kprobes.c revision c6aaf4d0bb86e2154ea31a33804cec300611255f
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct hlist_node *node;
338	struct kprobe *p;
339
340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341	hlist_for_each_entry_rcu(p, node, head, hlist) {
342		if (p->addr == addr)
343			return p;
344	}
345
346	return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354	return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361	       list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383	struct kprobe *kp;
384
385	list_for_each_entry_rcu(kp, &p->list, list) {
386		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387			set_kprobe_instance(kp);
388			kp->pre_handler(kp, regs);
389		}
390		reset_kprobe_instance();
391	}
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397	struct optimized_kprobe *op;
398
399	op = container_of(p, struct optimized_kprobe, kp);
400	arch_remove_optimized_kprobe(op);
401	arch_remove_kprobe(p);
402	kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408	struct optimized_kprobe *op;
409
410	if (kprobe_aggrprobe(p)) {
411		op = container_of(p, struct optimized_kprobe, kp);
412		return arch_prepared_optinsn(&op->optinsn);
413	}
414
415	return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421	struct optimized_kprobe *op;
422
423	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424	if (!kprobe_aggrprobe(p))
425		return kprobe_disabled(p);
426
427	op = container_of(p, struct optimized_kprobe, kp);
428
429	return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435	struct optimized_kprobe *op;
436
437	if (kprobe_aggrprobe(p)) {
438		op = container_of(p, struct optimized_kprobe, kp);
439		if (!list_empty(&op->list))
440			return 1;
441	}
442	return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451	int i;
452	struct kprobe *p = NULL;
453	struct optimized_kprobe *op;
454
455	/* Don't check i == 0, since that is a breakpoint case. */
456	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457		p = get_kprobe((void *)(addr - i));
458
459	if (p && kprobe_optready(p)) {
460		op = container_of(p, struct optimized_kprobe, kp);
461		if (arch_within_optimized_kprobe(op, addr))
462			return p;
463	}
464
465	return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483	/* Optimization never be done when disarmed */
484	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485	    list_empty(&optimizing_list))
486		return;
487
488	/*
489	 * The optimization/unoptimization refers online_cpus via
490	 * stop_machine() and cpu-hotplug modifies online_cpus.
491	 * And same time, text_mutex will be held in cpu-hotplug and here.
492	 * This combination can cause a deadlock (cpu-hotplug try to lock
493	 * text_mutex but stop_machine can not be done because online_cpus
494	 * has been changed)
495	 * To avoid this deadlock, we need to call get_online_cpus()
496	 * for preventing cpu-hotplug outside of text_mutex locking.
497	 */
498	get_online_cpus();
499	mutex_lock(&text_mutex);
500	arch_optimize_kprobes(&optimizing_list);
501	mutex_unlock(&text_mutex);
502	put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511	struct optimized_kprobe *op, *tmp;
512
513	/* Unoptimization must be done anytime */
514	if (list_empty(&unoptimizing_list))
515		return;
516
517	/* Ditto to do_optimize_kprobes */
518	get_online_cpus();
519	mutex_lock(&text_mutex);
520	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521	/* Loop free_list for disarming */
522	list_for_each_entry_safe(op, tmp, free_list, list) {
523		/* Disarm probes if marked disabled */
524		if (kprobe_disabled(&op->kp))
525			arch_disarm_kprobe(&op->kp);
526		if (kprobe_unused(&op->kp)) {
527			/*
528			 * Remove unused probes from hash list. After waiting
529			 * for synchronization, these probes are reclaimed.
530			 * (reclaiming is done by do_free_cleaned_kprobes.)
531			 */
532			hlist_del_rcu(&op->kp.hlist);
533		} else
534			list_del_init(&op->list);
535	}
536	mutex_unlock(&text_mutex);
537	put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543	struct optimized_kprobe *op, *tmp;
544
545	list_for_each_entry_safe(op, tmp, free_list, list) {
546		BUG_ON(!kprobe_unused(&op->kp));
547		list_del_init(&op->list);
548		free_aggr_kprobe(&op->kp);
549	}
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555	if (!delayed_work_pending(&optimizing_work))
556		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562	LIST_HEAD(free_list);
563
564	mutex_lock(&kprobe_mutex);
565	/* Lock modules while optimizing kprobes */
566	mutex_lock(&module_mutex);
567
568	/*
569	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570	 * kprobes before waiting for quiesence period.
571	 */
572	do_unoptimize_kprobes(&free_list);
573
574	/*
575	 * Step 2: Wait for quiesence period to ensure all running interrupts
576	 * are done. Because optprobe may modify multiple instructions
577	 * there is a chance that Nth instruction is interrupted. In that
578	 * case, running interrupt can return to 2nd-Nth byte of jump
579	 * instruction. This wait is for avoiding it.
580	 */
581	synchronize_sched();
582
583	/* Step 3: Optimize kprobes after quiesence period */
584	do_optimize_kprobes();
585
586	/* Step 4: Free cleaned kprobes after quiesence period */
587	do_free_cleaned_kprobes(&free_list);
588
589	mutex_unlock(&module_mutex);
590	mutex_unlock(&kprobe_mutex);
591
592	/* Step 5: Kick optimizer again if needed */
593	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594		kick_kprobe_optimizer();
595	else
596		/* Wake up all waiters */
597		complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603	if (delayed_work_pending(&optimizing_work))
604		wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610	struct optimized_kprobe *op;
611
612	/* Check if the kprobe is disabled or not ready for optimization. */
613	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614	    (kprobe_disabled(p) || kprobes_all_disarmed))
615		return;
616
617	/* Both of break_handler and post_handler are not supported. */
618	if (p->break_handler || p->post_handler)
619		return;
620
621	op = container_of(p, struct optimized_kprobe, kp);
622
623	/* Check there is no other kprobes at the optimized instructions */
624	if (arch_check_optimized_kprobe(op) < 0)
625		return;
626
627	/* Check if it is already optimized. */
628	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629		return;
630	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632	if (!list_empty(&op->list))
633		/* This is under unoptimizing. Just dequeue the probe */
634		list_del_init(&op->list);
635	else {
636		list_add(&op->list, &optimizing_list);
637		kick_kprobe_optimizer();
638	}
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644	get_online_cpus();
645	arch_unoptimize_kprobe(op);
646	put_online_cpus();
647	if (kprobe_disabled(&op->kp))
648		arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654	struct optimized_kprobe *op;
655
656	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657		return; /* This is not an optprobe nor optimized */
658
659	op = container_of(p, struct optimized_kprobe, kp);
660	if (!kprobe_optimized(p)) {
661		/* Unoptimized or unoptimizing case */
662		if (force && !list_empty(&op->list)) {
663			/*
664			 * Only if this is unoptimizing kprobe and forced,
665			 * forcibly unoptimize it. (No need to unoptimize
666			 * unoptimized kprobe again :)
667			 */
668			list_del_init(&op->list);
669			force_unoptimize_kprobe(op);
670		}
671		return;
672	}
673
674	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675	if (!list_empty(&op->list)) {
676		/* Dequeue from the optimization queue */
677		list_del_init(&op->list);
678		return;
679	}
680	/* Optimized kprobe case */
681	if (force)
682		/* Forcibly update the code: this is a special case */
683		force_unoptimize_kprobe(op);
684	else {
685		list_add(&op->list, &unoptimizing_list);
686		kick_kprobe_optimizer();
687	}
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693	struct optimized_kprobe *op;
694
695	BUG_ON(!kprobe_unused(ap));
696	/*
697	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698	 * there is still a relative jump) and disabled.
699	 */
700	op = container_of(ap, struct optimized_kprobe, kp);
701	if (unlikely(list_empty(&op->list)))
702		printk(KERN_WARNING "Warning: found a stray unused "
703			"aggrprobe@%p\n", ap->addr);
704	/* Enable the probe again */
705	ap->flags &= ~KPROBE_FLAG_DISABLED;
706	/* Optimize it again (remove from op->list) */
707	BUG_ON(!kprobe_optready(ap));
708	optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714	struct optimized_kprobe *op;
715
716	op = container_of(p, struct optimized_kprobe, kp);
717	if (!list_empty(&op->list))
718		/* Dequeue from the (un)optimization queue */
719		list_del_init(&op->list);
720
721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722	/* Don't touch the code, because it is already freed. */
723	arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729	struct optimized_kprobe *op;
730
731	op = container_of(p, struct optimized_kprobe, kp);
732	arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738	struct optimized_kprobe *op;
739
740	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741	if (!op)
742		return NULL;
743
744	INIT_LIST_HEAD(&op->list);
745	op->kp.addr = p->addr;
746	arch_prepare_optimized_kprobe(op);
747
748	return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759	struct kprobe *ap;
760	struct optimized_kprobe *op;
761
762	/* Impossible to optimize ftrace-based kprobe */
763	if (kprobe_ftrace(p))
764		return;
765
766	/* For preparing optimization, jump_label_text_reserved() is called */
767	jump_label_lock();
768	mutex_lock(&text_mutex);
769
770	ap = alloc_aggr_kprobe(p);
771	if (!ap)
772		goto out;
773
774	op = container_of(ap, struct optimized_kprobe, kp);
775	if (!arch_prepared_optinsn(&op->optinsn)) {
776		/* If failed to setup optimizing, fallback to kprobe */
777		arch_remove_optimized_kprobe(op);
778		kfree(op);
779		goto out;
780	}
781
782	init_aggr_kprobe(ap, p);
783	optimize_kprobe(ap);	/* This just kicks optimizer thread */
784
785out:
786	mutex_unlock(&text_mutex);
787	jump_label_unlock();
788}
789
790#ifdef CONFIG_SYSCTL
791/* This should be called with kprobe_mutex locked */
792static void __kprobes optimize_all_kprobes(void)
793{
794	struct hlist_head *head;
795	struct hlist_node *node;
796	struct kprobe *p;
797	unsigned int i;
798
799	/* If optimization is already allowed, just return */
800	if (kprobes_allow_optimization)
801		return;
802
803	kprobes_allow_optimization = true;
804	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
805		head = &kprobe_table[i];
806		hlist_for_each_entry_rcu(p, node, head, hlist)
807			if (!kprobe_disabled(p))
808				optimize_kprobe(p);
809	}
810	printk(KERN_INFO "Kprobes globally optimized\n");
811}
812
813/* This should be called with kprobe_mutex locked */
814static void __kprobes unoptimize_all_kprobes(void)
815{
816	struct hlist_head *head;
817	struct hlist_node *node;
818	struct kprobe *p;
819	unsigned int i;
820
821	/* If optimization is already prohibited, just return */
822	if (!kprobes_allow_optimization)
823		return;
824
825	kprobes_allow_optimization = false;
826	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827		head = &kprobe_table[i];
828		hlist_for_each_entry_rcu(p, node, head, hlist) {
829			if (!kprobe_disabled(p))
830				unoptimize_kprobe(p, false);
831		}
832	}
833	/* Wait for unoptimizing completion */
834	wait_for_kprobe_optimizer();
835	printk(KERN_INFO "Kprobes globally unoptimized\n");
836}
837
838int sysctl_kprobes_optimization;
839int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
840				      void __user *buffer, size_t *length,
841				      loff_t *ppos)
842{
843	int ret;
844
845	mutex_lock(&kprobe_mutex);
846	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
847	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
848
849	if (sysctl_kprobes_optimization)
850		optimize_all_kprobes();
851	else
852		unoptimize_all_kprobes();
853	mutex_unlock(&kprobe_mutex);
854
855	return ret;
856}
857#endif /* CONFIG_SYSCTL */
858
859/* Put a breakpoint for a probe. Must be called with text_mutex locked */
860static void __kprobes __arm_kprobe(struct kprobe *p)
861{
862	struct kprobe *_p;
863
864	/* Check collision with other optimized kprobes */
865	_p = get_optimized_kprobe((unsigned long)p->addr);
866	if (unlikely(_p))
867		/* Fallback to unoptimized kprobe */
868		unoptimize_kprobe(_p, true);
869
870	arch_arm_kprobe(p);
871	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
872}
873
874/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
875static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
876{
877	struct kprobe *_p;
878
879	unoptimize_kprobe(p, false);	/* Try to unoptimize */
880
881	if (!kprobe_queued(p)) {
882		arch_disarm_kprobe(p);
883		/* If another kprobe was blocked, optimize it. */
884		_p = get_optimized_kprobe((unsigned long)p->addr);
885		if (unlikely(_p) && reopt)
886			optimize_kprobe(_p);
887	}
888	/* TODO: reoptimize others after unoptimized this probe */
889}
890
891#else /* !CONFIG_OPTPROBES */
892
893#define optimize_kprobe(p)			do {} while (0)
894#define unoptimize_kprobe(p, f)			do {} while (0)
895#define kill_optimized_kprobe(p)		do {} while (0)
896#define prepare_optimized_kprobe(p)		do {} while (0)
897#define try_to_optimize_kprobe(p)		do {} while (0)
898#define __arm_kprobe(p)				arch_arm_kprobe(p)
899#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
900#define kprobe_disarmed(p)			kprobe_disabled(p)
901#define wait_for_kprobe_optimizer()		do {} while (0)
902
903/* There should be no unused kprobes can be reused without optimization */
904static void reuse_unused_kprobe(struct kprobe *ap)
905{
906	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
907	BUG_ON(kprobe_unused(ap));
908}
909
910static __kprobes void free_aggr_kprobe(struct kprobe *p)
911{
912	arch_remove_kprobe(p);
913	kfree(p);
914}
915
916static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
917{
918	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
919}
920#endif /* CONFIG_OPTPROBES */
921
922#ifdef KPROBES_CAN_USE_FTRACE
923static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
924	.func = kprobe_ftrace_handler,
925	.flags = FTRACE_OPS_FL_SAVE_REGS,
926};
927static int kprobe_ftrace_enabled;
928
929/* Must ensure p->addr is really on ftrace */
930static int __kprobes prepare_kprobe(struct kprobe *p)
931{
932	if (!kprobe_ftrace(p))
933		return arch_prepare_kprobe(p);
934
935	return arch_prepare_kprobe_ftrace(p);
936}
937
938/* Caller must lock kprobe_mutex */
939static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
940{
941	int ret;
942
943	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
944				   (unsigned long)p->addr, 0, 0);
945	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
946	kprobe_ftrace_enabled++;
947	if (kprobe_ftrace_enabled == 1) {
948		ret = register_ftrace_function(&kprobe_ftrace_ops);
949		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
950	}
951}
952
953/* Caller must lock kprobe_mutex */
954static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
955{
956	int ret;
957
958	kprobe_ftrace_enabled--;
959	if (kprobe_ftrace_enabled == 0) {
960		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
961		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
962	}
963	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
964			   (unsigned long)p->addr, 1, 0);
965	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
966}
967#else	/* !KPROBES_CAN_USE_FTRACE */
968#define prepare_kprobe(p)	arch_prepare_kprobe(p)
969#define arm_kprobe_ftrace(p)	do {} while (0)
970#define disarm_kprobe_ftrace(p)	do {} while (0)
971#endif
972
973/* Arm a kprobe with text_mutex */
974static void __kprobes arm_kprobe(struct kprobe *kp)
975{
976	if (unlikely(kprobe_ftrace(kp))) {
977		arm_kprobe_ftrace(kp);
978		return;
979	}
980	/*
981	 * Here, since __arm_kprobe() doesn't use stop_machine(),
982	 * this doesn't cause deadlock on text_mutex. So, we don't
983	 * need get_online_cpus().
984	 */
985	mutex_lock(&text_mutex);
986	__arm_kprobe(kp);
987	mutex_unlock(&text_mutex);
988}
989
990/* Disarm a kprobe with text_mutex */
991static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
992{
993	if (unlikely(kprobe_ftrace(kp))) {
994		disarm_kprobe_ftrace(kp);
995		return;
996	}
997	/* Ditto */
998	mutex_lock(&text_mutex);
999	__disarm_kprobe(kp, reopt);
1000	mutex_unlock(&text_mutex);
1001}
1002
1003/*
1004 * Aggregate handlers for multiple kprobes support - these handlers
1005 * take care of invoking the individual kprobe handlers on p->list
1006 */
1007static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1008{
1009	struct kprobe *kp;
1010
1011	list_for_each_entry_rcu(kp, &p->list, list) {
1012		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1013			set_kprobe_instance(kp);
1014			if (kp->pre_handler(kp, regs))
1015				return 1;
1016		}
1017		reset_kprobe_instance();
1018	}
1019	return 0;
1020}
1021
1022static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1023					unsigned long flags)
1024{
1025	struct kprobe *kp;
1026
1027	list_for_each_entry_rcu(kp, &p->list, list) {
1028		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1029			set_kprobe_instance(kp);
1030			kp->post_handler(kp, regs, flags);
1031			reset_kprobe_instance();
1032		}
1033	}
1034}
1035
1036static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1037					int trapnr)
1038{
1039	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1040
1041	/*
1042	 * if we faulted "during" the execution of a user specified
1043	 * probe handler, invoke just that probe's fault handler
1044	 */
1045	if (cur && cur->fault_handler) {
1046		if (cur->fault_handler(cur, regs, trapnr))
1047			return 1;
1048	}
1049	return 0;
1050}
1051
1052static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1053{
1054	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1055	int ret = 0;
1056
1057	if (cur && cur->break_handler) {
1058		if (cur->break_handler(cur, regs))
1059			ret = 1;
1060	}
1061	reset_kprobe_instance();
1062	return ret;
1063}
1064
1065/* Walks the list and increments nmissed count for multiprobe case */
1066void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1067{
1068	struct kprobe *kp;
1069	if (!kprobe_aggrprobe(p)) {
1070		p->nmissed++;
1071	} else {
1072		list_for_each_entry_rcu(kp, &p->list, list)
1073			kp->nmissed++;
1074	}
1075	return;
1076}
1077
1078void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1079				struct hlist_head *head)
1080{
1081	struct kretprobe *rp = ri->rp;
1082
1083	/* remove rp inst off the rprobe_inst_table */
1084	hlist_del(&ri->hlist);
1085	INIT_HLIST_NODE(&ri->hlist);
1086	if (likely(rp)) {
1087		raw_spin_lock(&rp->lock);
1088		hlist_add_head(&ri->hlist, &rp->free_instances);
1089		raw_spin_unlock(&rp->lock);
1090	} else
1091		/* Unregistering */
1092		hlist_add_head(&ri->hlist, head);
1093}
1094
1095void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1096			 struct hlist_head **head, unsigned long *flags)
1097__acquires(hlist_lock)
1098{
1099	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100	raw_spinlock_t *hlist_lock;
1101
1102	*head = &kretprobe_inst_table[hash];
1103	hlist_lock = kretprobe_table_lock_ptr(hash);
1104	raw_spin_lock_irqsave(hlist_lock, *flags);
1105}
1106
1107static void __kprobes kretprobe_table_lock(unsigned long hash,
1108	unsigned long *flags)
1109__acquires(hlist_lock)
1110{
1111	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112	raw_spin_lock_irqsave(hlist_lock, *flags);
1113}
1114
1115void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1116	unsigned long *flags)
1117__releases(hlist_lock)
1118{
1119	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1120	raw_spinlock_t *hlist_lock;
1121
1122	hlist_lock = kretprobe_table_lock_ptr(hash);
1123	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1124}
1125
1126static void __kprobes kretprobe_table_unlock(unsigned long hash,
1127       unsigned long *flags)
1128__releases(hlist_lock)
1129{
1130	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1131	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1132}
1133
1134/*
1135 * This function is called from finish_task_switch when task tk becomes dead,
1136 * so that we can recycle any function-return probe instances associated
1137 * with this task. These left over instances represent probed functions
1138 * that have been called but will never return.
1139 */
1140void __kprobes kprobe_flush_task(struct task_struct *tk)
1141{
1142	struct kretprobe_instance *ri;
1143	struct hlist_head *head, empty_rp;
1144	struct hlist_node *node, *tmp;
1145	unsigned long hash, flags = 0;
1146
1147	if (unlikely(!kprobes_initialized))
1148		/* Early boot.  kretprobe_table_locks not yet initialized. */
1149		return;
1150
1151	INIT_HLIST_HEAD(&empty_rp);
1152	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1153	head = &kretprobe_inst_table[hash];
1154	kretprobe_table_lock(hash, &flags);
1155	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1156		if (ri->task == tk)
1157			recycle_rp_inst(ri, &empty_rp);
1158	}
1159	kretprobe_table_unlock(hash, &flags);
1160	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1161		hlist_del(&ri->hlist);
1162		kfree(ri);
1163	}
1164}
1165
1166static inline void free_rp_inst(struct kretprobe *rp)
1167{
1168	struct kretprobe_instance *ri;
1169	struct hlist_node *pos, *next;
1170
1171	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1172		hlist_del(&ri->hlist);
1173		kfree(ri);
1174	}
1175}
1176
1177static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1178{
1179	unsigned long flags, hash;
1180	struct kretprobe_instance *ri;
1181	struct hlist_node *pos, *next;
1182	struct hlist_head *head;
1183
1184	/* No race here */
1185	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1186		kretprobe_table_lock(hash, &flags);
1187		head = &kretprobe_inst_table[hash];
1188		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1189			if (ri->rp == rp)
1190				ri->rp = NULL;
1191		}
1192		kretprobe_table_unlock(hash, &flags);
1193	}
1194	free_rp_inst(rp);
1195}
1196
1197/*
1198* Add the new probe to ap->list. Fail if this is the
1199* second jprobe at the address - two jprobes can't coexist
1200*/
1201static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1202{
1203	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1204
1205	if (p->break_handler || p->post_handler)
1206		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1207
1208	if (p->break_handler) {
1209		if (ap->break_handler)
1210			return -EEXIST;
1211		list_add_tail_rcu(&p->list, &ap->list);
1212		ap->break_handler = aggr_break_handler;
1213	} else
1214		list_add_rcu(&p->list, &ap->list);
1215	if (p->post_handler && !ap->post_handler)
1216		ap->post_handler = aggr_post_handler;
1217
1218	return 0;
1219}
1220
1221/*
1222 * Fill in the required fields of the "manager kprobe". Replace the
1223 * earlier kprobe in the hlist with the manager kprobe
1224 */
1225static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1226{
1227	/* Copy p's insn slot to ap */
1228	copy_kprobe(p, ap);
1229	flush_insn_slot(ap);
1230	ap->addr = p->addr;
1231	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1232	ap->pre_handler = aggr_pre_handler;
1233	ap->fault_handler = aggr_fault_handler;
1234	/* We don't care the kprobe which has gone. */
1235	if (p->post_handler && !kprobe_gone(p))
1236		ap->post_handler = aggr_post_handler;
1237	if (p->break_handler && !kprobe_gone(p))
1238		ap->break_handler = aggr_break_handler;
1239
1240	INIT_LIST_HEAD(&ap->list);
1241	INIT_HLIST_NODE(&ap->hlist);
1242
1243	list_add_rcu(&p->list, &ap->list);
1244	hlist_replace_rcu(&p->hlist, &ap->hlist);
1245}
1246
1247/*
1248 * This is the second or subsequent kprobe at the address - handle
1249 * the intricacies
1250 */
1251static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1252					  struct kprobe *p)
1253{
1254	int ret = 0;
1255	struct kprobe *ap = orig_p;
1256
1257	/* For preparing optimization, jump_label_text_reserved() is called */
1258	jump_label_lock();
1259	/*
1260	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1261	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1262	 */
1263	get_online_cpus();
1264	mutex_lock(&text_mutex);
1265
1266	if (!kprobe_aggrprobe(orig_p)) {
1267		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1268		ap = alloc_aggr_kprobe(orig_p);
1269		if (!ap) {
1270			ret = -ENOMEM;
1271			goto out;
1272		}
1273		init_aggr_kprobe(ap, orig_p);
1274	} else if (kprobe_unused(ap))
1275		/* This probe is going to die. Rescue it */
1276		reuse_unused_kprobe(ap);
1277
1278	if (kprobe_gone(ap)) {
1279		/*
1280		 * Attempting to insert new probe at the same location that
1281		 * had a probe in the module vaddr area which already
1282		 * freed. So, the instruction slot has already been
1283		 * released. We need a new slot for the new probe.
1284		 */
1285		ret = arch_prepare_kprobe(ap);
1286		if (ret)
1287			/*
1288			 * Even if fail to allocate new slot, don't need to
1289			 * free aggr_probe. It will be used next time, or
1290			 * freed by unregister_kprobe.
1291			 */
1292			goto out;
1293
1294		/* Prepare optimized instructions if possible. */
1295		prepare_optimized_kprobe(ap);
1296
1297		/*
1298		 * Clear gone flag to prevent allocating new slot again, and
1299		 * set disabled flag because it is not armed yet.
1300		 */
1301		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1302			    | KPROBE_FLAG_DISABLED;
1303	}
1304
1305	/* Copy ap's insn slot to p */
1306	copy_kprobe(ap, p);
1307	ret = add_new_kprobe(ap, p);
1308
1309out:
1310	mutex_unlock(&text_mutex);
1311	put_online_cpus();
1312	jump_label_unlock();
1313
1314	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1315		ap->flags &= ~KPROBE_FLAG_DISABLED;
1316		if (!kprobes_all_disarmed)
1317			/* Arm the breakpoint again. */
1318			arm_kprobe(ap);
1319	}
1320	return ret;
1321}
1322
1323static int __kprobes in_kprobes_functions(unsigned long addr)
1324{
1325	struct kprobe_blackpoint *kb;
1326
1327	if (addr >= (unsigned long)__kprobes_text_start &&
1328	    addr < (unsigned long)__kprobes_text_end)
1329		return -EINVAL;
1330	/*
1331	 * If there exists a kprobe_blacklist, verify and
1332	 * fail any probe registration in the prohibited area
1333	 */
1334	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1335		if (kb->start_addr) {
1336			if (addr >= kb->start_addr &&
1337			    addr < (kb->start_addr + kb->range))
1338				return -EINVAL;
1339		}
1340	}
1341	return 0;
1342}
1343
1344/*
1345 * If we have a symbol_name argument, look it up and add the offset field
1346 * to it. This way, we can specify a relative address to a symbol.
1347 * This returns encoded errors if it fails to look up symbol or invalid
1348 * combination of parameters.
1349 */
1350static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1351{
1352	kprobe_opcode_t *addr = p->addr;
1353
1354	if ((p->symbol_name && p->addr) ||
1355	    (!p->symbol_name && !p->addr))
1356		goto invalid;
1357
1358	if (p->symbol_name) {
1359		kprobe_lookup_name(p->symbol_name, addr);
1360		if (!addr)
1361			return ERR_PTR(-ENOENT);
1362	}
1363
1364	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1365	if (addr)
1366		return addr;
1367
1368invalid:
1369	return ERR_PTR(-EINVAL);
1370}
1371
1372/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1373static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1374{
1375	struct kprobe *ap, *list_p;
1376
1377	ap = get_kprobe(p->addr);
1378	if (unlikely(!ap))
1379		return NULL;
1380
1381	if (p != ap) {
1382		list_for_each_entry_rcu(list_p, &ap->list, list)
1383			if (list_p == p)
1384			/* kprobe p is a valid probe */
1385				goto valid;
1386		return NULL;
1387	}
1388valid:
1389	return ap;
1390}
1391
1392/* Return error if the kprobe is being re-registered */
1393static inline int check_kprobe_rereg(struct kprobe *p)
1394{
1395	int ret = 0;
1396
1397	mutex_lock(&kprobe_mutex);
1398	if (__get_valid_kprobe(p))
1399		ret = -EINVAL;
1400	mutex_unlock(&kprobe_mutex);
1401
1402	return ret;
1403}
1404
1405static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1406					       struct module **probed_mod)
1407{
1408	int ret = 0;
1409	unsigned long ftrace_addr;
1410
1411	/*
1412	 * If the address is located on a ftrace nop, set the
1413	 * breakpoint to the following instruction.
1414	 */
1415	ftrace_addr = ftrace_location((unsigned long)p->addr);
1416	if (ftrace_addr) {
1417#ifdef KPROBES_CAN_USE_FTRACE
1418		/* Given address is not on the instruction boundary */
1419		if ((unsigned long)p->addr != ftrace_addr)
1420			return -EILSEQ;
1421		p->flags |= KPROBE_FLAG_FTRACE;
1422#else	/* !KPROBES_CAN_USE_FTRACE */
1423		return -EINVAL;
1424#endif
1425	}
1426
1427	jump_label_lock();
1428	preempt_disable();
1429
1430	/* Ensure it is not in reserved area nor out of text */
1431	if (!kernel_text_address((unsigned long) p->addr) ||
1432	    in_kprobes_functions((unsigned long) p->addr) ||
1433	    jump_label_text_reserved(p->addr, p->addr)) {
1434		ret = -EINVAL;
1435		goto out;
1436	}
1437
1438	/* Check if are we probing a module */
1439	*probed_mod = __module_text_address((unsigned long) p->addr);
1440	if (*probed_mod) {
1441		/*
1442		 * We must hold a refcount of the probed module while updating
1443		 * its code to prohibit unexpected unloading.
1444		 */
1445		if (unlikely(!try_module_get(*probed_mod))) {
1446			ret = -ENOENT;
1447			goto out;
1448		}
1449
1450		/*
1451		 * If the module freed .init.text, we couldn't insert
1452		 * kprobes in there.
1453		 */
1454		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1455		    (*probed_mod)->state != MODULE_STATE_COMING) {
1456			module_put(*probed_mod);
1457			*probed_mod = NULL;
1458			ret = -ENOENT;
1459		}
1460	}
1461out:
1462	preempt_enable();
1463	jump_label_unlock();
1464
1465	return ret;
1466}
1467
1468int __kprobes register_kprobe(struct kprobe *p)
1469{
1470	int ret;
1471	struct kprobe *old_p;
1472	struct module *probed_mod;
1473	kprobe_opcode_t *addr;
1474
1475	/* Adjust probe address from symbol */
1476	addr = kprobe_addr(p);
1477	if (IS_ERR(addr))
1478		return PTR_ERR(addr);
1479	p->addr = addr;
1480
1481	ret = check_kprobe_rereg(p);
1482	if (ret)
1483		return ret;
1484
1485	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1486	p->flags &= KPROBE_FLAG_DISABLED;
1487	p->nmissed = 0;
1488	INIT_LIST_HEAD(&p->list);
1489
1490	ret = check_kprobe_address_safe(p, &probed_mod);
1491	if (ret)
1492		return ret;
1493
1494	mutex_lock(&kprobe_mutex);
1495
1496	old_p = get_kprobe(p->addr);
1497	if (old_p) {
1498		/* Since this may unoptimize old_p, locking text_mutex. */
1499		ret = register_aggr_kprobe(old_p, p);
1500		goto out;
1501	}
1502
1503	mutex_lock(&text_mutex);	/* Avoiding text modification */
1504	ret = prepare_kprobe(p);
1505	mutex_unlock(&text_mutex);
1506	if (ret)
1507		goto out;
1508
1509	INIT_HLIST_NODE(&p->hlist);
1510	hlist_add_head_rcu(&p->hlist,
1511		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1512
1513	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1514		arm_kprobe(p);
1515
1516	/* Try to optimize kprobe */
1517	try_to_optimize_kprobe(p);
1518
1519out:
1520	mutex_unlock(&kprobe_mutex);
1521
1522	if (probed_mod)
1523		module_put(probed_mod);
1524
1525	return ret;
1526}
1527EXPORT_SYMBOL_GPL(register_kprobe);
1528
1529/* Check if all probes on the aggrprobe are disabled */
1530static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1531{
1532	struct kprobe *kp;
1533
1534	list_for_each_entry_rcu(kp, &ap->list, list)
1535		if (!kprobe_disabled(kp))
1536			/*
1537			 * There is an active probe on the list.
1538			 * We can't disable this ap.
1539			 */
1540			return 0;
1541
1542	return 1;
1543}
1544
1545/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1546static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1547{
1548	struct kprobe *orig_p;
1549
1550	/* Get an original kprobe for return */
1551	orig_p = __get_valid_kprobe(p);
1552	if (unlikely(orig_p == NULL))
1553		return NULL;
1554
1555	if (!kprobe_disabled(p)) {
1556		/* Disable probe if it is a child probe */
1557		if (p != orig_p)
1558			p->flags |= KPROBE_FLAG_DISABLED;
1559
1560		/* Try to disarm and disable this/parent probe */
1561		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1562			disarm_kprobe(orig_p, true);
1563			orig_p->flags |= KPROBE_FLAG_DISABLED;
1564		}
1565	}
1566
1567	return orig_p;
1568}
1569
1570/*
1571 * Unregister a kprobe without a scheduler synchronization.
1572 */
1573static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1574{
1575	struct kprobe *ap, *list_p;
1576
1577	/* Disable kprobe. This will disarm it if needed. */
1578	ap = __disable_kprobe(p);
1579	if (ap == NULL)
1580		return -EINVAL;
1581
1582	if (ap == p)
1583		/*
1584		 * This probe is an independent(and non-optimized) kprobe
1585		 * (not an aggrprobe). Remove from the hash list.
1586		 */
1587		goto disarmed;
1588
1589	/* Following process expects this probe is an aggrprobe */
1590	WARN_ON(!kprobe_aggrprobe(ap));
1591
1592	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1593		/*
1594		 * !disarmed could be happen if the probe is under delayed
1595		 * unoptimizing.
1596		 */
1597		goto disarmed;
1598	else {
1599		/* If disabling probe has special handlers, update aggrprobe */
1600		if (p->break_handler && !kprobe_gone(p))
1601			ap->break_handler = NULL;
1602		if (p->post_handler && !kprobe_gone(p)) {
1603			list_for_each_entry_rcu(list_p, &ap->list, list) {
1604				if ((list_p != p) && (list_p->post_handler))
1605					goto noclean;
1606			}
1607			ap->post_handler = NULL;
1608		}
1609noclean:
1610		/*
1611		 * Remove from the aggrprobe: this path will do nothing in
1612		 * __unregister_kprobe_bottom().
1613		 */
1614		list_del_rcu(&p->list);
1615		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1616			/*
1617			 * Try to optimize this probe again, because post
1618			 * handler may have been changed.
1619			 */
1620			optimize_kprobe(ap);
1621	}
1622	return 0;
1623
1624disarmed:
1625	BUG_ON(!kprobe_disarmed(ap));
1626	hlist_del_rcu(&ap->hlist);
1627	return 0;
1628}
1629
1630static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1631{
1632	struct kprobe *ap;
1633
1634	if (list_empty(&p->list))
1635		/* This is an independent kprobe */
1636		arch_remove_kprobe(p);
1637	else if (list_is_singular(&p->list)) {
1638		/* This is the last child of an aggrprobe */
1639		ap = list_entry(p->list.next, struct kprobe, list);
1640		list_del(&p->list);
1641		free_aggr_kprobe(ap);
1642	}
1643	/* Otherwise, do nothing. */
1644}
1645
1646int __kprobes register_kprobes(struct kprobe **kps, int num)
1647{
1648	int i, ret = 0;
1649
1650	if (num <= 0)
1651		return -EINVAL;
1652	for (i = 0; i < num; i++) {
1653		ret = register_kprobe(kps[i]);
1654		if (ret < 0) {
1655			if (i > 0)
1656				unregister_kprobes(kps, i);
1657			break;
1658		}
1659	}
1660	return ret;
1661}
1662EXPORT_SYMBOL_GPL(register_kprobes);
1663
1664void __kprobes unregister_kprobe(struct kprobe *p)
1665{
1666	unregister_kprobes(&p, 1);
1667}
1668EXPORT_SYMBOL_GPL(unregister_kprobe);
1669
1670void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1671{
1672	int i;
1673
1674	if (num <= 0)
1675		return;
1676	mutex_lock(&kprobe_mutex);
1677	for (i = 0; i < num; i++)
1678		if (__unregister_kprobe_top(kps[i]) < 0)
1679			kps[i]->addr = NULL;
1680	mutex_unlock(&kprobe_mutex);
1681
1682	synchronize_sched();
1683	for (i = 0; i < num; i++)
1684		if (kps[i]->addr)
1685			__unregister_kprobe_bottom(kps[i]);
1686}
1687EXPORT_SYMBOL_GPL(unregister_kprobes);
1688
1689static struct notifier_block kprobe_exceptions_nb = {
1690	.notifier_call = kprobe_exceptions_notify,
1691	.priority = 0x7fffffff /* we need to be notified first */
1692};
1693
1694unsigned long __weak arch_deref_entry_point(void *entry)
1695{
1696	return (unsigned long)entry;
1697}
1698
1699int __kprobes register_jprobes(struct jprobe **jps, int num)
1700{
1701	struct jprobe *jp;
1702	int ret = 0, i;
1703
1704	if (num <= 0)
1705		return -EINVAL;
1706	for (i = 0; i < num; i++) {
1707		unsigned long addr, offset;
1708		jp = jps[i];
1709		addr = arch_deref_entry_point(jp->entry);
1710
1711		/* Verify probepoint is a function entry point */
1712		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1713		    offset == 0) {
1714			jp->kp.pre_handler = setjmp_pre_handler;
1715			jp->kp.break_handler = longjmp_break_handler;
1716			ret = register_kprobe(&jp->kp);
1717		} else
1718			ret = -EINVAL;
1719
1720		if (ret < 0) {
1721			if (i > 0)
1722				unregister_jprobes(jps, i);
1723			break;
1724		}
1725	}
1726	return ret;
1727}
1728EXPORT_SYMBOL_GPL(register_jprobes);
1729
1730int __kprobes register_jprobe(struct jprobe *jp)
1731{
1732	return register_jprobes(&jp, 1);
1733}
1734EXPORT_SYMBOL_GPL(register_jprobe);
1735
1736void __kprobes unregister_jprobe(struct jprobe *jp)
1737{
1738	unregister_jprobes(&jp, 1);
1739}
1740EXPORT_SYMBOL_GPL(unregister_jprobe);
1741
1742void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1743{
1744	int i;
1745
1746	if (num <= 0)
1747		return;
1748	mutex_lock(&kprobe_mutex);
1749	for (i = 0; i < num; i++)
1750		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1751			jps[i]->kp.addr = NULL;
1752	mutex_unlock(&kprobe_mutex);
1753
1754	synchronize_sched();
1755	for (i = 0; i < num; i++) {
1756		if (jps[i]->kp.addr)
1757			__unregister_kprobe_bottom(&jps[i]->kp);
1758	}
1759}
1760EXPORT_SYMBOL_GPL(unregister_jprobes);
1761
1762#ifdef CONFIG_KRETPROBES
1763/*
1764 * This kprobe pre_handler is registered with every kretprobe. When probe
1765 * hits it will set up the return probe.
1766 */
1767static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1768					   struct pt_regs *regs)
1769{
1770	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1771	unsigned long hash, flags = 0;
1772	struct kretprobe_instance *ri;
1773
1774	/*TODO: consider to only swap the RA after the last pre_handler fired */
1775	hash = hash_ptr(current, KPROBE_HASH_BITS);
1776	raw_spin_lock_irqsave(&rp->lock, flags);
1777	if (!hlist_empty(&rp->free_instances)) {
1778		ri = hlist_entry(rp->free_instances.first,
1779				struct kretprobe_instance, hlist);
1780		hlist_del(&ri->hlist);
1781		raw_spin_unlock_irqrestore(&rp->lock, flags);
1782
1783		ri->rp = rp;
1784		ri->task = current;
1785
1786		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1787			raw_spin_lock_irqsave(&rp->lock, flags);
1788			hlist_add_head(&ri->hlist, &rp->free_instances);
1789			raw_spin_unlock_irqrestore(&rp->lock, flags);
1790			return 0;
1791		}
1792
1793		arch_prepare_kretprobe(ri, regs);
1794
1795		/* XXX(hch): why is there no hlist_move_head? */
1796		INIT_HLIST_NODE(&ri->hlist);
1797		kretprobe_table_lock(hash, &flags);
1798		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1799		kretprobe_table_unlock(hash, &flags);
1800	} else {
1801		rp->nmissed++;
1802		raw_spin_unlock_irqrestore(&rp->lock, flags);
1803	}
1804	return 0;
1805}
1806
1807int __kprobes register_kretprobe(struct kretprobe *rp)
1808{
1809	int ret = 0;
1810	struct kretprobe_instance *inst;
1811	int i;
1812	void *addr;
1813
1814	if (kretprobe_blacklist_size) {
1815		addr = kprobe_addr(&rp->kp);
1816		if (IS_ERR(addr))
1817			return PTR_ERR(addr);
1818
1819		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1820			if (kretprobe_blacklist[i].addr == addr)
1821				return -EINVAL;
1822		}
1823	}
1824
1825	rp->kp.pre_handler = pre_handler_kretprobe;
1826	rp->kp.post_handler = NULL;
1827	rp->kp.fault_handler = NULL;
1828	rp->kp.break_handler = NULL;
1829
1830	/* Pre-allocate memory for max kretprobe instances */
1831	if (rp->maxactive <= 0) {
1832#ifdef CONFIG_PREEMPT
1833		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1834#else
1835		rp->maxactive = num_possible_cpus();
1836#endif
1837	}
1838	raw_spin_lock_init(&rp->lock);
1839	INIT_HLIST_HEAD(&rp->free_instances);
1840	for (i = 0; i < rp->maxactive; i++) {
1841		inst = kmalloc(sizeof(struct kretprobe_instance) +
1842			       rp->data_size, GFP_KERNEL);
1843		if (inst == NULL) {
1844			free_rp_inst(rp);
1845			return -ENOMEM;
1846		}
1847		INIT_HLIST_NODE(&inst->hlist);
1848		hlist_add_head(&inst->hlist, &rp->free_instances);
1849	}
1850
1851	rp->nmissed = 0;
1852	/* Establish function entry probe point */
1853	ret = register_kprobe(&rp->kp);
1854	if (ret != 0)
1855		free_rp_inst(rp);
1856	return ret;
1857}
1858EXPORT_SYMBOL_GPL(register_kretprobe);
1859
1860int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1861{
1862	int ret = 0, i;
1863
1864	if (num <= 0)
1865		return -EINVAL;
1866	for (i = 0; i < num; i++) {
1867		ret = register_kretprobe(rps[i]);
1868		if (ret < 0) {
1869			if (i > 0)
1870				unregister_kretprobes(rps, i);
1871			break;
1872		}
1873	}
1874	return ret;
1875}
1876EXPORT_SYMBOL_GPL(register_kretprobes);
1877
1878void __kprobes unregister_kretprobe(struct kretprobe *rp)
1879{
1880	unregister_kretprobes(&rp, 1);
1881}
1882EXPORT_SYMBOL_GPL(unregister_kretprobe);
1883
1884void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1885{
1886	int i;
1887
1888	if (num <= 0)
1889		return;
1890	mutex_lock(&kprobe_mutex);
1891	for (i = 0; i < num; i++)
1892		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1893			rps[i]->kp.addr = NULL;
1894	mutex_unlock(&kprobe_mutex);
1895
1896	synchronize_sched();
1897	for (i = 0; i < num; i++) {
1898		if (rps[i]->kp.addr) {
1899			__unregister_kprobe_bottom(&rps[i]->kp);
1900			cleanup_rp_inst(rps[i]);
1901		}
1902	}
1903}
1904EXPORT_SYMBOL_GPL(unregister_kretprobes);
1905
1906#else /* CONFIG_KRETPROBES */
1907int __kprobes register_kretprobe(struct kretprobe *rp)
1908{
1909	return -ENOSYS;
1910}
1911EXPORT_SYMBOL_GPL(register_kretprobe);
1912
1913int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1914{
1915	return -ENOSYS;
1916}
1917EXPORT_SYMBOL_GPL(register_kretprobes);
1918
1919void __kprobes unregister_kretprobe(struct kretprobe *rp)
1920{
1921}
1922EXPORT_SYMBOL_GPL(unregister_kretprobe);
1923
1924void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1925{
1926}
1927EXPORT_SYMBOL_GPL(unregister_kretprobes);
1928
1929static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1930					   struct pt_regs *regs)
1931{
1932	return 0;
1933}
1934
1935#endif /* CONFIG_KRETPROBES */
1936
1937/* Set the kprobe gone and remove its instruction buffer. */
1938static void __kprobes kill_kprobe(struct kprobe *p)
1939{
1940	struct kprobe *kp;
1941
1942	p->flags |= KPROBE_FLAG_GONE;
1943	if (kprobe_aggrprobe(p)) {
1944		/*
1945		 * If this is an aggr_kprobe, we have to list all the
1946		 * chained probes and mark them GONE.
1947		 */
1948		list_for_each_entry_rcu(kp, &p->list, list)
1949			kp->flags |= KPROBE_FLAG_GONE;
1950		p->post_handler = NULL;
1951		p->break_handler = NULL;
1952		kill_optimized_kprobe(p);
1953	}
1954	/*
1955	 * Here, we can remove insn_slot safely, because no thread calls
1956	 * the original probed function (which will be freed soon) any more.
1957	 */
1958	arch_remove_kprobe(p);
1959}
1960
1961/* Disable one kprobe */
1962int __kprobes disable_kprobe(struct kprobe *kp)
1963{
1964	int ret = 0;
1965
1966	mutex_lock(&kprobe_mutex);
1967
1968	/* Disable this kprobe */
1969	if (__disable_kprobe(kp) == NULL)
1970		ret = -EINVAL;
1971
1972	mutex_unlock(&kprobe_mutex);
1973	return ret;
1974}
1975EXPORT_SYMBOL_GPL(disable_kprobe);
1976
1977/* Enable one kprobe */
1978int __kprobes enable_kprobe(struct kprobe *kp)
1979{
1980	int ret = 0;
1981	struct kprobe *p;
1982
1983	mutex_lock(&kprobe_mutex);
1984
1985	/* Check whether specified probe is valid. */
1986	p = __get_valid_kprobe(kp);
1987	if (unlikely(p == NULL)) {
1988		ret = -EINVAL;
1989		goto out;
1990	}
1991
1992	if (kprobe_gone(kp)) {
1993		/* This kprobe has gone, we couldn't enable it. */
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	if (p != kp)
1999		kp->flags &= ~KPROBE_FLAG_DISABLED;
2000
2001	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2002		p->flags &= ~KPROBE_FLAG_DISABLED;
2003		arm_kprobe(p);
2004	}
2005out:
2006	mutex_unlock(&kprobe_mutex);
2007	return ret;
2008}
2009EXPORT_SYMBOL_GPL(enable_kprobe);
2010
2011void __kprobes dump_kprobe(struct kprobe *kp)
2012{
2013	printk(KERN_WARNING "Dumping kprobe:\n");
2014	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2015	       kp->symbol_name, kp->addr, kp->offset);
2016}
2017
2018/* Module notifier call back, checking kprobes on the module */
2019static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2020					     unsigned long val, void *data)
2021{
2022	struct module *mod = data;
2023	struct hlist_head *head;
2024	struct hlist_node *node;
2025	struct kprobe *p;
2026	unsigned int i;
2027	int checkcore = (val == MODULE_STATE_GOING);
2028
2029	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2030		return NOTIFY_DONE;
2031
2032	/*
2033	 * When MODULE_STATE_GOING was notified, both of module .text and
2034	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2035	 * notified, only .init.text section would be freed. We need to
2036	 * disable kprobes which have been inserted in the sections.
2037	 */
2038	mutex_lock(&kprobe_mutex);
2039	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2040		head = &kprobe_table[i];
2041		hlist_for_each_entry_rcu(p, node, head, hlist)
2042			if (within_module_init((unsigned long)p->addr, mod) ||
2043			    (checkcore &&
2044			     within_module_core((unsigned long)p->addr, mod))) {
2045				/*
2046				 * The vaddr this probe is installed will soon
2047				 * be vfreed buy not synced to disk. Hence,
2048				 * disarming the breakpoint isn't needed.
2049				 */
2050				kill_kprobe(p);
2051			}
2052	}
2053	mutex_unlock(&kprobe_mutex);
2054	return NOTIFY_DONE;
2055}
2056
2057static struct notifier_block kprobe_module_nb = {
2058	.notifier_call = kprobes_module_callback,
2059	.priority = 0
2060};
2061
2062static int __init init_kprobes(void)
2063{
2064	int i, err = 0;
2065	unsigned long offset = 0, size = 0;
2066	char *modname, namebuf[128];
2067	const char *symbol_name;
2068	void *addr;
2069	struct kprobe_blackpoint *kb;
2070
2071	/* FIXME allocate the probe table, currently defined statically */
2072	/* initialize all list heads */
2073	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2074		INIT_HLIST_HEAD(&kprobe_table[i]);
2075		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2076		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2077	}
2078
2079	/*
2080	 * Lookup and populate the kprobe_blacklist.
2081	 *
2082	 * Unlike the kretprobe blacklist, we'll need to determine
2083	 * the range of addresses that belong to the said functions,
2084	 * since a kprobe need not necessarily be at the beginning
2085	 * of a function.
2086	 */
2087	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2088		kprobe_lookup_name(kb->name, addr);
2089		if (!addr)
2090			continue;
2091
2092		kb->start_addr = (unsigned long)addr;
2093		symbol_name = kallsyms_lookup(kb->start_addr,
2094				&size, &offset, &modname, namebuf);
2095		if (!symbol_name)
2096			kb->range = 0;
2097		else
2098			kb->range = size;
2099	}
2100
2101	if (kretprobe_blacklist_size) {
2102		/* lookup the function address from its name */
2103		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2104			kprobe_lookup_name(kretprobe_blacklist[i].name,
2105					   kretprobe_blacklist[i].addr);
2106			if (!kretprobe_blacklist[i].addr)
2107				printk("kretprobe: lookup failed: %s\n",
2108				       kretprobe_blacklist[i].name);
2109		}
2110	}
2111
2112#if defined(CONFIG_OPTPROBES)
2113#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2114	/* Init kprobe_optinsn_slots */
2115	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2116#endif
2117	/* By default, kprobes can be optimized */
2118	kprobes_allow_optimization = true;
2119#endif
2120
2121	/* By default, kprobes are armed */
2122	kprobes_all_disarmed = false;
2123
2124	err = arch_init_kprobes();
2125	if (!err)
2126		err = register_die_notifier(&kprobe_exceptions_nb);
2127	if (!err)
2128		err = register_module_notifier(&kprobe_module_nb);
2129
2130	kprobes_initialized = (err == 0);
2131
2132	if (!err)
2133		init_test_probes();
2134	return err;
2135}
2136
2137#ifdef CONFIG_DEBUG_FS
2138static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2139		const char *sym, int offset, char *modname, struct kprobe *pp)
2140{
2141	char *kprobe_type;
2142
2143	if (p->pre_handler == pre_handler_kretprobe)
2144		kprobe_type = "r";
2145	else if (p->pre_handler == setjmp_pre_handler)
2146		kprobe_type = "j";
2147	else
2148		kprobe_type = "k";
2149
2150	if (sym)
2151		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2152			p->addr, kprobe_type, sym, offset,
2153			(modname ? modname : " "));
2154	else
2155		seq_printf(pi, "%p  %s  %p ",
2156			p->addr, kprobe_type, p->addr);
2157
2158	if (!pp)
2159		pp = p;
2160	seq_printf(pi, "%s%s%s%s\n",
2161		(kprobe_gone(p) ? "[GONE]" : ""),
2162		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2163		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2164		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2165}
2166
2167static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2168{
2169	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2170}
2171
2172static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2173{
2174	(*pos)++;
2175	if (*pos >= KPROBE_TABLE_SIZE)
2176		return NULL;
2177	return pos;
2178}
2179
2180static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2181{
2182	/* Nothing to do */
2183}
2184
2185static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2186{
2187	struct hlist_head *head;
2188	struct hlist_node *node;
2189	struct kprobe *p, *kp;
2190	const char *sym = NULL;
2191	unsigned int i = *(loff_t *) v;
2192	unsigned long offset = 0;
2193	char *modname, namebuf[128];
2194
2195	head = &kprobe_table[i];
2196	preempt_disable();
2197	hlist_for_each_entry_rcu(p, node, head, hlist) {
2198		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2199					&offset, &modname, namebuf);
2200		if (kprobe_aggrprobe(p)) {
2201			list_for_each_entry_rcu(kp, &p->list, list)
2202				report_probe(pi, kp, sym, offset, modname, p);
2203		} else
2204			report_probe(pi, p, sym, offset, modname, NULL);
2205	}
2206	preempt_enable();
2207	return 0;
2208}
2209
2210static const struct seq_operations kprobes_seq_ops = {
2211	.start = kprobe_seq_start,
2212	.next  = kprobe_seq_next,
2213	.stop  = kprobe_seq_stop,
2214	.show  = show_kprobe_addr
2215};
2216
2217static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2218{
2219	return seq_open(filp, &kprobes_seq_ops);
2220}
2221
2222static const struct file_operations debugfs_kprobes_operations = {
2223	.open           = kprobes_open,
2224	.read           = seq_read,
2225	.llseek         = seq_lseek,
2226	.release        = seq_release,
2227};
2228
2229static void __kprobes arm_all_kprobes(void)
2230{
2231	struct hlist_head *head;
2232	struct hlist_node *node;
2233	struct kprobe *p;
2234	unsigned int i;
2235
2236	mutex_lock(&kprobe_mutex);
2237
2238	/* If kprobes are armed, just return */
2239	if (!kprobes_all_disarmed)
2240		goto already_enabled;
2241
2242	/* Arming kprobes doesn't optimize kprobe itself */
2243	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2244		head = &kprobe_table[i];
2245		hlist_for_each_entry_rcu(p, node, head, hlist)
2246			if (!kprobe_disabled(p))
2247				arm_kprobe(p);
2248	}
2249
2250	kprobes_all_disarmed = false;
2251	printk(KERN_INFO "Kprobes globally enabled\n");
2252
2253already_enabled:
2254	mutex_unlock(&kprobe_mutex);
2255	return;
2256}
2257
2258static void __kprobes disarm_all_kprobes(void)
2259{
2260	struct hlist_head *head;
2261	struct hlist_node *node;
2262	struct kprobe *p;
2263	unsigned int i;
2264
2265	mutex_lock(&kprobe_mutex);
2266
2267	/* If kprobes are already disarmed, just return */
2268	if (kprobes_all_disarmed) {
2269		mutex_unlock(&kprobe_mutex);
2270		return;
2271	}
2272
2273	kprobes_all_disarmed = true;
2274	printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277		head = &kprobe_table[i];
2278		hlist_for_each_entry_rcu(p, node, head, hlist) {
2279			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280				disarm_kprobe(p, false);
2281		}
2282	}
2283	mutex_unlock(&kprobe_mutex);
2284
2285	/* Wait for disarming all kprobes by optimizer */
2286	wait_for_kprobe_optimizer();
2287}
2288
2289/*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294static ssize_t read_enabled_file_bool(struct file *file,
2295	       char __user *user_buf, size_t count, loff_t *ppos)
2296{
2297	char buf[3];
2298
2299	if (!kprobes_all_disarmed)
2300		buf[0] = '1';
2301	else
2302		buf[0] = '0';
2303	buf[1] = '\n';
2304	buf[2] = 0x00;
2305	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306}
2307
2308static ssize_t write_enabled_file_bool(struct file *file,
2309	       const char __user *user_buf, size_t count, loff_t *ppos)
2310{
2311	char buf[32];
2312	size_t buf_size;
2313
2314	buf_size = min(count, (sizeof(buf)-1));
2315	if (copy_from_user(buf, user_buf, buf_size))
2316		return -EFAULT;
2317
2318	switch (buf[0]) {
2319	case 'y':
2320	case 'Y':
2321	case '1':
2322		arm_all_kprobes();
2323		break;
2324	case 'n':
2325	case 'N':
2326	case '0':
2327		disarm_all_kprobes();
2328		break;
2329	}
2330
2331	return count;
2332}
2333
2334static const struct file_operations fops_kp = {
2335	.read =         read_enabled_file_bool,
2336	.write =        write_enabled_file_bool,
2337	.llseek =	default_llseek,
2338};
2339
2340static int __kprobes debugfs_kprobe_init(void)
2341{
2342	struct dentry *dir, *file;
2343	unsigned int value = 1;
2344
2345	dir = debugfs_create_dir("kprobes", NULL);
2346	if (!dir)
2347		return -ENOMEM;
2348
2349	file = debugfs_create_file("list", 0444, dir, NULL,
2350				&debugfs_kprobes_operations);
2351	if (!file) {
2352		debugfs_remove(dir);
2353		return -ENOMEM;
2354	}
2355
2356	file = debugfs_create_file("enabled", 0600, dir,
2357					&value, &fops_kp);
2358	if (!file) {
2359		debugfs_remove(dir);
2360		return -ENOMEM;
2361	}
2362
2363	return 0;
2364}
2365
2366late_initcall(debugfs_kprobe_init);
2367#endif /* CONFIG_DEBUG_FS */
2368
2369module_init(init_kprobes);
2370
2371/* defined in arch/.../kernel/kprobes.c */
2372EXPORT_SYMBOL_GPL(jprobe_return);
2373