kprobes.c revision be8f274323c26ddc7e6fd6c44254b7abcdbe6389
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{NULL}    /* Terminator */
100};
101
102#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
103/*
104 * kprobe->ainsn.insn points to the copy of the instruction to be
105 * single-stepped. x86_64, POWER4 and above have no-exec support and
106 * stepping on the instruction on a vmalloced/kmalloced/data page
107 * is a recipe for disaster
108 */
109struct kprobe_insn_page {
110	struct list_head list;
111	kprobe_opcode_t *insns;		/* Page of instruction slots */
112	struct kprobe_insn_cache *cache;
113	int nused;
114	int ngarbage;
115	char slot_used[];
116};
117
118#define KPROBE_INSN_PAGE_SIZE(slots)			\
119	(offsetof(struct kprobe_insn_page, slot_used) +	\
120	 (sizeof(char) * (slots)))
121
122static int slots_per_page(struct kprobe_insn_cache *c)
123{
124	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
125}
126
127enum kprobe_slot_state {
128	SLOT_CLEAN = 0,
129	SLOT_DIRTY = 1,
130	SLOT_USED = 2,
131};
132
133static void *alloc_insn_page(void)
134{
135	return module_alloc(PAGE_SIZE);
136}
137
138static void free_insn_page(void *page)
139{
140	module_free(NULL, page);
141}
142
143struct kprobe_insn_cache kprobe_insn_slots = {
144	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
145	.alloc = alloc_insn_page,
146	.free = free_insn_page,
147	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
148	.insn_size = MAX_INSN_SIZE,
149	.nr_garbage = 0,
150};
151static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
152
153/**
154 * __get_insn_slot() - Find a slot on an executable page for an instruction.
155 * We allocate an executable page if there's no room on existing ones.
156 */
157kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
158{
159	struct kprobe_insn_page *kip;
160	kprobe_opcode_t *slot = NULL;
161
162	mutex_lock(&c->mutex);
163 retry:
164	list_for_each_entry(kip, &c->pages, list) {
165		if (kip->nused < slots_per_page(c)) {
166			int i;
167			for (i = 0; i < slots_per_page(c); i++) {
168				if (kip->slot_used[i] == SLOT_CLEAN) {
169					kip->slot_used[i] = SLOT_USED;
170					kip->nused++;
171					slot = kip->insns + (i * c->insn_size);
172					goto out;
173				}
174			}
175			/* kip->nused is broken. Fix it. */
176			kip->nused = slots_per_page(c);
177			WARN_ON(1);
178		}
179	}
180
181	/* If there are any garbage slots, collect it and try again. */
182	if (c->nr_garbage && collect_garbage_slots(c) == 0)
183		goto retry;
184
185	/* All out of space.  Need to allocate a new page. */
186	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
187	if (!kip)
188		goto out;
189
190	/*
191	 * Use module_alloc so this page is within +/- 2GB of where the
192	 * kernel image and loaded module images reside. This is required
193	 * so x86_64 can correctly handle the %rip-relative fixups.
194	 */
195	kip->insns = c->alloc();
196	if (!kip->insns) {
197		kfree(kip);
198		goto out;
199	}
200	INIT_LIST_HEAD(&kip->list);
201	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
202	kip->slot_used[0] = SLOT_USED;
203	kip->nused = 1;
204	kip->ngarbage = 0;
205	kip->cache = c;
206	list_add(&kip->list, &c->pages);
207	slot = kip->insns;
208out:
209	mutex_unlock(&c->mutex);
210	return slot;
211}
212
213/* Return 1 if all garbages are collected, otherwise 0. */
214static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215{
216	kip->slot_used[idx] = SLOT_CLEAN;
217	kip->nused--;
218	if (kip->nused == 0) {
219		/*
220		 * Page is no longer in use.  Free it unless
221		 * it's the last one.  We keep the last one
222		 * so as not to have to set it up again the
223		 * next time somebody inserts a probe.
224		 */
225		if (!list_is_singular(&kip->list)) {
226			list_del(&kip->list);
227			kip->cache->free(kip->insns);
228			kfree(kip);
229		}
230		return 1;
231	}
232	return 0;
233}
234
235static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236{
237	struct kprobe_insn_page *kip, *next;
238
239	/* Ensure no-one is interrupted on the garbages */
240	synchronize_sched();
241
242	list_for_each_entry_safe(kip, next, &c->pages, list) {
243		int i;
244		if (kip->ngarbage == 0)
245			continue;
246		kip->ngarbage = 0;	/* we will collect all garbages */
247		for (i = 0; i < slots_per_page(c); i++) {
248			if (kip->slot_used[i] == SLOT_DIRTY &&
249			    collect_one_slot(kip, i))
250				break;
251		}
252	}
253	c->nr_garbage = 0;
254	return 0;
255}
256
257void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
258				kprobe_opcode_t *slot, int dirty)
259{
260	struct kprobe_insn_page *kip;
261
262	mutex_lock(&c->mutex);
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			goto out;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280out:
281	mutex_unlock(&c->mutex);
282}
283
284#ifdef CONFIG_OPTPROBES
285/* For optimized_kprobe buffer */
286struct kprobe_insn_cache kprobe_optinsn_slots = {
287	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
288	.alloc = alloc_insn_page,
289	.free = free_insn_page,
290	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291	/* .insn_size is initialized later */
292	.nr_garbage = 0,
293};
294#endif
295#endif
296
297/* We have preemption disabled.. so it is safe to use __ versions */
298static inline void set_kprobe_instance(struct kprobe *kp)
299{
300	__this_cpu_write(kprobe_instance, kp);
301}
302
303static inline void reset_kprobe_instance(void)
304{
305	__this_cpu_write(kprobe_instance, NULL);
306}
307
308/*
309 * This routine is called either:
310 * 	- under the kprobe_mutex - during kprobe_[un]register()
311 * 				OR
312 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
313 */
314struct kprobe __kprobes *get_kprobe(void *addr)
315{
316	struct hlist_head *head;
317	struct kprobe *p;
318
319	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
320	hlist_for_each_entry_rcu(p, head, hlist) {
321		if (p->addr == addr)
322			return p;
323	}
324
325	return NULL;
326}
327
328static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
329
330/* Return true if the kprobe is an aggregator */
331static inline int kprobe_aggrprobe(struct kprobe *p)
332{
333	return p->pre_handler == aggr_pre_handler;
334}
335
336/* Return true(!0) if the kprobe is unused */
337static inline int kprobe_unused(struct kprobe *p)
338{
339	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
340	       list_empty(&p->list);
341}
342
343/*
344 * Keep all fields in the kprobe consistent
345 */
346static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
347{
348	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
349	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
350}
351
352#ifdef CONFIG_OPTPROBES
353/* NOTE: change this value only with kprobe_mutex held */
354static bool kprobes_allow_optimization;
355
356/*
357 * Call all pre_handler on the list, but ignores its return value.
358 * This must be called from arch-dep optimized caller.
359 */
360void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
361{
362	struct kprobe *kp;
363
364	list_for_each_entry_rcu(kp, &p->list, list) {
365		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
366			set_kprobe_instance(kp);
367			kp->pre_handler(kp, regs);
368		}
369		reset_kprobe_instance();
370	}
371}
372
373/* Free optimized instructions and optimized_kprobe */
374static __kprobes void free_aggr_kprobe(struct kprobe *p)
375{
376	struct optimized_kprobe *op;
377
378	op = container_of(p, struct optimized_kprobe, kp);
379	arch_remove_optimized_kprobe(op);
380	arch_remove_kprobe(p);
381	kfree(op);
382}
383
384/* Return true(!0) if the kprobe is ready for optimization. */
385static inline int kprobe_optready(struct kprobe *p)
386{
387	struct optimized_kprobe *op;
388
389	if (kprobe_aggrprobe(p)) {
390		op = container_of(p, struct optimized_kprobe, kp);
391		return arch_prepared_optinsn(&op->optinsn);
392	}
393
394	return 0;
395}
396
397/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
398static inline int kprobe_disarmed(struct kprobe *p)
399{
400	struct optimized_kprobe *op;
401
402	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
403	if (!kprobe_aggrprobe(p))
404		return kprobe_disabled(p);
405
406	op = container_of(p, struct optimized_kprobe, kp);
407
408	return kprobe_disabled(p) && list_empty(&op->list);
409}
410
411/* Return true(!0) if the probe is queued on (un)optimizing lists */
412static int __kprobes kprobe_queued(struct kprobe *p)
413{
414	struct optimized_kprobe *op;
415
416	if (kprobe_aggrprobe(p)) {
417		op = container_of(p, struct optimized_kprobe, kp);
418		if (!list_empty(&op->list))
419			return 1;
420	}
421	return 0;
422}
423
424/*
425 * Return an optimized kprobe whose optimizing code replaces
426 * instructions including addr (exclude breakpoint).
427 */
428static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
429{
430	int i;
431	struct kprobe *p = NULL;
432	struct optimized_kprobe *op;
433
434	/* Don't check i == 0, since that is a breakpoint case. */
435	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
436		p = get_kprobe((void *)(addr - i));
437
438	if (p && kprobe_optready(p)) {
439		op = container_of(p, struct optimized_kprobe, kp);
440		if (arch_within_optimized_kprobe(op, addr))
441			return p;
442	}
443
444	return NULL;
445}
446
447/* Optimization staging list, protected by kprobe_mutex */
448static LIST_HEAD(optimizing_list);
449static LIST_HEAD(unoptimizing_list);
450static LIST_HEAD(freeing_list);
451
452static void kprobe_optimizer(struct work_struct *work);
453static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
454#define OPTIMIZE_DELAY 5
455
456/*
457 * Optimize (replace a breakpoint with a jump) kprobes listed on
458 * optimizing_list.
459 */
460static __kprobes void do_optimize_kprobes(void)
461{
462	/* Optimization never be done when disarmed */
463	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
464	    list_empty(&optimizing_list))
465		return;
466
467	/*
468	 * The optimization/unoptimization refers online_cpus via
469	 * stop_machine() and cpu-hotplug modifies online_cpus.
470	 * And same time, text_mutex will be held in cpu-hotplug and here.
471	 * This combination can cause a deadlock (cpu-hotplug try to lock
472	 * text_mutex but stop_machine can not be done because online_cpus
473	 * has been changed)
474	 * To avoid this deadlock, we need to call get_online_cpus()
475	 * for preventing cpu-hotplug outside of text_mutex locking.
476	 */
477	get_online_cpus();
478	mutex_lock(&text_mutex);
479	arch_optimize_kprobes(&optimizing_list);
480	mutex_unlock(&text_mutex);
481	put_online_cpus();
482}
483
484/*
485 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
486 * if need) kprobes listed on unoptimizing_list.
487 */
488static __kprobes void do_unoptimize_kprobes(void)
489{
490	struct optimized_kprobe *op, *tmp;
491
492	/* Unoptimization must be done anytime */
493	if (list_empty(&unoptimizing_list))
494		return;
495
496	/* Ditto to do_optimize_kprobes */
497	get_online_cpus();
498	mutex_lock(&text_mutex);
499	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
500	/* Loop free_list for disarming */
501	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
502		/* Disarm probes if marked disabled */
503		if (kprobe_disabled(&op->kp))
504			arch_disarm_kprobe(&op->kp);
505		if (kprobe_unused(&op->kp)) {
506			/*
507			 * Remove unused probes from hash list. After waiting
508			 * for synchronization, these probes are reclaimed.
509			 * (reclaiming is done by do_free_cleaned_kprobes.)
510			 */
511			hlist_del_rcu(&op->kp.hlist);
512		} else
513			list_del_init(&op->list);
514	}
515	mutex_unlock(&text_mutex);
516	put_online_cpus();
517}
518
519/* Reclaim all kprobes on the free_list */
520static __kprobes void do_free_cleaned_kprobes(void)
521{
522	struct optimized_kprobe *op, *tmp;
523
524	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
525		BUG_ON(!kprobe_unused(&op->kp));
526		list_del_init(&op->list);
527		free_aggr_kprobe(&op->kp);
528	}
529}
530
531/* Start optimizer after OPTIMIZE_DELAY passed */
532static __kprobes void kick_kprobe_optimizer(void)
533{
534	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
535}
536
537/* Kprobe jump optimizer */
538static __kprobes void kprobe_optimizer(struct work_struct *work)
539{
540	mutex_lock(&kprobe_mutex);
541	/* Lock modules while optimizing kprobes */
542	mutex_lock(&module_mutex);
543
544	/*
545	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
546	 * kprobes before waiting for quiesence period.
547	 */
548	do_unoptimize_kprobes();
549
550	/*
551	 * Step 2: Wait for quiesence period to ensure all running interrupts
552	 * are done. Because optprobe may modify multiple instructions
553	 * there is a chance that Nth instruction is interrupted. In that
554	 * case, running interrupt can return to 2nd-Nth byte of jump
555	 * instruction. This wait is for avoiding it.
556	 */
557	synchronize_sched();
558
559	/* Step 3: Optimize kprobes after quiesence period */
560	do_optimize_kprobes();
561
562	/* Step 4: Free cleaned kprobes after quiesence period */
563	do_free_cleaned_kprobes();
564
565	mutex_unlock(&module_mutex);
566	mutex_unlock(&kprobe_mutex);
567
568	/* Step 5: Kick optimizer again if needed */
569	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
570		kick_kprobe_optimizer();
571}
572
573/* Wait for completing optimization and unoptimization */
574static __kprobes void wait_for_kprobe_optimizer(void)
575{
576	mutex_lock(&kprobe_mutex);
577
578	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
579		mutex_unlock(&kprobe_mutex);
580
581		/* this will also make optimizing_work execute immmediately */
582		flush_delayed_work(&optimizing_work);
583		/* @optimizing_work might not have been queued yet, relax */
584		cpu_relax();
585
586		mutex_lock(&kprobe_mutex);
587	}
588
589	mutex_unlock(&kprobe_mutex);
590}
591
592/* Optimize kprobe if p is ready to be optimized */
593static __kprobes void optimize_kprobe(struct kprobe *p)
594{
595	struct optimized_kprobe *op;
596
597	/* Check if the kprobe is disabled or not ready for optimization. */
598	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
599	    (kprobe_disabled(p) || kprobes_all_disarmed))
600		return;
601
602	/* Both of break_handler and post_handler are not supported. */
603	if (p->break_handler || p->post_handler)
604		return;
605
606	op = container_of(p, struct optimized_kprobe, kp);
607
608	/* Check there is no other kprobes at the optimized instructions */
609	if (arch_check_optimized_kprobe(op) < 0)
610		return;
611
612	/* Check if it is already optimized. */
613	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
614		return;
615	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
616
617	if (!list_empty(&op->list))
618		/* This is under unoptimizing. Just dequeue the probe */
619		list_del_init(&op->list);
620	else {
621		list_add(&op->list, &optimizing_list);
622		kick_kprobe_optimizer();
623	}
624}
625
626/* Short cut to direct unoptimizing */
627static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
628{
629	get_online_cpus();
630	arch_unoptimize_kprobe(op);
631	put_online_cpus();
632	if (kprobe_disabled(&op->kp))
633		arch_disarm_kprobe(&op->kp);
634}
635
636/* Unoptimize a kprobe if p is optimized */
637static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
638{
639	struct optimized_kprobe *op;
640
641	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
642		return; /* This is not an optprobe nor optimized */
643
644	op = container_of(p, struct optimized_kprobe, kp);
645	if (!kprobe_optimized(p)) {
646		/* Unoptimized or unoptimizing case */
647		if (force && !list_empty(&op->list)) {
648			/*
649			 * Only if this is unoptimizing kprobe and forced,
650			 * forcibly unoptimize it. (No need to unoptimize
651			 * unoptimized kprobe again :)
652			 */
653			list_del_init(&op->list);
654			force_unoptimize_kprobe(op);
655		}
656		return;
657	}
658
659	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
660	if (!list_empty(&op->list)) {
661		/* Dequeue from the optimization queue */
662		list_del_init(&op->list);
663		return;
664	}
665	/* Optimized kprobe case */
666	if (force)
667		/* Forcibly update the code: this is a special case */
668		force_unoptimize_kprobe(op);
669	else {
670		list_add(&op->list, &unoptimizing_list);
671		kick_kprobe_optimizer();
672	}
673}
674
675/* Cancel unoptimizing for reusing */
676static void reuse_unused_kprobe(struct kprobe *ap)
677{
678	struct optimized_kprobe *op;
679
680	BUG_ON(!kprobe_unused(ap));
681	/*
682	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
683	 * there is still a relative jump) and disabled.
684	 */
685	op = container_of(ap, struct optimized_kprobe, kp);
686	if (unlikely(list_empty(&op->list)))
687		printk(KERN_WARNING "Warning: found a stray unused "
688			"aggrprobe@%p\n", ap->addr);
689	/* Enable the probe again */
690	ap->flags &= ~KPROBE_FLAG_DISABLED;
691	/* Optimize it again (remove from op->list) */
692	BUG_ON(!kprobe_optready(ap));
693	optimize_kprobe(ap);
694}
695
696/* Remove optimized instructions */
697static void __kprobes kill_optimized_kprobe(struct kprobe *p)
698{
699	struct optimized_kprobe *op;
700
701	op = container_of(p, struct optimized_kprobe, kp);
702	if (!list_empty(&op->list))
703		/* Dequeue from the (un)optimization queue */
704		list_del_init(&op->list);
705	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
706
707	if (kprobe_unused(p)) {
708		/* Enqueue if it is unused */
709		list_add(&op->list, &freeing_list);
710		/*
711		 * Remove unused probes from the hash list. After waiting
712		 * for synchronization, this probe is reclaimed.
713		 * (reclaiming is done by do_free_cleaned_kprobes().)
714		 */
715		hlist_del_rcu(&op->kp.hlist);
716	}
717
718	/* Don't touch the code, because it is already freed. */
719	arch_remove_optimized_kprobe(op);
720}
721
722/* Try to prepare optimized instructions */
723static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
724{
725	struct optimized_kprobe *op;
726
727	op = container_of(p, struct optimized_kprobe, kp);
728	arch_prepare_optimized_kprobe(op);
729}
730
731/* Allocate new optimized_kprobe and try to prepare optimized instructions */
732static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
733{
734	struct optimized_kprobe *op;
735
736	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
737	if (!op)
738		return NULL;
739
740	INIT_LIST_HEAD(&op->list);
741	op->kp.addr = p->addr;
742	arch_prepare_optimized_kprobe(op);
743
744	return &op->kp;
745}
746
747static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
748
749/*
750 * Prepare an optimized_kprobe and optimize it
751 * NOTE: p must be a normal registered kprobe
752 */
753static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
754{
755	struct kprobe *ap;
756	struct optimized_kprobe *op;
757
758	/* Impossible to optimize ftrace-based kprobe */
759	if (kprobe_ftrace(p))
760		return;
761
762	/* For preparing optimization, jump_label_text_reserved() is called */
763	jump_label_lock();
764	mutex_lock(&text_mutex);
765
766	ap = alloc_aggr_kprobe(p);
767	if (!ap)
768		goto out;
769
770	op = container_of(ap, struct optimized_kprobe, kp);
771	if (!arch_prepared_optinsn(&op->optinsn)) {
772		/* If failed to setup optimizing, fallback to kprobe */
773		arch_remove_optimized_kprobe(op);
774		kfree(op);
775		goto out;
776	}
777
778	init_aggr_kprobe(ap, p);
779	optimize_kprobe(ap);	/* This just kicks optimizer thread */
780
781out:
782	mutex_unlock(&text_mutex);
783	jump_label_unlock();
784}
785
786#ifdef CONFIG_SYSCTL
787static void __kprobes optimize_all_kprobes(void)
788{
789	struct hlist_head *head;
790	struct kprobe *p;
791	unsigned int i;
792
793	mutex_lock(&kprobe_mutex);
794	/* If optimization is already allowed, just return */
795	if (kprobes_allow_optimization)
796		goto out;
797
798	kprobes_allow_optimization = true;
799	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
800		head = &kprobe_table[i];
801		hlist_for_each_entry_rcu(p, head, hlist)
802			if (!kprobe_disabled(p))
803				optimize_kprobe(p);
804	}
805	printk(KERN_INFO "Kprobes globally optimized\n");
806out:
807	mutex_unlock(&kprobe_mutex);
808}
809
810static void __kprobes unoptimize_all_kprobes(void)
811{
812	struct hlist_head *head;
813	struct kprobe *p;
814	unsigned int i;
815
816	mutex_lock(&kprobe_mutex);
817	/* If optimization is already prohibited, just return */
818	if (!kprobes_allow_optimization) {
819		mutex_unlock(&kprobe_mutex);
820		return;
821	}
822
823	kprobes_allow_optimization = false;
824	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
825		head = &kprobe_table[i];
826		hlist_for_each_entry_rcu(p, head, hlist) {
827			if (!kprobe_disabled(p))
828				unoptimize_kprobe(p, false);
829		}
830	}
831	mutex_unlock(&kprobe_mutex);
832
833	/* Wait for unoptimizing completion */
834	wait_for_kprobe_optimizer();
835	printk(KERN_INFO "Kprobes globally unoptimized\n");
836}
837
838static DEFINE_MUTEX(kprobe_sysctl_mutex);
839int sysctl_kprobes_optimization;
840int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
841				      void __user *buffer, size_t *length,
842				      loff_t *ppos)
843{
844	int ret;
845
846	mutex_lock(&kprobe_sysctl_mutex);
847	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
848	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
849
850	if (sysctl_kprobes_optimization)
851		optimize_all_kprobes();
852	else
853		unoptimize_all_kprobes();
854	mutex_unlock(&kprobe_sysctl_mutex);
855
856	return ret;
857}
858#endif /* CONFIG_SYSCTL */
859
860/* Put a breakpoint for a probe. Must be called with text_mutex locked */
861static void __kprobes __arm_kprobe(struct kprobe *p)
862{
863	struct kprobe *_p;
864
865	/* Check collision with other optimized kprobes */
866	_p = get_optimized_kprobe((unsigned long)p->addr);
867	if (unlikely(_p))
868		/* Fallback to unoptimized kprobe */
869		unoptimize_kprobe(_p, true);
870
871	arch_arm_kprobe(p);
872	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
873}
874
875/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
876static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
877{
878	struct kprobe *_p;
879
880	unoptimize_kprobe(p, false);	/* Try to unoptimize */
881
882	if (!kprobe_queued(p)) {
883		arch_disarm_kprobe(p);
884		/* If another kprobe was blocked, optimize it. */
885		_p = get_optimized_kprobe((unsigned long)p->addr);
886		if (unlikely(_p) && reopt)
887			optimize_kprobe(_p);
888	}
889	/* TODO: reoptimize others after unoptimized this probe */
890}
891
892#else /* !CONFIG_OPTPROBES */
893
894#define optimize_kprobe(p)			do {} while (0)
895#define unoptimize_kprobe(p, f)			do {} while (0)
896#define kill_optimized_kprobe(p)		do {} while (0)
897#define prepare_optimized_kprobe(p)		do {} while (0)
898#define try_to_optimize_kprobe(p)		do {} while (0)
899#define __arm_kprobe(p)				arch_arm_kprobe(p)
900#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
901#define kprobe_disarmed(p)			kprobe_disabled(p)
902#define wait_for_kprobe_optimizer()		do {} while (0)
903
904/* There should be no unused kprobes can be reused without optimization */
905static void reuse_unused_kprobe(struct kprobe *ap)
906{
907	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
908	BUG_ON(kprobe_unused(ap));
909}
910
911static __kprobes void free_aggr_kprobe(struct kprobe *p)
912{
913	arch_remove_kprobe(p);
914	kfree(p);
915}
916
917static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
918{
919	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
920}
921#endif /* CONFIG_OPTPROBES */
922
923#ifdef CONFIG_KPROBES_ON_FTRACE
924static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
925	.func = kprobe_ftrace_handler,
926	.flags = FTRACE_OPS_FL_SAVE_REGS,
927};
928static int kprobe_ftrace_enabled;
929
930/* Must ensure p->addr is really on ftrace */
931static int __kprobes prepare_kprobe(struct kprobe *p)
932{
933	if (!kprobe_ftrace(p))
934		return arch_prepare_kprobe(p);
935
936	return arch_prepare_kprobe_ftrace(p);
937}
938
939/* Caller must lock kprobe_mutex */
940static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
941{
942	int ret;
943
944	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
945				   (unsigned long)p->addr, 0, 0);
946	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
947	kprobe_ftrace_enabled++;
948	if (kprobe_ftrace_enabled == 1) {
949		ret = register_ftrace_function(&kprobe_ftrace_ops);
950		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
951	}
952}
953
954/* Caller must lock kprobe_mutex */
955static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
956{
957	int ret;
958
959	kprobe_ftrace_enabled--;
960	if (kprobe_ftrace_enabled == 0) {
961		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
962		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
963	}
964	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
965			   (unsigned long)p->addr, 1, 0);
966	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
967}
968#else	/* !CONFIG_KPROBES_ON_FTRACE */
969#define prepare_kprobe(p)	arch_prepare_kprobe(p)
970#define arm_kprobe_ftrace(p)	do {} while (0)
971#define disarm_kprobe_ftrace(p)	do {} while (0)
972#endif
973
974/* Arm a kprobe with text_mutex */
975static void __kprobes arm_kprobe(struct kprobe *kp)
976{
977	if (unlikely(kprobe_ftrace(kp))) {
978		arm_kprobe_ftrace(kp);
979		return;
980	}
981	/*
982	 * Here, since __arm_kprobe() doesn't use stop_machine(),
983	 * this doesn't cause deadlock on text_mutex. So, we don't
984	 * need get_online_cpus().
985	 */
986	mutex_lock(&text_mutex);
987	__arm_kprobe(kp);
988	mutex_unlock(&text_mutex);
989}
990
991/* Disarm a kprobe with text_mutex */
992static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
993{
994	if (unlikely(kprobe_ftrace(kp))) {
995		disarm_kprobe_ftrace(kp);
996		return;
997	}
998	/* Ditto */
999	mutex_lock(&text_mutex);
1000	__disarm_kprobe(kp, reopt);
1001	mutex_unlock(&text_mutex);
1002}
1003
1004/*
1005 * Aggregate handlers for multiple kprobes support - these handlers
1006 * take care of invoking the individual kprobe handlers on p->list
1007 */
1008static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1009{
1010	struct kprobe *kp;
1011
1012	list_for_each_entry_rcu(kp, &p->list, list) {
1013		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1014			set_kprobe_instance(kp);
1015			if (kp->pre_handler(kp, regs))
1016				return 1;
1017		}
1018		reset_kprobe_instance();
1019	}
1020	return 0;
1021}
1022
1023static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1024					unsigned long flags)
1025{
1026	struct kprobe *kp;
1027
1028	list_for_each_entry_rcu(kp, &p->list, list) {
1029		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1030			set_kprobe_instance(kp);
1031			kp->post_handler(kp, regs, flags);
1032			reset_kprobe_instance();
1033		}
1034	}
1035}
1036
1037static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1038					int trapnr)
1039{
1040	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1041
1042	/*
1043	 * if we faulted "during" the execution of a user specified
1044	 * probe handler, invoke just that probe's fault handler
1045	 */
1046	if (cur && cur->fault_handler) {
1047		if (cur->fault_handler(cur, regs, trapnr))
1048			return 1;
1049	}
1050	return 0;
1051}
1052
1053static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1054{
1055	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1056	int ret = 0;
1057
1058	if (cur && cur->break_handler) {
1059		if (cur->break_handler(cur, regs))
1060			ret = 1;
1061	}
1062	reset_kprobe_instance();
1063	return ret;
1064}
1065
1066/* Walks the list and increments nmissed count for multiprobe case */
1067void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1068{
1069	struct kprobe *kp;
1070	if (!kprobe_aggrprobe(p)) {
1071		p->nmissed++;
1072	} else {
1073		list_for_each_entry_rcu(kp, &p->list, list)
1074			kp->nmissed++;
1075	}
1076	return;
1077}
1078
1079void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1080				struct hlist_head *head)
1081{
1082	struct kretprobe *rp = ri->rp;
1083
1084	/* remove rp inst off the rprobe_inst_table */
1085	hlist_del(&ri->hlist);
1086	INIT_HLIST_NODE(&ri->hlist);
1087	if (likely(rp)) {
1088		raw_spin_lock(&rp->lock);
1089		hlist_add_head(&ri->hlist, &rp->free_instances);
1090		raw_spin_unlock(&rp->lock);
1091	} else
1092		/* Unregistering */
1093		hlist_add_head(&ri->hlist, head);
1094}
1095
1096void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1097			 struct hlist_head **head, unsigned long *flags)
1098__acquires(hlist_lock)
1099{
1100	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1101	raw_spinlock_t *hlist_lock;
1102
1103	*head = &kretprobe_inst_table[hash];
1104	hlist_lock = kretprobe_table_lock_ptr(hash);
1105	raw_spin_lock_irqsave(hlist_lock, *flags);
1106}
1107
1108static void __kprobes kretprobe_table_lock(unsigned long hash,
1109	unsigned long *flags)
1110__acquires(hlist_lock)
1111{
1112	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113	raw_spin_lock_irqsave(hlist_lock, *flags);
1114}
1115
1116void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1117	unsigned long *flags)
1118__releases(hlist_lock)
1119{
1120	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121	raw_spinlock_t *hlist_lock;
1122
1123	hlist_lock = kretprobe_table_lock_ptr(hash);
1124	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1125}
1126
1127static void __kprobes kretprobe_table_unlock(unsigned long hash,
1128       unsigned long *flags)
1129__releases(hlist_lock)
1130{
1131	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1132	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1133}
1134
1135/*
1136 * This function is called from finish_task_switch when task tk becomes dead,
1137 * so that we can recycle any function-return probe instances associated
1138 * with this task. These left over instances represent probed functions
1139 * that have been called but will never return.
1140 */
1141void __kprobes kprobe_flush_task(struct task_struct *tk)
1142{
1143	struct kretprobe_instance *ri;
1144	struct hlist_head *head, empty_rp;
1145	struct hlist_node *tmp;
1146	unsigned long hash, flags = 0;
1147
1148	if (unlikely(!kprobes_initialized))
1149		/* Early boot.  kretprobe_table_locks not yet initialized. */
1150		return;
1151
1152	INIT_HLIST_HEAD(&empty_rp);
1153	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1154	head = &kretprobe_inst_table[hash];
1155	kretprobe_table_lock(hash, &flags);
1156	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1157		if (ri->task == tk)
1158			recycle_rp_inst(ri, &empty_rp);
1159	}
1160	kretprobe_table_unlock(hash, &flags);
1161	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1162		hlist_del(&ri->hlist);
1163		kfree(ri);
1164	}
1165}
1166
1167static inline void free_rp_inst(struct kretprobe *rp)
1168{
1169	struct kretprobe_instance *ri;
1170	struct hlist_node *next;
1171
1172	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1173		hlist_del(&ri->hlist);
1174		kfree(ri);
1175	}
1176}
1177
1178static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1179{
1180	unsigned long flags, hash;
1181	struct kretprobe_instance *ri;
1182	struct hlist_node *next;
1183	struct hlist_head *head;
1184
1185	/* No race here */
1186	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1187		kretprobe_table_lock(hash, &flags);
1188		head = &kretprobe_inst_table[hash];
1189		hlist_for_each_entry_safe(ri, next, head, hlist) {
1190			if (ri->rp == rp)
1191				ri->rp = NULL;
1192		}
1193		kretprobe_table_unlock(hash, &flags);
1194	}
1195	free_rp_inst(rp);
1196}
1197
1198/*
1199* Add the new probe to ap->list. Fail if this is the
1200* second jprobe at the address - two jprobes can't coexist
1201*/
1202static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1203{
1204	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1205
1206	if (p->break_handler || p->post_handler)
1207		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1208
1209	if (p->break_handler) {
1210		if (ap->break_handler)
1211			return -EEXIST;
1212		list_add_tail_rcu(&p->list, &ap->list);
1213		ap->break_handler = aggr_break_handler;
1214	} else
1215		list_add_rcu(&p->list, &ap->list);
1216	if (p->post_handler && !ap->post_handler)
1217		ap->post_handler = aggr_post_handler;
1218
1219	return 0;
1220}
1221
1222/*
1223 * Fill in the required fields of the "manager kprobe". Replace the
1224 * earlier kprobe in the hlist with the manager kprobe
1225 */
1226static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1227{
1228	/* Copy p's insn slot to ap */
1229	copy_kprobe(p, ap);
1230	flush_insn_slot(ap);
1231	ap->addr = p->addr;
1232	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1233	ap->pre_handler = aggr_pre_handler;
1234	ap->fault_handler = aggr_fault_handler;
1235	/* We don't care the kprobe which has gone. */
1236	if (p->post_handler && !kprobe_gone(p))
1237		ap->post_handler = aggr_post_handler;
1238	if (p->break_handler && !kprobe_gone(p))
1239		ap->break_handler = aggr_break_handler;
1240
1241	INIT_LIST_HEAD(&ap->list);
1242	INIT_HLIST_NODE(&ap->hlist);
1243
1244	list_add_rcu(&p->list, &ap->list);
1245	hlist_replace_rcu(&p->hlist, &ap->hlist);
1246}
1247
1248/*
1249 * This is the second or subsequent kprobe at the address - handle
1250 * the intricacies
1251 */
1252static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1253					  struct kprobe *p)
1254{
1255	int ret = 0;
1256	struct kprobe *ap = orig_p;
1257
1258	/* For preparing optimization, jump_label_text_reserved() is called */
1259	jump_label_lock();
1260	/*
1261	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1262	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1263	 */
1264	get_online_cpus();
1265	mutex_lock(&text_mutex);
1266
1267	if (!kprobe_aggrprobe(orig_p)) {
1268		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1269		ap = alloc_aggr_kprobe(orig_p);
1270		if (!ap) {
1271			ret = -ENOMEM;
1272			goto out;
1273		}
1274		init_aggr_kprobe(ap, orig_p);
1275	} else if (kprobe_unused(ap))
1276		/* This probe is going to die. Rescue it */
1277		reuse_unused_kprobe(ap);
1278
1279	if (kprobe_gone(ap)) {
1280		/*
1281		 * Attempting to insert new probe at the same location that
1282		 * had a probe in the module vaddr area which already
1283		 * freed. So, the instruction slot has already been
1284		 * released. We need a new slot for the new probe.
1285		 */
1286		ret = arch_prepare_kprobe(ap);
1287		if (ret)
1288			/*
1289			 * Even if fail to allocate new slot, don't need to
1290			 * free aggr_probe. It will be used next time, or
1291			 * freed by unregister_kprobe.
1292			 */
1293			goto out;
1294
1295		/* Prepare optimized instructions if possible. */
1296		prepare_optimized_kprobe(ap);
1297
1298		/*
1299		 * Clear gone flag to prevent allocating new slot again, and
1300		 * set disabled flag because it is not armed yet.
1301		 */
1302		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1303			    | KPROBE_FLAG_DISABLED;
1304	}
1305
1306	/* Copy ap's insn slot to p */
1307	copy_kprobe(ap, p);
1308	ret = add_new_kprobe(ap, p);
1309
1310out:
1311	mutex_unlock(&text_mutex);
1312	put_online_cpus();
1313	jump_label_unlock();
1314
1315	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1316		ap->flags &= ~KPROBE_FLAG_DISABLED;
1317		if (!kprobes_all_disarmed)
1318			/* Arm the breakpoint again. */
1319			arm_kprobe(ap);
1320	}
1321	return ret;
1322}
1323
1324bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1325{
1326	/* The __kprobes marked functions and entry code must not be probed */
1327	return addr >= (unsigned long)__kprobes_text_start &&
1328	       addr < (unsigned long)__kprobes_text_end;
1329}
1330
1331static int __kprobes in_kprobes_functions(unsigned long addr)
1332{
1333	struct kprobe_blackpoint *kb;
1334
1335	if (arch_within_kprobe_blacklist(addr))
1336		return -EINVAL;
1337	/*
1338	 * If there exists a kprobe_blacklist, verify and
1339	 * fail any probe registration in the prohibited area
1340	 */
1341	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1342		if (kb->start_addr) {
1343			if (addr >= kb->start_addr &&
1344			    addr < (kb->start_addr + kb->range))
1345				return -EINVAL;
1346		}
1347	}
1348	return 0;
1349}
1350
1351/*
1352 * If we have a symbol_name argument, look it up and add the offset field
1353 * to it. This way, we can specify a relative address to a symbol.
1354 * This returns encoded errors if it fails to look up symbol or invalid
1355 * combination of parameters.
1356 */
1357static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1358{
1359	kprobe_opcode_t *addr = p->addr;
1360
1361	if ((p->symbol_name && p->addr) ||
1362	    (!p->symbol_name && !p->addr))
1363		goto invalid;
1364
1365	if (p->symbol_name) {
1366		kprobe_lookup_name(p->symbol_name, addr);
1367		if (!addr)
1368			return ERR_PTR(-ENOENT);
1369	}
1370
1371	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1372	if (addr)
1373		return addr;
1374
1375invalid:
1376	return ERR_PTR(-EINVAL);
1377}
1378
1379/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1380static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1381{
1382	struct kprobe *ap, *list_p;
1383
1384	ap = get_kprobe(p->addr);
1385	if (unlikely(!ap))
1386		return NULL;
1387
1388	if (p != ap) {
1389		list_for_each_entry_rcu(list_p, &ap->list, list)
1390			if (list_p == p)
1391			/* kprobe p is a valid probe */
1392				goto valid;
1393		return NULL;
1394	}
1395valid:
1396	return ap;
1397}
1398
1399/* Return error if the kprobe is being re-registered */
1400static inline int check_kprobe_rereg(struct kprobe *p)
1401{
1402	int ret = 0;
1403
1404	mutex_lock(&kprobe_mutex);
1405	if (__get_valid_kprobe(p))
1406		ret = -EINVAL;
1407	mutex_unlock(&kprobe_mutex);
1408
1409	return ret;
1410}
1411
1412static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1413					       struct module **probed_mod)
1414{
1415	int ret = 0;
1416	unsigned long ftrace_addr;
1417
1418	/*
1419	 * If the address is located on a ftrace nop, set the
1420	 * breakpoint to the following instruction.
1421	 */
1422	ftrace_addr = ftrace_location((unsigned long)p->addr);
1423	if (ftrace_addr) {
1424#ifdef CONFIG_KPROBES_ON_FTRACE
1425		/* Given address is not on the instruction boundary */
1426		if ((unsigned long)p->addr != ftrace_addr)
1427			return -EILSEQ;
1428		p->flags |= KPROBE_FLAG_FTRACE;
1429#else	/* !CONFIG_KPROBES_ON_FTRACE */
1430		return -EINVAL;
1431#endif
1432	}
1433
1434	jump_label_lock();
1435	preempt_disable();
1436
1437	/* Ensure it is not in reserved area nor out of text */
1438	if (!kernel_text_address((unsigned long) p->addr) ||
1439	    in_kprobes_functions((unsigned long) p->addr) ||
1440	    jump_label_text_reserved(p->addr, p->addr)) {
1441		ret = -EINVAL;
1442		goto out;
1443	}
1444
1445	/* Check if are we probing a module */
1446	*probed_mod = __module_text_address((unsigned long) p->addr);
1447	if (*probed_mod) {
1448		/*
1449		 * We must hold a refcount of the probed module while updating
1450		 * its code to prohibit unexpected unloading.
1451		 */
1452		if (unlikely(!try_module_get(*probed_mod))) {
1453			ret = -ENOENT;
1454			goto out;
1455		}
1456
1457		/*
1458		 * If the module freed .init.text, we couldn't insert
1459		 * kprobes in there.
1460		 */
1461		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1462		    (*probed_mod)->state != MODULE_STATE_COMING) {
1463			module_put(*probed_mod);
1464			*probed_mod = NULL;
1465			ret = -ENOENT;
1466		}
1467	}
1468out:
1469	preempt_enable();
1470	jump_label_unlock();
1471
1472	return ret;
1473}
1474
1475int __kprobes register_kprobe(struct kprobe *p)
1476{
1477	int ret;
1478	struct kprobe *old_p;
1479	struct module *probed_mod;
1480	kprobe_opcode_t *addr;
1481
1482	/* Adjust probe address from symbol */
1483	addr = kprobe_addr(p);
1484	if (IS_ERR(addr))
1485		return PTR_ERR(addr);
1486	p->addr = addr;
1487
1488	ret = check_kprobe_rereg(p);
1489	if (ret)
1490		return ret;
1491
1492	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1493	p->flags &= KPROBE_FLAG_DISABLED;
1494	p->nmissed = 0;
1495	INIT_LIST_HEAD(&p->list);
1496
1497	ret = check_kprobe_address_safe(p, &probed_mod);
1498	if (ret)
1499		return ret;
1500
1501	mutex_lock(&kprobe_mutex);
1502
1503	old_p = get_kprobe(p->addr);
1504	if (old_p) {
1505		/* Since this may unoptimize old_p, locking text_mutex. */
1506		ret = register_aggr_kprobe(old_p, p);
1507		goto out;
1508	}
1509
1510	mutex_lock(&text_mutex);	/* Avoiding text modification */
1511	ret = prepare_kprobe(p);
1512	mutex_unlock(&text_mutex);
1513	if (ret)
1514		goto out;
1515
1516	INIT_HLIST_NODE(&p->hlist);
1517	hlist_add_head_rcu(&p->hlist,
1518		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1519
1520	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1521		arm_kprobe(p);
1522
1523	/* Try to optimize kprobe */
1524	try_to_optimize_kprobe(p);
1525
1526out:
1527	mutex_unlock(&kprobe_mutex);
1528
1529	if (probed_mod)
1530		module_put(probed_mod);
1531
1532	return ret;
1533}
1534EXPORT_SYMBOL_GPL(register_kprobe);
1535
1536/* Check if all probes on the aggrprobe are disabled */
1537static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1538{
1539	struct kprobe *kp;
1540
1541	list_for_each_entry_rcu(kp, &ap->list, list)
1542		if (!kprobe_disabled(kp))
1543			/*
1544			 * There is an active probe on the list.
1545			 * We can't disable this ap.
1546			 */
1547			return 0;
1548
1549	return 1;
1550}
1551
1552/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1553static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1554{
1555	struct kprobe *orig_p;
1556
1557	/* Get an original kprobe for return */
1558	orig_p = __get_valid_kprobe(p);
1559	if (unlikely(orig_p == NULL))
1560		return NULL;
1561
1562	if (!kprobe_disabled(p)) {
1563		/* Disable probe if it is a child probe */
1564		if (p != orig_p)
1565			p->flags |= KPROBE_FLAG_DISABLED;
1566
1567		/* Try to disarm and disable this/parent probe */
1568		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1569			disarm_kprobe(orig_p, true);
1570			orig_p->flags |= KPROBE_FLAG_DISABLED;
1571		}
1572	}
1573
1574	return orig_p;
1575}
1576
1577/*
1578 * Unregister a kprobe without a scheduler synchronization.
1579 */
1580static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1581{
1582	struct kprobe *ap, *list_p;
1583
1584	/* Disable kprobe. This will disarm it if needed. */
1585	ap = __disable_kprobe(p);
1586	if (ap == NULL)
1587		return -EINVAL;
1588
1589	if (ap == p)
1590		/*
1591		 * This probe is an independent(and non-optimized) kprobe
1592		 * (not an aggrprobe). Remove from the hash list.
1593		 */
1594		goto disarmed;
1595
1596	/* Following process expects this probe is an aggrprobe */
1597	WARN_ON(!kprobe_aggrprobe(ap));
1598
1599	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1600		/*
1601		 * !disarmed could be happen if the probe is under delayed
1602		 * unoptimizing.
1603		 */
1604		goto disarmed;
1605	else {
1606		/* If disabling probe has special handlers, update aggrprobe */
1607		if (p->break_handler && !kprobe_gone(p))
1608			ap->break_handler = NULL;
1609		if (p->post_handler && !kprobe_gone(p)) {
1610			list_for_each_entry_rcu(list_p, &ap->list, list) {
1611				if ((list_p != p) && (list_p->post_handler))
1612					goto noclean;
1613			}
1614			ap->post_handler = NULL;
1615		}
1616noclean:
1617		/*
1618		 * Remove from the aggrprobe: this path will do nothing in
1619		 * __unregister_kprobe_bottom().
1620		 */
1621		list_del_rcu(&p->list);
1622		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1623			/*
1624			 * Try to optimize this probe again, because post
1625			 * handler may have been changed.
1626			 */
1627			optimize_kprobe(ap);
1628	}
1629	return 0;
1630
1631disarmed:
1632	BUG_ON(!kprobe_disarmed(ap));
1633	hlist_del_rcu(&ap->hlist);
1634	return 0;
1635}
1636
1637static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1638{
1639	struct kprobe *ap;
1640
1641	if (list_empty(&p->list))
1642		/* This is an independent kprobe */
1643		arch_remove_kprobe(p);
1644	else if (list_is_singular(&p->list)) {
1645		/* This is the last child of an aggrprobe */
1646		ap = list_entry(p->list.next, struct kprobe, list);
1647		list_del(&p->list);
1648		free_aggr_kprobe(ap);
1649	}
1650	/* Otherwise, do nothing. */
1651}
1652
1653int __kprobes register_kprobes(struct kprobe **kps, int num)
1654{
1655	int i, ret = 0;
1656
1657	if (num <= 0)
1658		return -EINVAL;
1659	for (i = 0; i < num; i++) {
1660		ret = register_kprobe(kps[i]);
1661		if (ret < 0) {
1662			if (i > 0)
1663				unregister_kprobes(kps, i);
1664			break;
1665		}
1666	}
1667	return ret;
1668}
1669EXPORT_SYMBOL_GPL(register_kprobes);
1670
1671void __kprobes unregister_kprobe(struct kprobe *p)
1672{
1673	unregister_kprobes(&p, 1);
1674}
1675EXPORT_SYMBOL_GPL(unregister_kprobe);
1676
1677void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1678{
1679	int i;
1680
1681	if (num <= 0)
1682		return;
1683	mutex_lock(&kprobe_mutex);
1684	for (i = 0; i < num; i++)
1685		if (__unregister_kprobe_top(kps[i]) < 0)
1686			kps[i]->addr = NULL;
1687	mutex_unlock(&kprobe_mutex);
1688
1689	synchronize_sched();
1690	for (i = 0; i < num; i++)
1691		if (kps[i]->addr)
1692			__unregister_kprobe_bottom(kps[i]);
1693}
1694EXPORT_SYMBOL_GPL(unregister_kprobes);
1695
1696static struct notifier_block kprobe_exceptions_nb = {
1697	.notifier_call = kprobe_exceptions_notify,
1698	.priority = 0x7fffffff /* we need to be notified first */
1699};
1700
1701unsigned long __weak arch_deref_entry_point(void *entry)
1702{
1703	return (unsigned long)entry;
1704}
1705
1706int __kprobes register_jprobes(struct jprobe **jps, int num)
1707{
1708	struct jprobe *jp;
1709	int ret = 0, i;
1710
1711	if (num <= 0)
1712		return -EINVAL;
1713	for (i = 0; i < num; i++) {
1714		unsigned long addr, offset;
1715		jp = jps[i];
1716		addr = arch_deref_entry_point(jp->entry);
1717
1718		/* Verify probepoint is a function entry point */
1719		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1720		    offset == 0) {
1721			jp->kp.pre_handler = setjmp_pre_handler;
1722			jp->kp.break_handler = longjmp_break_handler;
1723			ret = register_kprobe(&jp->kp);
1724		} else
1725			ret = -EINVAL;
1726
1727		if (ret < 0) {
1728			if (i > 0)
1729				unregister_jprobes(jps, i);
1730			break;
1731		}
1732	}
1733	return ret;
1734}
1735EXPORT_SYMBOL_GPL(register_jprobes);
1736
1737int __kprobes register_jprobe(struct jprobe *jp)
1738{
1739	return register_jprobes(&jp, 1);
1740}
1741EXPORT_SYMBOL_GPL(register_jprobe);
1742
1743void __kprobes unregister_jprobe(struct jprobe *jp)
1744{
1745	unregister_jprobes(&jp, 1);
1746}
1747EXPORT_SYMBOL_GPL(unregister_jprobe);
1748
1749void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1750{
1751	int i;
1752
1753	if (num <= 0)
1754		return;
1755	mutex_lock(&kprobe_mutex);
1756	for (i = 0; i < num; i++)
1757		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1758			jps[i]->kp.addr = NULL;
1759	mutex_unlock(&kprobe_mutex);
1760
1761	synchronize_sched();
1762	for (i = 0; i < num; i++) {
1763		if (jps[i]->kp.addr)
1764			__unregister_kprobe_bottom(&jps[i]->kp);
1765	}
1766}
1767EXPORT_SYMBOL_GPL(unregister_jprobes);
1768
1769#ifdef CONFIG_KRETPROBES
1770/*
1771 * This kprobe pre_handler is registered with every kretprobe. When probe
1772 * hits it will set up the return probe.
1773 */
1774static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1775					   struct pt_regs *regs)
1776{
1777	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778	unsigned long hash, flags = 0;
1779	struct kretprobe_instance *ri;
1780
1781	/*TODO: consider to only swap the RA after the last pre_handler fired */
1782	hash = hash_ptr(current, KPROBE_HASH_BITS);
1783	raw_spin_lock_irqsave(&rp->lock, flags);
1784	if (!hlist_empty(&rp->free_instances)) {
1785		ri = hlist_entry(rp->free_instances.first,
1786				struct kretprobe_instance, hlist);
1787		hlist_del(&ri->hlist);
1788		raw_spin_unlock_irqrestore(&rp->lock, flags);
1789
1790		ri->rp = rp;
1791		ri->task = current;
1792
1793		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1794			raw_spin_lock_irqsave(&rp->lock, flags);
1795			hlist_add_head(&ri->hlist, &rp->free_instances);
1796			raw_spin_unlock_irqrestore(&rp->lock, flags);
1797			return 0;
1798		}
1799
1800		arch_prepare_kretprobe(ri, regs);
1801
1802		/* XXX(hch): why is there no hlist_move_head? */
1803		INIT_HLIST_NODE(&ri->hlist);
1804		kretprobe_table_lock(hash, &flags);
1805		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1806		kretprobe_table_unlock(hash, &flags);
1807	} else {
1808		rp->nmissed++;
1809		raw_spin_unlock_irqrestore(&rp->lock, flags);
1810	}
1811	return 0;
1812}
1813
1814int __kprobes register_kretprobe(struct kretprobe *rp)
1815{
1816	int ret = 0;
1817	struct kretprobe_instance *inst;
1818	int i;
1819	void *addr;
1820
1821	if (kretprobe_blacklist_size) {
1822		addr = kprobe_addr(&rp->kp);
1823		if (IS_ERR(addr))
1824			return PTR_ERR(addr);
1825
1826		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1827			if (kretprobe_blacklist[i].addr == addr)
1828				return -EINVAL;
1829		}
1830	}
1831
1832	rp->kp.pre_handler = pre_handler_kretprobe;
1833	rp->kp.post_handler = NULL;
1834	rp->kp.fault_handler = NULL;
1835	rp->kp.break_handler = NULL;
1836
1837	/* Pre-allocate memory for max kretprobe instances */
1838	if (rp->maxactive <= 0) {
1839#ifdef CONFIG_PREEMPT
1840		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1841#else
1842		rp->maxactive = num_possible_cpus();
1843#endif
1844	}
1845	raw_spin_lock_init(&rp->lock);
1846	INIT_HLIST_HEAD(&rp->free_instances);
1847	for (i = 0; i < rp->maxactive; i++) {
1848		inst = kmalloc(sizeof(struct kretprobe_instance) +
1849			       rp->data_size, GFP_KERNEL);
1850		if (inst == NULL) {
1851			free_rp_inst(rp);
1852			return -ENOMEM;
1853		}
1854		INIT_HLIST_NODE(&inst->hlist);
1855		hlist_add_head(&inst->hlist, &rp->free_instances);
1856	}
1857
1858	rp->nmissed = 0;
1859	/* Establish function entry probe point */
1860	ret = register_kprobe(&rp->kp);
1861	if (ret != 0)
1862		free_rp_inst(rp);
1863	return ret;
1864}
1865EXPORT_SYMBOL_GPL(register_kretprobe);
1866
1867int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1868{
1869	int ret = 0, i;
1870
1871	if (num <= 0)
1872		return -EINVAL;
1873	for (i = 0; i < num; i++) {
1874		ret = register_kretprobe(rps[i]);
1875		if (ret < 0) {
1876			if (i > 0)
1877				unregister_kretprobes(rps, i);
1878			break;
1879		}
1880	}
1881	return ret;
1882}
1883EXPORT_SYMBOL_GPL(register_kretprobes);
1884
1885void __kprobes unregister_kretprobe(struct kretprobe *rp)
1886{
1887	unregister_kretprobes(&rp, 1);
1888}
1889EXPORT_SYMBOL_GPL(unregister_kretprobe);
1890
1891void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1892{
1893	int i;
1894
1895	if (num <= 0)
1896		return;
1897	mutex_lock(&kprobe_mutex);
1898	for (i = 0; i < num; i++)
1899		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1900			rps[i]->kp.addr = NULL;
1901	mutex_unlock(&kprobe_mutex);
1902
1903	synchronize_sched();
1904	for (i = 0; i < num; i++) {
1905		if (rps[i]->kp.addr) {
1906			__unregister_kprobe_bottom(&rps[i]->kp);
1907			cleanup_rp_inst(rps[i]);
1908		}
1909	}
1910}
1911EXPORT_SYMBOL_GPL(unregister_kretprobes);
1912
1913#else /* CONFIG_KRETPROBES */
1914int __kprobes register_kretprobe(struct kretprobe *rp)
1915{
1916	return -ENOSYS;
1917}
1918EXPORT_SYMBOL_GPL(register_kretprobe);
1919
1920int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1921{
1922	return -ENOSYS;
1923}
1924EXPORT_SYMBOL_GPL(register_kretprobes);
1925
1926void __kprobes unregister_kretprobe(struct kretprobe *rp)
1927{
1928}
1929EXPORT_SYMBOL_GPL(unregister_kretprobe);
1930
1931void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1932{
1933}
1934EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1937					   struct pt_regs *regs)
1938{
1939	return 0;
1940}
1941
1942#endif /* CONFIG_KRETPROBES */
1943
1944/* Set the kprobe gone and remove its instruction buffer. */
1945static void __kprobes kill_kprobe(struct kprobe *p)
1946{
1947	struct kprobe *kp;
1948
1949	p->flags |= KPROBE_FLAG_GONE;
1950	if (kprobe_aggrprobe(p)) {
1951		/*
1952		 * If this is an aggr_kprobe, we have to list all the
1953		 * chained probes and mark them GONE.
1954		 */
1955		list_for_each_entry_rcu(kp, &p->list, list)
1956			kp->flags |= KPROBE_FLAG_GONE;
1957		p->post_handler = NULL;
1958		p->break_handler = NULL;
1959		kill_optimized_kprobe(p);
1960	}
1961	/*
1962	 * Here, we can remove insn_slot safely, because no thread calls
1963	 * the original probed function (which will be freed soon) any more.
1964	 */
1965	arch_remove_kprobe(p);
1966}
1967
1968/* Disable one kprobe */
1969int __kprobes disable_kprobe(struct kprobe *kp)
1970{
1971	int ret = 0;
1972
1973	mutex_lock(&kprobe_mutex);
1974
1975	/* Disable this kprobe */
1976	if (__disable_kprobe(kp) == NULL)
1977		ret = -EINVAL;
1978
1979	mutex_unlock(&kprobe_mutex);
1980	return ret;
1981}
1982EXPORT_SYMBOL_GPL(disable_kprobe);
1983
1984/* Enable one kprobe */
1985int __kprobes enable_kprobe(struct kprobe *kp)
1986{
1987	int ret = 0;
1988	struct kprobe *p;
1989
1990	mutex_lock(&kprobe_mutex);
1991
1992	/* Check whether specified probe is valid. */
1993	p = __get_valid_kprobe(kp);
1994	if (unlikely(p == NULL)) {
1995		ret = -EINVAL;
1996		goto out;
1997	}
1998
1999	if (kprobe_gone(kp)) {
2000		/* This kprobe has gone, we couldn't enable it. */
2001		ret = -EINVAL;
2002		goto out;
2003	}
2004
2005	if (p != kp)
2006		kp->flags &= ~KPROBE_FLAG_DISABLED;
2007
2008	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2009		p->flags &= ~KPROBE_FLAG_DISABLED;
2010		arm_kprobe(p);
2011	}
2012out:
2013	mutex_unlock(&kprobe_mutex);
2014	return ret;
2015}
2016EXPORT_SYMBOL_GPL(enable_kprobe);
2017
2018void __kprobes dump_kprobe(struct kprobe *kp)
2019{
2020	printk(KERN_WARNING "Dumping kprobe:\n");
2021	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2022	       kp->symbol_name, kp->addr, kp->offset);
2023}
2024
2025/* Module notifier call back, checking kprobes on the module */
2026static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2027					     unsigned long val, void *data)
2028{
2029	struct module *mod = data;
2030	struct hlist_head *head;
2031	struct kprobe *p;
2032	unsigned int i;
2033	int checkcore = (val == MODULE_STATE_GOING);
2034
2035	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2036		return NOTIFY_DONE;
2037
2038	/*
2039	 * When MODULE_STATE_GOING was notified, both of module .text and
2040	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2041	 * notified, only .init.text section would be freed. We need to
2042	 * disable kprobes which have been inserted in the sections.
2043	 */
2044	mutex_lock(&kprobe_mutex);
2045	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2046		head = &kprobe_table[i];
2047		hlist_for_each_entry_rcu(p, head, hlist)
2048			if (within_module_init((unsigned long)p->addr, mod) ||
2049			    (checkcore &&
2050			     within_module_core((unsigned long)p->addr, mod))) {
2051				/*
2052				 * The vaddr this probe is installed will soon
2053				 * be vfreed buy not synced to disk. Hence,
2054				 * disarming the breakpoint isn't needed.
2055				 */
2056				kill_kprobe(p);
2057			}
2058	}
2059	mutex_unlock(&kprobe_mutex);
2060	return NOTIFY_DONE;
2061}
2062
2063static struct notifier_block kprobe_module_nb = {
2064	.notifier_call = kprobes_module_callback,
2065	.priority = 0
2066};
2067
2068static int __init init_kprobes(void)
2069{
2070	int i, err = 0;
2071	unsigned long offset = 0, size = 0;
2072	char *modname, namebuf[KSYM_NAME_LEN];
2073	const char *symbol_name;
2074	void *addr;
2075	struct kprobe_blackpoint *kb;
2076
2077	/* FIXME allocate the probe table, currently defined statically */
2078	/* initialize all list heads */
2079	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2080		INIT_HLIST_HEAD(&kprobe_table[i]);
2081		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2082		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2083	}
2084
2085	/*
2086	 * Lookup and populate the kprobe_blacklist.
2087	 *
2088	 * Unlike the kretprobe blacklist, we'll need to determine
2089	 * the range of addresses that belong to the said functions,
2090	 * since a kprobe need not necessarily be at the beginning
2091	 * of a function.
2092	 */
2093	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2094		kprobe_lookup_name(kb->name, addr);
2095		if (!addr)
2096			continue;
2097
2098		kb->start_addr = (unsigned long)addr;
2099		symbol_name = kallsyms_lookup(kb->start_addr,
2100				&size, &offset, &modname, namebuf);
2101		if (!symbol_name)
2102			kb->range = 0;
2103		else
2104			kb->range = size;
2105	}
2106
2107	if (kretprobe_blacklist_size) {
2108		/* lookup the function address from its name */
2109		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2110			kprobe_lookup_name(kretprobe_blacklist[i].name,
2111					   kretprobe_blacklist[i].addr);
2112			if (!kretprobe_blacklist[i].addr)
2113				printk("kretprobe: lookup failed: %s\n",
2114				       kretprobe_blacklist[i].name);
2115		}
2116	}
2117
2118#if defined(CONFIG_OPTPROBES)
2119#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2120	/* Init kprobe_optinsn_slots */
2121	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2122#endif
2123	/* By default, kprobes can be optimized */
2124	kprobes_allow_optimization = true;
2125#endif
2126
2127	/* By default, kprobes are armed */
2128	kprobes_all_disarmed = false;
2129
2130	err = arch_init_kprobes();
2131	if (!err)
2132		err = register_die_notifier(&kprobe_exceptions_nb);
2133	if (!err)
2134		err = register_module_notifier(&kprobe_module_nb);
2135
2136	kprobes_initialized = (err == 0);
2137
2138	if (!err)
2139		init_test_probes();
2140	return err;
2141}
2142
2143#ifdef CONFIG_DEBUG_FS
2144static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2145		const char *sym, int offset, char *modname, struct kprobe *pp)
2146{
2147	char *kprobe_type;
2148
2149	if (p->pre_handler == pre_handler_kretprobe)
2150		kprobe_type = "r";
2151	else if (p->pre_handler == setjmp_pre_handler)
2152		kprobe_type = "j";
2153	else
2154		kprobe_type = "k";
2155
2156	if (sym)
2157		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2158			p->addr, kprobe_type, sym, offset,
2159			(modname ? modname : " "));
2160	else
2161		seq_printf(pi, "%p  %s  %p ",
2162			p->addr, kprobe_type, p->addr);
2163
2164	if (!pp)
2165		pp = p;
2166	seq_printf(pi, "%s%s%s%s\n",
2167		(kprobe_gone(p) ? "[GONE]" : ""),
2168		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2169		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2170		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2171}
2172
2173static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2174{
2175	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2176}
2177
2178static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2179{
2180	(*pos)++;
2181	if (*pos >= KPROBE_TABLE_SIZE)
2182		return NULL;
2183	return pos;
2184}
2185
2186static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2187{
2188	/* Nothing to do */
2189}
2190
2191static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2192{
2193	struct hlist_head *head;
2194	struct kprobe *p, *kp;
2195	const char *sym = NULL;
2196	unsigned int i = *(loff_t *) v;
2197	unsigned long offset = 0;
2198	char *modname, namebuf[KSYM_NAME_LEN];
2199
2200	head = &kprobe_table[i];
2201	preempt_disable();
2202	hlist_for_each_entry_rcu(p, head, hlist) {
2203		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2204					&offset, &modname, namebuf);
2205		if (kprobe_aggrprobe(p)) {
2206			list_for_each_entry_rcu(kp, &p->list, list)
2207				report_probe(pi, kp, sym, offset, modname, p);
2208		} else
2209			report_probe(pi, p, sym, offset, modname, NULL);
2210	}
2211	preempt_enable();
2212	return 0;
2213}
2214
2215static const struct seq_operations kprobes_seq_ops = {
2216	.start = kprobe_seq_start,
2217	.next  = kprobe_seq_next,
2218	.stop  = kprobe_seq_stop,
2219	.show  = show_kprobe_addr
2220};
2221
2222static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2223{
2224	return seq_open(filp, &kprobes_seq_ops);
2225}
2226
2227static const struct file_operations debugfs_kprobes_operations = {
2228	.open           = kprobes_open,
2229	.read           = seq_read,
2230	.llseek         = seq_lseek,
2231	.release        = seq_release,
2232};
2233
2234static void __kprobes arm_all_kprobes(void)
2235{
2236	struct hlist_head *head;
2237	struct kprobe *p;
2238	unsigned int i;
2239
2240	mutex_lock(&kprobe_mutex);
2241
2242	/* If kprobes are armed, just return */
2243	if (!kprobes_all_disarmed)
2244		goto already_enabled;
2245
2246	/* Arming kprobes doesn't optimize kprobe itself */
2247	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2248		head = &kprobe_table[i];
2249		hlist_for_each_entry_rcu(p, head, hlist)
2250			if (!kprobe_disabled(p))
2251				arm_kprobe(p);
2252	}
2253
2254	kprobes_all_disarmed = false;
2255	printk(KERN_INFO "Kprobes globally enabled\n");
2256
2257already_enabled:
2258	mutex_unlock(&kprobe_mutex);
2259	return;
2260}
2261
2262static void __kprobes disarm_all_kprobes(void)
2263{
2264	struct hlist_head *head;
2265	struct kprobe *p;
2266	unsigned int i;
2267
2268	mutex_lock(&kprobe_mutex);
2269
2270	/* If kprobes are already disarmed, just return */
2271	if (kprobes_all_disarmed) {
2272		mutex_unlock(&kprobe_mutex);
2273		return;
2274	}
2275
2276	kprobes_all_disarmed = true;
2277	printk(KERN_INFO "Kprobes globally disabled\n");
2278
2279	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2280		head = &kprobe_table[i];
2281		hlist_for_each_entry_rcu(p, head, hlist) {
2282			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2283				disarm_kprobe(p, false);
2284		}
2285	}
2286	mutex_unlock(&kprobe_mutex);
2287
2288	/* Wait for disarming all kprobes by optimizer */
2289	wait_for_kprobe_optimizer();
2290}
2291
2292/*
2293 * XXX: The debugfs bool file interface doesn't allow for callbacks
2294 * when the bool state is switched. We can reuse that facility when
2295 * available
2296 */
2297static ssize_t read_enabled_file_bool(struct file *file,
2298	       char __user *user_buf, size_t count, loff_t *ppos)
2299{
2300	char buf[3];
2301
2302	if (!kprobes_all_disarmed)
2303		buf[0] = '1';
2304	else
2305		buf[0] = '0';
2306	buf[1] = '\n';
2307	buf[2] = 0x00;
2308	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2309}
2310
2311static ssize_t write_enabled_file_bool(struct file *file,
2312	       const char __user *user_buf, size_t count, loff_t *ppos)
2313{
2314	char buf[32];
2315	size_t buf_size;
2316
2317	buf_size = min(count, (sizeof(buf)-1));
2318	if (copy_from_user(buf, user_buf, buf_size))
2319		return -EFAULT;
2320
2321	buf[buf_size] = '\0';
2322	switch (buf[0]) {
2323	case 'y':
2324	case 'Y':
2325	case '1':
2326		arm_all_kprobes();
2327		break;
2328	case 'n':
2329	case 'N':
2330	case '0':
2331		disarm_all_kprobes();
2332		break;
2333	default:
2334		return -EINVAL;
2335	}
2336
2337	return count;
2338}
2339
2340static const struct file_operations fops_kp = {
2341	.read =         read_enabled_file_bool,
2342	.write =        write_enabled_file_bool,
2343	.llseek =	default_llseek,
2344};
2345
2346static int __kprobes debugfs_kprobe_init(void)
2347{
2348	struct dentry *dir, *file;
2349	unsigned int value = 1;
2350
2351	dir = debugfs_create_dir("kprobes", NULL);
2352	if (!dir)
2353		return -ENOMEM;
2354
2355	file = debugfs_create_file("list", 0444, dir, NULL,
2356				&debugfs_kprobes_operations);
2357	if (!file) {
2358		debugfs_remove(dir);
2359		return -ENOMEM;
2360	}
2361
2362	file = debugfs_create_file("enabled", 0600, dir,
2363					&value, &fops_kp);
2364	if (!file) {
2365		debugfs_remove(dir);
2366		return -ENOMEM;
2367	}
2368
2369	return 0;
2370}
2371
2372late_initcall(debugfs_kprobe_init);
2373#endif /* CONFIG_DEBUG_FS */
2374
2375module_init(init_kprobes);
2376
2377/* defined in arch/.../kernel/kprobes.c */
2378EXPORT_SYMBOL_GPL(jprobe_return);
2379