kprobes.c revision e579abeb58eb4b8d7321c6eb44dd9e2d0cbaebaa
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/kdebug.h>
46#include <linux/memory.h>
47
48#include <asm-generic/sections.h>
49#include <asm/cacheflush.h>
50#include <asm/errno.h>
51#include <asm/uaccess.h>
52
53#define KPROBE_HASH_BITS 6
54#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57/*
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
60 */
61#ifndef kprobe_lookup_name
62#define kprobe_lookup_name(name, addr) \
63	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64#endif
65
66static int kprobes_initialized;
67static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70/* NOTE: change this value only with kprobe_mutex held */
71static bool kprobes_all_disarmed;
72
73static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75static struct {
76	spinlock_t lock ____cacheline_aligned_in_smp;
77} kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80{
81	return &(kretprobe_table_locks[hash].lock);
82}
83
84/*
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
88 *
89 * For such cases, we now have a blacklist
90 */
91static struct kprobe_blackpoint kprobe_blacklist[] = {
92	{"preempt_schedule",},
93	{NULL}    /* Terminator */
94};
95
96#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
97/*
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
102 */
103#define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104
105struct kprobe_insn_page {
106	struct hlist_node hlist;
107	kprobe_opcode_t *insns;		/* Page of instruction slots */
108	char slot_used[INSNS_PER_PAGE];
109	int nused;
110	int ngarbage;
111};
112
113enum kprobe_slot_state {
114	SLOT_CLEAN = 0,
115	SLOT_DIRTY = 1,
116	SLOT_USED = 2,
117};
118
119static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
120static struct hlist_head kprobe_insn_pages;
121static int kprobe_garbage_slots;
122static int collect_garbage_slots(void);
123
124static int __kprobes check_safety(void)
125{
126	int ret = 0;
127#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128	ret = freeze_processes();
129	if (ret == 0) {
130		struct task_struct *p, *q;
131		do_each_thread(p, q) {
132			if (p != current && p->state == TASK_RUNNING &&
133			    p->pid != 0) {
134				printk("Check failed: %s is running\n",p->comm);
135				ret = -1;
136				goto loop_end;
137			}
138		} while_each_thread(p, q);
139	}
140loop_end:
141	thaw_processes();
142#else
143	synchronize_sched();
144#endif
145	return ret;
146}
147
148/**
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
151 */
152static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153{
154	struct kprobe_insn_page *kip;
155	struct hlist_node *pos;
156
157 retry:
158	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159		if (kip->nused < INSNS_PER_PAGE) {
160			int i;
161			for (i = 0; i < INSNS_PER_PAGE; i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * MAX_INSN_SIZE);
166				}
167			}
168			/* Surprise!  No unused slots.  Fix kip->nused. */
169			kip->nused = INSNS_PER_PAGE;
170		}
171	}
172
173	/* If there are any garbage slots, collect it and try again. */
174	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175		goto retry;
176	}
177	/* All out of space.  Need to allocate a new page. Use slot 0. */
178	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179	if (!kip)
180		return NULL;
181
182	/*
183	 * Use module_alloc so this page is within +/- 2GB of where the
184	 * kernel image and loaded module images reside. This is required
185	 * so x86_64 can correctly handle the %rip-relative fixups.
186	 */
187	kip->insns = module_alloc(PAGE_SIZE);
188	if (!kip->insns) {
189		kfree(kip);
190		return NULL;
191	}
192	INIT_HLIST_NODE(&kip->hlist);
193	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	return kip->insns;
199}
200
201kprobe_opcode_t __kprobes *get_insn_slot(void)
202{
203	kprobe_opcode_t *ret;
204	mutex_lock(&kprobe_insn_mutex);
205	ret = __get_insn_slot();
206	mutex_unlock(&kprobe_insn_mutex);
207	return ret;
208}
209
210/* Return 1 if all garbages are collected, otherwise 0. */
211static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212{
213	kip->slot_used[idx] = SLOT_CLEAN;
214	kip->nused--;
215	if (kip->nused == 0) {
216		/*
217		 * Page is no longer in use.  Free it unless
218		 * it's the last one.  We keep the last one
219		 * so as not to have to set it up again the
220		 * next time somebody inserts a probe.
221		 */
222		hlist_del(&kip->hlist);
223		if (hlist_empty(&kprobe_insn_pages)) {
224			INIT_HLIST_NODE(&kip->hlist);
225			hlist_add_head(&kip->hlist,
226				       &kprobe_insn_pages);
227		} else {
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(void)
237{
238	struct kprobe_insn_page *kip;
239	struct hlist_node *pos, *next;
240	int safety;
241
242	/* Ensure no-one is preepmted on the garbages */
243	mutex_unlock(&kprobe_insn_mutex);
244	safety = check_safety();
245	mutex_lock(&kprobe_insn_mutex);
246	if (safety != 0)
247		return -EAGAIN;
248
249	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250		int i;
251		if (kip->ngarbage == 0)
252			continue;
253		kip->ngarbage = 0;	/* we will collect all garbages */
254		for (i = 0; i < INSNS_PER_PAGE; i++) {
255			if (kip->slot_used[i] == SLOT_DIRTY &&
256			    collect_one_slot(kip, i))
257				break;
258		}
259	}
260	kprobe_garbage_slots = 0;
261	return 0;
262}
263
264void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
265{
266	struct kprobe_insn_page *kip;
267	struct hlist_node *pos;
268
269	mutex_lock(&kprobe_insn_mutex);
270	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271		if (kip->insns <= slot &&
272		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273			int i = (slot - kip->insns) / MAX_INSN_SIZE;
274			if (dirty) {
275				kip->slot_used[i] = SLOT_DIRTY;
276				kip->ngarbage++;
277			} else {
278				collect_one_slot(kip, i);
279			}
280			break;
281		}
282	}
283
284	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285		collect_garbage_slots();
286
287	mutex_unlock(&kprobe_insn_mutex);
288}
289#endif
290
291/* We have preemption disabled.. so it is safe to use __ versions */
292static inline void set_kprobe_instance(struct kprobe *kp)
293{
294	__get_cpu_var(kprobe_instance) = kp;
295}
296
297static inline void reset_kprobe_instance(void)
298{
299	__get_cpu_var(kprobe_instance) = NULL;
300}
301
302/*
303 * This routine is called either:
304 * 	- under the kprobe_mutex - during kprobe_[un]register()
305 * 				OR
306 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
307 */
308struct kprobe __kprobes *get_kprobe(void *addr)
309{
310	struct hlist_head *head;
311	struct hlist_node *node;
312	struct kprobe *p;
313
314	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315	hlist_for_each_entry_rcu(p, node, head, hlist) {
316		if (p->addr == addr)
317			return p;
318	}
319	return NULL;
320}
321
322/*
323 * Aggregate handlers for multiple kprobes support - these handlers
324 * take care of invoking the individual kprobe handlers on p->list
325 */
326static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
327{
328	struct kprobe *kp;
329
330	list_for_each_entry_rcu(kp, &p->list, list) {
331		if (kp->pre_handler && !kprobe_gone(kp)) {
332			set_kprobe_instance(kp);
333			if (kp->pre_handler(kp, regs))
334				return 1;
335		}
336		reset_kprobe_instance();
337	}
338	return 0;
339}
340
341static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
342					unsigned long flags)
343{
344	struct kprobe *kp;
345
346	list_for_each_entry_rcu(kp, &p->list, list) {
347		if (kp->post_handler && !kprobe_gone(kp)) {
348			set_kprobe_instance(kp);
349			kp->post_handler(kp, regs, flags);
350			reset_kprobe_instance();
351		}
352	}
353}
354
355static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
356					int trapnr)
357{
358	struct kprobe *cur = __get_cpu_var(kprobe_instance);
359
360	/*
361	 * if we faulted "during" the execution of a user specified
362	 * probe handler, invoke just that probe's fault handler
363	 */
364	if (cur && cur->fault_handler) {
365		if (cur->fault_handler(cur, regs, trapnr))
366			return 1;
367	}
368	return 0;
369}
370
371static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
372{
373	struct kprobe *cur = __get_cpu_var(kprobe_instance);
374	int ret = 0;
375
376	if (cur && cur->break_handler) {
377		if (cur->break_handler(cur, regs))
378			ret = 1;
379	}
380	reset_kprobe_instance();
381	return ret;
382}
383
384/* Walks the list and increments nmissed count for multiprobe case */
385void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
386{
387	struct kprobe *kp;
388	if (p->pre_handler != aggr_pre_handler) {
389		p->nmissed++;
390	} else {
391		list_for_each_entry_rcu(kp, &p->list, list)
392			kp->nmissed++;
393	}
394	return;
395}
396
397void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
398				struct hlist_head *head)
399{
400	struct kretprobe *rp = ri->rp;
401
402	/* remove rp inst off the rprobe_inst_table */
403	hlist_del(&ri->hlist);
404	INIT_HLIST_NODE(&ri->hlist);
405	if (likely(rp)) {
406		spin_lock(&rp->lock);
407		hlist_add_head(&ri->hlist, &rp->free_instances);
408		spin_unlock(&rp->lock);
409	} else
410		/* Unregistering */
411		hlist_add_head(&ri->hlist, head);
412}
413
414void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
415			 struct hlist_head **head, unsigned long *flags)
416{
417	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
418	spinlock_t *hlist_lock;
419
420	*head = &kretprobe_inst_table[hash];
421	hlist_lock = kretprobe_table_lock_ptr(hash);
422	spin_lock_irqsave(hlist_lock, *flags);
423}
424
425static void __kprobes kretprobe_table_lock(unsigned long hash,
426	unsigned long *flags)
427{
428	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
429	spin_lock_irqsave(hlist_lock, *flags);
430}
431
432void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
433	unsigned long *flags)
434{
435	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
436	spinlock_t *hlist_lock;
437
438	hlist_lock = kretprobe_table_lock_ptr(hash);
439	spin_unlock_irqrestore(hlist_lock, *flags);
440}
441
442void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
443{
444	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445	spin_unlock_irqrestore(hlist_lock, *flags);
446}
447
448/*
449 * This function is called from finish_task_switch when task tk becomes dead,
450 * so that we can recycle any function-return probe instances associated
451 * with this task. These left over instances represent probed functions
452 * that have been called but will never return.
453 */
454void __kprobes kprobe_flush_task(struct task_struct *tk)
455{
456	struct kretprobe_instance *ri;
457	struct hlist_head *head, empty_rp;
458	struct hlist_node *node, *tmp;
459	unsigned long hash, flags = 0;
460
461	if (unlikely(!kprobes_initialized))
462		/* Early boot.  kretprobe_table_locks not yet initialized. */
463		return;
464
465	hash = hash_ptr(tk, KPROBE_HASH_BITS);
466	head = &kretprobe_inst_table[hash];
467	kretprobe_table_lock(hash, &flags);
468	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
469		if (ri->task == tk)
470			recycle_rp_inst(ri, &empty_rp);
471	}
472	kretprobe_table_unlock(hash, &flags);
473	INIT_HLIST_HEAD(&empty_rp);
474	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
475		hlist_del(&ri->hlist);
476		kfree(ri);
477	}
478}
479
480static inline void free_rp_inst(struct kretprobe *rp)
481{
482	struct kretprobe_instance *ri;
483	struct hlist_node *pos, *next;
484
485	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
486		hlist_del(&ri->hlist);
487		kfree(ri);
488	}
489}
490
491static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
492{
493	unsigned long flags, hash;
494	struct kretprobe_instance *ri;
495	struct hlist_node *pos, *next;
496	struct hlist_head *head;
497
498	/* No race here */
499	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
500		kretprobe_table_lock(hash, &flags);
501		head = &kretprobe_inst_table[hash];
502		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
503			if (ri->rp == rp)
504				ri->rp = NULL;
505		}
506		kretprobe_table_unlock(hash, &flags);
507	}
508	free_rp_inst(rp);
509}
510
511/*
512 * Keep all fields in the kprobe consistent
513 */
514static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
515{
516	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
517	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
518}
519
520/*
521* Add the new probe to ap->list. Fail if this is the
522* second jprobe at the address - two jprobes can't coexist
523*/
524static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
525{
526	if (p->break_handler) {
527		if (ap->break_handler)
528			return -EEXIST;
529		list_add_tail_rcu(&p->list, &ap->list);
530		ap->break_handler = aggr_break_handler;
531	} else
532		list_add_rcu(&p->list, &ap->list);
533	if (p->post_handler && !ap->post_handler)
534		ap->post_handler = aggr_post_handler;
535	return 0;
536}
537
538/*
539 * Fill in the required fields of the "manager kprobe". Replace the
540 * earlier kprobe in the hlist with the manager kprobe
541 */
542static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
543{
544	copy_kprobe(p, ap);
545	flush_insn_slot(ap);
546	ap->addr = p->addr;
547	ap->flags = p->flags;
548	ap->pre_handler = aggr_pre_handler;
549	ap->fault_handler = aggr_fault_handler;
550	/* We don't care the kprobe which has gone. */
551	if (p->post_handler && !kprobe_gone(p))
552		ap->post_handler = aggr_post_handler;
553	if (p->break_handler && !kprobe_gone(p))
554		ap->break_handler = aggr_break_handler;
555
556	INIT_LIST_HEAD(&ap->list);
557	list_add_rcu(&p->list, &ap->list);
558
559	hlist_replace_rcu(&p->hlist, &ap->hlist);
560}
561
562/*
563 * This is the second or subsequent kprobe at the address - handle
564 * the intricacies
565 */
566static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
567					  struct kprobe *p)
568{
569	int ret = 0;
570	struct kprobe *ap = old_p;
571
572	if (old_p->pre_handler != aggr_pre_handler) {
573		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
574		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
575		if (!ap)
576			return -ENOMEM;
577		add_aggr_kprobe(ap, old_p);
578	}
579
580	if (kprobe_gone(ap)) {
581		/*
582		 * Attempting to insert new probe at the same location that
583		 * had a probe in the module vaddr area which already
584		 * freed. So, the instruction slot has already been
585		 * released. We need a new slot for the new probe.
586		 */
587		ret = arch_prepare_kprobe(ap);
588		if (ret)
589			/*
590			 * Even if fail to allocate new slot, don't need to
591			 * free aggr_probe. It will be used next time, or
592			 * freed by unregister_kprobe.
593			 */
594			return ret;
595		/* Clear gone flag to prevent allocating new slot again. */
596		ap->flags &= ~KPROBE_FLAG_GONE;
597		/*
598		 * If the old_p has gone, its breakpoint has been disarmed.
599		 * We have to arm it again after preparing real kprobes.
600		 */
601		if (!kprobes_all_disarmed)
602			arch_arm_kprobe(ap);
603	}
604
605	copy_kprobe(ap, p);
606	return add_new_kprobe(ap, p);
607}
608
609static int __kprobes in_kprobes_functions(unsigned long addr)
610{
611	struct kprobe_blackpoint *kb;
612
613	if (addr >= (unsigned long)__kprobes_text_start &&
614	    addr < (unsigned long)__kprobes_text_end)
615		return -EINVAL;
616	/*
617	 * If there exists a kprobe_blacklist, verify and
618	 * fail any probe registration in the prohibited area
619	 */
620	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
621		if (kb->start_addr) {
622			if (addr >= kb->start_addr &&
623			    addr < (kb->start_addr + kb->range))
624				return -EINVAL;
625		}
626	}
627	return 0;
628}
629
630/*
631 * If we have a symbol_name argument, look it up and add the offset field
632 * to it. This way, we can specify a relative address to a symbol.
633 */
634static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
635{
636	kprobe_opcode_t *addr = p->addr;
637	if (p->symbol_name) {
638		if (addr)
639			return NULL;
640		kprobe_lookup_name(p->symbol_name, addr);
641	}
642
643	if (!addr)
644		return NULL;
645	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
646}
647
648int __kprobes register_kprobe(struct kprobe *p)
649{
650	int ret = 0;
651	struct kprobe *old_p;
652	struct module *probed_mod;
653	kprobe_opcode_t *addr;
654
655	addr = kprobe_addr(p);
656	if (!addr)
657		return -EINVAL;
658	p->addr = addr;
659
660	preempt_disable();
661	if (!__kernel_text_address((unsigned long) p->addr) ||
662	    in_kprobes_functions((unsigned long) p->addr)) {
663		preempt_enable();
664		return -EINVAL;
665	}
666
667	p->flags = 0;
668	/*
669	 * Check if are we probing a module.
670	 */
671	probed_mod = __module_text_address((unsigned long) p->addr);
672	if (probed_mod) {
673		/*
674		 * We must hold a refcount of the probed module while updating
675		 * its code to prohibit unexpected unloading.
676		 */
677		if (unlikely(!try_module_get(probed_mod))) {
678			preempt_enable();
679			return -EINVAL;
680		}
681		/*
682		 * If the module freed .init.text, we couldn't insert
683		 * kprobes in there.
684		 */
685		if (within_module_init((unsigned long)p->addr, probed_mod) &&
686		    probed_mod->state != MODULE_STATE_COMING) {
687			module_put(probed_mod);
688			preempt_enable();
689			return -EINVAL;
690		}
691	}
692	preempt_enable();
693
694	p->nmissed = 0;
695	INIT_LIST_HEAD(&p->list);
696	mutex_lock(&kprobe_mutex);
697	old_p = get_kprobe(p->addr);
698	if (old_p) {
699		ret = register_aggr_kprobe(old_p, p);
700		goto out;
701	}
702
703	mutex_lock(&text_mutex);
704	ret = arch_prepare_kprobe(p);
705	if (ret)
706		goto out_unlock_text;
707
708	INIT_HLIST_NODE(&p->hlist);
709	hlist_add_head_rcu(&p->hlist,
710		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
711
712	if (!kprobes_all_disarmed)
713		arch_arm_kprobe(p);
714
715out_unlock_text:
716	mutex_unlock(&text_mutex);
717out:
718	mutex_unlock(&kprobe_mutex);
719
720	if (probed_mod)
721		module_put(probed_mod);
722
723	return ret;
724}
725EXPORT_SYMBOL_GPL(register_kprobe);
726
727/*
728 * Unregister a kprobe without a scheduler synchronization.
729 */
730static int __kprobes __unregister_kprobe_top(struct kprobe *p)
731{
732	struct kprobe *old_p, *list_p;
733
734	old_p = get_kprobe(p->addr);
735	if (unlikely(!old_p))
736		return -EINVAL;
737
738	if (p != old_p) {
739		list_for_each_entry_rcu(list_p, &old_p->list, list)
740			if (list_p == p)
741			/* kprobe p is a valid probe */
742				goto valid_p;
743		return -EINVAL;
744	}
745valid_p:
746	if (old_p == p ||
747	    (old_p->pre_handler == aggr_pre_handler &&
748	     list_is_singular(&old_p->list))) {
749		/*
750		 * Only probe on the hash list. Disarm only if kprobes are
751		 * enabled and not gone - otherwise, the breakpoint would
752		 * already have been removed. We save on flushing icache.
753		 */
754		if (!kprobes_all_disarmed && !kprobe_gone(old_p)) {
755			mutex_lock(&text_mutex);
756			arch_disarm_kprobe(p);
757			mutex_unlock(&text_mutex);
758		}
759		hlist_del_rcu(&old_p->hlist);
760	} else {
761		if (p->break_handler && !kprobe_gone(p))
762			old_p->break_handler = NULL;
763		if (p->post_handler && !kprobe_gone(p)) {
764			list_for_each_entry_rcu(list_p, &old_p->list, list) {
765				if ((list_p != p) && (list_p->post_handler))
766					goto noclean;
767			}
768			old_p->post_handler = NULL;
769		}
770noclean:
771		list_del_rcu(&p->list);
772	}
773	return 0;
774}
775
776static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
777{
778	struct kprobe *old_p;
779
780	if (list_empty(&p->list))
781		arch_remove_kprobe(p);
782	else if (list_is_singular(&p->list)) {
783		/* "p" is the last child of an aggr_kprobe */
784		old_p = list_entry(p->list.next, struct kprobe, list);
785		list_del(&p->list);
786		arch_remove_kprobe(old_p);
787		kfree(old_p);
788	}
789}
790
791int __kprobes register_kprobes(struct kprobe **kps, int num)
792{
793	int i, ret = 0;
794
795	if (num <= 0)
796		return -EINVAL;
797	for (i = 0; i < num; i++) {
798		ret = register_kprobe(kps[i]);
799		if (ret < 0) {
800			if (i > 0)
801				unregister_kprobes(kps, i);
802			break;
803		}
804	}
805	return ret;
806}
807EXPORT_SYMBOL_GPL(register_kprobes);
808
809void __kprobes unregister_kprobe(struct kprobe *p)
810{
811	unregister_kprobes(&p, 1);
812}
813EXPORT_SYMBOL_GPL(unregister_kprobe);
814
815void __kprobes unregister_kprobes(struct kprobe **kps, int num)
816{
817	int i;
818
819	if (num <= 0)
820		return;
821	mutex_lock(&kprobe_mutex);
822	for (i = 0; i < num; i++)
823		if (__unregister_kprobe_top(kps[i]) < 0)
824			kps[i]->addr = NULL;
825	mutex_unlock(&kprobe_mutex);
826
827	synchronize_sched();
828	for (i = 0; i < num; i++)
829		if (kps[i]->addr)
830			__unregister_kprobe_bottom(kps[i]);
831}
832EXPORT_SYMBOL_GPL(unregister_kprobes);
833
834static struct notifier_block kprobe_exceptions_nb = {
835	.notifier_call = kprobe_exceptions_notify,
836	.priority = 0x7fffffff /* we need to be notified first */
837};
838
839unsigned long __weak arch_deref_entry_point(void *entry)
840{
841	return (unsigned long)entry;
842}
843
844int __kprobes register_jprobes(struct jprobe **jps, int num)
845{
846	struct jprobe *jp;
847	int ret = 0, i;
848
849	if (num <= 0)
850		return -EINVAL;
851	for (i = 0; i < num; i++) {
852		unsigned long addr;
853		jp = jps[i];
854		addr = arch_deref_entry_point(jp->entry);
855
856		if (!kernel_text_address(addr))
857			ret = -EINVAL;
858		else {
859			/* Todo: Verify probepoint is a function entry point */
860			jp->kp.pre_handler = setjmp_pre_handler;
861			jp->kp.break_handler = longjmp_break_handler;
862			ret = register_kprobe(&jp->kp);
863		}
864		if (ret < 0) {
865			if (i > 0)
866				unregister_jprobes(jps, i);
867			break;
868		}
869	}
870	return ret;
871}
872EXPORT_SYMBOL_GPL(register_jprobes);
873
874int __kprobes register_jprobe(struct jprobe *jp)
875{
876	return register_jprobes(&jp, 1);
877}
878EXPORT_SYMBOL_GPL(register_jprobe);
879
880void __kprobes unregister_jprobe(struct jprobe *jp)
881{
882	unregister_jprobes(&jp, 1);
883}
884EXPORT_SYMBOL_GPL(unregister_jprobe);
885
886void __kprobes unregister_jprobes(struct jprobe **jps, int num)
887{
888	int i;
889
890	if (num <= 0)
891		return;
892	mutex_lock(&kprobe_mutex);
893	for (i = 0; i < num; i++)
894		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
895			jps[i]->kp.addr = NULL;
896	mutex_unlock(&kprobe_mutex);
897
898	synchronize_sched();
899	for (i = 0; i < num; i++) {
900		if (jps[i]->kp.addr)
901			__unregister_kprobe_bottom(&jps[i]->kp);
902	}
903}
904EXPORT_SYMBOL_GPL(unregister_jprobes);
905
906#ifdef CONFIG_KRETPROBES
907/*
908 * This kprobe pre_handler is registered with every kretprobe. When probe
909 * hits it will set up the return probe.
910 */
911static int __kprobes pre_handler_kretprobe(struct kprobe *p,
912					   struct pt_regs *regs)
913{
914	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
915	unsigned long hash, flags = 0;
916	struct kretprobe_instance *ri;
917
918	/*TODO: consider to only swap the RA after the last pre_handler fired */
919	hash = hash_ptr(current, KPROBE_HASH_BITS);
920	spin_lock_irqsave(&rp->lock, flags);
921	if (!hlist_empty(&rp->free_instances)) {
922		ri = hlist_entry(rp->free_instances.first,
923				struct kretprobe_instance, hlist);
924		hlist_del(&ri->hlist);
925		spin_unlock_irqrestore(&rp->lock, flags);
926
927		ri->rp = rp;
928		ri->task = current;
929
930		if (rp->entry_handler && rp->entry_handler(ri, regs))
931			return 0;
932
933		arch_prepare_kretprobe(ri, regs);
934
935		/* XXX(hch): why is there no hlist_move_head? */
936		INIT_HLIST_NODE(&ri->hlist);
937		kretprobe_table_lock(hash, &flags);
938		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
939		kretprobe_table_unlock(hash, &flags);
940	} else {
941		rp->nmissed++;
942		spin_unlock_irqrestore(&rp->lock, flags);
943	}
944	return 0;
945}
946
947int __kprobes register_kretprobe(struct kretprobe *rp)
948{
949	int ret = 0;
950	struct kretprobe_instance *inst;
951	int i;
952	void *addr;
953
954	if (kretprobe_blacklist_size) {
955		addr = kprobe_addr(&rp->kp);
956		if (!addr)
957			return -EINVAL;
958
959		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
960			if (kretprobe_blacklist[i].addr == addr)
961				return -EINVAL;
962		}
963	}
964
965	rp->kp.pre_handler = pre_handler_kretprobe;
966	rp->kp.post_handler = NULL;
967	rp->kp.fault_handler = NULL;
968	rp->kp.break_handler = NULL;
969
970	/* Pre-allocate memory for max kretprobe instances */
971	if (rp->maxactive <= 0) {
972#ifdef CONFIG_PREEMPT
973		rp->maxactive = max(10, 2 * NR_CPUS);
974#else
975		rp->maxactive = NR_CPUS;
976#endif
977	}
978	spin_lock_init(&rp->lock);
979	INIT_HLIST_HEAD(&rp->free_instances);
980	for (i = 0; i < rp->maxactive; i++) {
981		inst = kmalloc(sizeof(struct kretprobe_instance) +
982			       rp->data_size, GFP_KERNEL);
983		if (inst == NULL) {
984			free_rp_inst(rp);
985			return -ENOMEM;
986		}
987		INIT_HLIST_NODE(&inst->hlist);
988		hlist_add_head(&inst->hlist, &rp->free_instances);
989	}
990
991	rp->nmissed = 0;
992	/* Establish function entry probe point */
993	ret = register_kprobe(&rp->kp);
994	if (ret != 0)
995		free_rp_inst(rp);
996	return ret;
997}
998EXPORT_SYMBOL_GPL(register_kretprobe);
999
1000int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1001{
1002	int ret = 0, i;
1003
1004	if (num <= 0)
1005		return -EINVAL;
1006	for (i = 0; i < num; i++) {
1007		ret = register_kretprobe(rps[i]);
1008		if (ret < 0) {
1009			if (i > 0)
1010				unregister_kretprobes(rps, i);
1011			break;
1012		}
1013	}
1014	return ret;
1015}
1016EXPORT_SYMBOL_GPL(register_kretprobes);
1017
1018void __kprobes unregister_kretprobe(struct kretprobe *rp)
1019{
1020	unregister_kretprobes(&rp, 1);
1021}
1022EXPORT_SYMBOL_GPL(unregister_kretprobe);
1023
1024void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1025{
1026	int i;
1027
1028	if (num <= 0)
1029		return;
1030	mutex_lock(&kprobe_mutex);
1031	for (i = 0; i < num; i++)
1032		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1033			rps[i]->kp.addr = NULL;
1034	mutex_unlock(&kprobe_mutex);
1035
1036	synchronize_sched();
1037	for (i = 0; i < num; i++) {
1038		if (rps[i]->kp.addr) {
1039			__unregister_kprobe_bottom(&rps[i]->kp);
1040			cleanup_rp_inst(rps[i]);
1041		}
1042	}
1043}
1044EXPORT_SYMBOL_GPL(unregister_kretprobes);
1045
1046#else /* CONFIG_KRETPROBES */
1047int __kprobes register_kretprobe(struct kretprobe *rp)
1048{
1049	return -ENOSYS;
1050}
1051EXPORT_SYMBOL_GPL(register_kretprobe);
1052
1053int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1054{
1055	return -ENOSYS;
1056}
1057EXPORT_SYMBOL_GPL(register_kretprobes);
1058
1059void __kprobes unregister_kretprobe(struct kretprobe *rp)
1060{
1061}
1062EXPORT_SYMBOL_GPL(unregister_kretprobe);
1063
1064void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1065{
1066}
1067EXPORT_SYMBOL_GPL(unregister_kretprobes);
1068
1069static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1070					   struct pt_regs *regs)
1071{
1072	return 0;
1073}
1074
1075#endif /* CONFIG_KRETPROBES */
1076
1077/* Set the kprobe gone and remove its instruction buffer. */
1078static void __kprobes kill_kprobe(struct kprobe *p)
1079{
1080	struct kprobe *kp;
1081	p->flags |= KPROBE_FLAG_GONE;
1082	if (p->pre_handler == aggr_pre_handler) {
1083		/*
1084		 * If this is an aggr_kprobe, we have to list all the
1085		 * chained probes and mark them GONE.
1086		 */
1087		list_for_each_entry_rcu(kp, &p->list, list)
1088			kp->flags |= KPROBE_FLAG_GONE;
1089		p->post_handler = NULL;
1090		p->break_handler = NULL;
1091	}
1092	/*
1093	 * Here, we can remove insn_slot safely, because no thread calls
1094	 * the original probed function (which will be freed soon) any more.
1095	 */
1096	arch_remove_kprobe(p);
1097}
1098
1099/* Module notifier call back, checking kprobes on the module */
1100static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1101					     unsigned long val, void *data)
1102{
1103	struct module *mod = data;
1104	struct hlist_head *head;
1105	struct hlist_node *node;
1106	struct kprobe *p;
1107	unsigned int i;
1108	int checkcore = (val == MODULE_STATE_GOING);
1109
1110	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1111		return NOTIFY_DONE;
1112
1113	/*
1114	 * When MODULE_STATE_GOING was notified, both of module .text and
1115	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1116	 * notified, only .init.text section would be freed. We need to
1117	 * disable kprobes which have been inserted in the sections.
1118	 */
1119	mutex_lock(&kprobe_mutex);
1120	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1121		head = &kprobe_table[i];
1122		hlist_for_each_entry_rcu(p, node, head, hlist)
1123			if (within_module_init((unsigned long)p->addr, mod) ||
1124			    (checkcore &&
1125			     within_module_core((unsigned long)p->addr, mod))) {
1126				/*
1127				 * The vaddr this probe is installed will soon
1128				 * be vfreed buy not synced to disk. Hence,
1129				 * disarming the breakpoint isn't needed.
1130				 */
1131				kill_kprobe(p);
1132			}
1133	}
1134	mutex_unlock(&kprobe_mutex);
1135	return NOTIFY_DONE;
1136}
1137
1138static struct notifier_block kprobe_module_nb = {
1139	.notifier_call = kprobes_module_callback,
1140	.priority = 0
1141};
1142
1143static int __init init_kprobes(void)
1144{
1145	int i, err = 0;
1146	unsigned long offset = 0, size = 0;
1147	char *modname, namebuf[128];
1148	const char *symbol_name;
1149	void *addr;
1150	struct kprobe_blackpoint *kb;
1151
1152	/* FIXME allocate the probe table, currently defined statically */
1153	/* initialize all list heads */
1154	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1155		INIT_HLIST_HEAD(&kprobe_table[i]);
1156		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1157		spin_lock_init(&(kretprobe_table_locks[i].lock));
1158	}
1159
1160	/*
1161	 * Lookup and populate the kprobe_blacklist.
1162	 *
1163	 * Unlike the kretprobe blacklist, we'll need to determine
1164	 * the range of addresses that belong to the said functions,
1165	 * since a kprobe need not necessarily be at the beginning
1166	 * of a function.
1167	 */
1168	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1169		kprobe_lookup_name(kb->name, addr);
1170		if (!addr)
1171			continue;
1172
1173		kb->start_addr = (unsigned long)addr;
1174		symbol_name = kallsyms_lookup(kb->start_addr,
1175				&size, &offset, &modname, namebuf);
1176		if (!symbol_name)
1177			kb->range = 0;
1178		else
1179			kb->range = size;
1180	}
1181
1182	if (kretprobe_blacklist_size) {
1183		/* lookup the function address from its name */
1184		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1185			kprobe_lookup_name(kretprobe_blacklist[i].name,
1186					   kretprobe_blacklist[i].addr);
1187			if (!kretprobe_blacklist[i].addr)
1188				printk("kretprobe: lookup failed: %s\n",
1189				       kretprobe_blacklist[i].name);
1190		}
1191	}
1192
1193	/* By default, kprobes are armed */
1194	kprobes_all_disarmed = false;
1195
1196	err = arch_init_kprobes();
1197	if (!err)
1198		err = register_die_notifier(&kprobe_exceptions_nb);
1199	if (!err)
1200		err = register_module_notifier(&kprobe_module_nb);
1201
1202	kprobes_initialized = (err == 0);
1203
1204	if (!err)
1205		init_test_probes();
1206	return err;
1207}
1208
1209#ifdef CONFIG_DEBUG_FS
1210static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1211		const char *sym, int offset,char *modname)
1212{
1213	char *kprobe_type;
1214
1215	if (p->pre_handler == pre_handler_kretprobe)
1216		kprobe_type = "r";
1217	else if (p->pre_handler == setjmp_pre_handler)
1218		kprobe_type = "j";
1219	else
1220		kprobe_type = "k";
1221	if (sym)
1222		seq_printf(pi, "%p  %s  %s+0x%x  %s %s\n", p->addr, kprobe_type,
1223			sym, offset, (modname ? modname : " "),
1224			(kprobe_gone(p) ? "[GONE]" : ""));
1225	else
1226		seq_printf(pi, "%p  %s  %p %s\n", p->addr, kprobe_type, p->addr,
1227			(kprobe_gone(p) ? "[GONE]" : ""));
1228}
1229
1230static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1231{
1232	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1233}
1234
1235static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1236{
1237	(*pos)++;
1238	if (*pos >= KPROBE_TABLE_SIZE)
1239		return NULL;
1240	return pos;
1241}
1242
1243static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1244{
1245	/* Nothing to do */
1246}
1247
1248static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1249{
1250	struct hlist_head *head;
1251	struct hlist_node *node;
1252	struct kprobe *p, *kp;
1253	const char *sym = NULL;
1254	unsigned int i = *(loff_t *) v;
1255	unsigned long offset = 0;
1256	char *modname, namebuf[128];
1257
1258	head = &kprobe_table[i];
1259	preempt_disable();
1260	hlist_for_each_entry_rcu(p, node, head, hlist) {
1261		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1262					&offset, &modname, namebuf);
1263		if (p->pre_handler == aggr_pre_handler) {
1264			list_for_each_entry_rcu(kp, &p->list, list)
1265				report_probe(pi, kp, sym, offset, modname);
1266		} else
1267			report_probe(pi, p, sym, offset, modname);
1268	}
1269	preempt_enable();
1270	return 0;
1271}
1272
1273static struct seq_operations kprobes_seq_ops = {
1274	.start = kprobe_seq_start,
1275	.next  = kprobe_seq_next,
1276	.stop  = kprobe_seq_stop,
1277	.show  = show_kprobe_addr
1278};
1279
1280static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1281{
1282	return seq_open(filp, &kprobes_seq_ops);
1283}
1284
1285static struct file_operations debugfs_kprobes_operations = {
1286	.open           = kprobes_open,
1287	.read           = seq_read,
1288	.llseek         = seq_lseek,
1289	.release        = seq_release,
1290};
1291
1292static void __kprobes arm_all_kprobes(void)
1293{
1294	struct hlist_head *head;
1295	struct hlist_node *node;
1296	struct kprobe *p;
1297	unsigned int i;
1298
1299	mutex_lock(&kprobe_mutex);
1300
1301	/* If kprobes are armed, just return */
1302	if (!kprobes_all_disarmed)
1303		goto already_enabled;
1304
1305	mutex_lock(&text_mutex);
1306	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1307		head = &kprobe_table[i];
1308		hlist_for_each_entry_rcu(p, node, head, hlist)
1309			if (!kprobe_gone(p))
1310				arch_arm_kprobe(p);
1311	}
1312	mutex_unlock(&text_mutex);
1313
1314	kprobes_all_disarmed = false;
1315	printk(KERN_INFO "Kprobes globally enabled\n");
1316
1317already_enabled:
1318	mutex_unlock(&kprobe_mutex);
1319	return;
1320}
1321
1322static void __kprobes disarm_all_kprobes(void)
1323{
1324	struct hlist_head *head;
1325	struct hlist_node *node;
1326	struct kprobe *p;
1327	unsigned int i;
1328
1329	mutex_lock(&kprobe_mutex);
1330
1331	/* If kprobes are already disarmed, just return */
1332	if (kprobes_all_disarmed)
1333		goto already_disabled;
1334
1335	kprobes_all_disarmed = true;
1336	printk(KERN_INFO "Kprobes globally disabled\n");
1337	mutex_lock(&text_mutex);
1338	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1339		head = &kprobe_table[i];
1340		hlist_for_each_entry_rcu(p, node, head, hlist) {
1341			if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1342				arch_disarm_kprobe(p);
1343		}
1344	}
1345
1346	mutex_unlock(&text_mutex);
1347	mutex_unlock(&kprobe_mutex);
1348	/* Allow all currently running kprobes to complete */
1349	synchronize_sched();
1350	return;
1351
1352already_disabled:
1353	mutex_unlock(&kprobe_mutex);
1354	return;
1355}
1356
1357/*
1358 * XXX: The debugfs bool file interface doesn't allow for callbacks
1359 * when the bool state is switched. We can reuse that facility when
1360 * available
1361 */
1362static ssize_t read_enabled_file_bool(struct file *file,
1363	       char __user *user_buf, size_t count, loff_t *ppos)
1364{
1365	char buf[3];
1366
1367	if (!kprobes_all_disarmed)
1368		buf[0] = '1';
1369	else
1370		buf[0] = '0';
1371	buf[1] = '\n';
1372	buf[2] = 0x00;
1373	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1374}
1375
1376static ssize_t write_enabled_file_bool(struct file *file,
1377	       const char __user *user_buf, size_t count, loff_t *ppos)
1378{
1379	char buf[32];
1380	int buf_size;
1381
1382	buf_size = min(count, (sizeof(buf)-1));
1383	if (copy_from_user(buf, user_buf, buf_size))
1384		return -EFAULT;
1385
1386	switch (buf[0]) {
1387	case 'y':
1388	case 'Y':
1389	case '1':
1390		arm_all_kprobes();
1391		break;
1392	case 'n':
1393	case 'N':
1394	case '0':
1395		disarm_all_kprobes();
1396		break;
1397	}
1398
1399	return count;
1400}
1401
1402static struct file_operations fops_kp = {
1403	.read =         read_enabled_file_bool,
1404	.write =        write_enabled_file_bool,
1405};
1406
1407static int __kprobes debugfs_kprobe_init(void)
1408{
1409	struct dentry *dir, *file;
1410	unsigned int value = 1;
1411
1412	dir = debugfs_create_dir("kprobes", NULL);
1413	if (!dir)
1414		return -ENOMEM;
1415
1416	file = debugfs_create_file("list", 0444, dir, NULL,
1417				&debugfs_kprobes_operations);
1418	if (!file) {
1419		debugfs_remove(dir);
1420		return -ENOMEM;
1421	}
1422
1423	file = debugfs_create_file("enabled", 0600, dir,
1424					&value, &fops_kp);
1425	if (!file) {
1426		debugfs_remove(dir);
1427		return -ENOMEM;
1428	}
1429
1430	return 0;
1431}
1432
1433late_initcall(debugfs_kprobe_init);
1434#endif /* CONFIG_DEBUG_FS */
1435
1436module_init(init_kprobes);
1437
1438/* defined in arch/.../kernel/kprobes.c */
1439EXPORT_SYMBOL_GPL(jprobe_return);
1440