unsigned long offset = 0;
1853	char *modname, namebuf[128];
1854
1855	head = &kprobe_table[i];
1856	preempt_disable();
1857	hlist_for_each_entry_rcu(p, node, head, hlist) {
1858		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1859					&offset, &modname, namebuf);
1860		if (kprobe_aggrprobe(p)) {
1861			list_for_each_entry_rcu(kp, &p->list, list)
1862				report_probe(pi, kp, sym, offset, modname, p);
1863		} else
1864			report_probe(pi, p, sym, offset, modname, NULL);
1865	}
1866	preempt_enable();
1867	return 0;
1868}
1869
1870static const struct seq_operations kprobes_seq_ops = {
1871	.start = kprobe_seq_start,
1872	.next  = kprobe_seq_next,
1873	.stop  = kprobe_seq_stop,
1874	.show  = show_kprobe_addr
1875};
1876
1877static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1878{
1879	return seq_open(filp, &kprobes_seq_ops);
1880}
1881
1882static const struct file_operations debugfs_kprobes_operations = {
1883	.open           = kprobes_open,
1884	.read           = seq_read,
1885	.llseek         = seq_lseek,
1886	.release        = seq_release,
1887};
1888
1889static void __kprobes arm_all_kprobes(void)
1890{
1891	struct hlist_head *head;
1892	struct hlist_node *node;
1893	struct kprobe *p;
1894	unsigned int i;
1895
1896	mutex_lock(&kprobe_mutex);
1897
1898	/* If kprobes are armed, just return */
1899	if (!kprobes_all_disarmed)
1900		goto already_enabled;
1901
1902	/* Arming kprobes doesn't optimize kprobe itself */
1903	mutex_lock(&text_mutex);
1904	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1905		head = &kprobe_table[i];
1906		hlist_for_each_entry_rcu(p, node, head, hlist)
1907			if (!kprobe_disabled(p))
1908				__arm_kprobe(p);
1909	}
1910	mutex_unlock(&text_mutex);
1911
1912	kprobes_all_disarmed = false;
1913	printk(KERN_INFO "Kprobes globally enabled\n");
1914
1915already_enabled:
1916	mutex_unlock(&kprobe_mutex);
1917	return;
1918}
1919
1920static void __kprobes disarm_all_kprobes(void)
1921{
1922	struct hlist_head *head;
1923	struct hlist_node *node;
1924	struct kprobe *p;
1925	unsigned int i;
1926
1927	mutex_lock(&kprobe_mutex);
1928
1929	/* If kprobes are already disarmed, just return */
1930	if (kprobes_all_disarmed)
1931		goto already_disabled;
1932
1933	kprobes_all_disarmed = true;
1934	printk(KERN_INFO "Kprobes globally disabled\n");
1935
1936	/*
1937	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1938	 * because disarming may also unoptimize kprobes.
1939	 */
1940	get_online_cpus();
1941	mutex_lock(&text_mutex);
1942	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1943		head = &kprobe_table[i];
1944		hlist_for_each_entry_rcu(p, node, head, hlist) {
1945			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1946				__disarm_kprobe(p);
1947		}
1948	}
1949
1950	mutex_unlock(&text_mutex);
1951	put_online_cpus();
1952	mutex_unlock(&kprobe_mutex);
1953	/* Allow all currently running kprobes to complete */
1954	synchronize_sched();
1955	return;
1956
1957already_disabled:
1958	mutex_unlock(&kprobe_mutex);
1959	return;
1960}
1961
1962/*
1963 * XXX: The debugfs bool file interface doesn't allow for callbacks
1964 * when the bool state is switched. We can reuse that facility when
1965 * available
1966 */
1967static ssize_t read_enabled_file_bool(struct file *file,
1968	       char __user *user_buf, size_t count, loff_t *ppos)
1969{
1970	char buf[3];
1971
1972	if (!kprobes_all_disarmed)
1973		buf[0] = '1';
1974	else
1975		buf[0] = '0';
1976	buf[1] = '\n';
1977	buf[2] = 0x00;
1978	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1979}
1980
1981static ssize_t write_enabled_file_bool(struct file *file,
1982	       const char __user *user_buf, size_t count, loff_t *ppos)
1983{
1984	char buf[32];
1985	int buf_size;
1986
1987	buf_size = min(count, (sizeof(buf)-1));
1988	if (copy_from_user(buf, user_buf, buf_size))
1989		return -EFAULT;
1990
1991	switch (buf[0]) {
1992	case 'y':
1993	case 'Y':
1994	case '1':
1995		arm_all_kprobes();
1996		break;
1997	case 'n':
1998	case 'N':
1999	case '0':
2000		disarm_all_kprobes();
2001		break;
2002	}
2003
2004	return count;
2005}
2006
2007static const struct file_operations fops_kp = {
2008	.read =         read_enabled_file_bool,
2009	.write =        write_enabled_file_bool,
2010	.llseek =	default_llseek,
2011};
2012
2013static int __kprobes debugfs_kprobe_init(void)
2014{
2015	struct dentry *dir, *file;
2016	unsigned int value = 1;
2017
2018	dir = debugfs_create_dir("kprobes", NULL);
2019	if (!dir)
2020		return -ENOMEM;
2021
2022	file = debugfs_create_file("list", 0444, dir, NULL,
2023				&debugfs_kprobes_operations);
2024	if (!file) {
2025		debugfs_remove(dir);
2026		return -ENOMEM;
2027	}
2028
2029	file = debugfs_create_file("enabled", 0600, dir,
2030					&value, &fops_kp);
2031	if (!file) {
2032		debugfs_remove(dir);
2033		return -ENOMEM;
2034	}
2035
2036	return 0;
2037}
2038
2039late_initcall(debugfs_kprobe_init);
2040#endif /* CONFIG_DEBUG_FS */
2041
2042module_init(init_kprobes);
2043
2044/* defined in arch/.../kernel/kprobes.c */
2045EXPORT_SYMBOL_GPL(jprobe_return);
2046